Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT

PD78233,78234,78237,78238

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD78233,78234,78237 and 78238 are 78K/II series products. The 78K/II is an 8-bit single-chip microcomputer which can access the memory space of 1M-byte with an external expansion.

Functions are described in detail in the following user's manuals, which should be read when carrying out design work.

μPD78234 Series User's Manual Hardware Volume : IEU-718 78K/II Series User's Manual Instruction Volume : IEU-754

FEATURES

• High-speed instruction executiong (12 MHz operation) : 333 ns (μ PD78234, 78238) 500 ns (μ PD78233, 78237)

On-chip memory

• ROM: 16K bytes (μPD78234)

32K bytes (µPD78238)

Not incorporated (μPD78233, 78237)

• RAM: 640 bytes (μPD78233, 78234)

1024 bytes (μPD78237, 78238)

I/O pin: 64 pins (μPD78234, 78238)

46 pins (μPD78233, 78237)

- A/D converter (analog 8 inputs)
- D/A converter (analog 2 outputs)
- PWM output (2 outputs)

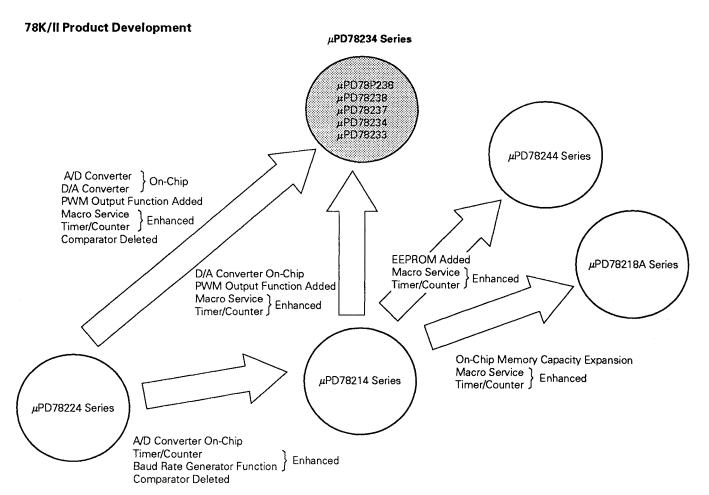
APPLICATION

LBP engine, typewriter, HDD, FDD, PPC, FAX, electronic musical instrument, inverter, camera, air-conditioner, etc.

The information in this document is subject to change without notice.

Document No. IC-2476F (0. D. No. IC-7902F) Date Published February 1994 P Printed in Japan

ORDERING INFORMATION


Package	Internal ROM	Internal RAM
80-pin plastic QFP (□14 mm)	None	640
94-pin plastic QFP (□20 mm)	None	640
84-pin plastic QFJ (□1150 mil)	None	640
80-pin plastic QFP (□14 mm)	16K	640
94-pin plastic QFP (□20 mm)	16K	640
84-pin plastic QFJ (□1150 mil)	16K	640
80-pin plastic QFP (□14 mm)	None	1024
94-pin plastic QFP (□20 mm)	None	1024
84-pin plastic QFJ (🗆 1150 mil)	None	1024
80-pin plastic QFP (□14 mm)	32K	1024
94-pin plastic QFP (□20 mm)	32K	1024
84-pin plastic QFJ (□1150 mil)	32K	1024
	80-pin plastic QFP (□14 mm) 94-pin plastic QFP (□20 mm) 84-pin plastic QFJ (□1150 mil) 80-pin plastic QFP (□14 mm) 94-pin plastic QFP (□20 mm) 84-pin plastic QFJ (□1150 mil) 80-pin plastic QFP (□14 mm) 94-pin plastic QFP (□20 mm) 84-pin plastic QFJ (□1150 mil) 80-pin plastic QFJ (□1150 mil) 94-pin plastic QFP (□14 mm) 94-pin plastic QFP (□14 mm)	80-pin plastic QFP (□14 mm) None 94-pin plastic QFP (□20 mm) None 84-pin plastic QFJ (□1150 mil) None 80-pin plastic QFP (□14 mm) 16K 94-pin plastic QFP (□20 mm) 16K 84-pin plastic QFJ (□1150 mil) 16K 80-pin plastic QFP (□14 mm) None 94-pin plastic QFP (□20 mm) None 84-pin plastic QFJ (□1150 mil) None 84-pin plastic QFJ (□1150 mil) None 80-pin plastic QFP (□14 mm) 32K 94-pin plastic QFP (□20 mm) 32K

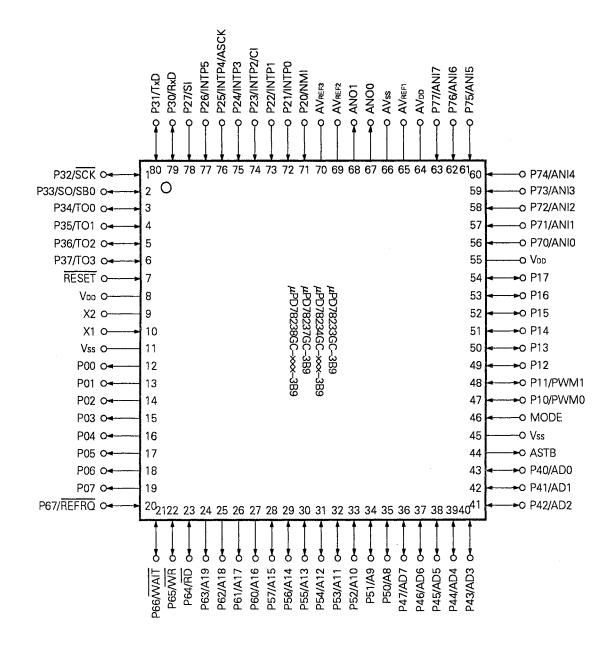
Remarks "xxx" is a ROM code number.

QUALITY GRADE

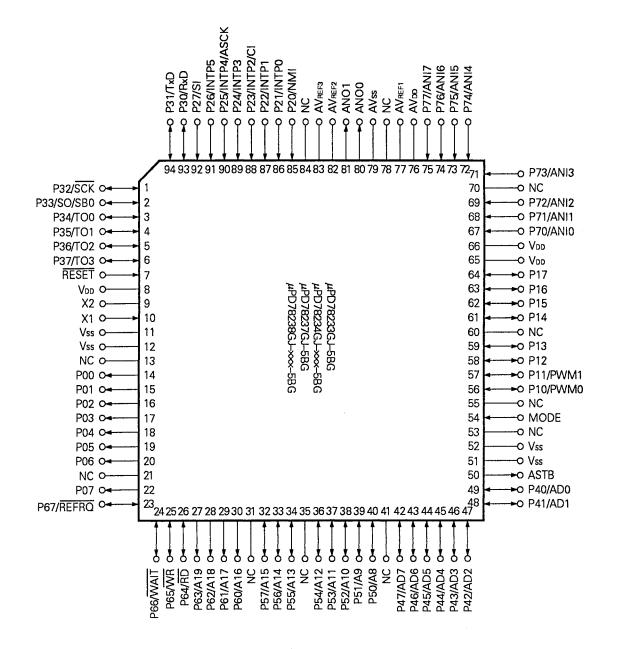
Standard

Please refer to "Quality grade on NEC Semicondcutor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

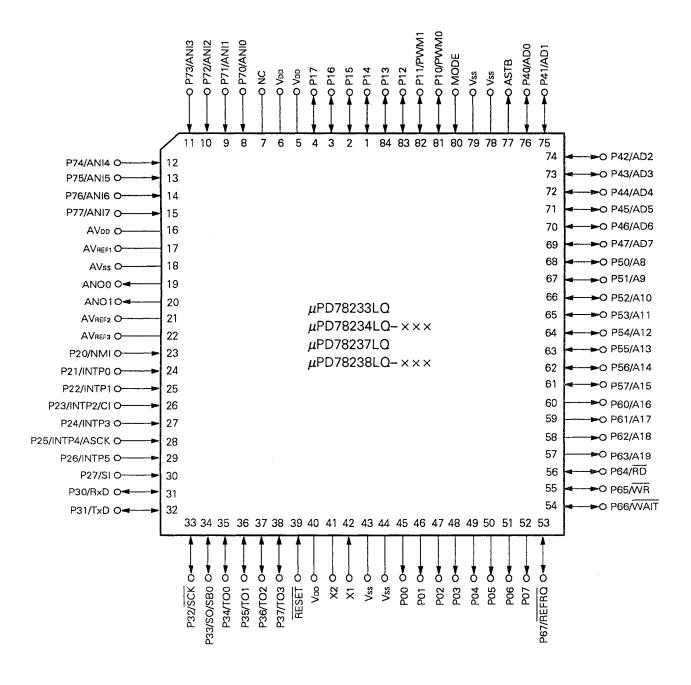
FUNCTION LIST


	Item		μPD78233	μPD78234	μPD78237	μPD78238		
No.	No. of basic instructions (Mnemonic)		<u> </u>	(3 5	<u> </u>		
Mini	mum in	struction	execution					
time	(at 12 l	MHz oper	ation)	500 ns	333 ns	500 ns	333 ns	
On-c	hip me	mory	ROM	None	16K bytes	None	32K bytes	
capa	city		RAM	640	bytes	1024	bytes	
Men	nory spa	асе		Program memory: 64	K bytes, data memo	y: 1M bytes		
		Input			•	6		
		Output				12		
I/O p	oins [Input/or	itput	18	36	18	36	
		Total		46	64	46	64	
	Pins	Pin with	pull-up	24	42	24	42	
	with	resistor		2-7		27	74	
	addi- tional		ect drive	8	24	8	24	
	func-	Output	er direct		<u> </u>	1		
,	tion*	drive ou				8		
Real	-time o	tput por	t	4 bits × 2 or 8 bits ×	1			
Gen	eral reg	ister		8 bits × 8 bits × 4 bar	nks (memory mappin	g)		
Time	er/count	er		8-bit timer/counter 1 $ \begin{cases} $				
				8-bit timer/counter 2			ggle output	
				8-bit timer/counter 3				
PWN	/l outpu	function	1	12-bit resolution × 2 channels (PWM frequency: 23.4 kHz)				
Seri	al interf	ace		UART	:1 channel (spe	cialized baud rate gene	erator incorporated)	
				CSI (3-wire serial I/O, SBI):1 channel				
A/D	convert	er		8-bit resolution × 8 channels				
D/A	convert	er		8-bit resolution × 2 channels				
				19 sources (external 7, internal 12) + BRK instruction				
Inter	Interrrupt		Priority order of 2 levels (programmable)					
	Instruction set			2 types of sevicing (vectored interrupt, macro service)				
			16-bit operation					
Instr			Multiplication/division (8 bits × 8 bits, 16 bits + 8bits)					
			Bit manipulation					
				BCD adjustment, others				
				80-pin plastic QFP (
Pack	age			94-pin plastic QFP (
			84-pin plastic QFJ (1150 mil)		·		

^{*} Pins with additional function included in the I/O pin.



PIN CONFIGURATION (TOP VIEW)


80-Pin Plastic QFP (□14 mm)

94-Pin Plastic QFP (□20 mm)

84-Pin Plastic QFJ (□1150 mil)

Phase-out/Discontinued

P00 to P07 : Port 0 P10 to P17 : Port 1 P20 to P27 : Port 2 P30 to P37 : Port 3 P40 to P47 : Port 4 P50 to P57 : Port 5 P60 to P67 : Port 6 P70 to P77 : Port 7

TO0 to TO3 : Timer Output
CI : Clock Input
RxD : Receive Data
TxD : Transmit Data
SCK : Serial Clock

ASCK : Asynchronous Serial Clock
SB0 : Serial Bus
SI : Serial Input
SO : Serial Output

PWM0, PWM1 : Pulse Width Modulation Output

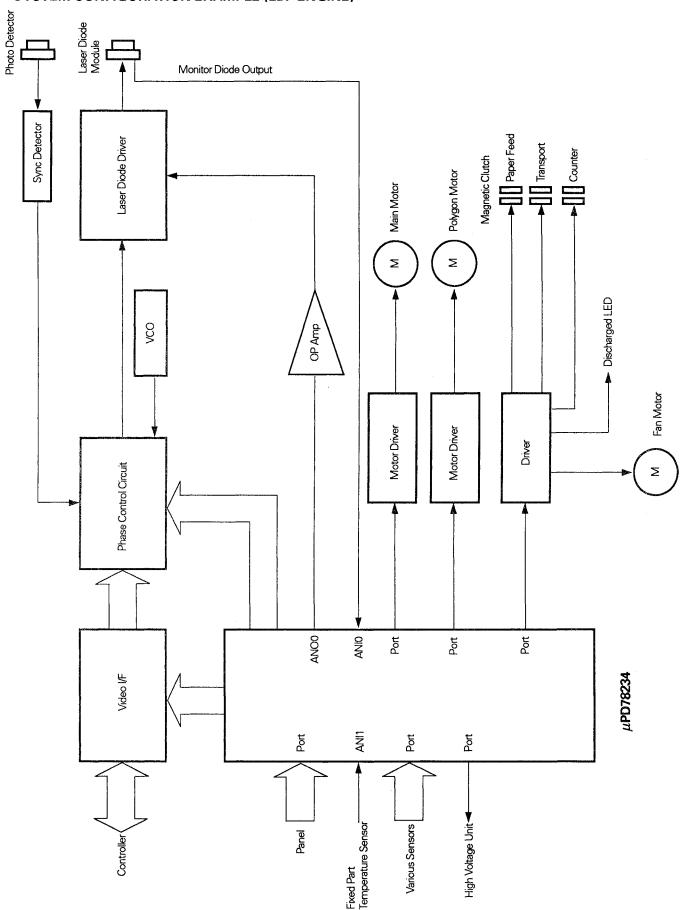
NMI : Non-maskable Interrupt INTP0 to INTP5 : Interrupt From Peripherals

AD0 to AD7 : Address/Data Bus

A8 to A19 : Address Bus Read Strobe WR : Write Strobe

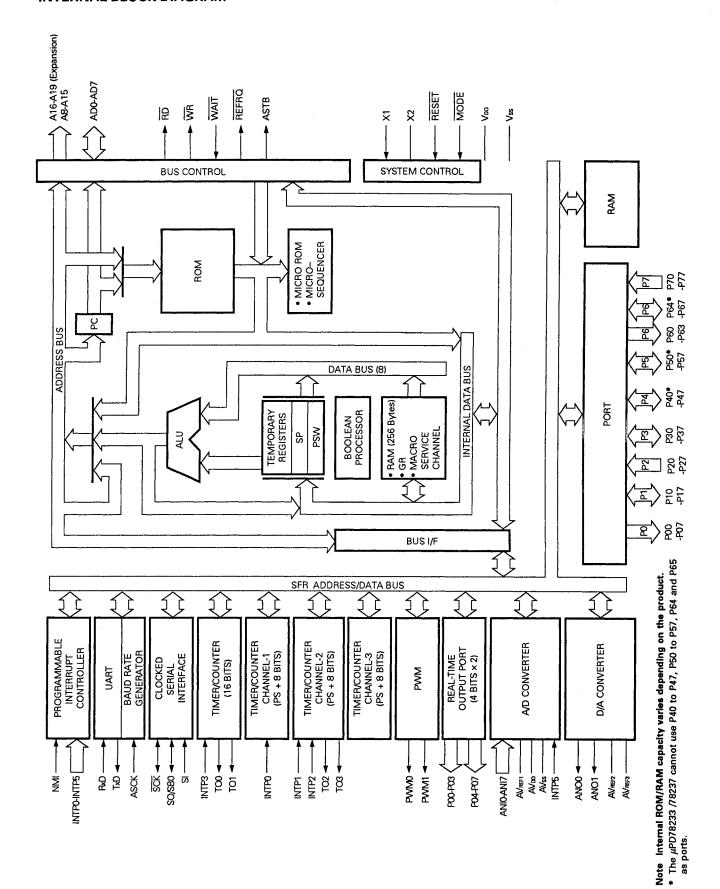
WAIT : Wait

ASTB : Address Strobe
REFRQ : Refresh Request


RESET : Reset
X1, X2 : Crystal
MODE : Mode

ANI0 to ANI7 : Analog Input
ANO0, ANO1 : Analog Output
AVREF1 to AVREF3 : Reference Voltage
AVDD : Analog Power Supply

AVss : Analog Ground
VDD : Power Supply
Vss : Ground


NC : Non-connection

SYSTEM CONFIGURATION EXAMPLE (LBP ENGINE)

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	PIN	FUNCTI	ONS	11
	1.1	PORTS		11
	1.2		PORTS	
	1.3	PIN I/O	CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	13
2.	INT	ERNAL I	BLOCK FUNCTION	15
	2.1	MEMO	RY SPACE	15
	2.2			
	2.3	REAL-T	IME OUTPUT PORT	20
	2.4	TIMER	COUNTER UNIT	21
	2.5	PWM C	OUTPUT (PWM0, PWM1)	23
	2.6	A/D CO	NVERTER	24
	2.7	D/A CC	NVERTER	2€
	2.8	SERIAL	INTERFACE	27
		2.8.1	Asynchronous Serial Interface	28
		2.8.2	Clocked Serial Interface	29
3.	INT	ERNAL/	EXTERNAL CONTROL FUNCTION	30
	3.1	INTER	RUPT	30
		3.1.1	Interrupt Source	31
		3.1.2	Vectored Interrupt	33
		3.1.3	Macro Service	33
		3.1.4	Macro Service Application Example	34
	3.2	LOCAL	BUS INTERFACE	36
		3.2.1	Memory Expansion	36
		3.2.2	Programmable Wait	36
		3.2.3	Pseudo-Static RAM Refresh Function	36
	3.3	STAND	ВҮ	37
	3.4	RESET		38
4.	INS	TRUCTI	ON SET	39
5.	ELE	CTRICA	L SPECIFICATIONS	43
6.	PAC	KAGE II	NFORMATION	61
7.	REC	OMME	NDED SOLDERING CONDITIONS	65
API	PENE	DIX A. I	DEVELOPMENT TOOLS	67
ΛDI	SERIE	NV D E	DELATED DOCUMENT	ec

1. PIN FUNCTIONS

1.1 PORTS

Pot to Pot or	Pin Name	I/O	Dual- Function Pin	Function			
Private Priv	P00 to P07	Output		Can be used as a real-time output port (4 bits \times 2)			
P12 to P17 PWM1 output out	P10		PWM0	Port 1 (P1):			
P20 P21 P22 P23 P24 P25 P26 P27 P27 P28 P28 P28 P29		i '	PWM1	Input mode pins specifiable for on-chip pull-up resist	or connection as a batch by		
P21 P22 P23 P24 P25 P26 P26 P27 P27 P28 P28				LED drive capability.			
P22 P23 P24 P25 P26 P27 P27 P30 P31 P31 P32 P33 P34 to P37 P40 to P47* P50 to P57* P50 to P57* P50 to P57* P50 to P57* P60 to P63* P66* P66* P66* P66* P66* P66* P66*	P20						
P23	P21		INTP0	Port 2 (P2):			
P24 P25 P26 P27 P26 P27 P30 P31 P31 P31 P32 P33 P34 to P37 P40 to P47* P50 to P57*	P22		INTP1	P20 cannot be used as a general-purpose port. (Non-	maskable interrupt)		
P24 P25 P26 P27 P27	P23	Input	INTP2/CI	However, the input level can be confirmed in the interrupt routine.			
P25 P26 P27 P27	P24		INTP3				
P26 P27 P30 P31 Input/ output P32 P34 to P37 P40 to P47* P50 to P57* P60 to P63 P66* P66*	P25		INTP4/ASCK				
P30 P31 P32 P33 P34 to P37 P40 to P47* Input/output AD0 to AD7 Output	P26		INTP5	P22 to P27 by software.			
P31 Input/ output TxD SCK SO/SB0 TO0 to TO3 The input/output specifiable bit-wise. Input mode pins specifiable for on-chip pull-up resistor connection as a batch by software. Port 4 (P4): The input/output specifiable as an 8-bit unit. The connection of the on-chip pull-up resistor specifiable as a 8-bit unit by software. LED drive capability	P27		SI				
P31	P30		RxD				
P32 output SCK SO/SB0 TO0 to TO3 P40 to P47* Input/ output	P31	ĺ., .,	TxD				
P33 P34 to P37 P40 to P47* Input/output AD0 to AD7 Port 4 (P4): The input/output specifiable as an 8-bit unit. The connection of the on-chip pull-up resistor specifiable as a 8-bit unit by software.	<u> </u>			The input/output specifiable bit-wise.			
P34 to P37 P40 to P47*		Juiput		Input mode pins specifiable for on-chip pull-up resist	or connection as a batch by		
P40 to P47* Input/ output AD0 to AD7 Port 4 (P4): The input/output specifiable as an 8-bit unit. The connection of the on-chip pull-up resistor specifiable as a 8-bit unit by software. P50 to P57* Input/ output A8 to A15 Port 5 (P5): The input/output specifiable bit-wise. Input mode pins specifiable for on-chip pull-up resistor connection as a batch by software. P60 to P63 Output A16 to A19 Port 6 (P6): P64* P65* Input/ output ABD A16 to P67 enables to specify the input/output bit-wise. The connection of the on-chip pull-up resistor can be specified as a batch for P64 to P67 by software.				software.			
P50 to P57* Input/output A8 to A15		1		The input/output specifiable as an 8-bit unit. The connection of the on-chip pull-up resistor	LED drive canability		
P64* P65* Input/ output P66 P67 P67 P68 P69 RD RD P64 to P67 enables to specify the input/output bit-wise. The connection of the on-chip pull-up resistor can be specified as a batch for P64 to P67 by software. P67 REFRQ P67 2 (P7)	P50 to P57*	l '	A8 to A15	Port 5 (P5): The input/output specifiable bit-wise. Input mode pins specifiable for on-chip pull-up			
P64* P65* Input/ output P66 P67 RD P64 to P67 enables to specify the input/output bit-wise. The connection of the on-chip pull-up resistor can be specified as a batch for P64 to P67 by software. P67 REFRQ P64 to P67 enables to specify the input/output bit-wise. The connection of the on-chip pull-up resistor can be specified as a batch for P64 to P67 by software.	P60 to P63	Output	A16 to A19	Port 6 (P6):			
P65* Input/ output WR The connection of the on-chip pull-up resistor can be specified as a batch for P64 to P67 by software.	P64*		RD		se.		
P66 WAIT to P67 by software. P67 REFRQ Sector 7 (D7)	P65*	Input/	WR				
P67 REFRQ REFRQ	P66	output	WAIT	, , .	appointed as a succit for 1 04		
2 7 (07)	P67			to 107 by Soltware.			
Live to Elit Linkat Millo to Millo	P70 to P77	Input	ANI0 to ANI7	Port 7 (P7)			

^{*} The μ PD78233/78237 cannot use P40 to P47, P50 to P57, P64 and P65 as ports.

1.2 OTHER PORTS

Pin Name	1/0	Function	Dual- Function Pi
TO0 to TO3	Output	Timer output	P34 to P37
CI	Input	Count clock input to 8-bit timer/counter 2	P23 /INTP2
RxD	Input	Serial data input (UART)	P30
TxD	Output	Serial data output (UART)	P31
ASCK	Input	Baud rate clock input (UART)	P25/INTP
SB0	Input /output	Serial data input/output (SBI)	P33/SO
SI	Input	Serial data input (3-wire serial I/O)	P27
so	Output	Serial data output (3-wire serial I/O)	P33/SB0
SCK	Input /output	Serial clock input/output (SBI, 3-wire serial I/O)	P32
NMI	,		P20
INTP0			P21
INTP1			P22
INTP2	Input	External interrupt request	P23/CI
INTP3			P24
INTP4			P25/ASCI
INTP5			P26
AD0 to AD7	Input /output	Time multiplexing address/data bus (external memory connection)	P40 to P4
A8 to A15	Output	Upper address bus (external memory connection)	P50 to P5
A16 to A19	Output	Upper address when extending address (external memory connection)	P60 to P6
RD	Output	Read strobe into external memory	P64*
WR	Output	Write strobe into external memory	P65*
WAIT	Input	Wait insertion	P66
ASTB	Output	Time multiplexing address (A0 to A7) latch timing output (at external memory accessed)	
REFRQ	Output	Refresh pulse output into external pseudo-static memory	P67
RESET	Input	Chip reset	
X1	Input		
X2	<u> </u>	Crystal connection for system clock oscillation (capability of clock input to X1)	SPACETORD
MODE	Input	ROM-less operating specification (external access of the same space as internal ROM).	
		This is used by high level in μ PD78233, μ PD78237 and by low level in μ PD78234, μ PD78238.	P70 . D7
ANIO to ANI7	Input	Analog voltage input for A/D converter	P70 to P7
ANO0, ANO1	Output	Analog voltage output for D/A converter	
AVREF1		Reference voltage apply for A/D converter	
VREF2, AVREF3		Reference voltage apply for D/A converter	
AVDD		Positive power supply for A/D converter	1
AVss		GND for A/D converter	
VDD		Positive power supply	1
Vss		GND	1
NC		Not connected internally	

^{*} The μ PD78233/78237 cannot use P40 to P47, P50 to P57, P64 and P65 as ports.

1.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 1-1. For the input/output circuit configuration of each type, see Fig. 1-1.

Table 1-1 Input/Output Circuit Type of Each Pin and Recommended Connection of Unused Pins

Pin Name	Input/Output Circuit Type	1/0	Recommended Connection when not Used
P00 to P07	4	Output	Leave open.
P10 to P17	5-A	Input/output	Input : Connected to VDD. Output : Leave open.
P20/NMI	2		Connected to VDD or Vss.
P21/INTP0] -		
P22/INTP1			
P23/INTP2/CI		Input	
P24/INTP3		<u> </u>	Connected to VDD.
P25/INTP4/ASCK	2-A		
P26/INTP5			
P27/SI	1		
P30/RxD			
P31/TxD	- 5-A		
P32/SCK	8-A		
P33/SB0/SO	10-A	Input/output	Input : Connected to VDD.
P34/TO0 to P37/TO3			Output : Leave open.
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19	4	Output	Leave open.
P64/RD			
P65/WR	5-A	Input/output	Input : Connected to VDD.
P66/WAIT			Output : Leave open.
P67/REFRQ			
P70/ANI0 to P77/ANI7	9	input	Connected to Vss.
ANO0, ANO1	12	Quitnut	
ASTB	4	Output	Leave open.
RESET	2		
MODE	1	Input	
AVREF1 to AVREF3		1 input	
AVss			Connected to Vss.
AVDD]		Connected to VDD.

Remarks The type numbers are standardized by 78K series, therefore they are not always consecutive numbers in each product. (Some circuit is not incorporated.)

Note If the input and output modes are not stable on the pin which has an input/output dual-function, connect to V_{DD} via tens of $k\Omega$ resistor. (Especially, if the reset input pin exceeds the low-level input voltage at power-on or in case of change the input/output by software.)

13

Fig. 1-1 Pin Input/Output Circuits

2. INTERNAL BLOCK FUNCTION

2.1 MEMORY SPACE

The μ PD78233,78234,78237 and 78238 can access a 1M-byte memory space. Figs. 2-1 and 2-2 show that memory space. The program memory mapping depends on the MODE pin status.

(1) μ PD78233 (MODE = H)

The program memory is mapped into the external memory(64640 bytes: 00000H to 0FC7FH). This area is shareable with a data memory.

The data memory has been mapped into the internal RAM (640 bytes: 0FC80H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as the expansion data memory.

(2) $\mu PD78234$ (MODE = L)

The program memory has been mapped onto the internal ROM (16K bytes: 00000H to 03FFFH) and the external memory (48256 bytes: 04000H to 0FC7FH). The external memory is accessed by the external memory expansion mode. The mapping area into the external memory is shareable with the data memory.

The data memory has been mapped into the internal RAM (640 bytes: 0FC80H to 0FEFFH). In the 1M-byte expansion mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as a expansion data memory.

(3) μ PD78237 (MODE = H)

The program memory is mapped onto the external memory (64256 bytes: 00000H to 0FAFFH). This area is shareable with a data memory.

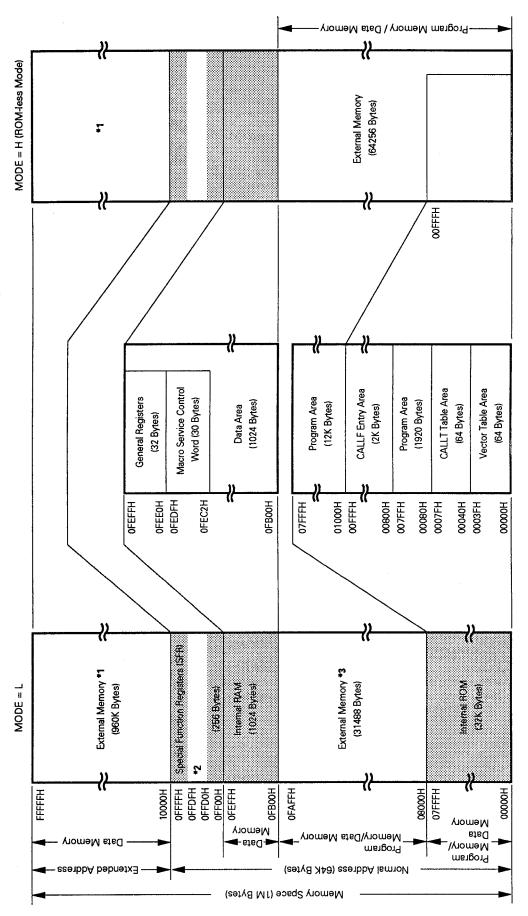
The data memory has been mapped onto the internal RAM (1024 bytes: 0FB00H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as an expansion data memory.

(4) μ PD78238 (MODE = L)

The program memory has been mapped onto the internal ROM (32K bytes: 00000H to 07FFFH) and the external memory (31488 bytes: 08000H to 0FAFFH). The external memory is accessed by the external memory expansion mode. The mapping area into the external memory is shareable with the data memory.

The data memory has been mapped onto the internal RAM (1024 bytes: 0FB00H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as an expansion data memory.

Program Memory / Data Memory MODE = H (ROM-less Mode) External Memory (64640 Bytes) Ŧ **OOFFFH** Fig. 2-1 µPD78233/78234 Memory Map Macro Service Control CALLT Table Area Vector Table Area CALLF Entry Area General Registers Word (30 Bytes) Program Area Program Area (640 Bytes) (1920 Bytes) (12K Bytes) (2K Bytes) (64 Bytes) (64 Bytes) Data Area (32 Bytes) OFEDFH 0FEC2H 0FC80H OFEFTH OFEEOH 03FFFH 01000H 00FFFH H00800 H00000 007FFH H08000 0007FH 00040H 0003FH Special Function Registers (SFR) External Memory *1 External Memory *3 (48256 Bytes) Internal ROM (960K Bytes) Internal FAM MODE = L (16K Bytes) (256 Bytes) (640 Bytes) ОFFDОН OFFDFH FFFFF 10000H OFF00H OFEFFH 0FC80H 0FC7FH 03FFFH H00000 OFFFFH 04000H Memory\ Data Memory Memory Memory/Data Memory Data Memory Program Program Extended Address Normal Address (64K Bytes) Memory Space (1M Bytes)


Shaded area denotes internal memory.

1. Accessed by 1M-byte extended mode.

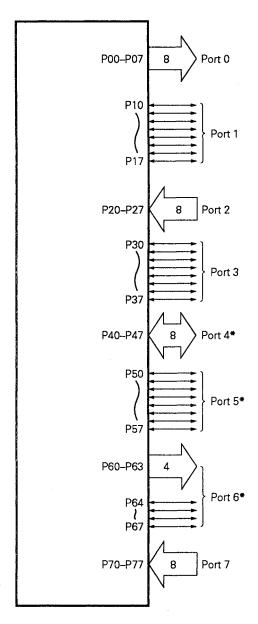
2. Accessed by external memory expansion mode.

3. μ PD78233 only when MODE = H

Fig. 2-2 $\,\mu$ PD78237/78238 Memory Map

Shaded area denotes internal memory.

Accessed by 1M-byte extended mode.
 Accessed by external memory expansion mode.


3. μ PD78237 only when MODE = H

2.2 PORT

The μ PD78233, 78234, 78237 and 78238 are equipped with ports as Fig. 2-3, operable for various controls. The function of each port describes Table 2-1. The port 1 to port 6 can be specified to use the internal pull-up resistor by software at input.

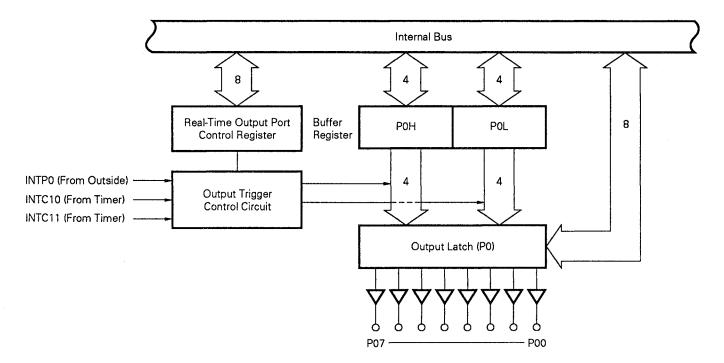
Fig. 2-3 Port Configuration

* The μ PD78233/78237 cannot use P40 to P47, P50 to P57, P64 and P65 as ports.

Table 2-1 Port Function

Name	Pin Name	Function	Designation of Software Pull-Up
Port 0	P00 to P07	Outputs or high-impedance specifiable as an 8-bit unit. Also operable as 4-bit real-time output (P00	
		to P03, P04 to P07). Transistor drive capability.	
Port 1	P10 to P17	Input or output specifiable bit-wise. LED drive capability.	Input mode pins specifi- able as a batch
Port 2	P20 to P27	Input port	6-bit unit (P22 to P27)
Port 3	P30 to P37	Input or output specifiable bit-wise.	Input mode pins specifi- able as a batch
Port 4*	P40 to P47	Input or output specifiable as an 8-bit unit. LED drive capability.	8-bit unit
Port 5*	P50 to P57	Input or output specifiable bit-wise. LED drive capability.	Input mode pins specifi- able as a batch
	P60 to P63	Output port	
Port 6*	P64 to P67	Input or output specifiable bit-wise.	Input mode pins specifi- able as a batch
Port 7	P70 to P77	Input port	

^{*} The μ PD78233/78237 cannot use P40 to P47, P50 to P57, P64 and P65 as ports.


2.3 REAL-TIME OUTPUT PORT

The real-time output port outputs the data stored in the buffer in synchronization with a timer match interrupt or external interrupt. Therefore, a pulse output without jitter can be acquired.

Accordingly, this is suitable for the application (open loop control of a stepping motor etc.) which outputs any pattern at any interval.

As Fig. 2-4, the port 0 and buffer register are the core of the configuration.

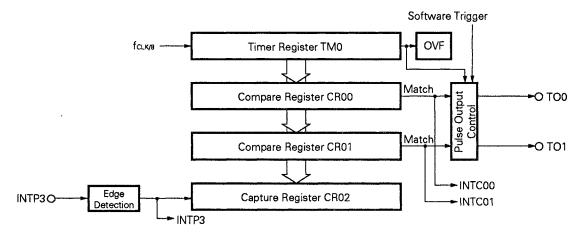
Fig. 2-4 Real-Time Output Port Block Diagram

2.4 TIMER/COUNTER UNIT

The μ PD78233, 78234, 78237 and 78238 incorporate one channel of a 16-bit timer/counter unit and 3 channels of an 8-bit timer/counter unit.

Table 2-2 Types and Functions for Timer/Counter

Тур	Unit be & Function	16-Bit Timer/ Counter	8-Bit Timer/ Counter 1	8-Bit Timer/ Counter 2	8-Bit Timer/ Counter 3
	Interval timer	2ch	2ch	2ch	1ch
Type	External event counter			0	
	One-shot timer			0	_
	Timer output	2ch	<u>—</u>	2ch	_
	Toggle output	0		0	
E O	PWM/PPG output	0	_	0	_
Function	One-shot pulse output	0	_		_
14.	Real-time output		0		
	Pulse amplitude measurement	0	0	0	_
	Number of interrupt requests	2	2	2	1
	Clock source of serial interface	-			0


As 7 interrupt requests are supported in total, this functions as the timer of the 7 channels.

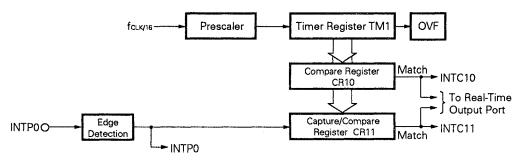
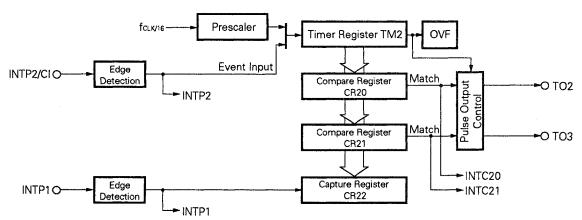
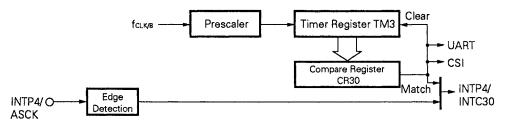


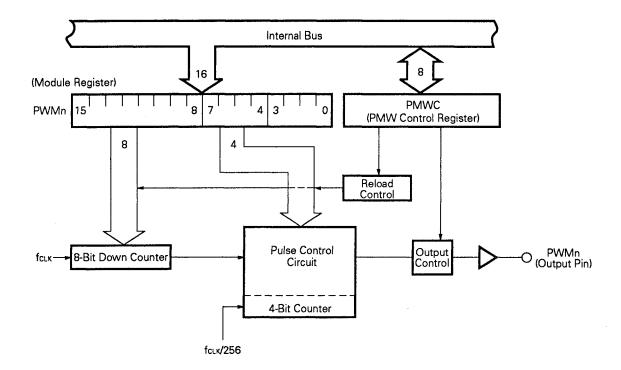
Fig. 2-5 Timer/Counter Unit Block Diagram


16-bit timer/counter unit


8-bit timer/counter unit 1

8-bit timer/counter unit 2

8-bit timer/counter unit 3


OVF: Overflow Flag

2.5 PWM OUTPUT (PWM0, PWM1)

The μ PD78233, 78234, 78237 and 78238 have an on-chip 12-bit resolution PWM (Pulse Width Modulation) with 23.4 kHz repeat frequency (fclk = 6 MHz) output circuit for two channels. The active level of these channels can be selected independently as high or low level. This output is perfect for DC motor speed control.

Fig. 2-6 PWM Output Unit Block Diagram (n = 0, 1)

2.6 A/D CONVERTER

An analog/digital (A/D) converter with 8 multiplexed analog inputs (ANI0 to ANI7) is incorporated.

The conversion is a successive approximation and the conversion result is stored in the 8-bit A/D conversion result register (ADCR). Therefore, the conversion can be executed at high speed and accuracy (converting time: approximately 20 μ s at 12 MHz operation).

This prepares the following modes to start the A/D converting operation.

- O Hardware start: Starts the conversion with a trigger input (INTP5).
- O Software start: Starts the conversion by setting a bit of A/D converter mode register (ADM).

Also, the following modes are prepared for the operation after started.

- O Scan mode: Selects analog inputs one after another and acquires the converted data from all pins.
- O Select mode: Fixes analog inputs to one pin and acquires the continuous conversion value.

When stopping the above modes and the converting operation, all of them are specified by ADM.

The interrupt request (INTAD) occurs when the converted result is sent to ADCR (except for software start select mode). Therefore, by a macro service, the converted values can be sent into the memory continuously.

Table 2-3 INTAD Generation Mode

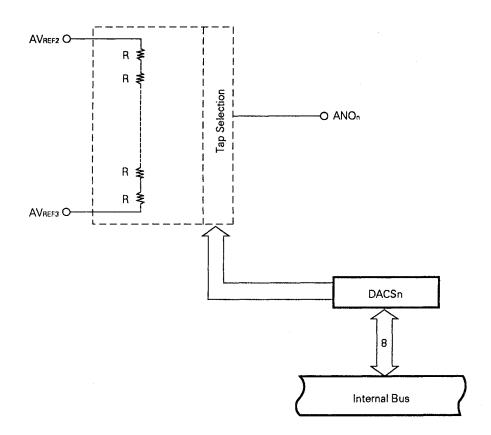
	Scan Mode	Select Mode
Hardware start	. 0	0
Software start	0	

-O AVREF1

-O AVss

Series Resistor String - Interrupt Request R/2 R/2 Tap Selector Selector Voltage Comparator INTAD Successive Approximation Register (SAR) A/D Conversion Result Register (ADCR) Fig. 2-7 A/D Converter Block Diagram 8 ω Internal Bus Controller INTP5 Sample & Hold Circuit 11/2 Conversion Trigger A/D Converter Mode Register (ADM) Trigger Enable ω Edge Detector Input Selector ANI1 O-ANI6 O-ANIOO ANI2 O ANI3 O ANI4 O ANIS O ANI7 O INTP 5 O

2.7 D/A CONVERTER


Two 8-bit resolution voltage output type digital/analog (D/A) converters are incorporated.

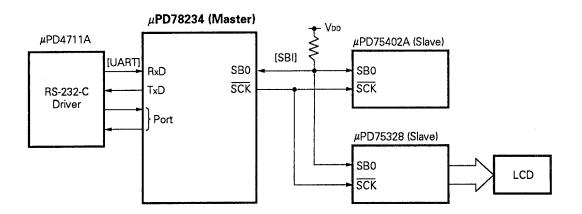
The conversion method is resistance string. The value to be output is written in 8-bit D/A conversion value setting register DACSn and the analog value is output to the ANOn pin. The voltage applied to the AVREF2 pin and AVREF3 pin determines the output voltage range.

Since the output impedance is high, a current cannot be taken from the output. When the load impedance is low, use by inserting a buffer amp between the output and the load.

The ANOn pin becomes high impedance during the period the RESET signal is low level. After reset is cleared, the DACSn register becomes 0.

Fig. 2-8 D/A Converter Block Diagram (n = 0, 1)

2.8 SERIAL INTERFACE


The μ PD78233, 78234, 78237 and 78238 are equipped with 2 independent channels for serial interfaces.

- Asynchronous serial interface (UART)
- Clocked serial interface
 - 3-wire serial I/O
 - Serial bus interface (SBI)

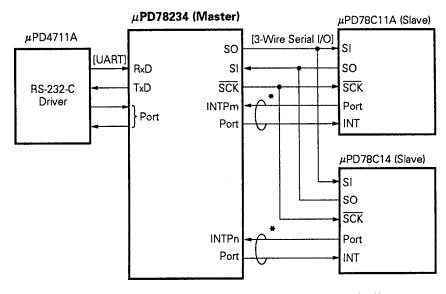

This enables both a communication with the external system and a local communication in the system simultaneously (see Fig. 2-9).

Fig. 2-9 Example of Serial Interface

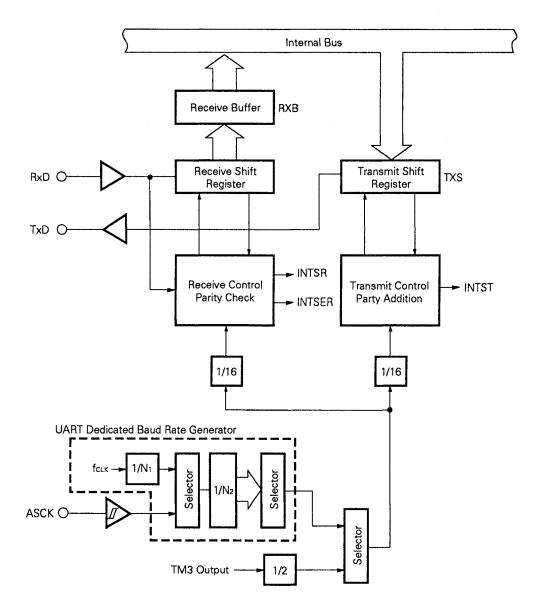
(a) UART + SBI

(b) UART + 3-wire serial I/O

Handshake line

2.8.1 Asynchronous Serial Interface

A UART (Universal Asynchronous Receiver Transmitter) has been incorporated as an asynchronous serial interface. This is the method to transmit the one byte data following the start bit.


As UART dedicated baud rate generator is incorporated, communications are possible with a wide range of any baud rate.

Also, the baud rate can be defined by dividing the input clock for the ASCK pin.

Moreover, a baud rate can be generated with 8-bit timer/ counter 3.

If the UART dedicated baud rate generator is used, the baud rate (31.25 kbps) of the MIDI specification can be acquired.

Fig. 2-10 Asynchronous Serial Interface Block Diagram

fclk : Internal system clock frequency (system clock frequency / 2)

2.8.2 Clocked Serial Interface

This is a method to communicate one byte data in synchronization with the serial clock which is activated by master device and starts to transmit.

Internal Bus Set Clear SIO Selector Output Shift Register Latch Busy/ Acknowledge Generator N-ch Open-Drain Output also Possible (SB0: SBI) **Bus Release** Command/ Acknowledge Detector Serial Clock Interrupt INTCSI Counter Generator TM3 Output/2 Serial Clock Selector fclk/8 Controller fcLk/32

Fig. 2-11 Clocked Serial Interface Block Diagram

fclk : Internal system clock frequency (system clock frequency / 2)

(1) 3-wire serial I/O

This is a interface to communicate with a device which incorporates a conventional clocked serial interface. Basically, the communication is made through 3 wires of serial clock (SCK) and serial data (SI, SO). In case of connecting with multiple device, the handshake line is required.

(2) SBI

This can communicate with a multiple device through 2 wires of serial clock (SCK) and serial bus (SB0) and this is a NEC standard serial interface.

The master device outputs "address" from the SB0 pin and selects the communicated slave device. Then, "command" and "data" are transmitted and received between the master and slave.

3. INTERNAL/EXTERNAL CONTROL FUNCTION

3.1 INTERRUPT

The interrupt request servicing can be selected from 2 service modes in the following table.

Table 3-1 Interrupt Request Servicing

Service Mode	Servicing Subject	Service	PC, PSW Contents
Vectored interrupt Software		Branches to service routine, and executes (any service contents)	With save and return
Macro service	Firmware	Data transmission etc. between memory and I/ O (fixed service contents)	Hold

3.1.1 Interrupt Source

The interrupt source includes the 19 types and a BRK instruction execution as shown in Table 3-2.

The priority of the interrupt servicing can be set to 2 levels (high and low priority levels). Therefore, it can separate the levels of the nest control which the interrupt is in progress and the interrupt request which occurs simultaneously (see Figs. 3-1, 3-2). But the nesting advances certainly in the macro service (not held).

The default priority is the priority level (fixed) to service the interrupt requests which occur at the same level simultaneously (see Fig. 3-2).

Table 3-2 Interrupt Source

	Default		Source	Internal/	Macro
Type	Priority	Name	Trigger	External	Service
Software		BRK	Instruction execution	-	
Non- maskable		NMI	Pin input edge detection] -
	0 (highest)	INTP0	Pin input edge detection (TM1 capture trigger)	External	
	1	INTP1	Pin input edge detection (TM2 capture trigger)	External	
	2	INTP2	Pin input edge detection (TM2 event counter input)	1	
	3	INTP3	Pin input edge detection (TM0 capture trigger)		
	4	INTC00 TM0 to CR00 match signal generation			
	5	5 INTC01 TM0 to CR01 match signal generation			
	6	INTC10	TM1 to CR10 match signal generation	Internal	
	7	INTC11	TM1 to CR11 match signal generation		0
Maskable	8	INTC21 TM2 to CR21 match signal generation]
	_	INTP4	Pin input edge detection	External	
	9	INTC30	TM3 to CR30 match signal generation	Internal]
		INTP5	Pin input edge detection	External	
	10	INTAD	A/D converter conversion termination (transfer to ADCR)		
	11	INTC20	TM2 to CR20 match signal generation	Internal	
	12	INTSER	ASI receive error generation		
	13	INTSR	ASI receive termination		
	14	INTST	ASI transmit termination		0
	15 (lowest)	INTCSI	CSI transfer termination		

TM₀

: 16-bit timer

ASI

: Asynchronous serial interface

TM1 to TM3: 8-bit timer

CSI

: Clocked serial interface

Fig. 3-1 Servicing Example for Another Interrupt Request Occurrence while an Interrupt Servicing

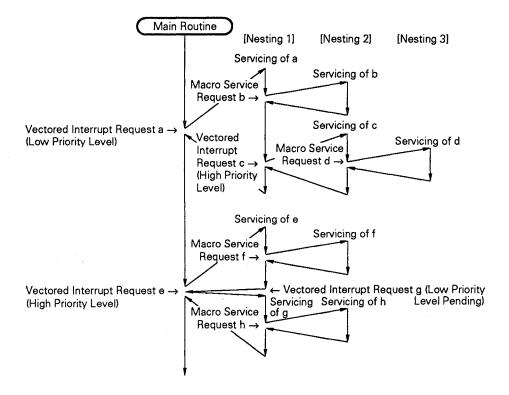
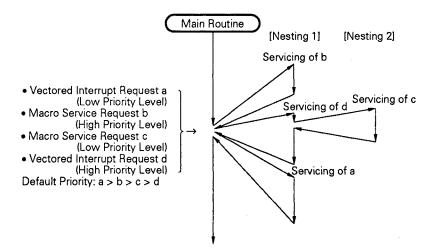



Fig. 3-2 Servicing Example for Simultaneous Occurred Interrupt Request

3.1.2 Vectored Interrupt

The memory contents of the vector table address, which corresponds to the interrupt source, is branched into the processing routine as a destination address.

As the CPU executes the interrupt servicing, the following operations occur.

- O When branch: Saving the CPU status (PC, PSW contents) to the stack.
- O When return: Returning the CPU status (PC, PSW contents) from the stack.

The RETI instruction executes returning to the main routine from the processing routine.

Vector Table Interrupt Source Address 003EH BRK NMI 0002H 0006H **INTPO** INTP1 H8000 HA000 INTP2 **INTP3** 000CH 0014H INTC00 0016H INTC01 0018H INTC10 001AH INTC11

Table 3-3 Vector Table Address

Interrupt Source	Vector Table Address	
INTC21	001CH	
INTP4	000EH	
INTC30		
INTP5	0010H	
INTAD		
INTC20	0012H	
INTSER	0020H	
INTSR	0022H	
INTST	0024H	
INTCSI	0026H	

3.1.3 Macro Service

This is a function to transfer the data between the memory special functional registers (SFR) without CPU operation. The macro service controller accesses the memory and SFR during the same transfer cycle, and transfers directly without data collection.

The high-speed data transfer is enabled because no data is saved, returned nor fetched.

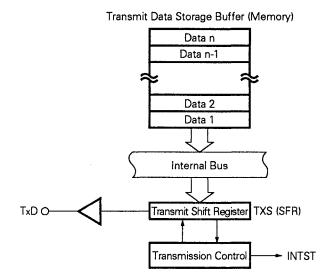
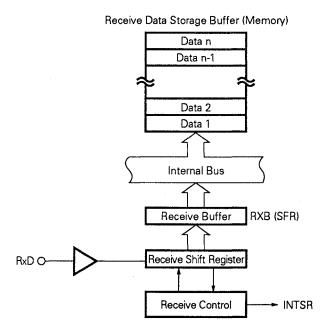

CPU Memory Read Macro Service Controller Read SFR

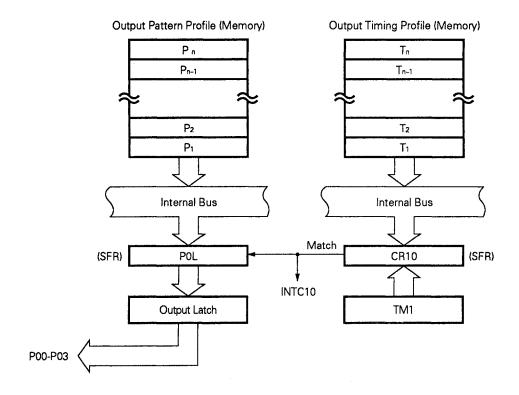
Fig. 3-3 Macro Service


3.1.4 Macro Service Application Example

(1) Transmit operation of serial interface

Whenever the macro service request INTST is generated, the next send data is transferred to TXS from the memory. When the data n (last byte) is transferred to TXS (The transmit data storage buffer becomes empty.), a vectored interrupt request INTST is generated.

(2) Receive operation of serial interface



Whenever the macro service request INTSR is generated, the receive data is transferred to the memory from RXB. When the data n (last byte) is transferred to the memory (The receive data storage buffer becomes empty.), the vectored interrupt request INTSR is generated.

(3) Real-time output port

The INTC10 and INTC11 become output triggers of the real-time output port. In the macro service to them, the next output pattern and interval can be set simultaneously. Therefore, the INTC10 and INTC11 can control 2 system stepping motor independently. Also, it can be applied to control a PWM or DC motor, etc.

Whenever the macro service request INTC10 is generated, the pattern and timing are transferred to P0L and CR10 respectively. When the contents of the TM1 match with the contents of the CR10, the next INTC10 is generated and the contents of the P0L is sent to the output latch. If Tn (last byte) is sent to CR10, a vectored interrupt request INTC10 is generated.

The same operation is available for INTC11 (different point: CR10 \rightarrow CR11, P0L \rightarrow P0H, P00 to P03 \rightarrow P04 to P07).

3.2 LOCAL BUS INTERFACE

A memory and an I/O (memory mapped I/O) can be connected externally and the 1M-byte memory space is supported (see Figs. 2-1, 2-2).

μPD78234 Decoder A16-A19 RD Kanji-Character **PROM** WR Pseudo SRAM Generator μPD27C256A μPD24C1000 REFRO AD0-AD7 Data Bus **ASTB** Latch Address Bus A8-A15 Gate Array I/O Extension Centronics I/F, etc.

Fig. 3-4 Local Bus Interface Example

3.2.1 Memory Expansion

The following modes have been prepared as a memory expansion function.

- External memory expansion mode:
 Expands the program memory and data memory to 48256 bytes externally. But this area can be used unconditionally under the ROM-less mode (MODE=H).
- 1M-byte expansion mode:
 Expands the data memory by 960K bytes and become a 1M-byte memory space.

3.2.2 Programmable Wait

A wait can be independently inserted to the memory mapped on both a normal address (μ PD78233, 78234: 00000H to 0FC7FH, μ PD78237, 78238: 00000H to 0FAFFH) and an extended address (10000H to FFFFFH). Therefore, the efficiency of the entire system is not decreased.

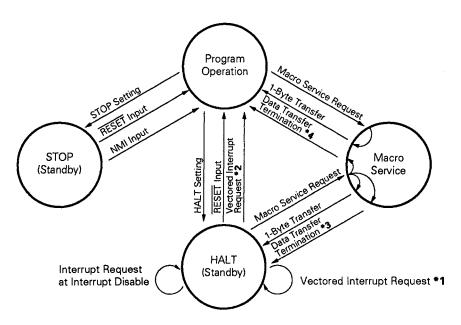
3.2.3 Pseudo-Static RAM Refresh Function

The refresh operations are as follows.

- O Pulse refresh:
 - Outputs the refresh pulse to REFRQ pin in synchronization with a bus cycle.
- O Power-down self refresh:

 Outputs a low-level to the REFRQ pin in the standby mode and holds the contents of pseudo-static RAM.

3.3 STANDBY


This is a function to reduce the power consumption of the chip. The following modes have been prepared.

- O HALT mode: Stops the operation clock of the CPU. The average power consumption is reduced by the normal operation and the intermittent operation during normal operations.
- O STOP mode: Stops the oscillator. This stops all operation in the chip and makes the minute power consumption status only with leakage current.

These modes are programmable.

Also, the macro service is started from the HALT mode.

Fig. 3-5 Standby Status Flow

- * 1. In case a vectored interrupt request is a low priority level (status to disable interrupt of a low priority sequence under the HALT setting).
 - 2. In case a vectored interrupt request is a high priority level or the status to enable interrupt of a low priority sequence under the HALT setting.
 - 3. In case a macro service is a low priority level (status to disable interrupt of a low priority sequence under the HALT setting).
 - 4. In case a macro service is a high priority level or the status to enable interrupt of a low priority sequence under the HALT setting.

3.4 RESET

When a low level is input to the RESET pin, the internal hardware is initialized (reset state).

When the $\overline{\text{RESET}}$ input becomes from a low level to a high level, the following data is set in the program counter (PC).

- O Lower 8 bits of PC: Contents of 0000H address
- O Upper 8 bits of PC: Contents of 0001H address

Delay

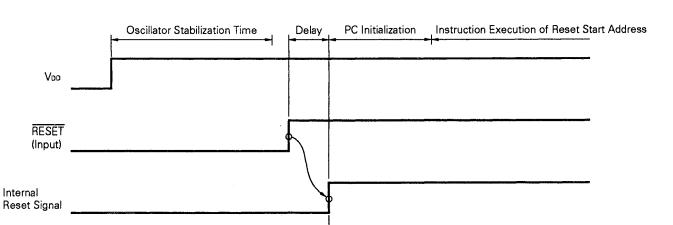
RESET (Input)

Internal Reset Signal

The contents of the PC set the destination address and the program starts to be executed from the address. Therefore, it can start from any address by reset start.

Please set the program for the contents of each register as required.

A noise eliminator has been incorporated the RESET input circuit to prevent any error from noise. This noise eliminator circuit is a sampling circuit based on analog delay.


Delay PC Initialization Instruction Execution of Reset Start Address

Reset End

Fig. 3-6 Reset Acknowledge

Set the RESET signal active in the reset operation at power-on until oscillator stabilization time (approx. 40 ms) elapses.

Reset Start

Reset End

Fig. 3-7 Reset Operation at Power-On

4. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP

Table 4-1 8-Bit Instructions Classified by Addressing

2nd Operand 1st Operand	#byte	А	r r'	saddr saddr'	sfr	mem	& mem	!addr16	&!addr16	PSW	n	None*2
А	ADD*1		MOV	MOV XCH ADD*1	MOV XCH ADD*1	MOV XCH ADD*1	MOV XCH ADD*1	MOV	MOV	MOV		
r	MOV		MOV XCH ADD*1								ROL ROLC ROR RORC SHR SHL	MULU DIVUW INC DEC
r1												DBNZ
saddr	MOV ADD*1	MOV		MOV XCH ADD*1								INC DBNZ DEC
sfr	MOV ADD*1	MOV										PUSH POP
mem & mem		MOV										
mem1 & mem1												ROR4 ROL4
!addr16		MOV										
&!addr16		MOV										
PSW	MOV	моу										PUSH POP
STBC	моч											

^{* 1.} ADDC, SUB, SUBC, AND, OR, XOR and CMP are the same as ADD.

^{2.} There is no 2nd operand or the 2nd operand is not an operand address.

(2) 16-bit instructions

MOVW, ADDW, SUBW, CMPW, INCW, DECW, SHRW, SHLW, PUSH, POP

Table 4-2 16-Bit Instructions Classified by Addressing

2nd Operand 1st Operand	#word	AX	rp rp'	saddrp	sfrp	mem1	& mem1	SP	n	None
AX	ADDW SUBW CMPW		ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW	MOVW	MOVW		
rp	MOVW		MOVW						SHLW SHRW	INCW DECW PUSH POP
saddrp	MOVW	MOVW								
sfrp	MOVW	MOVW								
mem1 & mem1		MOVW								
SP	MOVW	моум								INCW DECW

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Table 4-3 Bit Manipulation Instructions Classified by Addressing

2nd Operand 1st Operand	CY	A.bit	/A.bit	X.bit	/X.bit	saddr.bit	/saddr. bit	sfr.bit	/sfr.bit	PSW.bit	/PSW bit	None*
CY		MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	SET1 CLR1 NOT1
A.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
X.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
saddr.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
sfr.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
PSW.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR

^{*} There is no 2nd operand or the 2nd operand is not an operand address.

(4) Call/branch instructions

CALL, CALLF, CALLT, BR, BC, BT, BF, BTCLR, DBNZ, BL, BNC, BNL, BZ, BE, BNZ, BNE

Table 4-4 Call/Branch Instructions Classified by Addressing

Instruction Addressing Operand	\$addr16	!addr16	rp	!addr11	[addr5]
Basic instruction	BR BC*	CALL BR	CALL BR	CALLF	CALLT
Compound instruction	BT BF BTCLR DBNZ				

^{*} BL, BNC, BNL, BZ, BE, BNZ and BNE are the same as BC.

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, NOP, EI, DI, SEL

5. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
	VDD		-0.5 to +7.0	V
Supply voltage	AVDD		AVss to VDD +0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vı		-0.5 to V _{DD} +0.5	V
Output voltage	Vo		-0.5 to V _{DD} +0.5	V
Output current low	lor	1 pin	15	mA
Output current low		All output pins total	100	mA
Output current high	1	1 pin	-10	mA
output out out ingi	Іон	All output pins total	– 50	mA
A/D converter reference input voltage	AVREF1		-0.5 to V _{DD} +0.3	V
D/A converter reference	AVREF2		-0.5 to V _{DD} +0.3	V
input voltage	AV _{REF3}		-0.5 to V _{DD} +0.3	V
Operating temperature	Topt		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute ratings are not exceeded.

OPERATING CONDITIONS

CLOCK FREQUENCY	OPERATING TEMPERATURE (Topt)	SUPPLY VOLTAGE (VDD)
4 MHz ≤ fxx ≤ 12 MHz	-40 to +85 °C	+5.0 V ±10 %

CAPACITANCE (Ta = 25 °C, VDD = Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cı	f = 1 MHz			20	pF
Output capacitance	Со	unmeasured pins			20	pF
I/O capacitance	Сю	returned to 0 V.			20	pF

OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5 V ± 10 %, V_{SB} = 0 V)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	MIN.	MAX.	UNIT
Ceramic resonator or crystal resonator	Vss X1 X2	Oscillator frequency (fxx)	4	12	MHz
External clock HCMOS Inverter	X1 X2	X1 input frequency (fx)	4	12	MHz
		X1 input rising/falling time (txn, txr)	0	30	ns
	Inverter	X1 input high/low level width (twxн, twxL)	30	130	ns

Note When the clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss. Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.

RECOMMENDED OSCILLATION CIRCUIT CONSTANTS

(1) μ PD78233,78234

CERAMIC RESONATOR

MANUEACTURER	FREQUENCY	PRODUCT NAME	RECOMMENDED CONSTANTS		
MANUFACTURER	[MHz]	PRODUCT NAME	C1 [pF]	C2 [pF]	
Murata Mfg. Co., Ltd.	12	CSA12.0MT	30	30	
Widiata Wilg. Co., Etd.	12	CST12.0MT*	Built-in capacitor type		
Kyocera Corporation	12	KBR12.0M	33	33	
Matsushita Electronics	12	EFOGC1205C4	Built-in capacitor type		
Component Co., Ltd.	12	EFOEC1205C4	Бин-т сар	acitor type	

^{*} Production discontinued.

CRYSTAL RESONATOR

MANUFACTURER	FREQUENCY	PRODUCT NAME	RECOMMENDED CONSTANTS		
	[MHz]		C1 [pF]	C2 [pF]	
Kinseki, Ltd.	12	HC-49/U	18	18	

(2) μ PD78238

CERAMIC OSCILLATOR

MANUEACTURER	FREQUENCY	PRODUCT NAME	RECOMMENDED CONSTANTS		
MANUFACTURER	[MHz]	PRODUCT NAME	C1 [pF]	C2 [pF]	
Murata Mfg. Co., Ltd.	12	CSA12.0MT	30	30	
Widiata Wilg. Co., Etc.	12	CST12.0MTW	Built-in capacitor type		
Matsushita Electronics	12	EFOGC1205C4	Built-in capacitor type		
Component Co., Ltd.	12	EFOEC1205C4	Sant in our	201101 1700	

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = AV $_{DD}$ = +5 V ±10 %, V_{SS} = AV $_{SS}$ = 0 V)

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage low	VIL			0		0.8	V
	ViH1	Pins e	except for *1	2.2		VDD	V
Input voltage high	V _{IH2}	Pin of	*1	0.8Vpp		V _{DD}	V
Output voltage low	Vol1	lor = 2	2.0 mA			0.45	V
	Vol2	lor = 8	3.0 mA *2			1.0	V
	Vон1	Іон = ∙	-1.0 mA	Vpp-1.0			V
Output voltage high	Voн2	Іон = -	-100 <i>μ</i> A	Vpp-0.5			V
	Vонз	Іон = -	-5.0 mA *3	2.0			V
Input leakage current	lu	0 V ≤	Vı ≤ Vdd			±10	μΑ
Output leakage current	lto	0 V ≤	Vo ≤ Voo			±10	μΑ
X1 input current low	lıı.	0 V ≤	Vı ≤ Vıı.			100	μΑ
X1 input current high	lus .	ViH2 ≤	Vı ≤ Vdd			100	μΑ
	loo1	Opera	iting mode fxx = 12 MHz		20	40	mA
V _{DD} supply current	loo2	HALT	mode fxx = 12 MHz		7	20	mA
Data retention voltage	VDDDR	STOP	mode	2.5		5.5	V
Data retention current		STOP	VDDDR = 2.5 V			10	μΑ
Data retention current	lodor	mode	VDDDR = 5 V ±10 %			20	μΑ
Pull-up resistor	RL	V1 = 0	V	15	40	80	kΩ

^{* 1.} X1, X2, RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0, MODE pins

^{2.} P10 to P17, P40/AD0 to P47/AD7, P50/A8 to P57/A15 pins

^{3.} P00 to P07 pins

AC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5 V ±10 %, V_{SS} = 0 V) READ/WRITE OPERATION (1/2)

					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input clock cycle time	tcyx		82	250	ns
Address setup time (to ASTB↓)	tsast •		52		ns
Address hold time (from ASTB↓)*	THSTA		25		ns
Address hold time (from RD↑)	thra		30		ns
Address hold time (from WR↑)	thwa		30		ns
RD↓ delay time from address	tdar •		129		ns
Address float time (from RD↓)	tfar •		11		ns
Data input time from address	toaid •	No. of waits = 0		228	ns
Data input time from ASTB↓	tos⊤io •	No. of waits = 0		181	ns
Data input time from RD↓	torio •	No. of waits = 0		100	ns
RD↓ delay time from ASTB↓	tosta ◆		52		ns
Data hold time (from RD↑)	thrid		0		ns
Address active time from RD↑	tdra •		124		ns
ASTB↑ delay time from RD↑	torst •		124		ns
RD low-level width	twnL ◆	No. of waits = 0	124		ns
ASTB high-level width	twstн •		52		ns
WR↓ delay time from address	toaw •		129		ns
Data output time from ASTB↓	tostop •			142	ns
Data output time from WR↓	towoo			60	ns
WR↓ delay time from ASTB↓	tostw1 ◆	Refreshing disabled	52		ns
With delay time from Acres	tos⊤w₂ •	Refreshing enabled	129		ns
Data setup time (to WR1)	tsoown ◆	No. of waits = 0	146		ns
Data setup time (to WR↓)	tsopwr •	Refreshing enabled	22		ns
Data hold time (from WR1) *	thwod	·	20		ns
ASTB↑ delay time from WR↑	towst •		42		ns
	twwL1 •	Refreshing disabled No. of waits = 0	196		ns
WR low-level width	twwL2 •	Refreshing enabled No. of waits = 0	114		ns
WAIT↓ input time from address	tdawt ◆			146	ns
WAIT↓ input time from ASTB↓	tostwr •			84	ns

^{*} The hold time includes the time to hold the V_{OH} and V_{OL} under the load conditions of $C_L = 100$ pF and $R_L = 2$ k Ω .

Remarks 1. The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

2. For a parameter with a dot (•) in the SYMBOL column, refer to **DEFINITION OF t**_{CYX} **DEPENDENT BUS TIMINGS** as well.

READ/WRITE OPERATION (2/2)

PARA	METER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
WAIT hold time	from ASTB↓	tнsтwт ◆	No. of external waits = 1	174		ns
WAIT↑ delay tim	ne from ASTB↓	tostwth ◆	No. of external waits = 1		273	ns
WAIT↓ input tim	e from RD↓	tdrwtl. ◆			22	ns
WAIT hold time	from RD↓	thrwr •	No. of external waits = 1	87		ns
WAIT↑ delay tim	ie from RD↓	tonwth •	No. of external waits = 1		186	ns
Data input time	Data input time from WAIT1				62	ns
WR↑ delay time from WAIT↑		towrw •		154		ns
RD↑ delay time from WAIT↑		towrr •		72		ns
WAIT input time (Refreshing disa	i	towwTL ◆			22	ns
WAIT hold time	Refreshing disabled	thwwr1 •	No. of external waits = 1	87		ns
from WR↓	Refreshing enabled	thwwr2 ◆	No. of external waits = 1	5	1	ns
WAIT↑ delay	Refreshing disabled	towwTH1 •	No. of external waits = 1		186	ns
time from WR↓	Refreshing enabled	towwth₂ •	No. of external waits = 1		104	ns
REFRQ↓ delay time from RD↑		torrfa •		154		ns
REFRQ↓ delay ti	REFRQ↓ delay time from WR↑			72		ns
REFRQ low-leve	l width	twrfql •		120		ns
ASTB↑ delay tin	ne from REFRQ↑	torfast •		280		ns

- **Remarks** 1. The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".
 - 2. For a parameter with a dot (+) in the SYMBOL column, refer to DEFINITION OF toxx DEPENDENT BUS TIMINGS as well.

SERIAL OPERATION

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
		Input	External clock	1.0		μs
Serial clock cycle time	tcysk		Internally divided by 16	1.3		μs
		Output	Internally divided by 64	5.3		μs
		Input	External clock	420		ns
Serial clock low-level width	twskL		Internally divided by 16	556		ns
		Output	Internally divided by 64	2.5		μs
		Input	External clock	420		ns
Serial clock high-level width	twskH		Internally divided by 16	556		ns
		Output	Internally divided by 64	2.5		μs
SI, SB0 setup time (to SCKT)	tsssĸ			150		ns
SI, SB0 hold time (from SCK1)	tussk			400		ns
SO/SB0 output delay time	tosesk1	·	CMOS push-pull output (3-wire serial I/O mode)		300	ns
(from SCK↓)	tosask2	Open-drain output (SBI mode), $R_L = 1 \ k\Omega$		0	800	ns
SB0 high hold time (from SCK1)	thsask	001		4		tcyx
SB0 low setup time (to SCK↓)	tssask	SBI mod	16	4		tcyx
SB0 low-level width	twssL			4		tcyx
SB0 high-level width	twsвн			4		tcyx

Remarks The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

OTHER OPERATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
NMI low-level width	twniL		10		μs
NMI high-level width	twnin		10		μs
INTP0 to INTP5 low-level width	twitL		24		tcvx
INTPO to INTP5 high-level width	twith		24		tcyx
RESET low-level width	twrsi		10		μs
RESET high-level width	twash		10		μs

EXTERNAL CLOCK TIMING

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input low-level width	twxL		30	130	ns
X1 input high-level width	twxн		30	130	ns
X1 input rise time	txa		0	30	ns
X1 input fall time	txF	, 11	0	30	ns
X1 input clock cycle time	tcyx	The state of the s	82	250	ns

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, V_{00} = AV $_{00}$ = +5 V ±10 %, V_{38} = AV $_{38}$ = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			bit
Overall error *1		4.0 V ≤ AVREF1 ≤ AVDD Ta = -10 to +70°C			0.4	%
Overail effor "1		3.4 V ≤ AVREF1 ≤ AVDD			0.8	%
		4.0 V ≤ AVREF1 ≤ AVDD			0.6	%
Quantization error					±1/2	LSB
Conversion time	Conversion time tconv	The FR bit of ADM is to be "0"	360			tcvx
Soll version time	The FR bit of ADM is to be "1"	240			tcyx	
Sampling time tsamp	The FR bit of ADM is to be "0"	72			tcvx	
James and		The FR bit of ADM is to be "1"	48			tcvx
Analog input voltage	Vian		-0.3		AVREF1 +0.3	٧
Analog input impedance	Ran			1000		МΩ
Reference voltage	AVREF1		3.4		AVDD	٧
AVREF current	Alaee1	fxx = 12 MHz		1.5	3.0	mA
AVNER CUTTERN	MIRET	*2		0.7	1.5	mA
AV _{DD} power current	Alpo1	fxx = 12 MHz		1.4	3.0	mA
	Aldd2	*3		10	20	μΑ

- * 1. Quantization error is not included. Represented by the ratio to full-scale value.
 - 2. When ADM register CS bit is 0
 - 3. When ADM register CS bit is 0 and STOP mode is set

D/A CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, AVREF2 = V_{DD} + 5 V ±10 %, AVREF3 = V_{SS} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution					8	ВІТ
		Load conditions: 4 MΩ, 30 pF			0.4	%
		Load conditions: 2 MΩ, 30 pF			0.6	%
Overall error		AVREF2 = 0.75 VDD AVREF3 = 0.25 VDD			0.6	%
		Load conditions: 4 M Ω , 30 pF			0.0	~
		AVREF2 = 0.75 Vdd AVREF3 = 0.25 Vdd Load conditions: 2 MΩ, 30 pF			0.8	%
Settling time		Load conditions: 2 MΩ, 30 pF			10	μs
Output resistor	Ro	*		20		kΩ
Analog reference voltage	AVREF2		0.75 Vod		VDD	V
Analog reference voltage	AVREF3		0		0.25 V _{DD}	v
Reference power input current	Alref2		0		5	mA
Reference power input current	Alref3		– 5		0	mA

^{*} When DACS0, 1 = 7FH

DEFINITION OF toxx DEPENDENT BUS TIMINGS (1/2)

PARAMETER	SYMBOL	CALCULATION FOMULA	MIN./MAX.	12 MHz	רואט
X1 input clock cycle time	tcyx		MIN.	82	ns
Address setup time (to ASTB↓)	tsast	tcyx - 30	MIN.	52	ns
RD↓ delay time from address	TDAR	2tcyx - 35	MIN.	129	ns
Address float time (from RD↓)	tfar	tcyx/2 - 30	MIN.	11	ns
Data input time from address	TDAID	(4 + 2n) tcyx - 100	MAX.	228 *	ns
Data input time from ASTB↓	tostio	(3 + 2n) tcvx - 65	MAX.	181 *	ns
Data input time from RD↓	tonio	(2 + 2n) tcyx - 64	MAX.	100 *	ทร
RD↓ delay time from ASTB↓	tostr	tcyx - 30	MIN.	52	ns
Address active time from RD↑	tora	2tcyx - 40	MIN.	124	ns
ASTB↑ delay time from RD↑	torst	2tcyx - 40	MIN.	124	ns
RD low-level width	twnL	(2 + 2n) tcyx - 40	MIN.	124 *	ns
ASTB high-level width	twsтн	tcyx - 30	MIN.	52	ns
WR↓ delay time from address	tdaw	2tcyx - 35	MIN.	129	ns
Data output time from ASTB↓	tostop	tcyx + 60	MAX.	142	ns
	tostwi	tcvx - 30 (Refreshing disabled)	MIN.	52	ns
WR↓ delay time from ASTB↓	tostw2	2tcvx - 35 (Refreshing enabled)	MIN.	129	ns
Data setup time (to WR↑)	tsonwa	(3 + 2n) tcyx - 100	MIN.	146 *	ns
Data setup time (to WR↓)	tsoowr	tcyx - 60 (Refreshing enabled)	MIN.	22	ns
ASTB↑ delay time from WR↑	towst	tcyx - 40	MIN.	42	ns
	twwL1	(3 + 2n) tcvx - 50 (Refreshing disabled)	MIN.	196 *	ns
WR low-level width	tww.2	(2 + 2n) tcvx - 50 (Refreshing enabled)	MIN.	114 *	ns
WAIT↓ input time from address	TDAWT	3tcyx - 100	MAX.	146	ns
WAIT↓ input time from ASTB↓	tostwt	2tcyx - 80	MAX.	84	ns

Remarks "n" indicates the number of waits.

* When n = 0

 \star

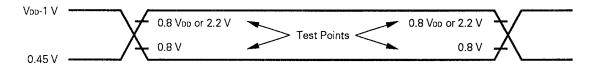
 \star

DEFINITION OF toxx DEPENDENT BUS TIMINGS (2/2)

PARAMETER		SYMBOL	CALCULATION FOMULA	MIN./MAX.	12 MHz	UNIT
WAIT hold time	from ASTB↓	thstwt	2Xtcvx + 10	MIN.	174 *	ns
WAIT↑ delay tim	ne from ASTB↓	tostwth	2(1 + X)tcvx - 55	MAX.	273 *	ns
WAIT↓ input tim	e from RD↓	TORWIL	tcvx - 60	MAX.	22	ns
WAIT hold time	from RD↓	thrwt	(2X - 1)tcvx + 5	MIN.	87 *	ns
WAIT1 delay tim	ne from RD↓	torwth	(2X + 1)tcyx - 60	MAX.	186 *	ns
Data input time	from WAIT1	towno	tcyx - 20	MAX.	62	ns
WR↑ delay time	from WAIT↑	towtw	2tcyx - 10	MIN.	154	ns
RD↑ delay time from WAIT↑		towr	tcvx - 10	MIN.	72	ns
WAIT input time from WR↓ (Refreshing disabled)		towwrL	tcvx - 60	MAX.	22	ns
WAIT hold time	Refreshing disabled	thwwT1	(2X - 1)tcvx + 5	MIN.	87 *	ns
from WR↓	Refreshing enabled	thwwr2	2(X - 1)tcyx + 5	MIN.	5 *	ns
WAIT↑ delay	Refreshing disabled	towwrmi	(2X + 1)tcyx - 60	MAX.	186 *	ns
time from WR↓	Refreshing enabled	towwTH2	2Xtcvx - 60	MAX.	104 *	ns
REFRQ↓ delay time from RD↑		torrfa	2tcyx - 10	MIN.	154	ns
REFRQ↓ delay time from WR↑		townfo	tcyx - 10	MIN.	72	ns
REFRQ low-level	width	twaral	2tcyx - 44	MIN.	120	ns
ASTB↑ delay tim	ne from REFRQ1	torfost	4tcyx - 48	MIN.	280	ns

Remarks 1. X: The number of the external wait. (1, 2, ...)

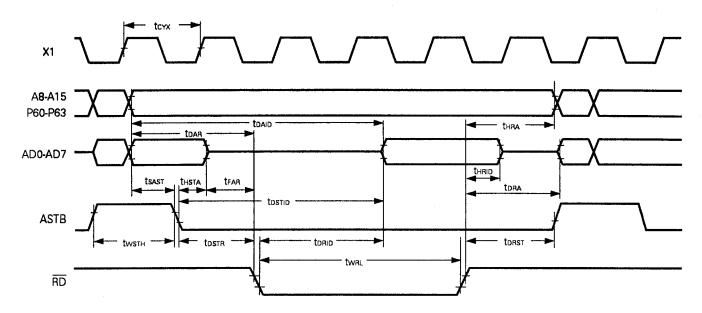
- 2. $t_{CYX} \cong 82 \text{ ns } (f_{XX} = 12 \text{ MHz})$
- 3. "n" indicates the number of waits.
- * When X = 1

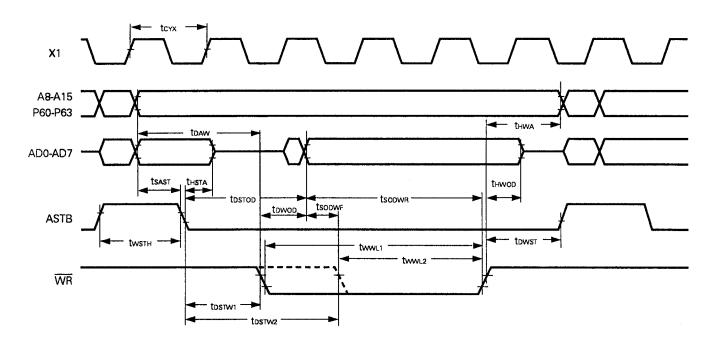


DATA RETENTION CHARACTERISTICS (Ta = -40 to +85 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention voltage	VDDDR	STOP mode	2.5		5.5	٧
Data retention current	IDDDR	VDDDR = 2.5 V			10	μΑ
Data retention current	IDDDA	VDDDR = 5 V ±10 %			20	μΑ
V _{DD} rise time	trvo		200			μs
Voo fall time	trvo		200			μs
Voo hold time (from	thyp					
STOP mode setting)	LHVD		0			ms
STOP release signal	TOREL		0			ms
input time						1115
Oscillation stabilization		Crystal resonator	30			ms
wait time	twait	Ceramic resonator	5			ms
Low-level input voltage	VIL	Specified pin*	0		0.1 VDDDR	٧
High-level input voltage	ViH	abaamaa ku	0.9 VDDDR		VDDDR	V

* RESET, MODE, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0 pins

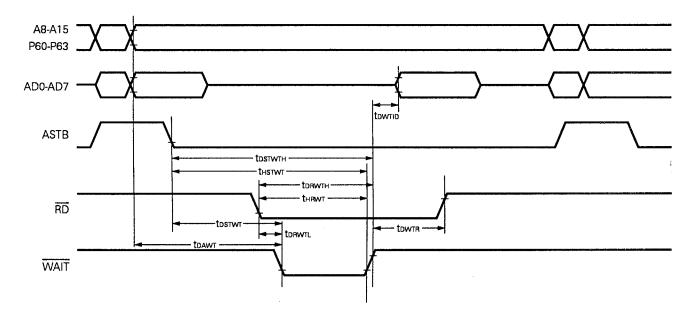

AC Timing Test Point

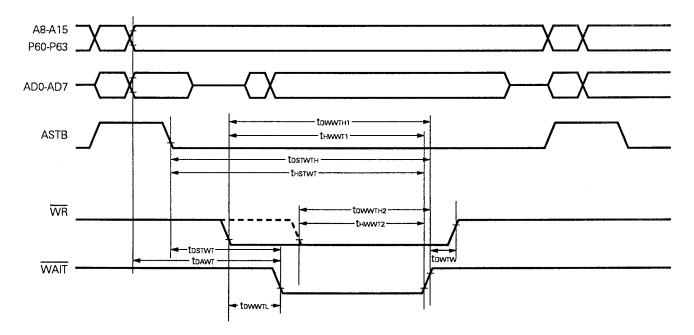


Timing Waveform

Read operation

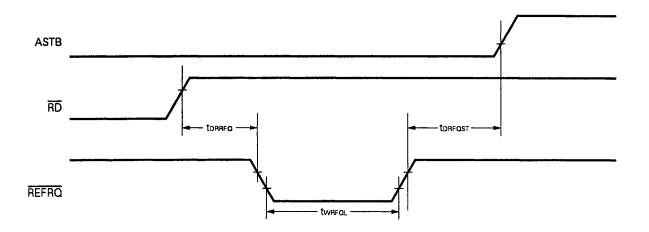
Write operation

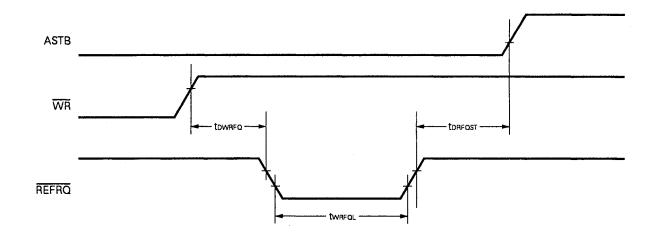




External WAIT Signal Input Timing

Read operation

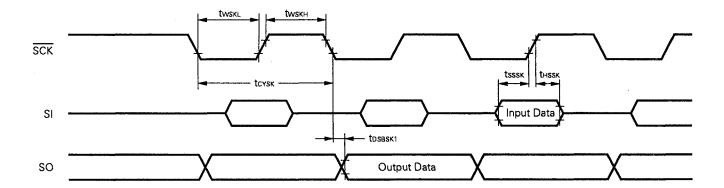

Write operation

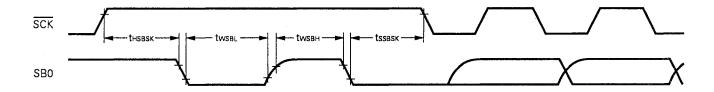


Refresh Timing Waveform

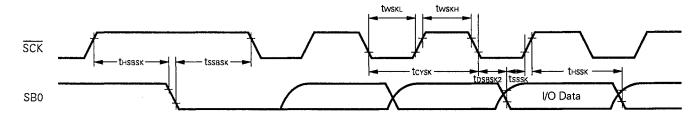
Refresh after read

Refresh after write



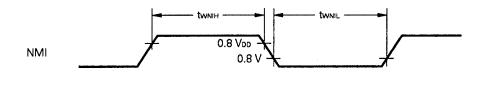

Serial Operation

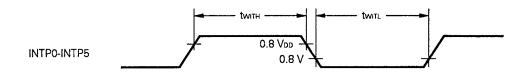
3-wire serial I/O mode

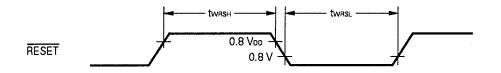


SBI Mode

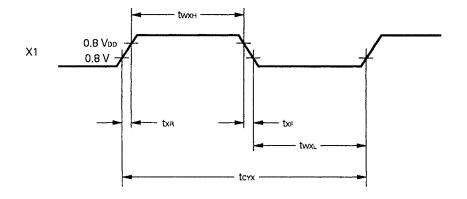
Bus release signal transfer



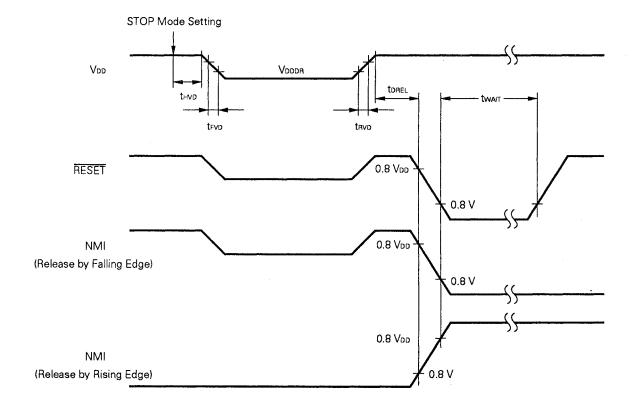

Command signal transfer



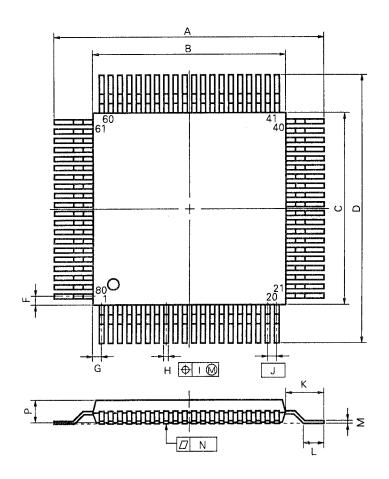
Interrupt Input Timing

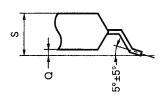


Reset Input Timing



External Clock Timing


Data Retention Characteristics

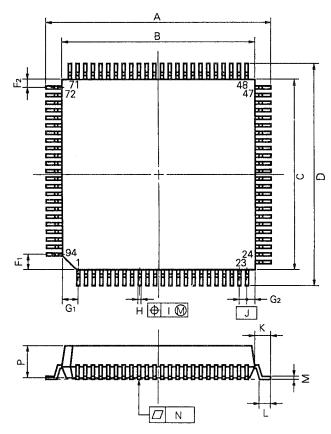


6. PACKAGE INFORMATION

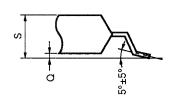
80 PIN PLASTIC QFP (□14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

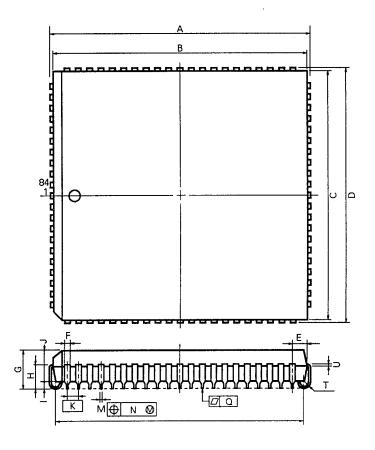
S80GC-65-3B9-3	
	7


ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	0.551 ^{+0.009}
С	14.0±0.2	0.551 ^{+0.009}
D	17.2±0.4	0.677±0.016
F	0.8	0.031
G	0.8	0.031
Н	0.30±0.10	0.012+0.004
ı	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031 ^{+0.009}
М	0.15+0.10	0.006+0.004
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
s	3.0 MAX.	0.119 MAX.

94 PIN PLASTIC QFP (□20)

detail of lead end

NOTE

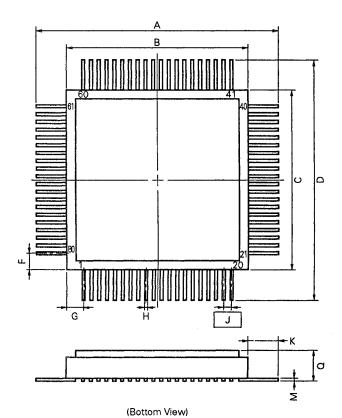

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

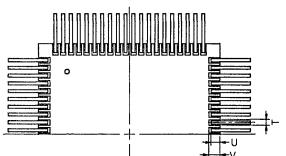
S94GJ-80-5BG-2

ITEM	MILLIMETERS	INCHES
Α	23.2±0.4	0.913+0.017
В	20.0±0.2	0.787-0.009
С	20.0±0.2	0.787 ^{+0.009}
D	23.2±0.4	0.913+0.017
F1	1.6	0.063
F ₂	0.8	0.031
G1	1.6	0.063
G ₂	0.8	0.031
Н	0.35±0.10	0.014+0.004
1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	0.15+0.10	0.006+0.004
N	0.12	0.005
Р	3.7	0.146
Q	0.1±0.1	0.004±0.004
S	4.0 MAX.	0.158 MAX.

84 PIN PLASTIC QFJ (□1150 mil)

NOTE


Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


P84L-50A3-2

ITEM	MILLIMETERS	INCHES
Α	30.2±0.2	1.189±0.008
В	29.28	1.153
С	29.28	1.153
D	30.2±0.2	1.189±0.008
E	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173 ^{+0.009}
H	2.8±0.2	0.110 ^{+0.009}
ı	0,9 MIN.	0.035 MIN.
J	3.4	0.134
Κ	1.27 (T.P.)	0.050 (T.P.)
М	0.40±0.10	0.016+0.004
N	0.12	0.005
Р	28.20±0.20	1.110+0.009
Q	0.15	0.006
T	R 0.8	R 0.031
U	0.20+0.10	0.008+0.004

\star 80 PIN CERAMIC QFP (14 × 14) (FOR ES) (μ PD78234GC- \times ×-3B9 ONLY)

X80B-65A-1 ITEM MILLIMETERS INCHES 0.776 - 0.017 Α 19.7±0.4 В 15.0 0.591 С 15.0 0.591 0.776+8:815 D 19.7±0.4 F 0.051 1.3 G 1.3 0.051 Н 800.0 0.2 J 0.65 (T.P.) 0.026 (T.P.) Κ 2.35±0.15 0.093+0.006 0.006 0.15 М 0.123 MAX. Q 3.1 MAX. Τ 0.45 0.018 U 0.7 0.028 ٧ 0.039 1.0

7. RECOMMENDED SOLDERING CONDITIONS

×

This product should be soldered and mounted under the condition recommended in the table below.

For details of recommended soldering conditions refer to the information document "Surface Mount Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 7-1 Soldering Conditions for Surface Mounting Type

(1) μPD78233GC-3B9 : 80-pin plastic QFP (□14 mm) μPD78234GC-xxx-3B9 : 80-pin plastic QFP (□14 mm) μPD78237GC-3B9 : 80-pin plastic QFP (□14 mm) μPD78238GC-xxx-3B9 : 80-pin plastic QFP (□14 mm)

Soldering Method	Soldering Condition	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230 °C Duration: 30 sec. max. (at 210 °C or above) Number of times: Once, Time limit: 2 days* (Thereafter 16 hours prebaking requires 125 °C)	IR30-162-1
Infrared reflow	Package peak temperature: 235 °C Duration: 30 sec. max. (at 210 °C or above) Number of times: Once, Time limit: 2 days* (Thereafter 20 hours prebaking requires 125 °C)	IR35-202-1
VPS	Package peak temperature : 215 °C Duration : 40 sec. max. (at 200 °C or above) Number of times : Once, Time limit : 2 days* (Thereafter 16 hours prebaking requires 125 °C)	VP15-162-1
VPS	Package peak temperature: 215 °C Duration: 40 sec. max. (at 200 °C or above) Number of times: Once, Time limit: 2 days* (Thereafter 20 hours prebaking requires 125 °C)	VP15-202-1
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max., Number of times: Once Preheating temperature: 120 °C max. (package surface temperature) Time limit: 2 days* (Thereafter 16 hours prebaking requires 125 °C)	WS60-162-1
Pin part heating	Pin part temperature : 300 °C max. Duration : 3 sec. max. (per device side)	_

(2) μPD78233GJ-5BG : 94-pin plastic QFP (□20 mm) μPD78234GJ-xxx-5BG : 94-pin plastic QFP (□20 mm) μPD78237GJ-5BG : 94-pin plastic QFP (□20 mm) μPD78238GJ-xxx-5BG : 94-pin plastic QFP (□20 mm)

Soldering Method	Soldering Condition	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230 °C Duration: 30 sec. max. (at 210 °C or above) Number of times: Once, Time limit: 7 days* (Thereafter 10 hours prebaking required at 125 °C)	IR30-107-1
VPS	Package peak temperature: 215 °C Duration: 40 sec. max. (at 200 °C or above) Number of times: Once, Time limit: 7 days* (Thereafter 10 hours prebaking required at 125 °C)	VP15-107-1
Wave soldering	Solder bath temperature : 260 °C Duration : 10 sec. max., Number of times : Once Preheating temperature : 120 °C max. (package surface temperature) Time limit : 7 days* (Thereafter 10 hours prebaking required at 125 °C)	WS60-107-1
Pin part heating	Pin part temperature : 300 °C max. Duration : 3 sec. max. (per device side)	_

(3) μPD78233LQ : 84-pin plastic QFJ (□1150 mil) μPD78234LQ-xxx : 84-pin plastic QFJ (□1150 mil) μPD78237LQ : 84-pin plastic QFJ (□1150 mil) μPD78238LQ-xxx : 84-pin plastic QFJ (□1150 mil)

Soldering Method	Soldering Condition	Recommended Condition Symbol
VPS	Package peak temperature : 215 °C Duration : 40 sec. max. (at 200 °C or above) Number of times : Once, Time limit: 7 days* (Thereafter 10 hours prebaking required at 125 °C)	
Pin part heating	Pin part temperature : 300 °C max. Duration : 3 sec. max. (per device side)	_

^{*} For the storage period after dry-packdecapsulation, storage conditions are max. 25 °C, 65% PH.

Note Use of more than one soldering method should be avoided (except in the case of pin part heating).

-	ı	V	0	U	C	е

A version of this product with improved recommended soldering conditions is available. For details (improvements such as infrared reflow peak temperature extension (235 °C), number of times: twice, relaxation of time limit, etc.), contact NEC sales personnel.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78233, 78234, 78237 and 78238.

Language Processing Software

RA78K/II*1,2	78K/II series common assembler package	
CC78K/II*1,2	78K/II series common C compiler package	
CC78K/II-L*1,2	78K/II series common C compiler library source file	

PROM Write Tools

PG-1500	PROM programmer	
PA-78P238GC		
PA-78P238GJ	Branzammar adapter connected to BG 1500	
PA-78P238KF	Programmer adapter connected to PG-1500	
PA-78P238LQ		
PG-1500 Controller*1	PG-1500 control program	

Debugging Tools

IE-78230-R-A IE-78230-R *3	μPD78234 series common in-circuit emulator
IE-78200-R-BK	78K/II series common break board
IE-78230-R-EM IE-78200-R-EM*3	μPD78234 series common emulation board
EP-78230GC-R EP-78230GJ-R EP-78230LQ-R	μ PD78234 series common emulation probe
EV-9200G-94 EV-9200GC-80	Socket to be mounted on user system board created for the 94-pin plastic QFP and the 80-pin plastic QFP
EV-9900	Jig to be used for removing μPD78P238KF from EV-9200G-94
SD78K/II*1	IE-78230-R-A screen debugger
DF78230*1	μPD78234 series device file

Real-Time OS

RX78K/II*1,2	78K/II series common real-time OS

Fuzzy Inference Development Support System

FE9000*1	Fuzzy knowledge data creation tool
FT9080 *1	Translator
FI78K/II*1	Fuzzy inference module
FD78K/II*1,4	Fuzzy inference debugger

- * 1. PC-9800 series (MS-DOS™) based, IBM PC/AT™ (PC DOS™) based
 - 2. HP9000 series 300™ (HP-UX™) based, SPARCstation™ (Sun OS™) based, EWS-4800 series™ (EWS-UX/V™) based
 - 3. No longer manufactured and not available for purchase.
 - 4. Under development

Remarks For development tools manufactured by a third party, see "78K/II Series Development Tools Selection Guide (FE-231)".

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Do	Document No.	
μPD78234 Series User's Manual Hardware Vo		
78K/II Series User's Manual Instruction Volum	ne	
	Introductory Volume	
78K/II Series Application Note	Application Volume	
	Floating Point Operation Program Volume	
78K/II Series Selection Guide		
78K/II Series Instruction Application Table		
78K/II Series Instruction Set		
μΡD78234 Series Special Function Register Application Table		

Development Tools Related Documents (User's Manual)

Document Name		Document No.
RA78K Series Assembler Package	Operation Volume	
	Language Volume	
RA78K Series Structured Assembler Preproces	sor	
CC78K Series C Compiler	Operation Volume	
	Language Volume	
CC78K Series Library Source File		
PG-1500 PROM Programmer		
PG-1500 Controller		
IE-78230-R-A In-Circuit Emulator		
IE-78230-R In-Circuit Emulator	Hardware Volume	
	Software Volume	
SD78K/II Screen Debugger	Primer Volume	
	Reference Volume	
78K/II Series Development Tools Selection Gui	de	

Note The contents of the above related documents are subject to change without notice. The latest document should be used for design, etc.

Built-In Related Software Documents (User's Manual)

Document Name		Document No.
	Introductory Volume	
RX78K/II Series Real-Time OS	Installation Volume	
	Debugger Volume	
	Technical Volume	
Fuzzy Knowledge Data Creation Tool		
78K/0, 78K/II , 87AD Series Fuzzy Inference Development Support System	Translator	
78K/II Series Fuzzy Inference Development Support System	Fuzzy Inference Module	
78K/II Series Fuzzy Inference Debugger		

Other Documents

Document Name	Document No.
QTOP Microcomputer Brochure	
Package Manual	
Surface Mount Technology Manual	
Quality Grade on NEC Semiconductor Devices	
NEC Semiconductor Device Reliability & Quality Control	
Electrostatic Discharge (ESD) Test	
Semiconductor Devices Quality Guarantee Guide	
Microcomputer Related Products Guide Other Manufactures Volume	

Note The contents of the above related documents are subject to change without notice. The latest document should be used for design, etc.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime

systems, etc.

M4 92.6

EWS-4800 series and EWS-UX/V are trademarks of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Sun OS is a trademark of Sun Microsystems Corporation.

HP9000 series 300 and HP-UX are trademarks of Hewlett Packard Company.