Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ**PD78243, 78244**

8-BIT SINGLE-CHIP MICROCOMPUTER

The information in this document is subject to change without notice.

Document No. IC-2774C (O. D. No. IC-8070C) Date Published February 1994 P Printed in Japan

The uPD78243, 78244 is one of the 78K/II series products containing 512-byte EEPROM (electrically erasable programmable read-only memory). The 78K/II series provides 8-bit single chip microcomputers where 1M-byte memory space can be accessed by external expansion.

Please refer to the following User's Manual for details of functions explanation. Be sure to read the manual when starting design.

- uPD78244 Series User's Manual/Hardware: IEU-747
- 78K/II Series User's Manual/Instructions: IEU-754

FEATURES

- o Pins are compatible with the uPD78213, 78214 pins
- Internal EEPROM: 512 bytes (data memory area)
 Automatic erasion and write function
- o High performance interrupt controller
- o A/D converter (8 bits x 8 channels)
- o Number of I/O pins: 54 (uPD78244), 36 (uPD78243)
- o Real-time output port (8 x 1 or 4 x 2)
- o Serial interface: Two channels
- o Timer/counter (16 x 1 and 8 x 3)

APPLICATIONS

Printers, Typewriters, Cameras, PPCs, FAXs, etc.

ORDERING INFORMATION

Ordering code	Package	Internal ROM	Internal RAM
uPD78243CW	64-pin plastic shrinked-dual in-line package (750 mil)	None	512
uPD78243GC-AB8	64-pin plastic quad-flat package (🗌 14mm)	None	512
uPD78244CW-xxx	64-pin plastic shrinked-dual in-line package (750 mil)	16K	512
uPD78244GC-xxx-AB8	64-pin plastic quad-flat package (🗌 14mm)	16K	512

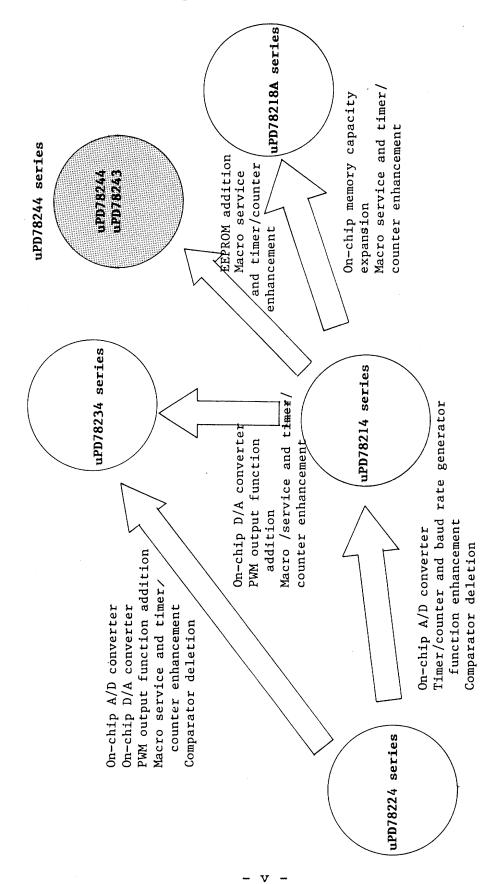
Remarks: xxx is ROM code specification number.

QUALITY GRADE

Standard

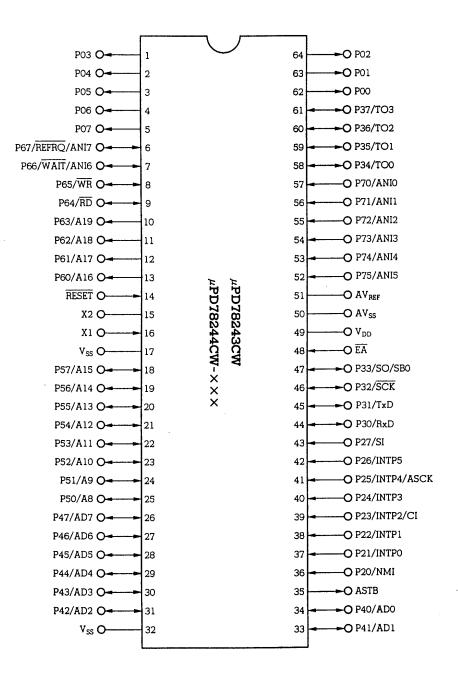
Refer to "Quality Grade on NEC Semiconductor Devices" (Document Number IEI-620) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

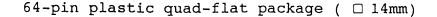
Function List

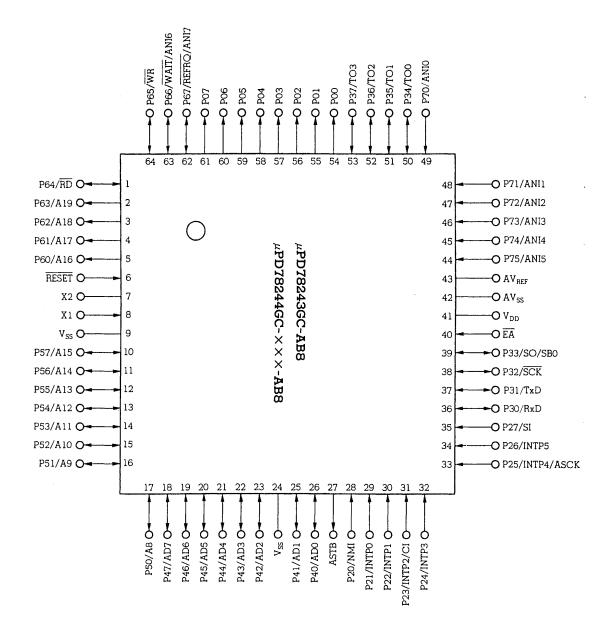

			(1/2	
Paramet	er	uPD78243	uPD78244	
No. of basic in (mnemonics)	structions	6.	5	
Minimum instruc time (during 12	tion execution -MHz operation)	500ns	333ns	
	Mask ROM	None	16K bytes	
On-chip memory capacity	EEPROM	512 1	bytes	
1 5	RAM	512 1	oytes	
Memory space		Program: 64K bytes	Data: 1M bytes	
	Input	14		
Number of I/O	Output	12		
pins	Input/output	10	28	
	Total	36	54	
(Note)	Pins with pull- up resistor	16	34	
Pins with additional function	LED direct drive output	- 16		
	Transistor direct drive output	8		
ROMless mode setting		None	EA pin=low level	
Real-time outpu	t port	4 bits x 2 or 8 bits x 1		
General purpose register		8 bits x 8 x 4 ban	ks (memory mapping)	

Note: The pins with additional an function are contained in the $\ensuremath{\mbox{I/O}}$ pins.

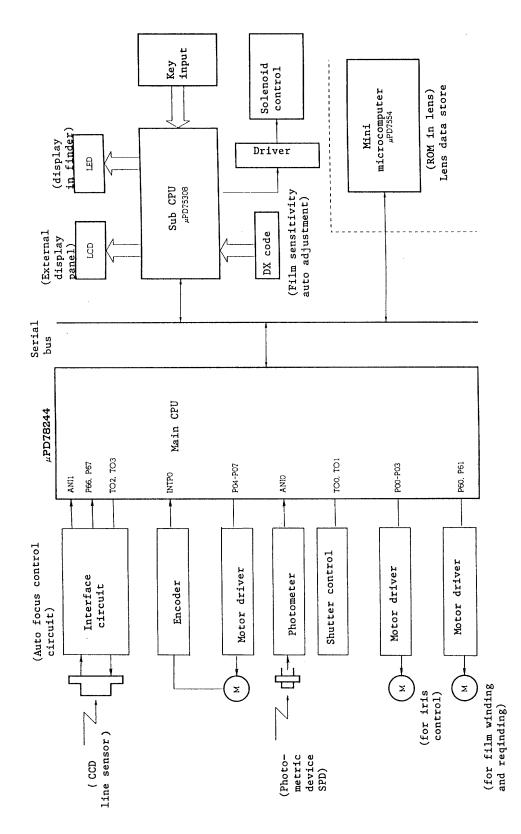
Parameter	Function				
	16-bit timer/ { Timer register x 1 counter { Capture register x 1 Compare register x 2	Pulse output enable (Toggle output PWM/PPG output One-shot pulse output)			
Timer/counter	8-bit timer/ counter 1 { Timer register x 1 Capture/compare register x 1 Compare register x 1	Pulse output enable (real-time output: 4 bits x 2)			
	8-bit timer/ counter 2 { Timer register x 1 Capture register x 1 Compare register x 2	Pulse output enable (Toggle output PWM/PPG output)			
	8-bit timer/ { Timer register x 1 counter 3 { Compare register x 1				
Serial interface	UART: One channel (containing a dedicated baud rate generator) CSI (3-line serial I/O, SBI): One channel				
A/D converter	8-bit resolution x 8 channels				
Interrupt	21 sources (seven external and 14 internal sources) + BRK instruction Two programmable priority levels Two processing modes (vectored interrupt and macro service)				
Instruction set	<pre>16-bit arithmetic and logical operation Multiplication and division (8 bits x 8 bits and 16 bits ÷ 8 bits) Bit manipulation BCD adjustment and others</pre>				
Package	64-pin plastic shrinked-dual-in-line package (750mil) 64-pin plastic quad-flat package (🗆 14 mm)				




Pin Configuration (Top View)

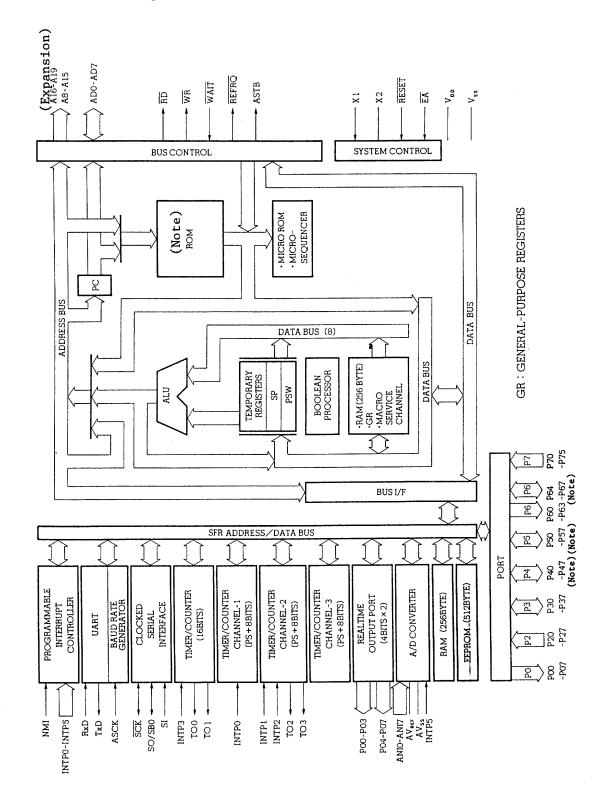

64-pin plastic shrinked-dual-in-line package (750mil)

Remarks: The pins are compatible with the uPD78213CW, 78214CW pins.



Remarks: The pins are compatible with the uPD78213GC, 78214GC pins.

P00-P07	:	Port 0	RD	:	Read Strobe
P20-P27	:	Port 2	WR	:	Write Strobe
P30-P37	:	Port 3	WAIT	:	Wait
P40-P47	:	Port 4	ASTB	:	Address Strobe
P50-P57	:	Port 5	REFRQ	:	Refresh Request
P60-P67	:	Port 6	RESET	:	Reset
P70-P75	:	Port 7	X1, X2	:	Crystal
T00-T03	:	Timer Output	ĒĀ	:	External Access
CI	:	Clock Input	ANIO-ANI	7:	Analog Input
RxD	:	Receive Data	AV _{REF}	:	Reference Voltage
TxD	:	Transmit Data	AVSS	:	Analog Ground
SCK	:	Serial Clock	v _{DD}	:	Power Supply
ASCK	:	Asynchronous Serial Clock	v _{ss}	:	Ground
SBO	:	Serial Bus			
SI	:	Serial Input			
SO	:	Serial Output			
NMI	:	Non-maskable Interrupt			
INTPO-INTP5	:	Interrupt From Peripherals			
AD0-AD7	:	Address/Data Bus			
A8-A19	:	Address Bus			


System Configuration Example (auto focus single-lens reflex camera)

- ix -

Internal Block Diagram

Note: uPD78243 does not contain internal ROM and P40-P47, P50-P57, P64 and P65.

CONTENTS

			Page
1.	PIN	FUNCTION	1-1
	1.1	Ports	1-1
	1.2	Pins other than Ports	1-3
	1.3	Input/Output Circuits and Treatment of Unused Pins	1-5
2.	INTE	ERNAL BLOCK FUNCTION	2-1
	2.1	Memory Space	2-1
	2.2	Ports	2-4
	2.3	Real-Time Output Port	2-6
	2.4	Timer/Counter Units	2-7
	2.5	A/D Converter	2-9
	2.6	Serial Interface	2-12
		6.1 Asynchronous serial interface6.2 Clocked serial interface	2-14 2-16
	2.7	EEPROM	2-18
3.	INTE	RNAL AND EXTERNAL CONTROL FUNCTION	3-1
	3.1	Interrupts	3-1
	3.	<pre>1.1 Interrupt sources 1.2 Vectored interrupt 1.3 Macro service 1.4 Macro service application examples</pre>	3-2 3-5 3-6 3-7

		<u>Page</u>
	3.2 Local Bus Interface	3-10
	<pre>3.2.1 Memory expansion 3.2.2 Programmable wait 3.2.3 Pseudo-static RAM refresh function</pre>	3-11 3-11 3-11
	3.3 Standby	3-12
	3.4 Reset	3-14
4.	INSTRUCTION SET	4-1
5.	ELECTRIC CHARACTERISTICS	5-1
6.	PACKAGE INFORMATION	6-1
7.	RECOMMENDED CONDITIONS FOR SOLDERING	7-1
API	PENDIX A. DEVELOPMENT TOOLS	A-1
API	PENDIX B. RELATED DOCUMENTS	A-3

1. PIN FUNCTION

1.1 Ports (1/2)

Pin name	1/0	Dual function pin	Function
P00-P07	0		Port 0 (P0): Can be used as two 4-bit real-time output ports. Can drive transistors directly.
P20		NMI	
P21		INTPO	
P22		INTP1	Port 2 (P2): P20 cannot be used as a general purpose port
P23	_	INTP2/CI	pin (nonmaskable interrupt), but the input level can be checked by the interrupt
P24	I	INTP3	routine. Internal pull-up resistor connection can be
P25		INTP4/ASCK	specified for P22-P27 in a batch (six bits) by software.
P26		INTP5	
P27		SI	
P30		RxD	
P31		TxD	Port 3 (P3):
P32	I/O	SCK	The input/output mode can be specified bit-wise.
P33		SO/SB0	Internal pull-up resistor connection can be specified bit-wise.
P34-P37		T00-T03	
(Note) P40-P47	I/0	AD0-AD7	Port 4 (P4) The input/output mode can be specified for eight bits in a batch. For P40-P47 in input mode, connection of internal pull-up resistor can be specified in batch by software. The port can drive LEDs directly.

Note: With the uPD78243, P40-P47, P50-P57, P64, and P65 cannot be used as ports.

1.1 Ports (2/2)

Pin name	I/0	Dual function pin	Function
(Note) P50-P57	1/0	A8-A15	Port 5 (P5): The input/output mode can be specified bit-wise. For P50-P57 in input mode, connection of internal pull-up resistor can be specified in batch by software. The port can drive LEDs directly.
P60-P63	0	A16-A19	
P64(Note)		RD	Port 6 (P6):
P65(Note)		ŴŔ	The input/output mode can be specified for P64-P67 bit-wise.
P66	1/0	WAIT/ANI6	Internal pull-up resistor connection can be specified for P64-P67 bit-wise.
P67		REFRQ/AN17	
P70-P75	I	ANIO-ANI5	Port 7 (P7)

Note: With the uPD78243, P40-P47, P50-P57, P64, and P65 cannot be used as ports.

1.2 Pins other than Ports (1/2)

Pin nameI/0Dual functionT00-T030Timer outputFunctionT00-T030Timer outputP34-P37CIICount clock input to 8-bit timer/counter 2P23/INTP2RxDISerial data input (UART)P30TxD0Serial data output (UART)P31ASCKIBaud rate clock input (UART)P25/INTP4SB0I/0Serial data input/output (SBI)P33/S0SIISerial data output (3-line serial I/0)P27S00Serial clock input/output (SBI, 3-line serial I/0)P32SCKI/0Serial clock input/output (SBI, 3-line serial I/0)P32INTP0IExternal interrupt requestsP21INTP1IExternal interrupt requestsP23/CIIINTP4INTP4P24P25/ASCKINTP5P26P26				
CIIClant chapterCIICount clock input to 8-bit timer/counter 2P23/INTP2RxDISerial data input (UART)P30TxDOSerial data output (UART)P31ASCKIBaud rate clock input (UART)P25/INTP4SB0I/OSerial data input/output (SBI)P33/SOSIISerial data input (3-line serial I/O)P27SOOSerial clock input/output (SBI, 3-line serial I/O)P33/SB0SCKI/OSerial clock input/output (SBI, 3-line serial I/O)P32NMI P20P21P20INTPOIExternal interrupt requestsP23/CIINTP3IP24P25/ASCK	Pin name	1/0	Function	function
RxDISerial data input (UART)P30TxD0Serial data output (UART)P31ASCKIBaud rate clock input (UART)P25/INTP4SB0I/0Serial data input/output (SBI)P33/S0SIISerial data input (3-line serial I/0)P27S00Serial clock input/output (SBI, 3-line serial I/0)P33/SB0 \overline{SCK} I/0Serial clock input/output (SBI, 3-line serial I/0)P32NMI P20P21P21INTP0IExternal interrupt requestsP23/CIINTP3IExternal interrupt requestsP24INTP4P24P25/ASCK	T00-T03	0	Timer output	P34-P37
TxD0Serial data output (UART)P31ASCKIBaud rate clock input (UART)P25/INTP4SB0I/0Serial data input/output (SBI)P33/S0SIISerial data input (3-line serial I/0)P27S00Serial data output (3-line serial I/0)P33/SB0SCKI/0Serial clock input/output (SBI, 3-lineP32NMIP20INTP0INTP1P22INTP2IExternal interrupt requestsP23/CIINTP4P24P25/ASCK	CI	I	Count clock input to 8-bit timer/counter 2	P23/INTP2
ASCKIBaud rate clock input (UART)P25/INTP4SB0I/0Serial data input/output (SBI)P33/S0SIISerial data input (3-line serial I/0)P27S00Serial data output (3-line serial I/0)P33/SB0SCKI/0Serial clock input/output (SBI, 3-line serial I/0)P32NMI serial I/0)P20P21INTP0INTP2IExternal interrupt requestsP22INTP3INTP4P24P24	RxD	I	Serial data input (UART)	P30
SB0I/0Serial data input/output (SBI)P33/S0SIISerial data input (3-line serial I/0)P27SOOSerial data output (3-line serial I/0)P33/SB0SCKI/0Serial clock input/output (SBI, 3-line serial I/0)P32NMIP20P21INTP0IExternal interrupt requestsP23/CIINTP3IExternal interrupt requestsP23/CIINTP4P24P24	TxD	0	Serial data output (UART)	P31
SIISerial data input (3-line serial I/0)P27SOOSerial data output (3-line serial I/0)P33/SB0SCKI/OSerial clock input/output (SBI, 3-line serial I/0)P32NMI Serial I/O)P20INTP0 P21P20INTP1 P22P21INTP2IExternal interrupt requestsP23/CIINTP4 P25/ASCK	ASCK	I	Baud rate clock input (UART)	P25/INTP4
SOOSerial data output (3-line serial I/O)P33/SBOSCKI/OSerial clock input/output (SBI, 3-line serial I/O)P32NMIP20P20INTPOP21P21INTP1IExternal interrupt requestsP23/CIINTP3INTP4P25/ASCK	SBO	I/0	Serial data input/output (SBI)	P33/S0
SCKI/OSerial clock input/output (SBI, 3-line serial I/O)P32NMIP20INTP0P21INTP1P22INTP2IINTP3External interrupt requestsP23/CIINTP4P24P25/ASCK	SI	I	Serial data input (3-line serial I/O)	P27
SCK1/0serial I/0)P32NMIP20INTP0P21INTP1P22INTP2IINTP3External interrupt requestsINTP4P24P25/ASCK	SO	0	Serial data output (3-line serial I/O)	P33/SB0
INTP0 P21 INTP1 P22 INTP2 I External interrupt requests P23/CI P24 P24 P25/ASCK P25/ASCK	SCK	I/0		P32
INTP1 P22 INTP2 I External interrupt requests P23/CI P24 P25/ASCK	NMI			P20
INTP2 I External interrupt requests P23/CI INTP3 P24 INTP4 P25/ASCK	INTPO	1		P21
INTP3 P24 P25/ASCK	INTP1	1		P22
INTP4 P25/ASCK	INTP2] I	External interrupt requests	P23/CI
	INTP3			P24
INTP5 P26	INTP4			P25/ASCK
	INTP5			P26

1.2 Pins other than Ports (2/2)

.

Pin name	1/0	Function	Dual function pin
AD0-AD7	I/0	Time-multiplexed address/data bus (external memory connection)	(Note) P40-P47
A8-A15	0	High-order address bus (external memory connection)	(Note) P50-P57
A16-A19	0	High-order address in address extension (external memory connection)	P60-P63
RD	0	Read strobe to external memory	P64 ^(Note)
WR	0	Write strobe to external memory	P65 ^(Note)
WAIT	I	Wait insertion	P66/ANI6
ASTB	0	Address (A0-A7) latch timing output (when external memory is accessed)	_
REFRQ	0	Refresh pulse output to external psudo-static memory	P67/ANI7
RESET	I	Chip reset	_
X1	I	Crystal input for system clock oscillation	
X2	-	(clock can also be input to X1)	
ĒĀ	I	ROMless operation indication (external access to the same space as internal ROM). With the uPD78244, set the EA pin high for use and with the uPD78243, set the EA pin low for use.	_
ANIO-ANI5	-		P70-P75
ANI6, ANI7		A/D converter analog voltage input	P66/WAIT P67/REFRQ
AVREF		A/D converter reference voltage application	_
AVSS		A/D converter GND	
V _{DD}	-	Positive power supply pin	-
V _{SS}	V _{SS} GND pin		

Note: With the uPD78243, P40-P47, P50-P57, P64, and P65 cannot be used as ports.

1.3 Input/Output Circuits and Treatment of Unused Pins

Table 1-1 lists the pin input/output circuit types and the recommended conditions for unused pins. Fig. 1-1 shows the input/output circuit types.

Table 1-1	Pin Input/Output Circuit Types and Recommended
	Conditions for Unused Pins (1/2)

Pin	I/O circuit type	1/0	Recommended conditions for unused pins		
P00-P07	4	0	No connection required		
P20/NMI	2		Concept to V on V		
P21/INTP0			Conenct to $v_{DD}^{}$ or $v_{SS}^{}$		
P22/INTP1					
P23/INTP2/CI		I			
P24/INTP3	- 2-A		Correct to M		
P25/INTP4/ASCK			Connect to V _{DD}		
P26/INTP5					
P27/SI					
P30/RxD	5-A				
P31/TxD	5-A				
P32/SCK	8-A		Tanut , Cononat to V		
P33/SB0/SO	10-A	I/O	Input : Conenct to V _{DD} . Output: Not connection		
P34/T00-P37/T03			required.		
P40/AD0-P47-AD7	5-A				
P50/A8-P57/A15					

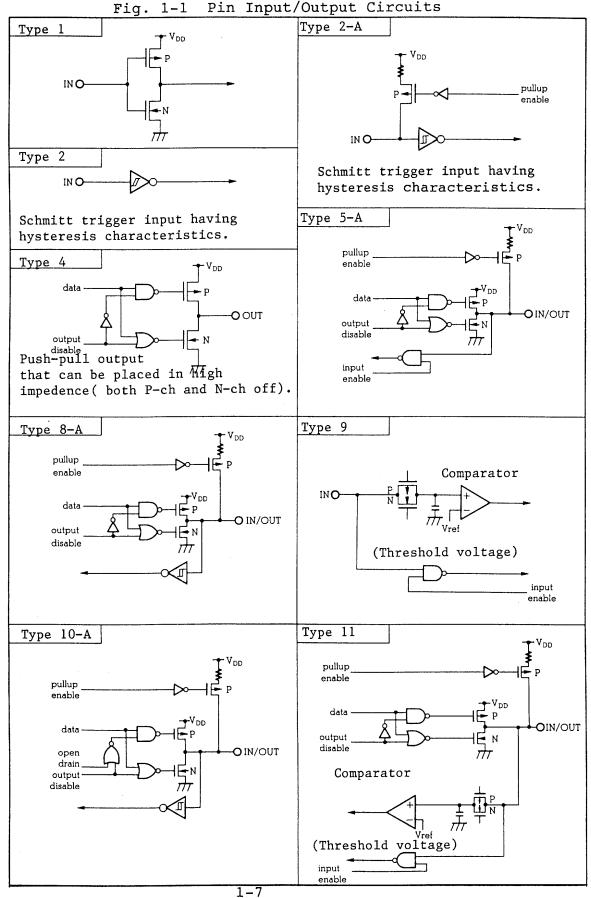


Table 1-1 Pin Input/Output Circuit Types and Recommended Conditions for Unused Pins (2/2)

Pin	I/O circuit type	1/0	Recommended conditions for unused pins	
P60/A16-P63/A19	4	0	No connection required	
P64/RD		1/0	Input : Connect to V _{DD}	
P65/WR	5-A		Output: No connection required	
P66/WAIT/ANI6	1 1		Input : Connect to V _{DD}	
P67/REFRQ/ANI7	11		Output: No conenction required	
P70/ANI0-P75/ANI5	9	I	Connect to V _{SS}	
ASTB	4	0	No connection required	
RESET	RESET 2			
ĒĀ	1	I		
AV _{REF}			Connect to V_{SS} or V_{DD}	
AV _{SS}			Connect to V _{SS}	

- Note: When A/D conversion operation is being performed, do not apply any voltage outside the AV_{SS}-AV_{REF} range. The uPD78243, 78244 may be destroyed.
- Caution: If the dual function pins used for both input and output mode is not defined, connect the pins to V_{DD} via serveral tens k Ω resistors (particularly when the reset input pin voltage exceeds the input low voltage when the power is turned on or when the input and output modes are changed by software.)
- Remarks: The type numbers are standardized in the 78K series and are not necessarily serial numbers in each product (some circuit types are not contained).

2. INTERNAL BLOCK FUNCTION

2.1 Memory Space

The lM-byte memory space can be accessed. Fig. 2-1 shows a memory map. Mapping the program memory varies depending on the state of the \overline{EA} pin. The uPD78243 is used with $\overline{EA}=L$.

(1) uPD78243

The program memory is mapped in external memory (64256 bytes; 00000H-OFAFFH). This area can also be shared with the data memory.

The data memory consists of an internal EEPROM and an internal RAM.

The internal EEPROM area has a capacity of 512 bytes and is mapped in OFB00H-OFCFFH.

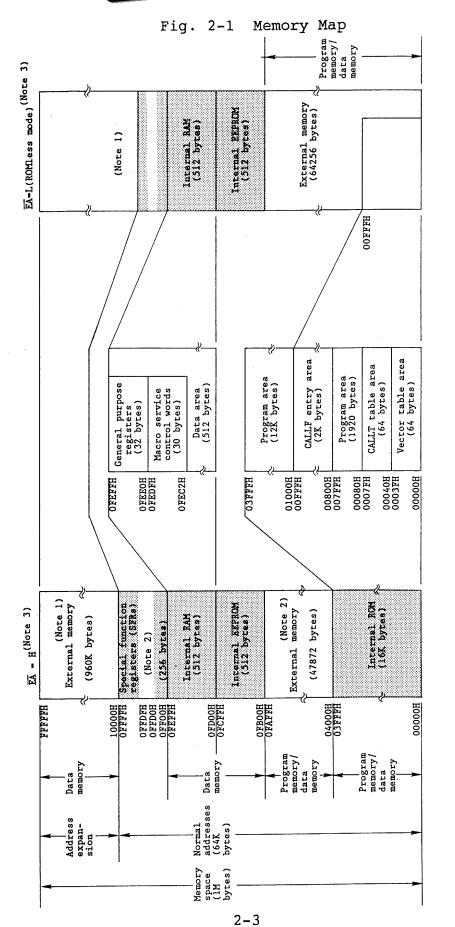
The internal RAM also has a capacity of 512 bytes and is mapped in 0FD00H-0FEFFH.

In the 1M-byte extension mode, external memory (960K bytes, 10000H-FFFFFH) can be mapped as an extended data memory.

(2) uPD78244

The program memory is mapped in the 16K-byte internal ROM (00000H-03FFFH) and 47872-byte external memory (04000H-OFAFFH). The external memory is accessed in the external memory expansion mode. The area mapped in the external memory can also be used as data memory.

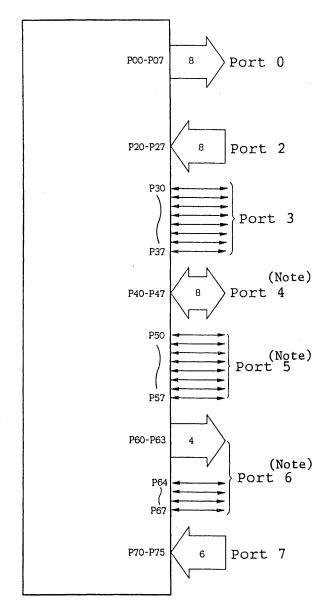
The data memory consists of internal EEPROM and internal RAM.

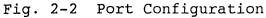

2-1

The internal EEPROM area has a 512-byte capacity and is mapped in OFB00H-OFCFFH.

The internal RAM also has a 512-byte capacity and is mapped in OFD00H-OFEFFH.

In the 1M-byte expansion mode, the 960K-byte external memory (10000H-FFFFFH) can be mapped as data memory expansion.




- the 1M-byte expansion mode. in memory is accessed External .. ,--Note
 - : Internal memory
- expansion mode. the external memory in memory is accessed External 2:
- The uPD78243 cannot be used with EA=H. The uPD78243 can only be used with $\overline{EA}=L$. •• m

2.2 Ports

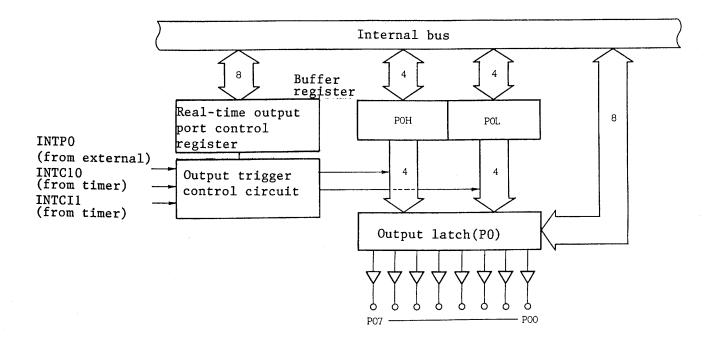
The uPD78243, 78244 contains the ports as shown in Fig. 2-2 for various control purposes. Table 2-1 lists the port function. On-chip pull-up resistor connection can be specified for ports 2 to 6 in the input mode by software.

Note: With the uPD78243, P40-P47, P50-P57, P64, and P65 cannot be used as ports.

Table 2-1 Port Configuration

Name	Pin name	Function	Software pull-up specification	
Port O	P00-P07	Output mode or high impedance can be specified for eight bits in a batch. Port 0 can also operate as 4-bit real time output (P00-P03 and P04-P07). The port can drive transistors directly.		
Port 2	P20-P27	Input port.	Six bits in a batch (P22-P27)	
Port 3	P30-P37	Input or output mode can be specified bit-wise.	Input mode pins can be specified in a batch.	
(Note) Port 4	P40-P47	Input or output mode can be specified for eight bits in a batch. The port can drive LED directly.	Eight bits in a batch	
(Note) Port 5	P50-P57	Input or output mode can be specified bit-wise. The port can drive LEDs directly.	Input mode pins can be specified in a batch.	
	P60-P63	Output port.		
Port 6	P64-P67	Input or output mode can be specified bit-wise.	Input mode pins can be specified in a batch.	
Port 7	P70-P75	Input port.		

Note: With the uPD78243, P40-P47, P50-P57, P64, and P65 cannot be used as ports.


2.3 Real-Time Output Port

The real-time output port outputs data stored in a buffer in synchronization with a timer match interrupt or external interrupt to provide pulse output with no jitter.

Thus, it is appropriate for application to output any desired pattern at any desired intervals, such as open loop control of a stepping motor.

The real-time output port consists mainly of port 0 and a buffer register, as shown in Fig. 2-3.

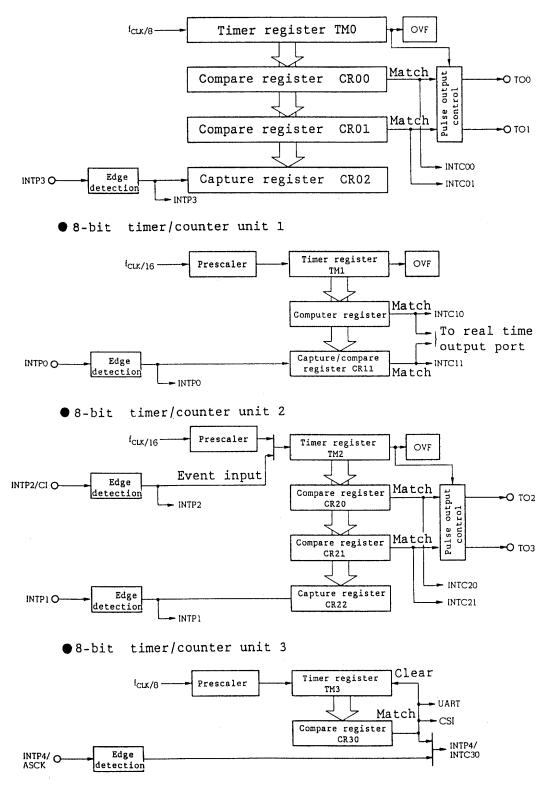
Fig. 2-3 Real Time Output Port Block Diagram

2.4 Timer/Counter Units

One channel of the 16-bit timer/counter unit and three channels of the 8-bit timer/counter unit are contained.

Type and	fu	Unit	l6-bit timer/counter	8-bit timer/counter1	8-bit timer/counter2	8-bit timer/counter3
	Interval timer		Two channels	Two channels	Two channels	One channel
Туре	External event counter		-	-	o	-
	One-shot timer (Note)		-	-	o	-
	Timer output		Two channels	-	Two channels	-
		Toggle output	o	-	o	-
Function		PWM/PPG output	o	-	o	-
		One-shot pulse output ^(Note)	o	-	o	-
	Real-time output		-	o	-	-
	Pulse width measurement		o	o	o	-
	Number of interrupt requests		2	2	2	1
	Serial interface clock source		-	-	-	o

Table 2-2 Timer/Counter Types and Function


Note: Only 8-bit timer/counter 2 has the one-shot timer mode. The function of this mode differs from the 16-bit timer/counter one-shot pulse output function. Thus, the 16-bit timer/counter does not have the one-shot timer mode. The 16-bit timer/counter one-shot pulse output function is added from the uPD78213, 78214.

The timer/counter units support a total of seven interrupt requests, thus can be served as timers of seven channels.

Fig. 2-4 Timer/Counter Unit Block Diagram

● 16-bit timer/counter unit

OVF: Overflow flag

2.5 A/D Converter

An analog/digital (A/D) converter which has eight multiplexed analog inputs (ANI0-ANI7) is contained.

The conversion system is successive approximation and the conversion result is retained in an 8-bit A/D conversion result register (ADCR). Thus, high-speed and high-precision conversion is made (the conversion time is about 30 us during 12-MHz operation).

A/D conversion operation is started in either of the following modes:

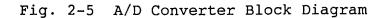
- o Hardware start: Conversion is started by trigger input (INTP5).
- o Software start: Conversion is started by setting a specific A/D converter mode register (ADM) bit.

After being started, the A/D conversion operation

- o Scan mode : More than one analog input is selected in sequence and conversion data from all pins is provided.
- o Select mode: Analog input is fixed to one pin and consecutive conversion value is provided.

The modes and conversion operation stop are all specified in the ADM.

When the conversion result is transferred to the ADCR, interrupt request INTAD is generated (except in the select mode with software start). Thus, the conversion value can be transferred consecutively to memory by macro service.


2-9

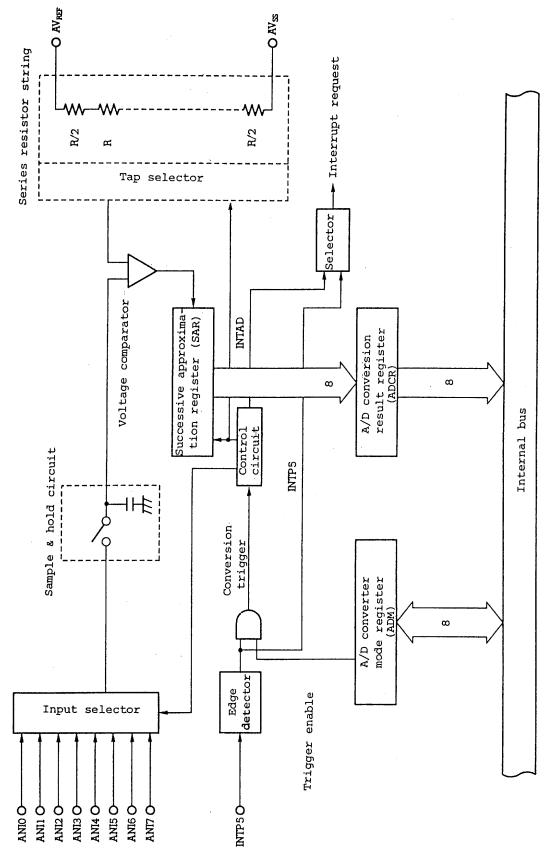
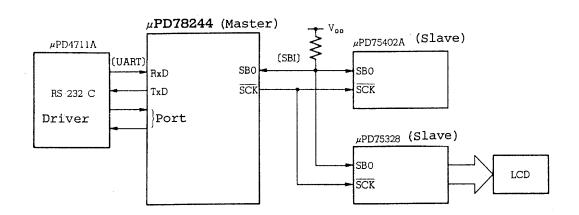


Table 2-3 Modes Causing INTAD to Occur

	Scan mode	Select mode
Hardware start	0	o
Software start	о	

2-11

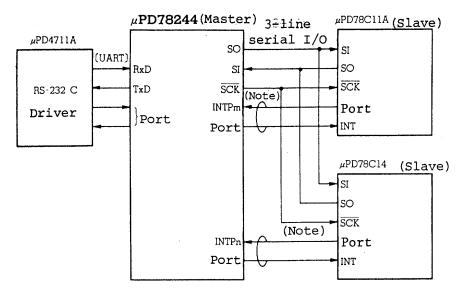
2.6 Serial Interface


Two independent serial interface channels are contained.

o Asynchronous serial interface (UART)

- o Clocked serial interface (CSI)
 - 3-line serial I/O
 - Serial bus interface (SBI)

Thus, the uPD78243, 78244 can make communication with the system external and local communication in the system simultaneously (See Fig. 2-6).

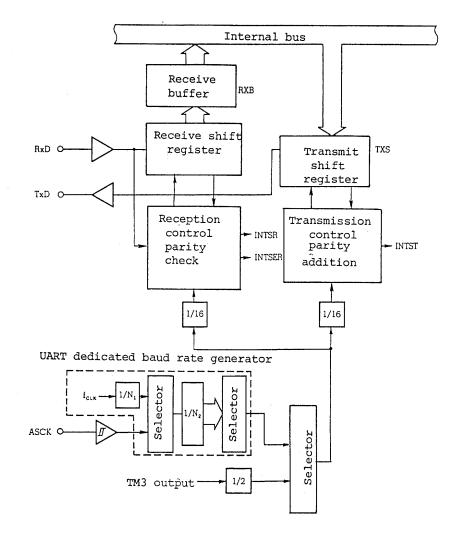

Fig. 2-6 Serial Interface Example

(a) UART+SBI

(b) UART+3-line serial interface

Note: Handshaking lines

2.6.1 Asynchronous serial interface


The uPD78243, 78244 contains UART (Universal Asynchronous Receiver er Transmitter) as an asynchronous serial interface where 1-byte data following a start bit is transmitted.

A baud rate generator dedicated to the UART is provided for communication covering a wide range of desired baud rates. A baud rate can also be defined by dividing the input clock to the ASCK pin.

8-bit timer/counter 3 can also generate a baud rate. The UART dedicated baud rate generator also provides the MIDI specification baud rate (31.25 kbps).

Fig. 2-7 Asynchronous Serial Interface Block Diagram

f_{CLK}: Internal system clock frequency (clock oscillation frequency/2)

2.6.2 Clocked serial interface

The master device activates serial clock and starts transmission. 1-byte data is transferred in synchronization with the serial clock.

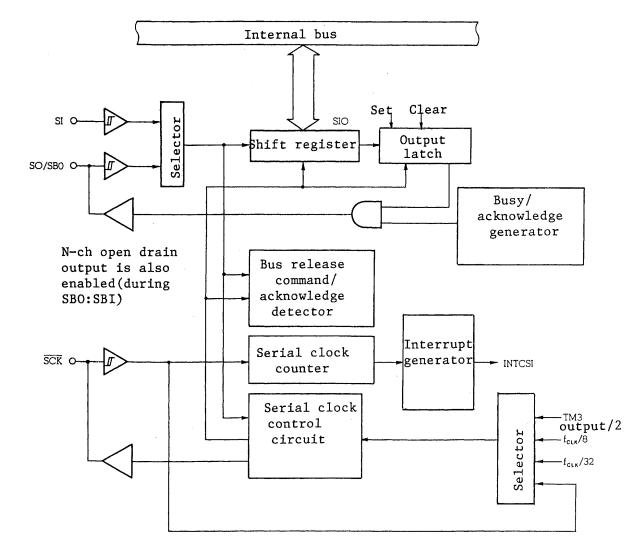
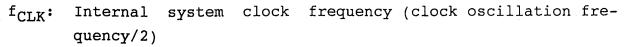



Fig. 2-8 Clocked Serial Interface Block Diagram

(1) 3-line serial I/O

The 3-line serial I/O is an interface for communication with a device containing the conventional clocked serial interface.

Basically, the three lines of serial clock (SCK) and serial data (SI and SO) are used for communication. To connect the uPD78243, 78244 to a number of devices, handshaking lines are required.

(2) Serial bus interface (SBI)

The uPD78243, 78244 communicates with a number of devices on the two lines of serial clock (\overline{SCK}) and serial bus (SB0). The serial bus interface (SBI) is NEC format serial interface.

The master device outputs "address" from the SBO pin to select the slave device to communicate with. Then, "command" and "data" are transferred between the master and slave.

2.7 EEPROM

512-byte EEPROM (Electrically Erasable Programmable Read-Only Memory) is contained in addition to 512-byte internal RAM as data memory. EEPROM can be read/written by a program. Unlike normal data memory, EEPROM can also retain data during power failure.

EEPROM is mapped in data memory space addresses OFB00H-OFCFFH.

EEPROM contains a write dedicated timer. When data is written into EEPROM, the EEPROM contents are eased and the data is written automatically. The write operation is performed one byte at a time. The time required for the write is about 10 ms (about 5 ms of erasion time + about 5 ms of write time)

On-chip EEPROM read/write operation is performed in the same manner as on-chip RAM read/write operation. The memory contents can also be read during writing.

The following two interrupts occur from EEPROM:

(1) INTEPW (EEPROM write end interrupt)

Is an interrupt occurring when write into EEPROM is complete.

(2) INTEER (EEPROM write error interrupt)

Is an interrupt occurring when a write error into EEPROM occcurs. The write error occurs in either of the following cases:

- When an EEPROM write instruction is executed during writing into EEPROM
- When EEPROM write is inhibited during writing into EEPROM

2 - 18

3. INTERNAL AND EXTERNAL CONTROL FUNCTION

3.1 Interrupts

Either of the interrupt request processing modes listed in Table 3-1 can be selected by a program.

Processing mode Main part for processing		Processing	PC and PSW contents
Vectored interrupt Softwa		Branch to service routine for execution (processing contents are as desired)	Saved and restored
Macro service	Firmware	Execution of data transfer between memory and I/O, etc., (processing contents are fixed)	Retained

Table 3-	l Interrupt	Request	Processing
----------	-------------	---------	------------

3.1.1 Interrupt sources

The interrupt sources are seven external and 14 internal sources (21 totally) and BRK instruction execution, as listed in Table 3-2.

Two interrupt processing priority levels (high and low) can be set for nest control during interrupt processing and for discrimination between levels of interrupt requests occurring at a time. (See Fig. 3-1 and 3-2.) However, when a macro service is executed, interrupt requests are not pending and are always nested.

The default priorities are fixed processing priority levels of interrupt requests having the same priority level occurring at a time. (See Table 3-2.)

	Default		Source	Internal/	Macro
Type priority		Name	Trigger	external	service
Software		BRK	Instruction execution	—	
Nonmaskable		NMI	Pin input edge detection		
	0 (highest)	INTPO	" (TM1 capture trigger)		
	1	INTP1	" (TM2 capture trigger)	External	
	2 3	INTP2	" (TM2 event counter input)		o
		INTP3	" (TMO capture trigger)		
Maskable	4	INTCOO	TMO-CR00 match signal generation		
	5	INTCO1	TMO-CRO1 "		
	6	INTC10	TM1-CR10 "	Internal	
	7	INTC11	TM1-CR11 "		
	8	INTC21	TM2-CR21 "		
	9	INTP4	Pin input edge detection	External	
	У	INTC30	TM3-CR30 match signal generation	Internal	

Table 3-2 Interrupt Sources (1/2)

Table 3-2 Interrupt Sources (2/2)

Туре	Default		Source	Internal/	Macro
	priority Name		Trigger	external	service
	10	INTP5	Pin input edge detection	External	
	10	INTAD	A/D converter conversion end (transfer to ADCR)		0
	11	INTC20	TM2-CR20 match signal generation		
Maskable	12	INTSER ASI reception error occurrence			-
MASKADIG	13	INTSR	INTSR ASI reception end		
	14 INTST		ASI transmission end		o
	15 INTCSI CSI transfer end		CSI transfer end		
	16	INTEER	EER EEPROM write error occurrence		
	17 (lowest)	INTEPW	EEPROM write completion		-

TMO	:	16-bit timer
TM1-TM	13:	8-bit timers
ASI	:	Asynchronous serial interface
CSI	:	Clocked serial interface

Fig. 3-1 Processing Example when Another Interrupt Request Occurs during Interrupt Processing

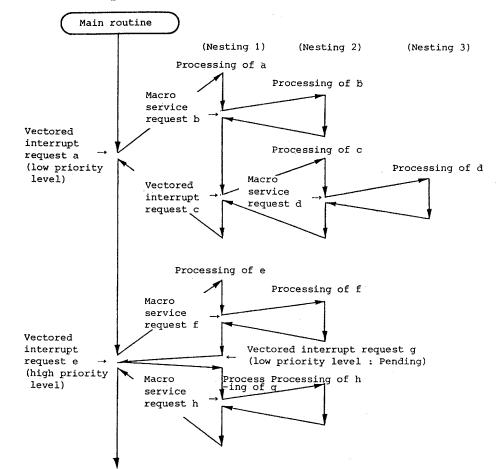
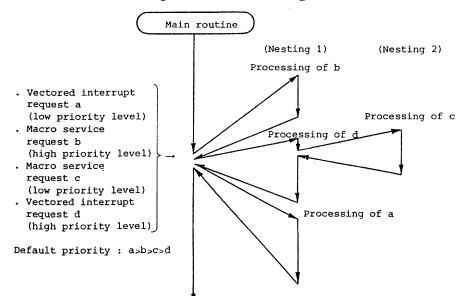



Fig. 3-2 Processing Example of Interrupt Requests Occurring Simultaneously

3.1.2 Vectored interrupt

A branch is taken to a specific interrupt service routine at the address addressed by the memory contents at the vector table address corresponding to each interrupt source.

The following are performed for the CPU to perform interrupt processing:

0	At branch :	CPU state (PC and PSW contents) is saved in a	
		stack.	
0	At return :	CPU state (PC and PSW contents) is restored from	i
		the stack.	

To return from the interrupt service routine to the main routine, the RETI instruction is executed.

Interrupt source	Vector table address				
BRK	003EH				
NMI	0002H				
INTPO	0006н				
INTP1	0008H				
INTP2	000AH				
INTP3	000CH				
INTC00	0014H				
INTC01	0016H				
INTC10	0018H				
INTC11	001AH				
INTC21	001CH				

Interrupt source	Vector table address		
INTP4	000EH		
INTC30	OOOEH		
INTP5	0010H		
INTAD			
INTC20	0012H		
INTSER	0020H		
INTSR	0022H		

0024H

0026H 0028H

002AH

INTST

INTCSI

INTEER INTEPW

Table 3-3 Vector Table Addresses

3.1.3 Macro service

The macro service function transfers data between memory and a given special function register (SFR) without CPU intervention. The macro service controller accesses memory and SFR and directly transfers data without acquiring it.

Data can be transferred at high speed because the CPU state is not saved or restored and data is not acquired.

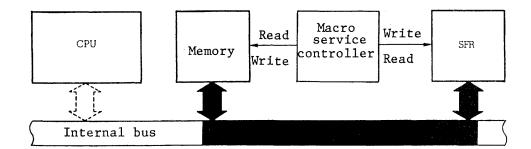
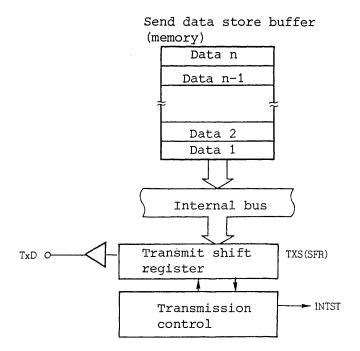



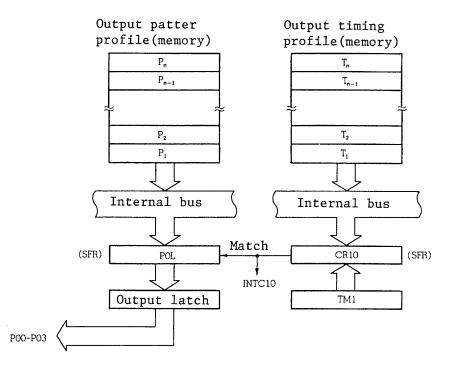
Fig. 3-3 Macro Service

3.1.4 Macro service application examples

(1) Serial interface transmission operation

Each time macro service request INTST occurs, the next send data is transferred from memory to TXS. When data n (last byte) is transferred to TXS (when the send data store buffer becomes empty), vectored interrupt request INTST is generated.

(2) Serial interface reception operation

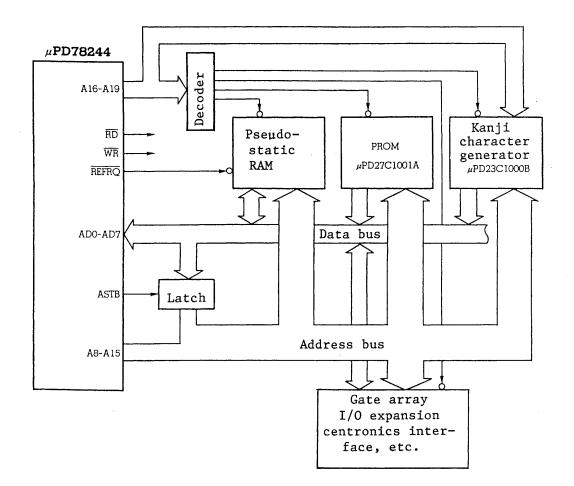

Receive data store buffer (memory) Data n Data n-1 Data 2 Data 1 Internal bus $\langle \rangle$ Receive buffer RXB(SFR) $\langle \rangle$ Receive shift RxD O register A Reception - INTSR control

Each time macro service request INTSR occurs, receive data is transferred from RXB to memory. When data n (last byte) is transferred to memory (when the receive data store buffer becomes full), vectored interrupt request INTSR is generated.

(3) Real-time output port

INTC10 and INTC11 are used as real-time output port output triggers. In macro service for them, the next output pattern and intervals can be set at the same time. Thus, INTC10 and INTC11 can be used to control two independent stepping motor subsystems. They are also applicable to PWM and DC motor control, etc.

Each time macro service request INTCl0 occurs, a pattern and timing are transferred to POL and CR10 respectively. When the TM1 contents match the CR10 contents, the next INTCl0 is generated and the POL contents are sent to the output latch. When T_n (last byte) is transferred to CR10, vectored interrupt request INTCl0 is generated.


Each time macro service request INTC11 occurs, the same operation is performed except that CR10 is CR11, POL is POH, or POO-PO3 are PO4-PO7.

3.2 Local Bus Interface

External memory and I/O (memory-mapped I/O) can be connected to the uPD78243, 78244; the uPD78243, 78244 supports 1M-byte memory space. (See Fig. 2-1.)

Fig. 3-4 Local Bus Interface Example

3.2.1 Memory expansion

The following modes can be used as the memory expansion function:

- o External memory expansion mode: Program memory and data memory can be expanded to the external (47872 bytes). However, in the ROMLess mode (EA=L), the area can be used unconditionally.
- o 1M-byte expansion mode : Data memory can be expanded to the external (960K bytes) to provide 1M-byte memory space.

3.2.2 Programmable wait

Wait can be inserted in memory mapped in the normal address area (00000H-OFFFFH) and address expansion area (10000H-FFFFFH) independently. Thus, the lowering of the entire system's efficiency can be avoided although memory with different access time is connected.

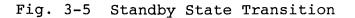
3.2.3 Pseudo-static RAM refresh function

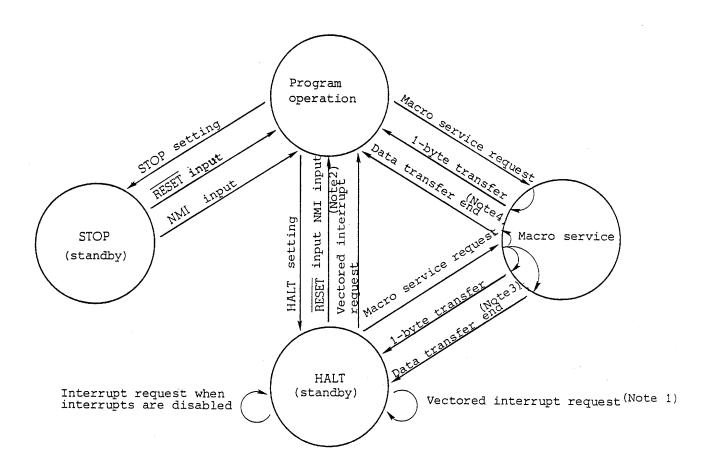
The following refresh operation is performed:

o Pulse refresh : A refresh pulse is output to the REFRQ pin in synchronization with bus cycle.
 o Power-down self-refresh: In the standby mode, a low level is output to the REFRQ pin and the pseudo-static RAM contents are re-

tained.

3-11


3.3 Standby


The standby function reduces chip power consumption. It provides the following modes:

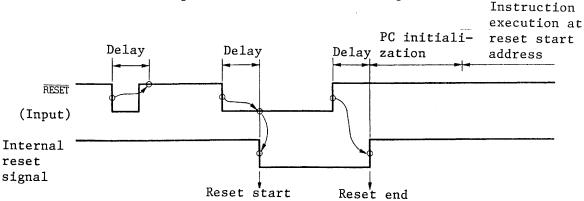
- o HALT mode: Stops CPU operation clock. Average power consumption can be reduced by intermittent operation using the HALT mode and normal operation in combination.
- o STOP mode: Stops the oscillator. All operation in the chip is stopped and the chip consumes very little power with leakage current only.

The HALT mode and STOP mode are programmable. Macro service can be started in the HALT mode.

- Note 1: Vectored interrupt request with a low priority level (interrupts with a low priority level are disabled when HALT is set).
 - 2: Vectored interrupt request with a high priority level occurs or interrupt with a low priority level is enabled when HALT is set.
 - 3: Macro service request with a low priority level (interrupts with a low priority level are disabled when HALT is set).
 - 4: Macro service request with a high priority level is executed or interrupt with a low priority level is enabled when HALT is set.

3.4 Reset

When a low level is input to the $\overline{\text{RESET}}$ pin, the internal hardware is initialized (reset).

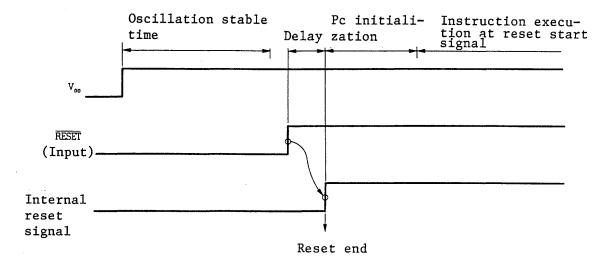

When the low-to-high transition of RESET input is made, the following data is set in the program counter (PC):

o Low-order eight bits of PC : Contents of address 0000Ho High-order eight bits of PC: Contents of address 0001H

Since program execution is started at the address addressed by the PC setup contents, reset start is enabled at any desired address.

Set the register contents by a program as required.

The RESET input circuit contains a noise eliminator to prevent a noise from causing an error. This noise eliminator is a sampling circuit using an analog delay.



In reset operation when the power is turned on or the STOP mode is released, activate the $\overline{\text{RESET}}$ signal until the oscillation stable time (about 40 ms) elapses.

Fig. 3-7 Reset Operation when Power is Turned On

Table 3-4 Hardware State after Reset (1/2)

		Hard	ware		State after reset		
Program	counte	er (PC)			Contents of reset vector table addresses 0000H and 0001H are set.		
Stack po	inter	(SP)			Undefined		
Program	Program status word (PSW)				02H		
ON abda)ata me	mory		Undefined (Note)		
ON-chip	G		purpose registe C, B, E, D, L, H		onderined		
Port	Ports 0, 2-5, and 7				Undefined (high impedance)		
TOLL	P	Port 6			хон		
(PMO)					FFH		
Port mode registers (PM3, PM5)			(PM3, PM5)		FFH		
(PM6)					FxH		
Port 3 mode control register (PMC3)					оон		
Pull-up	resist	or opt	ion register (PU	10)	оон		
Memory expansion mode register (MM)			e register (MM)		20H		
	16-bi	Timer (TMO)			0000н		
	timer	/ Co	mpare registers	(CR00, CR01)	Undefined		
	count		pture register (CR02)	Underined		
		Ti	mers (TM1, TM2,	and TM3)	ООН		
Timer/ counter	8-bit timer count	er/ Compare registers		and CR30)	Undefined		
unit		Ca	Capture register (CR22)		onder i ned		
		Capture/compare register (CR11)		gister (CR11)			
	Timer	contr	ol registers (TM	(CO and TMC1)			
	Timer	outpu	t control regist	er (TOC)	ООН		
	One-s (OSPC		lse output contr	ol register			
	Captu	re/com	pare	(CRCO)	10H		
	contr	ol reg	isters	(CRC1, CRC2)	ООН		
	Presc	aler m	ode registers (P	RMO, PRM1)	ООН		
A/D	Mo	de reg	ister (ADM)		ООН		
converte	r A/1	D conv	ersion result re	gister (ADCR)	Undefined		

Note: When the STOP mode is released by inputting $\overline{\text{RESET}}$, the values before the STOP mode is set, are retained.

Table 3-4 Hardware State after Reset (2/2)

	Hardware	State after reset	
	Mode register (CSIM)		ООН
	Shift register (SIO)		Undefined
	Asynchronous mode re	gister (ASIM)	80H
Serial	Asynchronous status	register (ASIS)	OOH
interface	Serial bus control r	egister (SBIC)	OOH
	Serial receive buffe	r (RXB)	Undefined
	Serial transmit shif	t register (TXS)	Undefined
	Baud rate generator	control register (BRGC)	OOH
Real-time ou	tput port control regis	ter (RTPC)	OOH
Programmable	wait control register	(PW)	80H
Refresh mode	register (RFM)		OOH
	Interrupt request	(IFOL, IFOH)	00H
	flag registers	(IF1L)	xxxx xx00B
	Interrupt mask	(MKOL, MKOH)	FFH
•	register	(MK1L)	xxxx xx11B
Interrupt	Priority level	(PROL, PROH)	FFH
	specification flag registers	(PR1L)	xxxx xx11B
	Interrupt service	(ISMOL, ISMOH)	ООН
	mode registers	(ISMIL)	xxxx xx00B
	Interrupt status reg	ister (IST)	ООН
External inte	errupt mode registers ()	INTMO and INTM1)	ООН
Standby contr	col register (STBC)		ООН
EEPROM write	control register (EWC)		0011 0100B

Phase-out/Discontinued

Phase-out/Discontinued

4. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP

Table 4-1 Instruction List of 8-bit Addressing

<u></u>	1		1	1	1	<u> </u>		r	1	
Second operand First operand	∦ byte	A	r r'	saddr saddr'	sfr	nen & nen	laddr16 &laddr16	PSW	n	(Note2) None
A	(Notel) ADD		MOV XCH	MOV XCH (Notel) ADD	MOV XCH (Notel) ADD	MOV XCH (Notel) ADD	MOV	MOV		
r	MOV		MOV XCH (Notel) ADD						ROR RORC ROL ROLC SHR SHL	MULU DIVUW INC DEC
rl										DBNZ
saddr	MOV (Notel) ADD	MOV		MOV XCH (Notel) ADD						INC DBNZ DEC
sfr	MOV (Notel) ADD	MOV								PUSH POP
mem &mem		MOV								
meml &meml		· · · · · · · · · · · · · · · · · · ·								(Note3) ROR4 (Note3) ROL4
laddrl6 &laddrl6		MOV								
PSW	MOV	MOV								PUSH POP
STBC	MOV									

Note 1: ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.

2: The second operand does not exist or is not an operand address.

3: The instructions cannot be used for the EEPROM area.

(2) 16-bit instructions

MOVW, ADDW, SUBW, CMPW, INCW, DECW, SHRW, SHLW, PUSH, POP

Table 4-2 Instruction List of 16-bit Addressing

Second operand First operand	≇word	AX	rp rp'	saddrp	sfrp	mem1 &mem1	SP	n	None
AX	ADDW SUBW CMPW		ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	Movw	Movw		
rp	Movw		Movw					SHLW SHRW	INCW DECW PUSH POP
saddrp	MOVW	Movw							
sfrp	MOVW	MOVW							
meml &meml		(Note) MOVW							
SP	Movw	Movw							INCW DECW

Note: The instructions cannot be used for the EEPROM.

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR Table 4-3 Instruction List of Bit Manipulation Instruction Adressing

Second operand First operand	СҰ	A.bit	/A.bit	X.bit	/X.bit	saddr. bit	/saddr. bit	sfr.bit	/sfr.bit	PSW.bit	/PSW. bit	(Note) None
CY		MOV1 AND1 OR1 XOR1	AND 1 OR 1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND 1 OR 1	MOV1 AND1 OR1 XOR1	AND 1 OR 1	MOV1 AND1 OR1 XOR1	AND1 OR1	SET1
A.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
X.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
saddr.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
sfr.bit	MOV 1											SET1 CLR1 NOT1 BT BF BTCLR
PSW.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR

Note: The second operand does not exist or is not an operand address.

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BT, BF, BTCLR, DBNZ, BL, BNC, BNL, BZ, BE, BNZ, BNE

Table 4-4 Instruction List of Call Instruction/ Branch Instruction

Instruction address operand	\$addr16	laddr16	rp	laddrll	[addr5]
Basic instruction	BR BC(Note)	CALL BR	CALL BR	CALLF	CALLT
Multiple instruction	BT BF BTCLR DBNZ				

Note: BL, BNC, BNL, BZ, BF, BNZ, and BNE are the same as BC.

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, NOP, EI, DI, SEL

5. ELECTRIC CHARACTERISTICS

Parameter	Symbol	Test condition	Ratings	Units
	V _{DD}		-0.5 to +7.0	v
Power supply voltage	AVREF		-0.5 to V _{DD} +0.5	v
	AVSS		-0.5 to +0.5	v
Input voltage	v _{Il}		-0.5 to $V_{DD}^{+0.5}$	v
Input Voitage	v _{I2}	(Note)	-0.5 to AV _{REF} +0.5	v
Output voltage	v _o		-0.5 to $V_{DD}^{+0.5}$	v
Output low current	т	Per pin	15	mA
output iow current	IOL	Total, all outputs	100	mA
Output high current	т	Per pin	-10	mA
oucput nigh current	^I ОН	Total, all outputs	- 50	mA
Operation temperature	T _{opt}		-10 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Absolute maximum ratings (Ta=25°C)

- Note: Pins of P70/ANI0-P75/ANI5, P66/WAIT/ANI6, and P67/REFRQ/ ANI7 are used as A/D converter input pins. However, the absolute maximum rating of V_{T1} must also be satisfied.
- Caution: If even one parameter exceeds the absolute maximum rating, even instantaneously, the quality of the product may be damaged. The absolute maximum rating is a rated threshold value at which the product can be physically damaged. Be sure to use the product within the absolute maximum ratings.

Operation conditions

Clock frequency	Operation temperature (T _{opt})	Power supply voltage(V _{DD})
$4MHz \leq f_{XX} \leq 12MHz$	-10 to +70°C	+5V±10%

Capacitance (Ta=25°C, $V_{DD}=V_{SS}=0$ V)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Units
Input capacitance	cI	f=1MHz			20	pF
Output capacitance	с _о	Unmeasured pins returned to 0 V			20	pF
Input/output capacitance	c _{IO}	recurred to 0 V			20	pF

Oscillator Characteristics (Ta=-40 to +85°C, V_{DD} =+5V±10%, V_{SS} =OV)

Resonator	Recommended constants	Item	MIN.	MAX.	Units
Ceramic oscillator or cristal resonator	v_{ss} X1 X2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Oscillation frequency (fxx)	4	12	MHz
External clock		Xl input frequency (fx)	4	12	MHz
	HCMOS inverter	X1 input rise time/ fall time(t _{XR} , t _{XF})	0	30	ns
		X1 input high/low level width (t _{WXH} , t _{WXL})	30	130	ns

Caution: To use the clock oscillator, wire the portions surrounded by [____] to avoid wiring capacitance affection, etc., as follows:

Phase-out/Discontinued

- Make wiring as extremely short as possible.
- Do not cross the oscillator and any other signal line over each other.
- Do not put the oscillator near any line where high current fluctuates.
- Be sure to place oscillator capacitor ground point in the same potential as the $V_{\rm SS}$ pin. Do not connect to any ground pattern where high current flows.
- Do not take out any signal from the oscillator.

Recommended oscillator constants

Ceramic oscillator

Manufacturer	Frequency	Product name	Recommended	constants
Manufacturer	Frequency [MHz]	Froduct maine	C1[pF]	C2[pF]
MURATA	12	CSA12.0MTZ	30	30
PIOKATA	12	CST12.0MTW	Contained a	condenser

DC characteristics (Ta=-10°C to +70°C, V_{DD} =+5V±10%, V_{SS} =0 V)

Parameter	Symbol		Test condition	MIN.	TYP.	MAX.	Units
Input low voltage	v _{IL}			0		0.8	v
	V _{IH1}	Pins excep	ot for listed in Note 1 or 2	2.2			v
Input high voltage	V _{IH2}	Pins liste	d in Note 1	2.2		AVREF	v
	V _{IH3}	Pins liste	ed in Note 2	0.8V _{DD}		0.8 V _{DD} AV _{REF} V _{DD} 0.45 1.0 -100 100 ±10 ±10 5.0 40 20 5.5 20 50	v
Output low voltage	V _{OL1}	I _{OL} =2.0mA				0.45	v
output low voltage	V _{OL2}	I _{OL} =8.0mA	Note 3)			1.0	v
	V _{OH1}	I _{OH} =-1.0mA		V _{DD} -1.0			v
Output high voltage	V _{OH2}	I _{OH} =-100uA		V _{DD} -0.5			v
	v _{OH3}	I _{OH} =-5.0mA	(Note 4)	2.0			v
X1 input low current	IIL	0≦V _I ≦V _{IL}	· · · · · · · · · · · · · · · · · · ·			-100	uA
X1 input high current	I _{IH}	V _{IH3} ≦V _I ≦V _D	D			100	uA
Input leakage current	ILI	ov≦v _i ≦v _{dd}				±10	uA
Output leakage current	ILO	0 V≦V _O ≦V _{DD}				±10	uA
AV _{REF} current	AI _{REF}	Operation	mode fxx=12MHz		1.5	5.0	mA
V _{DD} supply current power	I _{DD1}	Operation	mode fxx=12MHz		20	40	mA
DD supply current power	I _{DD2}	HALT mode	fxx=12MHz		7	20	mA
Data retention voltage	v _{dddr}	STOP mode		2.5		5.5	v
Data retention current	т	STOP mode	V _{DDDR} ™2.5V		. 2	20	uA
Sata recention current	1 _{DDDR}	SIOF mode	V _{DDDR} =5V±10%		5	50	uA
Pull-up resistor	RL	V _l =0 V		15	40	80	kΩ
EEPROM write voltage		4MHz≦fxx≦1	2MHz	4.5		5.5	v

- Notes 1: Pins of P70/ANI0-P75/ANI5, P66/WAIT/ANI6, and P67/ REFRQ/ANI7 except are used as A/D converter input pins.
 - 2: X1, X2, RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/S0/SB0, and EA pins.
 - 3: P40/AD0-P47/AD7 and P50/A8-P57/A15 pins.
 - 4: P00-P07 pins.

AC characteristics (Ta=-10°C to +70°C, V_{DD} =+5V±10%, V_{SS} =0 V)

Read/write	operation	(1/2)
		(

Parameter	Symbol	Test condition	MIN.	MAX.	Units
X1 input clock cycle time	tCYX		82	250	ns
Address setup time to ASTB	t _{sast} *		52		ns
Address hold time from ASTB (Note)	t _{HSTA}		25		ns
Address hold time from RD	t _{HRA}		30		ns
Address hold time from WR	t _{HWA}		30		ns
Address RD delay time	t _{DAR} *		129		ns
Address float time \overline{RD}	^t FAR *		11		ns
Address data input time	tDAID *	Wait count=0		228	ns
ASTB 🖌 —— data input time	t _{DSTID} *			181	ns
RD - data input time	t _{DRID} *			100	ns
ASTB RD delay time	^t dstr *		52		ns
Data hold time from RD	tHRID		0		ns
RD address active time	t _{DRA} *		124		ns
RD - ASTB delay time	^t DRST *		124		ns
RD low level width	twrl *	Wait count-0	124		ns
ASTB high level width	^t wsth *		52		ns
Address WR delay time	t _{DAW} *		129		ns
ASTB data output time	^t dstod*			142	ns
WR data output time	tDWOD			60	ns
$ASTB \downarrow \longrightarrow \overline{WR} \downarrow delay time$	^t dstw1*	When refresh is disabled.	52		ns
	^t dstw2 [*]	When refresh is enabled.	129		ns
Data setup time to WR	^t SODWR*	Wait count=0	146		ns
Data setup time to WR	^t sodwf*	When refresh is enabled.	22		ns
Data hold time from WR (Note)	^t HWOD		20		ns
WR ASTB delay time	^t DWST *		42		ns
WR low level width	twwL1 *	Wait count=0 when refresh is disabled.	196		ns
WY TOM TEAST MTULU	twwL2 *	Wait count=0 when refresh is enabled.	114		ns
Address WAIT input time	^t dawt *			146	ns
ASTB WAIT input time	^t dstwt [*]			84	ns

Note: The hold time contains the V_{0H} , V_{0L} holding time under the load conditions of $C_L=100$ pF and $R_L=2k\Omega$.

- Remarks 1: The numeric values listed in the table are values when $f_{XX}=12$ MHz and $C_{L}=100$ pF.
 - 2: For the parameters with an asterisk under Symbol, also see $T_{\mbox{CYX}}\mbox{-dependent}$ Bus Timing Definition.

Read/write operation (2/2)

Para	meter	Symbol	Test condition	MIN.	MAX.	Units
ASTB - WAIT r	etention time	^t HSTWT *	External wait count-1	174		ns
ASTB WAIT	IT retention		External wait count-1		273	ns
RD - WAIT in	put time	t _{DRWTL} *			22	ns
RD WAIT ret	ention time	t _{HRWT} *	External wait count-1	87		ns
RD WAIT de	lay time	^t drwth *	External wait count-1		186	ns
WAIT data i	nput time	t _{DWTID} *			62	ns
WAIT WR de	lay time	^t dwiw *		154		ns
WAIT - RD de	lay time	^t DWTR *		72		ns
		^E DWWTL *			22	ns
WR		t _{HWWT1} *	External wait count=1	87		ns
time		t _{HWWT2} *	External wait count=1	5		ns
	When refresh is disabled	t _{DWWTH1} *	External wait count=1		186	ns
WAIT delay time	When refresh is enabled	^t DWWTH2*	External wait count=1		104	ns
RD - REFRQ d	elay time	^t DRRFQ *		154		ns
WR - REFRQ d	elay time	^t DWRFQ *		72		ns
REFRQ low level	width	^t WRFQL *		120		ns
REFRQ - ASTB	delay time	^t DRFQST [*]		280		ns

Remarks 1: The numeric values in the table apply when $\rm f_{XX}=12~MHz$ and $\rm C_L=100~pF.$

2: For the parameters with an asterisk under the Symbol, also see $t_{\mbox{CYX}}\mbox{-dependent}$ Bus Timing Definition.

Phase-out/Discontinued

Serial operation

Parameter	Symbol		Test condition	MIN.	MAX.	Units
		Input	External clock	1.0	1.0 1.3 5.3 420 556 2.5 520 556 2.5 50	us
Serial clock cycle time	^t cysk	Output	Internal divide by 16	1.3		us
		Output	Internal divide by 64	5.3	300	us
		Input	External clock	420		ns
Serial clock low level width	twskl	Output	Internal divide by 16	556	300	ns
		oucput	Internal divide by 64	2.5		us
		Input	External clock	420	3 3 <t< td=""><td>ns</td></t<>	ns
Serial clock high level width	twskh	Output	Internal divide by 16	556		ns
		oucpuc	Internal divide by 64	2.5		us
SI, SBO setup time to $\overline{\text{SCK}}$	tsssk			150		ns
SI, SBO hold time from SCK +	t _{HSSK}			400		ns
SO/SBO output delay time from	^t dsbski		sh-pull output (3-line I/O mode)	0	300	ns
SCR +	^t dsbsk2	Open dr R _L =1kΩ	ain output (SBI mode),	0	300	ns
SBO high hold time from SCK	t _{HSBSK}	- SBI mod	•	4		tCYX
SBO low setup time to SCR	tssbsk	BDT MOG	e	4		^t cyx
SBO low level width	twsbl			4		^t cyx
SBO high level width	twsbh			4		^t cyx

Remarks: The numeric values listed in the table are values when $f_{\rm XX}{=}12$ MHz and $C_{\rm L}{=}100$ pF.

Other operations

Parameter	Symbol	Test condition	MIN.	MAX.	Units
NMI low level width	twnil		10		us
NMI high level width	twnih		10		us
INTPO-INTP5 low level width	twith		24		^t cyx
INTPO-INTP5 high level width	twith		24		t _{CYX}
RESET low level width	twrsl		10		us
RESET high level width	twrsh		10		us

External clock timing

Parameter	Symbol	Test condition	MIN.	MAX.	Units
X1 input low level width	twxl		30	130	ns
X1 input high level width	twxh		30	130	ns
X1 input rise time	^t XR		0	30	ns
X1 input fall time	t _{XF}		0	30	ns
X1 input clock cycle time	^t cyx		82	250	ns

A/D converter characteristics (Ta=-10°C to +70°C, $V_{\rm DD}=+5V\pm10\%,$ $V_{\rm SS}=AV_{\rm SS}=0~V)$

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Units
Resolution			8			bit
(Note 1)		4.0V≤-AV _{REF} ≦V _{DD}			0.4	z
Total error		3.6V≦AV _{REF} ≦V _{DD}			0.8	X
Quantization error					±1/2	LSB
Conversion time		82ns≦t _{CYX} <125ns When ADM FR bit is O	360			^t cyx
Conversion Lime	CONV	125ns≦t _{CYX} <250ns When ADM FR bit is 1	240			^t cyx
Sampling time	-	82ns≦t _{CYX} <125ns When ADM FR bit is O	72			t _{CYX}
Sampiing time	^t SAMP	125ns≨t _{CYX} <250ns When ADM FR bit is l	48			^t cyx
Analog input voltage	V _{IAN}		-0.3		AV _{REF} +0.3	v
Analog input impedance	R _{AN}			1000		MΩ
Reference voltage	av _{ref}		3.6		v _{DD}	v
A 11	47	fxx=12MHz		1.5	5.0	mA
AV _{REF} current	AI _{REF}	(Note 2)		0.2	1.5	mA

Notes 1: It does not contain a quantization error. It is represented by a ratio to the full scale value.

2: When the ADM register CS bit is 0.

t_{CYX} -dependent bus timing definition (1/2)

Parameter	Symbol	Test condition	MIN./MAX.	12MHz	Units
Xl input clock cycle time	t _{cyx}		MIN	82	ns
Address setup time to ASTB	^t sast	t _{CYX} -30	MIN.	52	ns
Address hold time from $\overline{\text{RD}}$	t _{HRA}		MIN.	30	ns
Address hold time from WR	t _{HWA}		MIN.	30	ns
Address RD delay time	^t DAR	2t _{CYX} -35	MIN.	129	ns
Address float time to \overline{RD}	t _{FAR}	t _{CYX} /2-30	MIN.	11	ns
Address —— data input time	t _{DAID}	(4+2n)t _{CYX} -100	MAX.	228 ^(Note)	ns
ASTB data input time	^t DSTID	(3+2n)t _{CYX} -65	MAX.	181 ^(Note)	ns
RD data input time	^t DRID	(2+2n)t _{CYX} -64	MAX.	100 ^(Note)	ns
ASTB RD delay time	t _{DSTR}	t _{CYX} -30	MIN.	52	ns
RD address active time	t _{DRA}	2t _{CYX} -40	MIN.	124	ns
RD ASTB delay time	^t DRST	2t _{CYX} -40	MIN.	124	ns
RD low level width	t _{WRL}	(2+2n)t _{CYX} -40	MIN.	124 ^(Note)	ns
ASTB high level width	t _{wsth}	t _{CYX} -30	MIN.	52	ns
Address WR delay time	^t DAW	2t _{CYX} -35	MIN.	129	ns
ASTB data output time	tDSTOD	t _{CYX} +60	MAX.	142	ns
ASTB WR delay time	t _{DSTW1}	t _{CYX} -30 (When refresh is disabled.)	MIN.	52	ns
ASIDY WKY delay time	^t DSTW2	2t _{CYX} -35 (When refresh is enabled.)	MIN.	129	ns
Data setup time to WR	^t SODWR	(3+2n)t _{CYX} -100	MIN.	146 ^(Note)	ns
Data setup time to \overline{WR}	tsodwf	t _{CYX} -60 (When refresh is enabled.)	MIN.	22	ns
WR ASTB delay time	t _{DWST}	t _{CYX} -40	MIN.	42	ns
	twwL1	(3+2n)t _{CYX} -50 (When refresh is disabled.)	MIN.	196 ^(Note)	ns
\overline{WR} low level width	tWWL2	(2+2n)t _{CYX} -50 (When refresh is enabled.)	MIN.	114 ^(Note)	ns
Address WAIT input time	t _{DAWT}	3t _{CYX} -100	MAX.	146	ns
ASTB - WAIT input time	tDSTWT	2t _{CYX} -80	MAX.	84	ns

Remarks: n denotes the number of wait states.

Note: When n=0.

t_{CYX} -dependent bus timing definition (2/2)

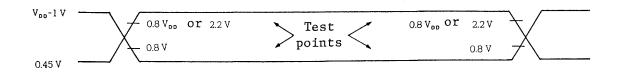
Para	ameter	Symbol	Test condition	MIN./MAX.	1 2MHz	Units
ASTB - WAIT	retention time	t _{HSTWT}	2Xt _{CYX} +10	MIN.	174 ^(Note)	ns
ASTB - WAIT	delay time	^t DSTWTH	2(1+X)t _{CYX} -55	MAX.	273 ^(Note)	ns
RD WAIT in	nput time	^t DRWTL	t _{CYX} -60	MAX.	22	ns
RD - WAIT ret	cention time	t _{HRWT}	(2X-1)t _{CYX} +5	MIN.	87 ^(Note)	ns
RD WAIT de	elay time	t _{DRWTH}	(2X+1)t _{CYX} -60	MAX.	186 ^(Note)	ns
WAIT data i	input time	^t DWTID	t _{CYX} -20	MAX.	62	ns
WAIT - WR de	elay time	t _{DWTW}	2t _{CYX} -10	NIM.	154	ns
WAIT - RD de	elay time	t _{DWTR}	t _{CYX} -10	MIN.	72	ns
WR WAIT ir (when refresh is	nput time 3 disabled)	^t DWWTL	t _{CYX} -60	MAX.	22	ns
	When refresh is disabled	t _{HWWT1}	(2X-1)t _{CYX} +5	MIN.	87 ^(Note)	ns
WAIT retention time	When refresh is enabled	t _{HWWT2}	2(X-1)t _{CYX} +5	MIN.	5 ^(Note)	ns
WR	When refresh is disabled	^t DWWTH1	(2X+1)t _{CYX} -60	MAX.	186 ^(Note)	ns
WAIT dely time	When refresh is enabled	^t DWWTH2	2Xt _{CYX} -60	MAX.	104 ^(Note)	ns
RD + REFRQ + d	lelay time	t _{DRRFQ}	2t _{CYX} -10	MIN.	154	ns
WR - REFRQ d	lelay time	^t DWRFQ	t _{CYX} -10	MIN.	72	ns
REFRQ low level	width	^t wrfQL	^{2t} CYX ⁻⁴⁴	MIN.	120	ns
REFRQ I ASTB	delay time	^t DRFQST	4t _{CYX} -48	MIN.	280	ns

Remarks 1: X: Number of external wait cycles (1, 2, ...)

```
2: t_{CYX} = 82ns (f_{XX}=12MHz)
```

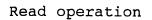
3: n denotes the number of wait cycles.

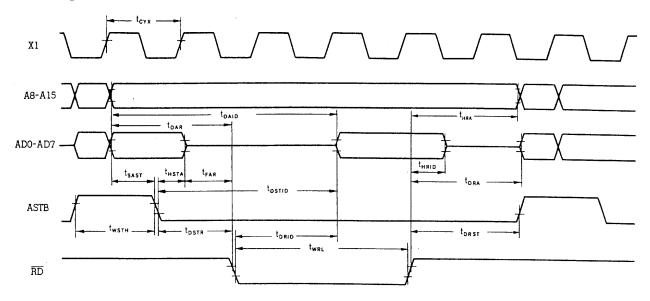
Note: When X=1.

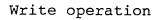


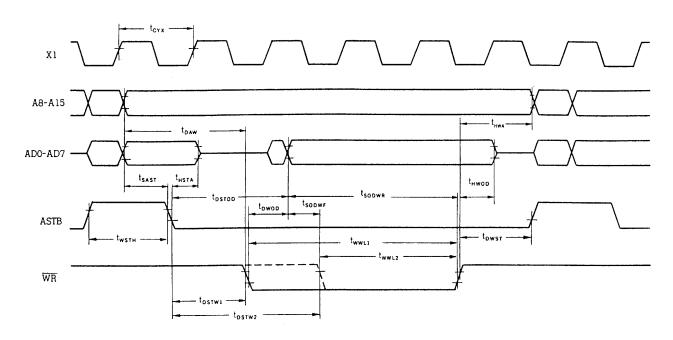
Data retention characteristics (Ta = -10° C to 70° C)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Units
Data retention voltage	V _{DDDR}	STOP mode	2.5		5.5	v
Data retention current	Ŧ	V _{DDDR} =2.5V		2	20	uA
Data recention current	^I DDDR	V _{DDDR} ^{⇒5V±10%}		5	50	uA
V _{DD} rise time	tRVD		200			us
V _{DD} fall time	t _{FVD}		200			us
V_{DD} retention time from STOP mode setting	tHVD		0			ms
STOP release signal input time	tDREL		0			ms
Oscillation stable wait time		Crystal resonator	30			ms
Uscillation stable wait time	t _{WAIT}	Ceramic oscillator	5			ms
Input low voltage	VIL	Specific pins ^(Note)	0		0.1 V _{DDDR}	v
Input high voltage	VIH	Specific pins	0.9 V _{DDDR}		V _{DDDR}	v

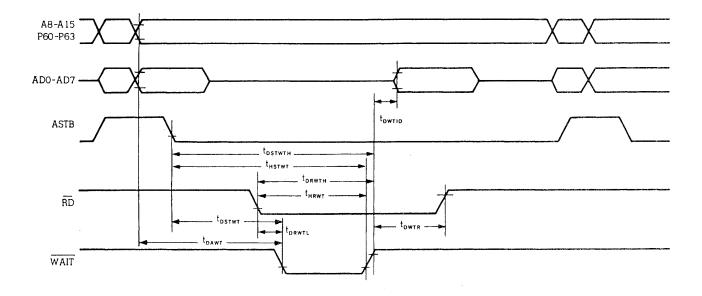

Note: RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/S0/SB0, and EA pins

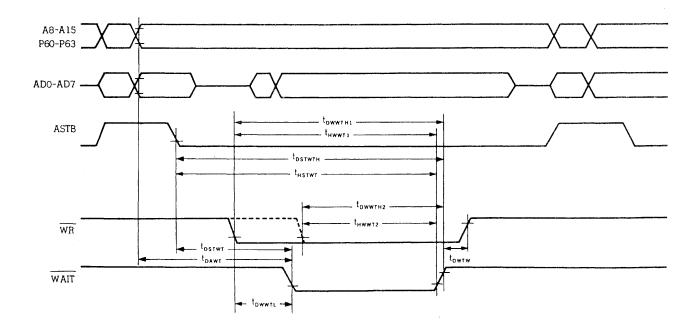

AC Timing Test Points




Phase-out/Discontinued

Timing Waveforms

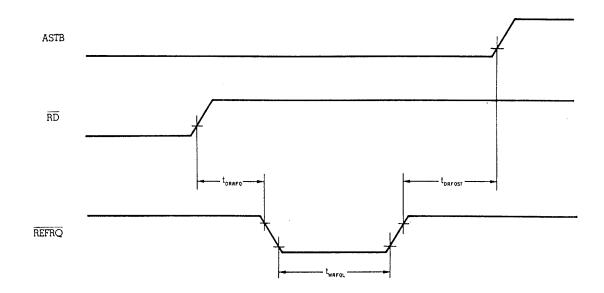


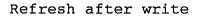


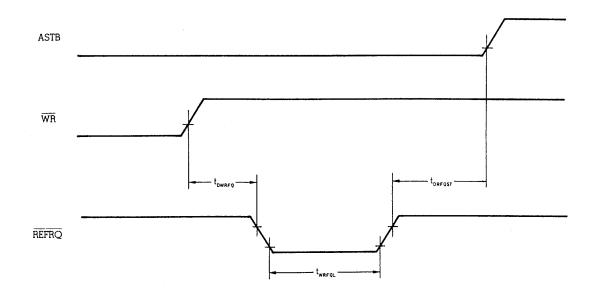
External WAIT Signal Input Timing

Read operation

Write operation

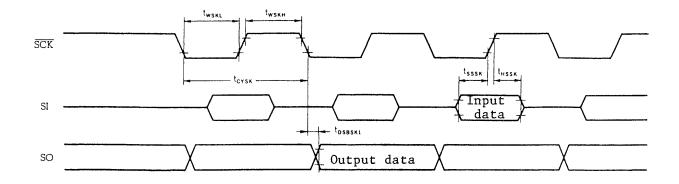


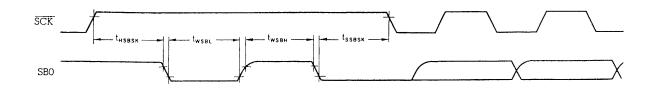

5 - 14



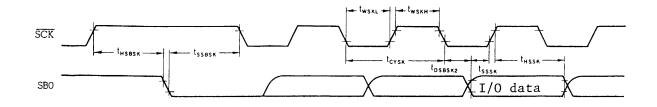
Refresh Timing Waveforms

Refresh after read



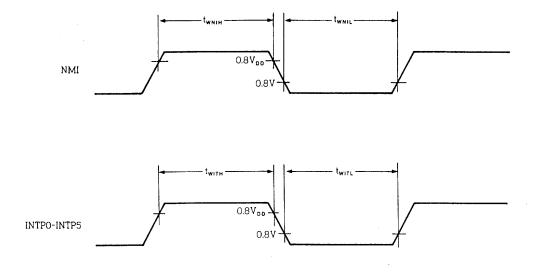


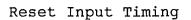
Serial Operation 3-line serial I/O mode

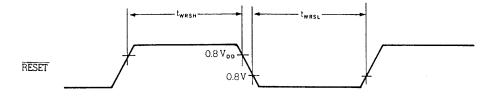


SBI Mode

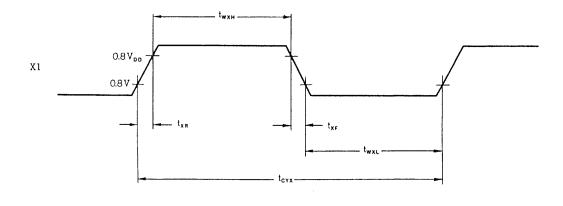
Bus release signal transfer

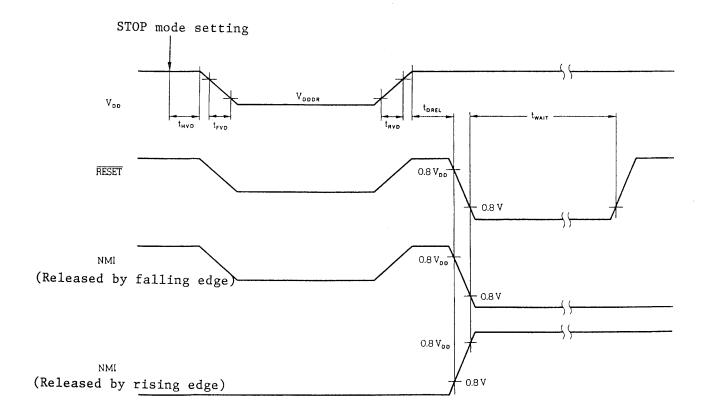



Command signal transfer

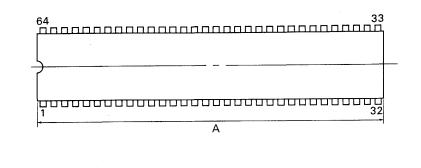


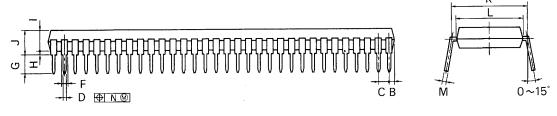
Interrupt Input Timing





External Clock Timing

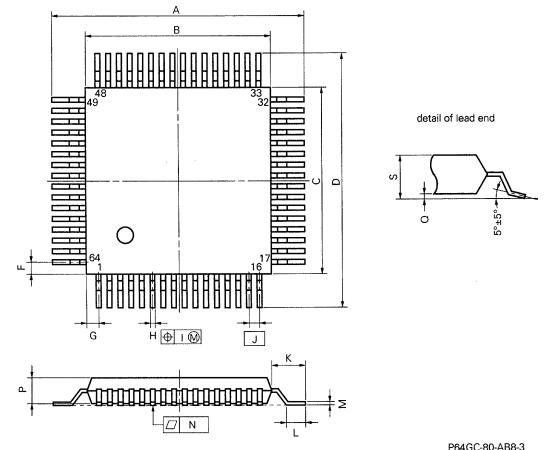

Data Retention Characteristics



6. PACKAGE INFORMATION

64PIN PLASTIC SHRINK DIP (750 mil)

P64C-70-750A,C


NOTES

- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
_ C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ^{±0.10}	0.020+0.004 -0.005
F	0.9 MIN.	0.035 MIN.
G	3.2 ^{±0.3}	0.126 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
к	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
Μ	$0.25^{+0.10}_{-0.05}$	0.010+0.004
N	0.17	0.007

64 PIN PLASTIC OFP (114)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P04GC-80-AD0-3
ITEM	MILLIMETERS	INCHES
А	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	0.551 ^{+0.009}
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	0.35±0.10	0.014+0.004
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
к	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} -0.05	0.006 ^{+0.004} _0.003
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

7. RECOMMENDED CONDITIONS FOR SOLDERING

Solder the product under the recommended conditions listed below.

For details of the recommended conditions for soldering, refer to the Information: Semiconductor Device Mount Manual (IEI-616).

Consult the NEC sales person about soldering methods and soldering conditions other those than listed below.

Table 7-1 Recommended Condition for Surface Mount Type

uPD78243GC-AB8, 78244GC-xxx-AB8: 64-pin plastic QFP (14mm)

Soldering method	Soldering conditions	Recommended condition symbol
Infrared reflow	Package peak temperature: 230°C, Time: Within 30s (at 210°C or higher), Count: Once, Limited number of days: Two days ^(Note) (after the days, prebake is required at 125°C for 16 hours)	IR30-162-1
VPS	Package peak temperature: 215°C, Time: Within 40s (at 200°C or higher), Count: Once, Limited number of days: Two days(Note) (after the days, prebake is required at 125°C for 16 hours)	VP15-162-1
Wave soldering	Soldering tank temperature: 260°C or less, Time: Within 10s, Count: Once, Preheating temperature: 120°C MAX. (package surface temperature), Limited number of days: Two days(Note) (after the days, prebake is required at 125°C for 16 hours)	WS60-162-1
Pin part heating	Pin part temperature: 300°C, Time: Within 3s (per frame of device)	

- Note: It is the number of storage days under the storage conditions of 25°C and 65%RH or less after the dry pack is opened.
- Caution: Do not use the soldering methods together (except the pin part heating).

Table 7-2 Soldering Conditions for Insertion Type

uPD78243CW, 78244CW-xxx: 64-pin plastic shrinked-dual-in-line package (750mil)

Soldering method	Soldering conditions
Wave soldering (lead part only)	Soldering tank temperature: 260°C or less, Time: Within 10s
Pin part heating	Pin part temperature: 260°C or less, Time: Within 10s

Caution: Apply wave soldering only to the lead part and be careful so as not to bring solder injection directly into contact with the package.

Information — The product contains a soldering recommended condition improvement product. (Improvement contents: Infrared ray reflow peak temperature extension (235°C), count twice, lessening of the number of limited days, etc.) For details, ask the NEC sales person.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for system development using the uPD78243, 78244:

Language Processor Software

RA78K/II(Note 1, 2)	Assembler package common to 78K/II series
CC78K/II ^(Note 1, 2)	C compiler package common to 78K/II series
CC78K/II-L(Note 1, 2)	C compiler library source file common to 78K/II series

PROM Wite Tool

PG-1500	PROM programmer
PG-1500 controller(Note 1)	PG-1500 control program

Debug Tool

IE-78240-R-A IE-78240-R(Note 3)	In-circuit emulator common to uPD78244 series
IE-78200-R-BK	Break board common to 78K/II series
IE-78240-R-EM IE-78200-R-EM(Note 3)	uPD78244 series equivalent emulation board
EP-78240CW-R EP-78210CW(Note 3) EP-78240GC-R EP-78210GC(Note 3)	Emulation probe common to uPD78244 series
EV-9200GC-64	Socket mounted on user system board prepared for 64- pin plastic QFP
SD78K/II(Note 1)	IE-78240-R-A screen debugger
DF78240(Note 1)	uPD78244 series device file

Real-Time OS

|--|

Fuzzy Inference Development Support System

FE9000(Note 1)	Fuzzy knowledge data preparation tool
FT9080(Note 1)	Translator
FI78K/II(Note 1)	Fuzzy inference module
FD78K/II(Note 1, 4)	Fuzzy inference debugger

- Note 1: PC-9800 series (MS-DOSTM) base, IBM PC/ATTM (PC DOSTM) base
 - 2: HP9000 series 300TM (HP-UXTM) base, SPARCstationTM (Sun OSTM) base, EWS-4800 seriesTM (EWS-UX/VTM) base
 - 3: The products are not manufactured at present and therefore cannot be purchased.
 - 4: Under development.
- Remarks: For development tools developed by third parties, refer to the 78K/II Series development Tool Selection Guide (EF-231).

APPENDIX B RELATED DOCUMENTS

• Documents Related to Device

Title	Doc. No.	
uPD78244 series user's manual:	IEU-747	
78K/II series user's manual: In	IEU-754	
78K/II series application note	Basic	IEA-607
	Application	IEA-700
	Floating point arithmetic program	IEA-686
78K/II series selection guide		IF-304
78K/II series instruction quick	IEM-5101	
78K/II series instruction set	IEM-5102	
uPD78244 series special function reference	IEM-5528	

• Documents Related to Development Tools (User's Manual)

Title		Doc. No.
DA79K corrige accomble package	Operation	EEU-809
RA78K series assemble package	Language	EEU-815
RA78K series structured assembler preprocessor		EEU-817
	Operation	EEU-656
CC78K series C compiler	Language	EEU-655
CC78K series library source file		EEU-777
PG-1500 PROM programmer		EEU-651
PG-1500 controller	EEU-704	
IE-78240-R-A in-circuit emulator		EEU-796
IE-78240-R in-circuit emulator	Hardware	EEU-705
IE-78240-R IN-CIICUIT EMUIACOI	Software	EEU-706
SD78K/II screen debugger	Preliminary	EEU-841
Splotlit Scieen depugder	Reference	EEU-813
78K/II series development tool selection guide		EF-231

• Documents Related to Build-in Software (User's Manual)

Title	Doc. No.	
RX78K/II real-time OS	Basic	EEU-910
	Installation	EEU-884
	Debugger	EEU-895
	Technical	EEU-885
Fuzzy knowledge data preparation tool		EEU-829
78K/0, 78K/II, 87AD series fuzzy inference development support system	Translator	EEU-862
78K/II series fuzzy inference development support system	Fuzzy inference module	EEU-860
78K/II series fuzzy inference debugger		EEU-917

• Documents related to device

Title	Doc. No.
QTOP microcomputer pamphlet	IB-5040
Package manual	IEI-635
Semiconductor mount technology manual	IEI-616
Quality grades on NEC semiconductor devices	IEI-620
NEC semiconductor device reliability/quality control system	IEM-5068
Electrostatic discharge (ESD) test	MEM-539
Guide to quality assurance for semiconductor devices	MEI-603
Microcomputer-related product guide - Third party products	MEI-604

Remarks: The contents of the documents listed above are subject to change without prior notice to users. Make sure to use the latest edition when starting design. - General Cautions on CMOS Devices -

Phase-out/Discontinue

 Measures for Static Electricity (for general MOSs)
 Caution: To handle MOS devices, be sure to protect against static electricity.

Strong static electricity may cause gate insulation of MOS devices to be destroyed. To transport or store a MOS devices, use a conductive tray, the magazine case used for the shipment package by NEC, or a conductive buffer material or metal case. In an assembly step, ground MOS devices. Do not leave MOS devices on a plastic plate. Also handle boards on which CMOS devices are mounted in one of the manners described above.

(2) Treatment for Unused Input (only for CMOSs) Caution: Fix input levels of CMOS devices. Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to the CMOS device input, intermediate level input is caused by a source such as noise and internal through current flows, which may cause an error to occur. Fix the input level with a pull-up or pull-down resistor. If the possibility that an unused pin may become output (the timing is not defined) is considered, it is effective to connect each via a resistor to V_{DD} or GND. For the products for which "Treatment for unused pins" is described in the document, follow the description.

③ State before Initialization (for general MOSs) Caution: When power is turned on, the initial state of MOS

devices is undefined.

Since the characteristics are determined by ion implementation amount at molecular level, etc., the initial state is beyond management of the production process. The pin output state, input/output setting, and register contents when power is turned on are not guaranteed. However, the items defined in reset operation and mode setting are guaranteed after these operations.

After turning on power of devices having the reset function, first execute a reset operation.

Phase-out/Discontinued

Phase-out/Discontinued

- EWS-4800 series and EWS-UX/V are trademarks of NEC Corporation
- MS-DOS is a trademark of Microsoft Corporation USA.
- PC/AT and PC DOS are trademarks of IBM Corporation USA.
- SPARCstation is a trademark of SPARC International, Inc.
- Sun OS is a trademark of Sun Micro Systems USA.
- HP9000 series 300 and HP-UX are trademarks of Hewlett Packard Corporation USA.

(MEMO)

uPD78244 is manufactured and sold under license from BULL CP8 Corporation with respect to the EEPROM on-chip microcomputer patent. The product cannot be used for IC card (SMART CARD).

Phase-out/Discontinued µPD78243, 78244

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6