Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT

.. D78212(A),78213(A),78214(A)

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD78212(A), 78213(A) and 78214(A) are 78K/II series products. The 78K/II series are 8-bit single-chip microcomputers which can access the memory space of 1M byte with an external expansion.

Functions are described in detail in the following User's Manual, which should be read when carrying out design work.

 μ PD78214 Series User's Manual Hardware Volume : IEM-5119 78K/II Series User's Manual Instruction Volume : IEU-754

FEATURES

- Higher reliability than μ PD78212, 78213 and 78214
- High-speed instruction execution (at 12 MHz operation)
 333 ns (μPD78212(A), 78214(A))
 500 ns (μPD78213(A))
- On-chip high-performance interrupt controller
- On-chip A/D converter (8 bits × 8 channels)
- I/O pin
 54 pins (μPD78212(A), 78214(A))
 36 pins (μPD78213 (A))
- Real-time output port $(8 \times 1 \text{ or } 4 \times 2)$
- · Serial interface: 2 channels
- Timer/counter (16 \times 1 and 8 \times 3)

APPLICATION FIELD

Automobile electrical equipment, combustion control.

ORDERING INFORMATION

Ordering Code	Package	Internal ROM	Internal RAM
μPD78212CW(A)-×××	64-pin plastic shrink DIP (750 mil)	8K	384
μ PD78212GC(A)- \times \times -AB8	64-pin plastic QFP (□14mm)	8K	384
μPD78213CW(A)	64-pin plastic shrink DIP (750 mil)	None	512
μPD78213GQ(A)-36	64-pin plastic QUIP	None	512
μ PD78214CW(A)- $\times\times$	64-pin plastic shrink DIP (750 mil)	16K	512
μ PD78214GC(A)- $\times\times$ -AB8	64-pin plastic QFP (□14 mm)	16K	512
μ PD78214GJ(A)- $\times\times$ -5BJ	74-pin plastic QFP (□20 mm)	16K	512
μ PD78214GQ(A)- $\times\times$ -36	64-pin plastic QUIP	16K	512
μ PD78214L(A)- \times \times	68-pin plastic QFJ (□950 mil)	16K	512

Remarks "xxx" means a ROM code number.

QUALITY GRADE

Special

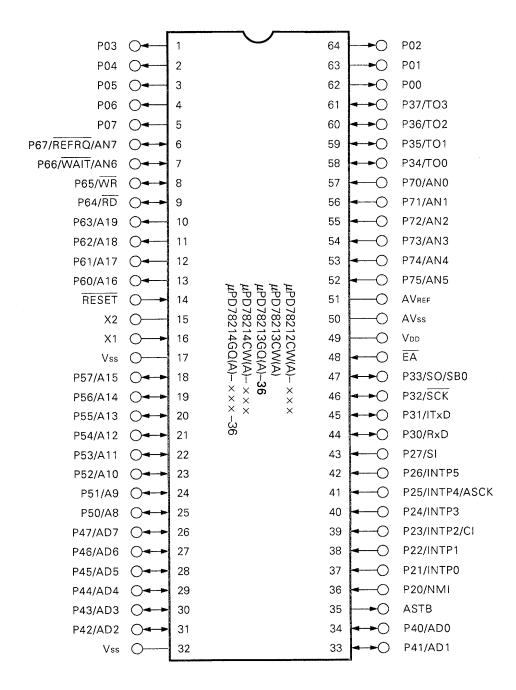
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

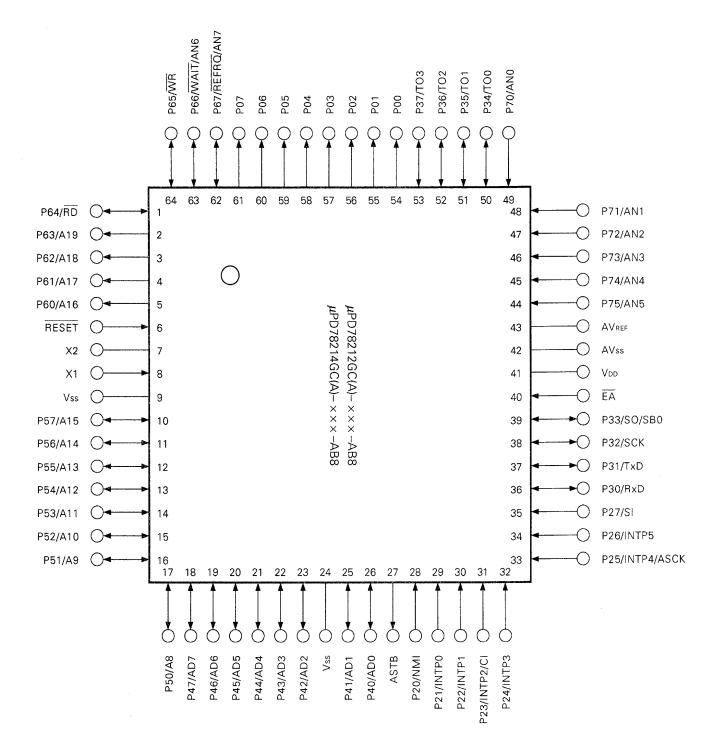
Document No. IC-2831C (0. D. No. IC-8234C) Date Published May 1994 P Printed in Japan The mark ★ shows major revised points.

© NEC Corporation 1991

FUNCTION LIST

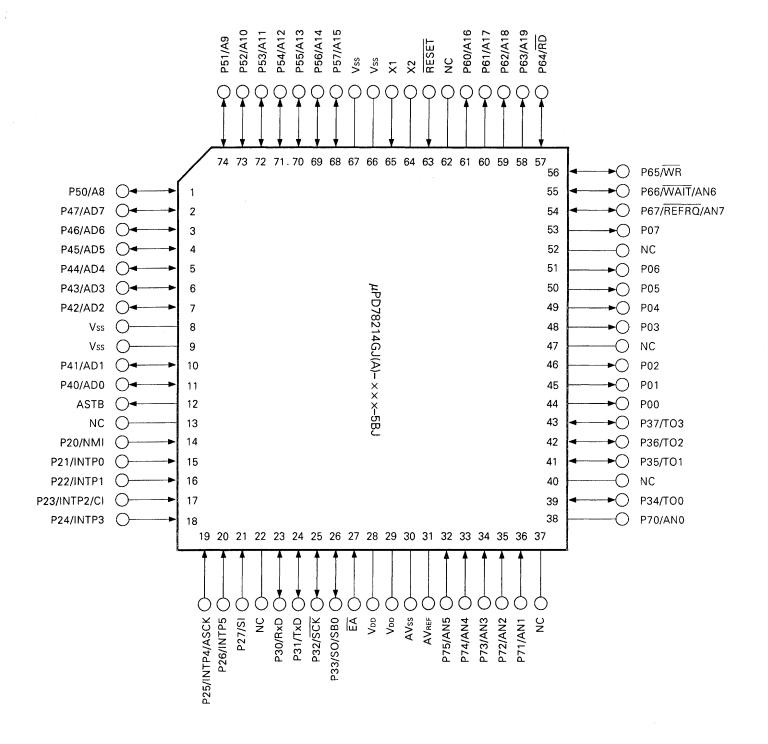

Product Name		uct Name	μPD78213(A)		μPD78212(A)	μPD78214(A)	
Basic inst	ruction (Mnemonic)			65		
Minimum tion time ration)		ion execu- Hz ope-	500 ns			333 ns	
On-chip n	nemory	ROM	ROM-less		8K bytes	16K bytes	
capacity		RAM	512 bytes		384 bytes	512 bytes	
Memory space			Program memory: 64K b	ytes, d	ata memory: 1M bytes		
	Input				14		
	Output				12		
I/O pins	I/O		10			28	
	Total		36			54	
Pins		pull-up	10		· · · · · · · · · · · · · · · · · · ·	34	
with	resistor						
addi- tional	LED dir	ect drive				16	
func-		tor direct		<u> </u>			
tion*	drive o		8				
ROM-less mode setting		etting	ROM-less product EA pin = High-level		n = High-level		
Real-time	Real-time output port		4 bits × 2 or 8 bits × 1				
General r	egister		8 bits × 8 × 4 banks (memory mapping)				
			16-bit timer/counter	Captu	r register × 1 ure register × 1 pare register × 2	Pulse output enable (Toggle output PWM/PPG output)	
Timer/cou	ınter		8-bit timer/counter 1	Captu	r register × 1 ure/compare register × 1 pare register × 1	Pulse output enable (Real-time output: 4 bits × 2	
			8-bit timer/counter 2	Captu	r register × 1 ure register × 1 pare register × 2	Pulse output enable (Toggle output PWM/PPG output)	
			8-bit timer/counter 3 Timer register × 1 Compare register × 1				
Serial inte	erface	•	UART CSI (3-wire serial I/O, SB	:		rate generator incorporated)	
A/D conve	erter		8-bit resolution × 8 channels				
			19 sources (external 7, internal 12) + BRK instruction				
Interrupt			Priority order of 2 levels (programmable)				
			2 types of servicing (vectored interrupt, macro service)				
			16-bit operation				
Instruction	n set		Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits)				
			Bit manipulation				
			BCD adjustment, others 64-pin plastic shrink DIP	(750 m	nil)		
			64-pin plastic QUIP (othe				
Package			68-pin plastic QFJ (□ 950		•		
. Gorago			64-pin plastic QFP (□ 14 i	•	•		
			74-pin plastic QFP (□ 20 i		•		

^{*} Pins with additional function are included in the I/O pin.

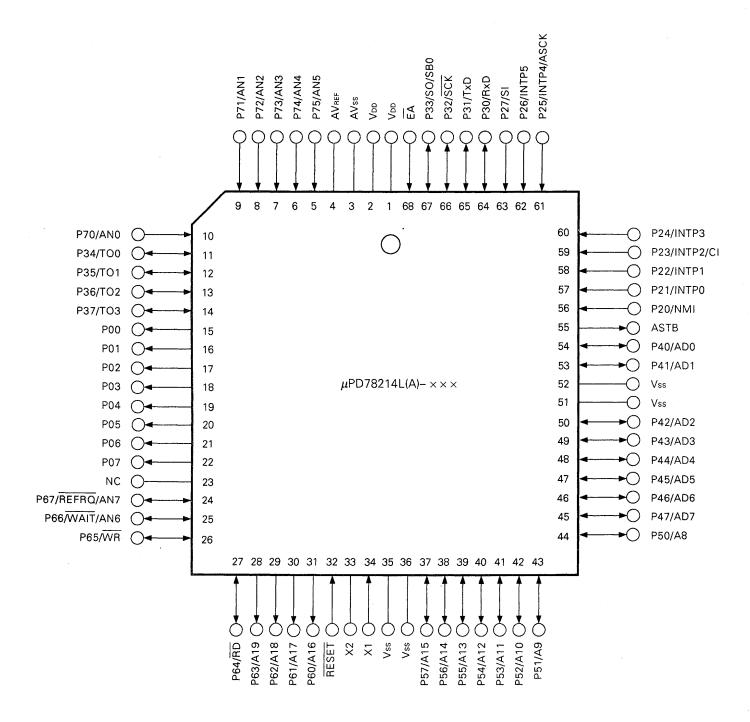


PIN CONFIGURATION (TOP VIEW)

64-pin plastic shrink DIP, 64-pin plastic QUIP



64-pin plastic QFP



74-pin plastic QFP

68-pin plastic QFJ

Phase-out/Discontinued

P00 to P07 : Port 0
P20 to P27 : Port 2
P30 to P37 : Port 3
P40 to P47 : Port 4
P50 to P57 : Port 5
P60 to P67 : Port 6
P70 to P75 : Port 7

TO0 to TO3 : Timer Output
CI : Clock Input
RxD : Receive Data
TxD : Transmit Data
SCK : Serial Clock

ASCK : Asynchronous Serial Clock

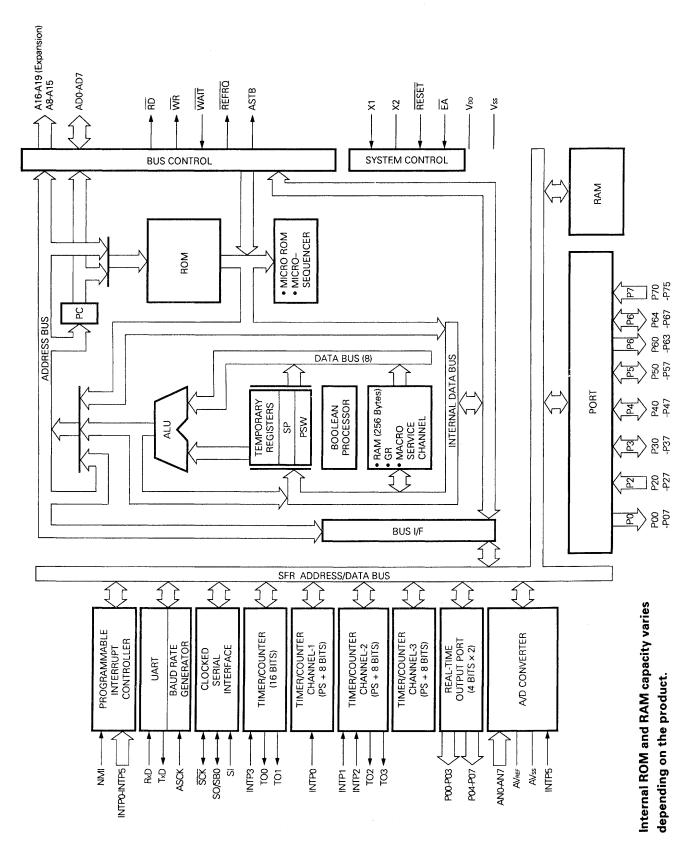
SBO : Serial Bus
SI : Serial Input
SO : Serial Output

NMI : Non-maskable Interrupt INTP0 to INTP5 : Interrupt From Peripherals

AD0 to AD7 : Address/Data Bus A8 to A19 : Address Bus RD : Read Strobe
WR : Write Strobe
WAIT : Wait

ASTB : Address Strobe
REFRQ : Refresh Request

RESET : Reset X1, X2 : Crystal


EA : External Access
AN0 to AN7 : Analog Input
AVREF : Reference Voltage
AVss : Analog Ground
VDD : Power Supply

Vss : Ground

NC: Non-connection

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	DIFF	EKEIN	LES BETWEEN μFD/8212(A)//8213(A)//8214(A) and μFD/8212//8213//8214	10	
2.	PIN	FUNC	rions	11	
	2.1	PORT	S	11	
	2.2	OTHE	R THAN PORTS	12	
	2.3	INPU	T/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	13	
3.	INT	ERNAL	BLOCK FUNCTION	15	
	3.1	MEM	DRY SPACE	15	
	3.2	PORT		18	
	3.3	REAL-	TIME OUTPUT PORT	19	
	3.4	TIME	R/COUNTER UNIT	20	
	3.5	A/D C	ONVERTER	22	
	3.6	SERIA	L INTERFACE	24	
		3.6.1	Asynchronous Serial Interface	25	
		3.6.2	Clocked Serial Interface	26	
4.	INTE	ERNAL	/EXTERNAL CONTROL FUNCTION	27	
	4.1	INTE	RRUPT	27	
		4.1.1	Interrupt Source	28	
		4.1.2	Vectored Interrupt	30	
		4.1.3	Macro Service	30	
		4.1.4	Macro Service Application Example	31	
	4.2	LOCA	L BUS INTERFACE	33	
		4.2.1	Memory Expansion	33	
		4.2.2	Programmable Wait	33	
		4.2.3	Pseudo-Static RAM Refresh Function		
	4.3	STAN	DBY	34	
	4.4		Γ		
5.	INS	TRUCT	ION SET	36	*
6.	ELE	CTRIC	AL SPECIFICATIONS	40	
7.	PAC	KAGE	INFORMATION	56	
8.	REC	OMM	ENDED SOLDERING CONDITIONS	62	
API	PEND	OIX A.	DEVELOPMENT TOOLS	64	
A D	DENIE	NV D	DEL ATED DOCUMENTS	66	*

1. DIFFERENCES BETWEEN μ PD78212(A)/78213(A)/78214(A) AND μ PD78212/78213/78214

Product Name	μPD78212(A), 78213(A), 78214(A)	μPD78212, 78213, 78214
Quality grade	Special	Standard
Recommended soldering conditions	Refer to each data sheet for details.	
Package	 64-pin plastic shrink DIP 64-pin plastic QFP*1 74-pin plastic QFP*2 64-pin plastic QUIP*3 68-pin plastic QFJ*2 	

- * 1. Other than μ PD78213(A).
 - **2.** μ PD78214(A) only.
 - 3. Other than μ PD78212(A).

2. PIN FUNCTIONS

2.1 PORTS

Pin Name	I/O	Dual- Function Pin	Function			
P00 to P07	Output		Port 0 (P0): Established as a real-time output port (4 bits \times 2) Direct drive of transistors capability			
P20		NMI				
P21		INTP0	D 40 (D2)			
P22		INTP1	Port 2 (P2):			
P23	Input	INTP2/CI	P20 cannot be used as a general port. (Non-maskable interrupt)			
P24		INTP3	However, the input level can be confirmed in the interrupt routine.			
P25		INTP4/ASCK	The connection of the on-chip pull-up resistor can be specified as a 6-bit unit for			
P26		INTP5	P22 to P27 by software.			
P27		SI				
P30		RxD				
P31	Input/	TxD	Port 3 (P3):			
P32	output	SCK	The input/output specifiable bit-wise.			
P33		SO/SB0	Input mode pins specifiable for on-chip pull-up resistor connection as a batch b			
P34 to P37		TO0 to TO3	software.			
P40 to P47*	Input/ output	AD0 to AD7	Port 4 (P4): The input/output specifiable as an 8-bit unit. The connection of the on-chip pull-up resistor specifiable as an 8-bit unit by software. LED direct drive capability.			
P50 to P57*	Input/ output	A8 to A15	Port 5 (P5): The input/output specifiable bit- wise. Input mode pins specifiable for on-chip pull-up resistor connection as a batch by software. LED direct drive capability.			
P60 to P63	Output	A16 to A19	Port 6 (P6):			
P64*		RD	P64 to P67 enables to specify the input/output bit-wise.			
P65*	Input/	WR	The connection of the on-chip pull-up resistor can be specified as a batch for P64			
P66	output	WAIT/AN6	to P67 used as input mode pins by a software.			
P67		REFRQ/AN7	to to a document mode pine by a doctivities			
P70 to P75	Input	AN0 to AN5	Port 7 (P7)			

^{*} Cannot be used as a port in case of μ PD78213(A).

2.2 OTHER THAN PORTS

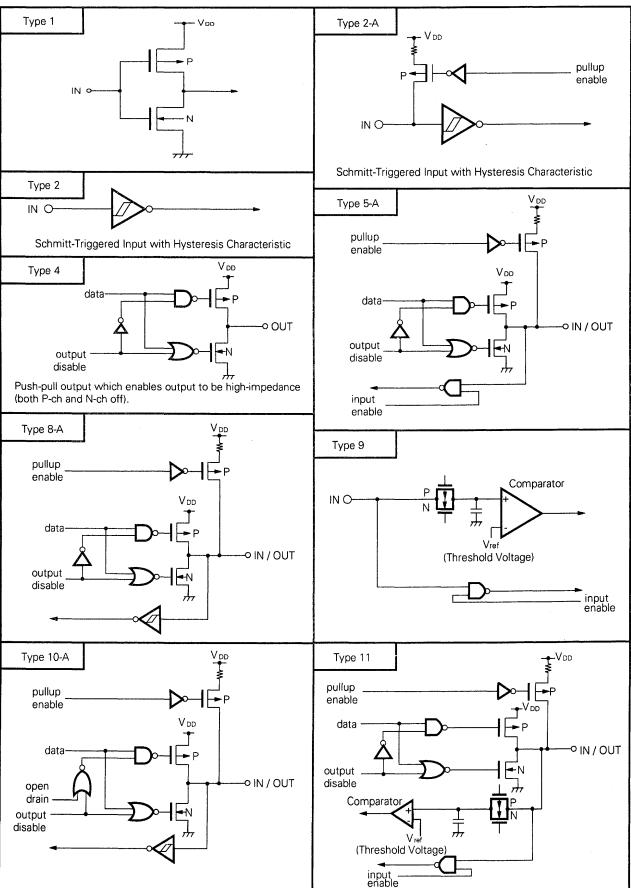
Pin Name	1/0	Function	Dual- Function Pir
TO0 to TO3	Output	Timer output	P34 to P37
CI	Input	Count clock input to 8-bit timer/counter 2	P23/INTP2
RxD	Input	Serial data input (UART)	P30
TxD	Output	Serial data output (UART)	P31
ASCK	Input	Baud rate clock input (UART)	P25/INTP4
SB0	Input /output	Serial data input/output (SBI)	P33/SO
SI	Input	Serial data input (3-wire serial I/O)	P27
so	Output	Serial data output (3-wire serial I/O)	P33/SB0
SCK	Input /output	Serial clock input/output (SBI, 3-wire serial I/O)	P32
NMI	/output	•	P20
INTP0			P21
INTP1			P22
INTP2	Input	External interrupt request	P23/CI
INTP3			P24
INTP4			P25/ASCK
INTP5			P26
AD0 to AD7	Input /output	Time multiplexing address/data bus (external memory connection)	P40 to P47*
A8 to A15	Output	Upper address bus (external memory connection)	P50 to P57*
A16 to A19	Output	Upper address when extending address (external memory connection)	P60 to P63
RD	Output	Read strobe into external memory	P64*
WR	Output	Write strobe into external memory	P65*
WAIT	Input	Wait insertion	P66/AN6
ASTB	Output	Output address (A0 to A7) latch timing output (at external memory accessed)	
REFRQ	Output	Refresh pulse output into external pseudo-static memory	P67/AN7
RESET	Input	Chip reset	
X1	Input		
X2		Crystal connection for system clock oscillation (capability of clock input to X1)	
ĒĀ	Input	ROM-less operating specification (external access of the same space as internal ROM). This is used by low level in the μ PD78213(A).	
AN0 to AN5			P70 to P75
AN6, AN7	Input	Analog voltage input for A/D converter	P66/WAIT, P67/REFRQ
AVREF		Reference voltage application for A/D converter	
AVss		GND for A/D converter	
V _{DD}	_	Positive power supply pin	
Vss		GND pin	
NC		Not connected internally	

^{*} Cannot be used as a port in case of μ PD78213(A).

2.3 INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, see Fig. 2-1.

Table 2-1 Input/Output Circuit Type of Each Pin and Recommended Connection of Unusd Pins


Pin Name	Input/Output Circuit Type	1/0	Recommended Connection when not Used					
P00 to P07	4	Output	Leave open.					
P20/NMI	2		Connected to Vop or Vss.					
P21/INTP0								
P22/INTP1								
P23/INTP2/CI		Input						
P24/INTP3	2-A		Connected to VDD.					
P25/INTP4/ASCK	2-A							
P26/INTP5			. •					
P27/SI		-						
P30/RxD	5-A							
P31/TxD	5-A							
P32/SCK	8-A							
P33/SB0/SO	10-A	Input/output	Input : Connected to Vod or Vss. Output : Leave open.					
P34/TO0 to P37/TO3			Output : Leave open.					
P40/AD0 to P47/AD7	5-A						i-A	
P50/A8 to P57/A15								
P60/A16 to P63/A19	4	Output	Leave open.					
P64/RD	5-A		Input : Connected to Vpp.					
P65/WR		1	Output : Leave open.					
P66/WAIT/AN6	11	Input/output	Input : Connected to Voo.*					
P67/REFRQ/AN7	11		Output : Leave open.					
P70/AN0 to P75/AN5	9	Input	Connected to Vss.					
ASTB	4	Output	Leave open.					
RESET	2							
ĒĀ	1	Input						
AVREF		трис	Connected to Vss.					
AVss								

^{*} See 3.5 "A/D CONVERTER".

Note If input or output mode is undefined on an input/output dual-function pin, connect to V_{00} via a resistor of several tens of $k\Omega$. (Especially, if the reset input pin exceeds the low level input voltage at power-on or in case of change the input/output by software.)

Remarks The type numbers are standardized by 78K series, therefore they are not always consecutive numbers in each product. (Some circuit is not incorporated.)

Fig. 2-1 Pin Input/Output Circuits

3. INTERNAL BLOCK FUNCTION

3.1 MEMORY SPACE

A 1M-byte memory space can be accessed. Figs. 3-1 and 3-2 show that memory space. The program memory mapping depends on the $\overline{\mathsf{EA}}$ pin status.

(1) In case of uPD78212(A)

The program memory has been mapped into the internal ROM (8K bytes: 00000H to 01FFFH) and the external memory (56704 bytes: 02000H to 0FD7FH). The external memory is accessed by the external memory extended mode. The external memory mapped area is shareable with the data memory.

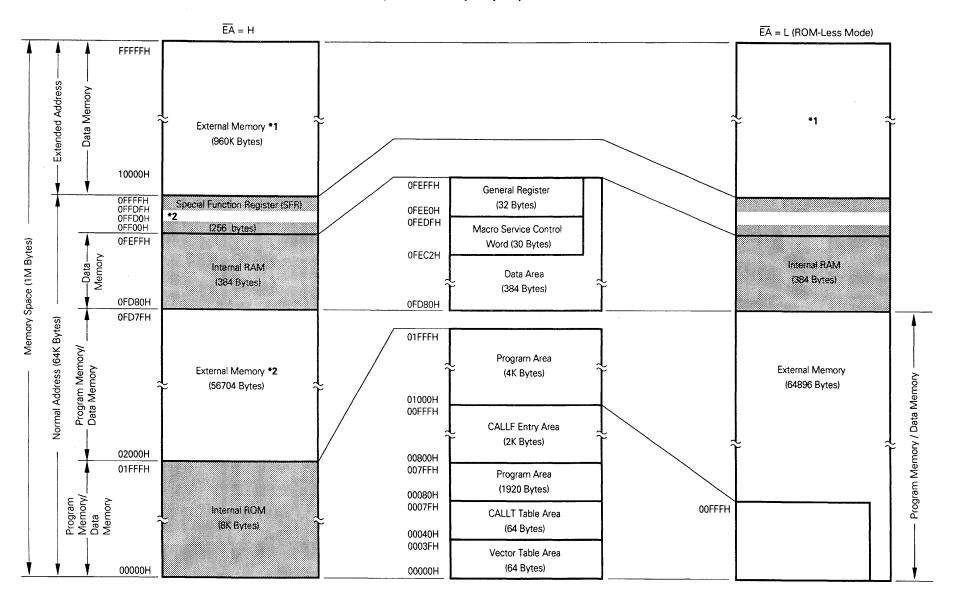
The data memory has been mapped into the internal RAM (384 bytes: 0FD80H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as the expansion data memory.

(2) In case of μ PD78213(A)

The program memory is mapped into the external memory (64768 bytes: 00000H to 0FCFFH). This area is shareable with a data memory.

The data memory has been mapped into the internal RAM (512 bytes: 0FD00H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as an extended data memory.

(3) In case of μ PD78214(A)

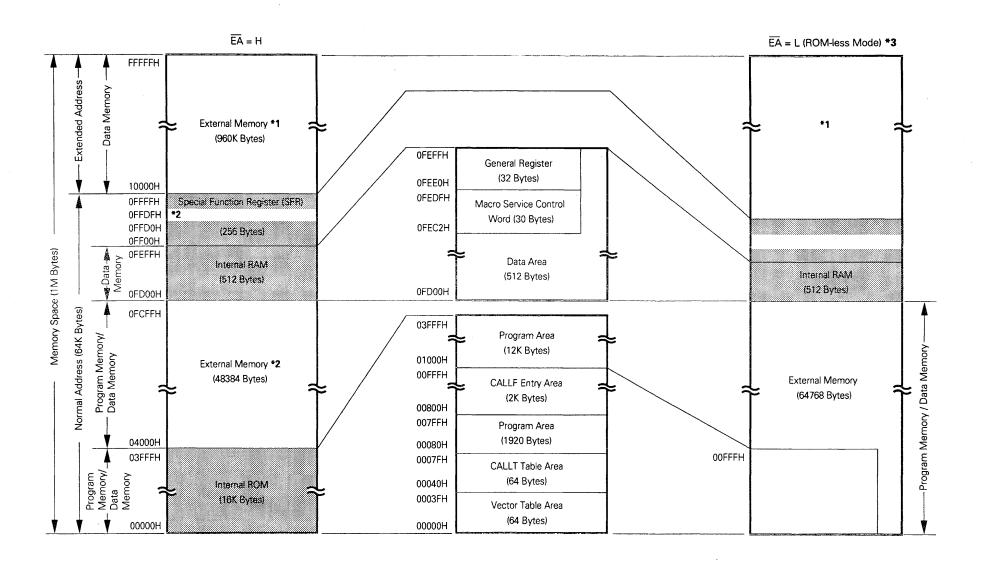

The program memory has been mapped into the internal ROM (16K bytes: 00000H to 03FFFH) and the external memory (48384 bytes: 04000H to 0FCFFH). The external memory is accessed by the external memory extended mode. The mapping area into the external memory is shareable with the data memory.

The data memory has been mapped into the internal RAM (512 bytes: 0FD00H to 0FEFFH). In the 1M-byte extended mode, the external memory (960K bytes: 10000H to FFFFFH) is mapped as the expansion data memory.

Phase-out/Discontinued

16

Fig. 3-1 Memory Map of μ PD78212(A)



- * 1. Accessed by 1M-byte extended mode.
 - 2. Accessed by external memory extended mode.

Shaded area denotes internal memory.

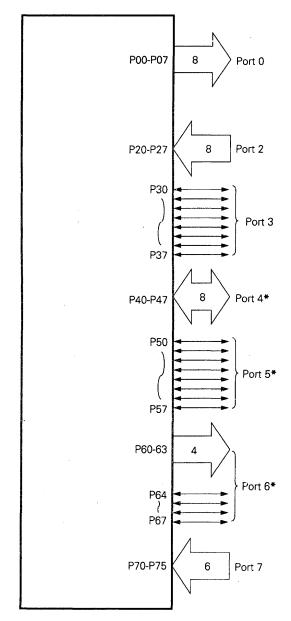
Phase-out/Discontinued

Fig. 3-2 Memory Map of μ PD78213(A) and 78214(A)

^{* 1.} Accessed by 1M-byte extended mode.

Shaded area denotes internal memory.

3. μ PD78213(A) only when $\overline{EA} = L$


^{2.} Accessed by external memory extended mode.

3.2 PORT

The ports as Fig. 3-3 are equipped and operable for various controls. The functions of each port are described in Table 3-1. Use of an internal pull-up register can be specified by software for port 2 to port 6 when used for input.

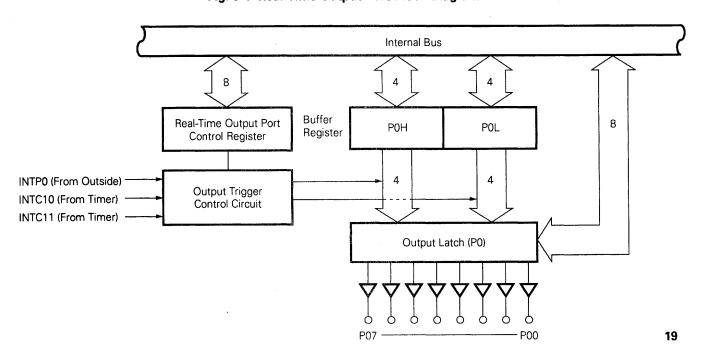
Fig. 3-3 Port Configuration

* P40 to P47, P50 to P57, P64 and P65 cannot be used as a port in case of μ PD78213(A).

Table 3-1 Port Function

Name	Pin Name	Function	Specification of Software Pull-Up
Port 0	P00 to P07	Output or high-impedance specifiable as an 8-bit unit. Can be operated as 4-bit real-time output (P00 to P03, P04 to P07). Transistor direct drive capability.	
Port 2	P20 to P27	Input port	6-bit batch (P22 to P27)
Port 3	P30 to P37	Input or output specifiable bit-wise.	Input mode pins specifiable as a batch
Port 4*	P40 to P47	Input or output specifiable as an 8-bit unit. LED direct drive capability.	8-bit batch
Port 5*	P50 to P57	Input or output specifiable bit-wise. LED direct drive capability.	Input mode pins specifiable as a batch
	P60 to P63	Output port	
Port 6*	P64 to P67	Input or output specifiable bit-wise.	Input mode pins specifiable as a batch
Port 7	P70 to P75	Input port	

* P40 to P47, P50 to P57, P64 and P65 cannot be used as a port in case of μ PD78213(A).


3.3 REAL-TIME OUTPUT PORT

The real-time output port outputs the data stored in the buffer in synchronization with a timer match interrupt or external interrupt. Therefore, a pulse output without jitter can be acquired.

Accordingly, this is suitable for the application (open loop control of a stepping motor etc.) which outputs any pattern at any interval.

As Fig. 3-4, the port 0 and buffer register are the core of the configuration.

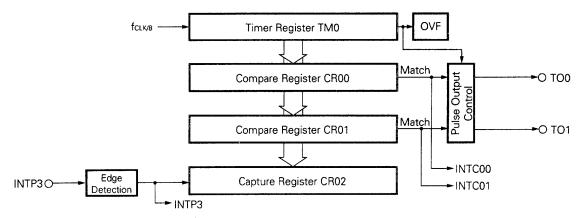
Fig. 3-4 Real-Time Output Port Block Diagram

3.4 TIMER/COUNTER UNIT

One channel of a 16-bit timer/counter unit and 3 channels of an 8-bit timer/counter unit are incorporated.

Table 3-2 Types and Functions for Timer/Counter

Тур	Unit De & Function	16-Bit Timer/ Counter	8-Bit Timer/ Counter 1	8-Bit Timer/ Counter 2	8-Bit Timer/ Counter 3
	Interval timer	2ch	2ch	2ch	1ch
Туре	External event counter	Constitute		0	
	One shot timer		•	0	
	Timer output	2ch		2ch	
	Toggle output	0		0	
LO O	PWM/PPG output	0		0	_
Function	Real-time output		0		
"	Pulse amplitude measurement	0	0	0	
	Number of interrupt requests	2	2	2	1
	Clock source of serial interface	-			0


As 7 interrupt requests are supported in total, this functions as the timer of the 7 channels.

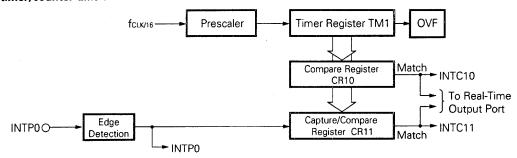
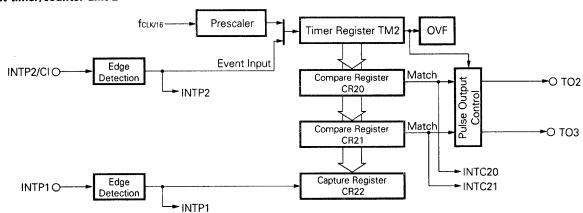
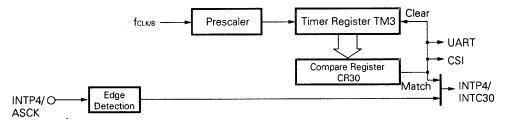


Fig. 3-5 Timer/Counter Unit Block Diagram


16-bit timer/counter unit


8-bit timer/counter unit 1

8-bit timer/counter unit 2

8-bit timer/counter unit 3

OVF: Overflow Flag

3.5 A/D CONVERTER

An analog/digital (A/D) converter with 8 multiplexed analog inputs (AN0 to AN7) is incorporated.

The conversion is a successive approximation and the conversion result is stored in the 8-bit A/D conversion result register (ADCR). Therefore, the conversion can be executed at high speed and accuracy (converting time 30 μ s approximately: at 12 MHz operation).

This prepares the following modes to start the A/D converting operation.

- Hardware start: Starts the conversion with a trigger input (INTP5).
- Software start: Starts the conversion by setting a bit of A/D converter mode register (ADM).

Also, the following modes are prepared for the operation after started.

- O Scan mode: Selects analog inputs one after another and acquires the converted data from all pins.
- Select mode: Fixes analog inputs to one pin and acquires the continuous conversion value.

When stopping the above modes and the converting operation, all of them are specified by ADM.

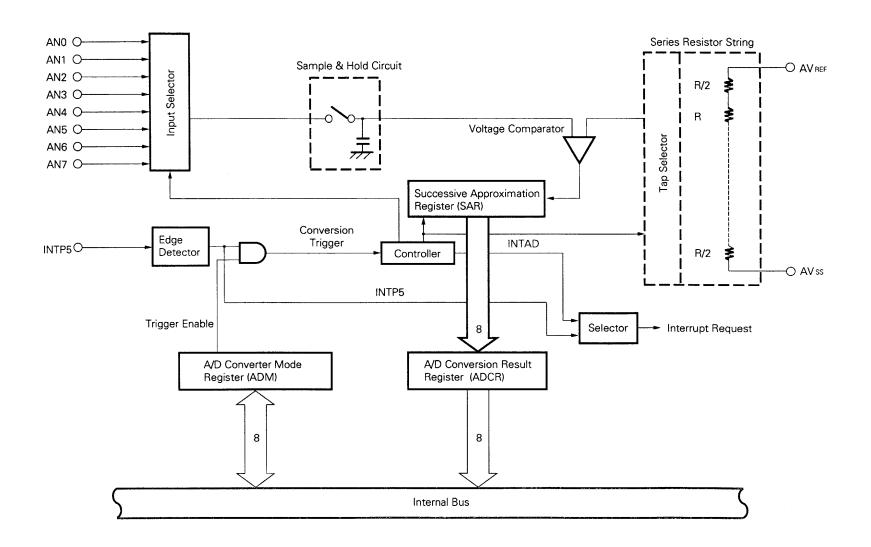
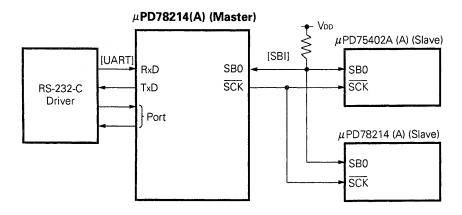

However, interrupt request (INTAD) is generated when the converted result is transferred to the ADCR (except for the select mode for software start). Therefore, the conversion values can be continuously transferred to memory with macro service.

Table 3-3 INTAD Generation Mode

	Scan Mode	Select Mode
Hardware start	0	. 0
Software start	0	

Fig. 3-6 A/D Converter Block Diagram

3.6 SERIAL INTERFACE


2 independent channels for serial interfaces are equipped.

- Asynchronous serial interface (UART)
- Clocked synchronous serial interface (CSI)
 - 3-wire serial I/O
 - Serial bus interface (SBI)

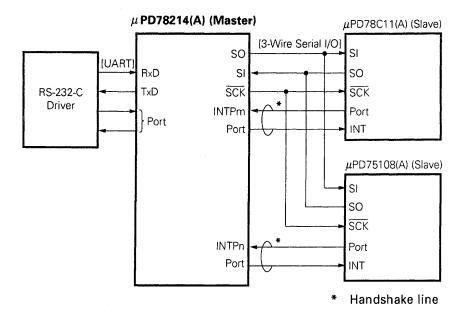

This enables both a communication with the external system and a local communication in the system simultaneously (see Fig. 3-7).

Fig. 3-7 Example of Serial Interface

(a) UART + SBI

(b) UART + 3-wire serial I/O

3.6.1 Asynchronous Serial Interface

A UART (Universal Asynchronous Receiver Transmitter) has been incorporated as an asynchronous serial interface. This is the method to transmit the one-byte data following the start bit.

As the baud rate generator dedicated for UART is incorporated, communication is possible with a wide range of any baud rate.

Also, the baud rate can be defined by dividing the input clock for the ASCK pin.

Moreover, a baud rate can be generated with 8-bit timer/ counter 3.

If the baud rate generator dedicated for UART is used, the baud rate (31.25 kbps) of the MIDI standard can be acquired.

Internal Bus RXB Receive Buffer Transmit Shift Receive Shift TXS Register Register ► INTSR Receive Control Transmit Control - INTST Parity Addition Parity Check - INTSER **UART-Dedicated Baud Rate Generator** ASCK C 1/2 TM3 Output

Fig. 3-8 Asynchronous Serial Interface Block Diagram

fclk: Internal system clock frequency (system clock frequency / 2)

3.6.2 Clocked Serial Interface

This is a method to communicate 1-byte data in synchronization with the serial clock which is activated by master device and starts to transmit.



Fig. 3-9 Clocked Serial Interface Block Diagram

fclk: Internal system clock frequency (system clock frequency / 2)

(1) 3-wire serial I/O

This is a interface to communicate with a device which incorporates a conventional clocked serial interface. Basically, the communication is made through 3 wires of serial clock (SCK) and serial data (SI, SO). In case of connecting with multiple device, the handshake line is required.

(2) SBI

This can communicate with a multiple device through 2 wires of serial clock (SCK) and serial bus (SB0) and this is a NEC standard serial interface.

The master device outputs "address" from the SB0 pin and selects the slave device as communication target. Then, "command" and "data" are transmitted and received between the master and slave devices.

4. INTERNAL/EXTERNAL CONTROL FUNCTION

4.1 INTERRUPT

The following two serving modes can be selected by a program for interrupt request serving as shown in Table 4-1.

Table 4-1 Interrupt Request Servicing

Servicing Mode	Servicing Subject	Servicing	PC, PSW Contents
Vectored interrupt	Software	Branches to service routine, and executes (any process contents)	With save and return
Macro service	Firmware	Data transfer etc. between memory and I/O (fixed process contents)	Hold

4.1.1 Interrupt Source

The interrupt source includes the 19 types and a BRK instruction execution as shown in Table 4-2.

The priority order of the interrupt servicing can be set to 2 levels (high and low priority levels). Therefore, it can separate the levels of the nest control at interrupt servicing and the interrupt request generated simultaneously (see Fig. 4-1, Fig. 4-2). However, nesting advances certainly in the macro service (not held).

The default priority is the priority level (fixed) to service the interrupt requests which is generated at the same level simultaneously (see Fig. 4-2).

Table 3-2 Interrupt Source

T	Default		Source	Internal/	Macro
Туре	Priority	Name	Trigger		Service
Software		BRK	Instruction execution		
Non- maskable		NMI	Pin input edge detection		
	0 (highest)	INTP0	Pin input edge detection (TM1 capture trigger)	External	
	1	INTP1	Pin input edge detection (TM2 capture trigger)	External	
	2	INTP2	Pin input edge detection (TM2 event counter input)		
	3	INTP3	Pin input edge detection (TM0 capture trigger)		
	4	INTC00	TM0 to CR00 match signal generation		
	5	INTC01	TM0 to CR01 match signal generation		
	6	INTC10	TM1 to CR10 match signal generation	Internal	0
	7	INTC11	TM1 to CR11 match signal generation		
Maskable	8	INTC21	TM2 to CR21 match signal generation		
	9	INTP4	Pin input edge detection	External	
	9	INTC30	TM3 to CR30 match signal generation	Internal	
		INTP5	Pin input edge detection	External	
	10	INTAD	A/D converter conversion termination (transfer to ADCR)		
	11	INTC20	TM2 to CR20 match signal generation		
	12	INTSER	ASI receive error generation	Internal	_
	13	INTSR	ASI receive termination		
	14	INTST	ASI transmit termination		0
	15 (lowest)	INTCSI	CSI transfer termination		

TM0 : 16-bit timer TM1 to TM3 : 8-bit timer

ASI : Asynchronous serial interface

CSI : Clocked serial interface

Fig. 4-1 Servicing Example for Another Interrupt Request Generation while an Interrupt Servicing

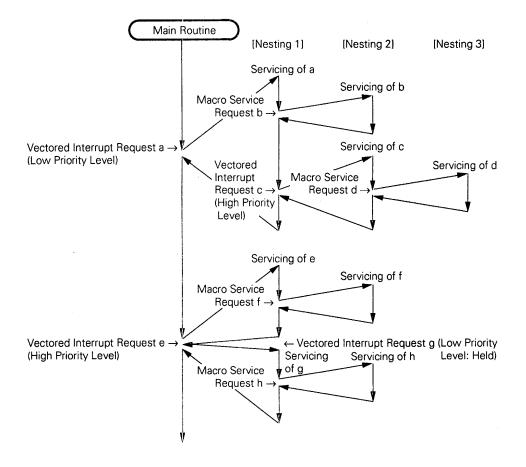
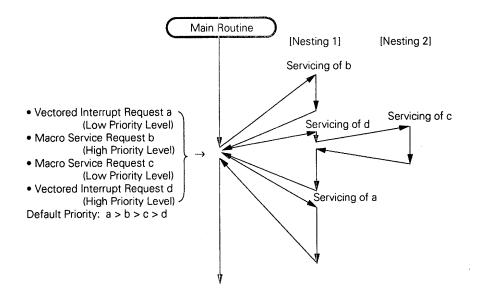



Fig. 4-2 Servicing Example for Simultaneously Generated Interrupt Request

4.1.2 Vectored Interrupt

The memory contents of the vector table address, which corresponds to the interrupt source, is branched into the processing routine as a destination address.

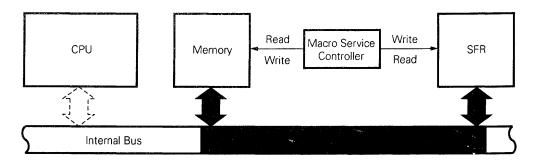
As the CPU executes the interrupt servicing, the following operations occur.

- When branching: Saves the CPU status (PC, PSW contents) to the stack.
- When restoring: Restores the CPU status (PC, PSW contents) from the stack.

The RETI instruction executes returning to the main routine from the service routine.

Table 4-3 Vector Table Address

Interrupt Source	Vector Table Address
BRK	003EH
NMI	0002H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	0014H
INTC01	0016H
INTC10	0018H
INTC11	001AH

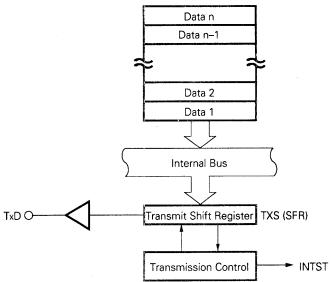

Interrupt Source	Vector Table Address
INTC21	001CH
INTP4	000EH
INTC30	
INTP5	0010H
INTAD	
INTC20	0012H
INTSER	0020H
INTSR	0022H
INTST	0024H
INTCSI	0026H

4.1.3 Macro Service

This is a function to transfer the data between the memory special function registers (SFR) not through the CPU. The macro service controller accesses the memory and SFR, and transfers directly data without fetching it.

The high-speed data transfer can be performed because the CPU status is neither saved nor restored and data is not fetched.

Fig. 4-3 Macro Service



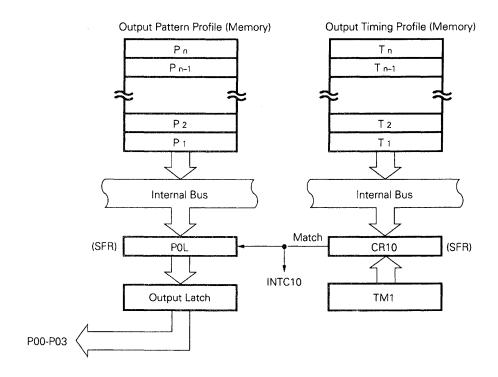
4.1.4 Macro Service Application Example

(1) Transmit operation of serial interface

Whenever the macro service request INTST is generated, the next send data is transferred to TXS from the memory. When the data n (last byte) is transferred to TXS (the send data storage buffer becomes empty), a vectored interrupt request INTST is generated.

(2) Receive operation of serial interface

Receive Data Storage Buffer (Memory)



Whenever the macro service request INTSR is generated, the receive data is transferred to the memory from RXB. When the data n (last byte) is transferred to the memory (the receive data storage buffer becomes empty), the vectored interrupt request INTSR is generated.

(3) Real-time output port

The INTC10 and INTC11 become output triggers of the real-time output port. In the macro service to them, the next output pattern and interval can be set simultaneously. Therefore, the INTC10 and INTC11 can control 2-system stepping motor independently. Also, it can be applied to control a PWM or DC motor, etc.

Whenever the macro service request INTC10 is generated, the pattern and timing are transferred to P0L and CR10 respectively. When the contents of the TM1 match with the contents of the CR10, the next INTC10 is generated and the contents of the P0L is sent to the output latch. If Tn (last byte) is sent to CR10, a vectored interrupt request INTC10 is generated.

The same operation is available for INTC11 (different point: CR10 \rightarrow CR11, P0L \rightarrow P0H, P00 to P03 \rightarrow P04 to P07).

4.2 LOCAL BUS INTERFACE

External connection of memory and an I/O (memory mapped I/O) are allowed and the 1M-byte memory space is supported (see Figs. 3-1 and 3-2).

4.2.1 Memory Extension

The following modes have been prepared as a memory extension function.

- \odot External memory extension mode: Extends the program memory and data memory to 48384 bytes (56704 bytes in case of μ PD78212(A)) externally. But this area can be used unconditionally under the ROM-less mode ($\overline{EA} = L$).
- 1M-byte extension mode:
 Expands the data memory by 960K bytes and become a 1 M-byte memory space.

4.2.2 Programmable Wait

A wait can be independently inserted to the memory mapped on both a normal address (00000H to 0FFFFH) and an extended address (10000H to FFFFFH). Therefore, the efficiency of the entire system is not decreased even if a memory with a different access time is connected.

4.2.3 Pseudo-Static RAM Refresh Function

The refresh operations are as follows.

- Pulse refresh:
 Outputs the refresh pulse to REFRQ pin in synchronization with a bus cycle.
- Outputs a low-level to the REFRQ pin in the standby mode and holds the contents of the pseudo-static RAM.

4.3 STANDBY

This is a function to reduce the power consumption of the chip. The following modes have been prepared.

- HALT mode: Stops the operation clock of the CPU. The average power consumption is reduced by its intermittent operation combined with normal operation.
- STOP mode: Stops the oscillator. This stops all operation in the chip and makes the minute power consumption status only with leakage current.

These modes are programmable.

Also, the macro service is started from the HALT mode.

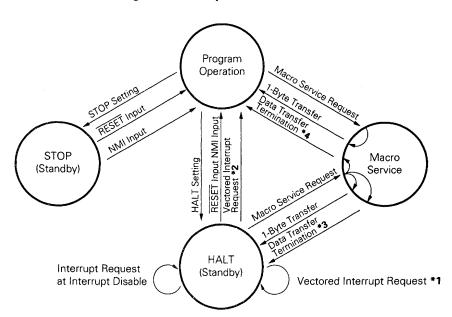


Fig. 4-4 Standby Status Flow

- * 1. In case of a low priority level vectored interrupt request (interrupt disable status if low priority sequence under the HALT setting).
 - 2. In case of a high priority level vectored interrupt request, or in case of a interrupt enable status of a low priority sequence under the HALT setting.
 - 3. In case of a low priority level macro service (interrupt disable status of a low priority sequence under the HALT setting).
 - 4. In case of a high priority level macro service, or in case of a interrupt enable status of a low priority sequence under the HALT setting.

4.4 RESET

When a low level is input to the RESET pin, the internal hardware is initialized (reset state).

When the RESET input becomes from a low level to a high level, the following data is set in the program counter (PC).

- O Lower 8 bits of PC: Contents of 0000H address
- O Upper 8 bits of PC: Contents of 0001H address

The contents of the PC set the destination address and the program execution starts from the address. Therefore, it can start from any address by reset start.

The contents of each register should be set by a program as required.

A noise eliminator has been incorporated in the RESET input circuit to prevent any error due to noise. This noise eliminator circuit is a sampling circuit based on analog delay.

Delay PC Initialization Instruction Execution of Reset Start Address

RESET (Input)

Internal Reset Signal

Fig. 4-5 Reset Acknowledge

Set the RESET signal active in the reset operation at power-on until oscillation stabilization time (approx. 40 ms) elapses.

Reset End

Reset Start

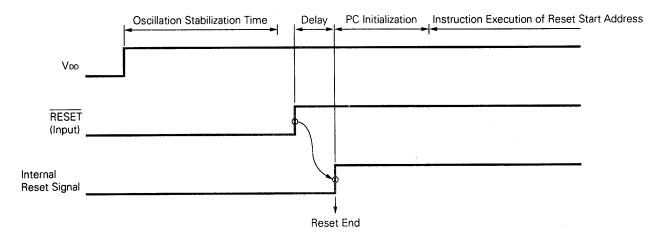


Fig. 4-6 Reset Operation at Power-On

★ 5. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ

Table 5-1 Instructions Classified by 8-Bit Addressing Mode

2nd Operand 1st Operand	#byte	A	r r'	saddr saddr'	sfr	mem	&mem	laddr16	&laddr16	PSW	n	None*2
А	ADD*1		MOV XCH	MOV XCH ADD*1	MOV XCH ADD*1	MOV XCH ADD*1	MOV XCH ADD*1	MOV	MOV	MOV		
r	MOV		MOV XCH ADD*1								ROR RORC ROL ROLC SHR SHL	MULU DIVUW DEC INC
r1												DBNZ
saddr	MOV ADD*1	MOV		MOV XCH ADD*1				•				DEC INC DBNZ
sfr	MOV ADD*1	моч										POP PUSH
mem & mem		MOV										
mem1 &mem1												ROR4 ROL4
laddr16 &laddr16		MOV										
PSW	MOV	MOV										POP PUSH
STBC	MOV	*										

^{* 1.} ADDC, SUB, SUBC, AND, OR, XOR and CMP are same as ADD.

^{2.} There is no 2nd operand, or the 2nd operand is not an operand address.

(2) 16-bit instructions

MOVW, ADDW, SUBW, CMPW, INCW, DECW, SHRW, SHLW

Table 5-2 Instructions Classified by 16-Bit Addressing Mode

2nd Operand 1st Operand	#word	AX	r r'	saddrp	sfrp	mem1	&mem1	SP	n	None
АХ	ADDW SUBW CMPW		ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW	MOVW	MOVW		
rp	MOVW		MOVW						SHLW SHRW	DECW INCW PUSH POP
saddrp	MOVW	MOVW								
sfrp	MOVW	MOVW								
mem1 &mem1		MOVW								
SP	MOVW	MOVW	ν							DECW INCW

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Table 5-3 Instructions Classified by Bit Manipulation Instruction Addressing Mode

2nd Operand 1st Operand	CY	A.bit	/A.bit	X.bit	/X.bit	saddr. bit	/saddr. bit	sfr.bit	/sfr.bit	PSW.bit	/PSW bit	None*
СҮ		MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	CLR1 NOT1 SET1
A.bit	MOV1											CLR1 NOT1 SET1 BF BT BTCLR
X.bit	MOV1											CLR1 NOT1 SET1 BF BT BTCLR
saddr.bit	MOV1											CLR1 NOT1 SET1 BF BT BTCLR
sfr.bit	MOV1											CLR1 NOT1 SET1 BF BT BTCLR
PSW.bit	MOV1											CLR1 NOT1 SET1 BF BT BTCLR

^{*} There is no 2nd operand, or the 2nd operand is not an operand address.

(4) Call/branch instructions

CALL, CALLF, CALLT, BR, BC, BT, BF, BTCLR, DBNZ, BL, BNC, BNL, BZ, BE, BNZ, BNE

Table 5-4 Instructions Classified by Call/Branch Instruction Addressing Mode

Operands of Instruction Address	\$addr16	laddr16	rp	laddr11	[addr5]
Basic instructions	BR BC*	CALL BR	CALL BR	CALLF	CALLT
Compound Instructions	BT BF BTCLR DBNZ				

* BL, BNC, BNL, BZ, BF, BNZ and BNE are same as BC.

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, NOP, EI, DI, SEL

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
	V _{DD}		-0.5 to +7.0	V
Supply voltage	AVREF		-0.5 to Vpp +0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vıı		-0.5 to VDD +0.5	V
input voitage	Vi2	*	-0.5 to AVREF +0.5	V
Output voltage	Vo		-0.5 to V _{DD} +0.5	V
Output ourrent law		1 pin	15	mA
Output current low	lor	All output pins total	100	mA
_		1 pin	-10	mA
Output current high	Іон	All output pins total	-50	mA
Operating temperature	Topt		-40 to +85	∘c
Storage temperature	T _{stg}		-65 to +150	°C

- * Pins which are used as input pins of the A/D converter and which are selected by ANI0 to ANI2 of the ADM register when the A/D converter is not operated in P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 pins. However, VI1 absolute maximum ratings should also be satisfied.
- Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

OPERATING CONDITIONS

CLOCK FREQUENCY	OPERATING TEMPERATURE (TOPT)	SUPPLY VOLTAGE (VDD)
4 MHz ≤ fxx ≤ 12 MHz	−40 to +85 °C	+5 V ± 10 %

CAPACITANCE (Ta = 25 °C, VDD = Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C ₁	f = 1 MHz			20	pF
Output capacitance	Со	unmeasured pins			20	pF
I/O capacitance	Cio	returned to 0 V.			20	pF

OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, VDD = +5 V ± 10 %, Vss = 0 V)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	MIN.	MAX.	UNIT
Ceramic resonator or crystal resonator	Vss X1 X2 C1 — C2	Oscillator frequency (fxx)	4	. 12	MHz
External	X1 X2	X1 input frequency (fx)	4	12	MHz
clock	нсмоѕ	X1 input rising/falling time (txn, txf)	0	30	ns
	Invertor	X1 input high/low level width (twxH, twxL)	30	130	ns

Note When using the clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- · Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss. Do not ground it to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

4

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5 V ± 10 %, Vss = 0 V)

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage low	VIL			0		0.8	٧
	V _{IH1}	Pins e	except for *1 and *2	2.2		V _{DD}	٧
Input voltage low	VIH2	Pin of	*1	2.2		AVREF	٧
	Vінз	Pin of	*2	0.8Vpp		V _{DD}	٧
0.4	Vol1	lot = 2	2.0 mA			0.45	٧
Output voltage low	V _{OL2}	lor = 8	3.0 mA *3			1.0	٧
	Vон1	Іон = -	-1.0 mA	V _{DD} 1.0			٧
Output voltage high	V _{OH2}	Іон = -	-100 μA	V _{DD} -0.5			٧
	Vонз	Іон = -	-5.0 mA *4	2.0			٧
X1 input current low	lı∟	0 V ≤	Vi ≤ ViL			-100	μΑ
X1 input current high	lін	Vінз ≤	Vı ≤ VDD			100	μΑ
Input leakage current	lu	0 V ≦	Vi ≦ Vpd			±10	μΑ
Output leakage current	lıo	0 ∨ ≤	Vo ≤ V _{DD}			±10	μΑ
AVREF current	Alref	Opera	ting mode fxx = 12 MHz		1.5	5.0	mA
Vpp supply current	IDD1	Opera	ting mode fxx = 12 MHz		20	40	mA
Vob supply current	loo2	HALT	mode fxx = 12 MHz		7	20	mA
Data retention voltage	VDDDR	STOP	mode	2.5		5.5	V
Data ratestics are		STOP	V _{DDDR} = 2.5 V		2	20	μΑ
Data retention current	IDDDR	mode	VDDDR = 5 V ±10 %		5	50	μΑ
Pull-up resistor	RL	Vı = 0	V	15	40	80	kΩ

- * 1. Pins which are used as input pins of the A/D converter and which are selected by bit ANI0 to ANI2 of the ADM register when the A/D converter is not operated in P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 pins.
 - 2. X1, X2, RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0, EA pins
 - 3. P40/AD0 to P47/AD7, P50/A8 to P57/A15 pins
 - **4.** P00 to P07 pins

AC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5 V ± 10 %, Vss = 0 V) READ/WRITE OPERATION (1/2)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input clock cycle time	tcyx		82	250	ns
Address setup time (to ASTB↓)	tsast *		52		ns
Address hold time (from ASTB↓)	thsta		25		ns
Address hold time (from RD1)	thra		30		ns
Address hold time (from WR↑)	thwa		30		ns
RD↓ delay time from address	tdar *		129		ns
Address float time (from RD↓)	tfar *		11		ns
Data input time from address	tdaid *	No. of waits = 0	2.4NV1121V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	228	ns
Data input time from ASTB↓	tostid *	No. of waits = 0		181	ns
Data input time from RD↓	torid *	No. of waits = 0		100	ns
RD↓ delay time from ASTB↓	tostr *		52		ns
Data hold time (from RD↑)	thrid		0		ns
Address active time from RD↑	tora *		124		ns
ASTB↑ delay time from RD↑	torst *		124		ns
RD low-level width	twaL *	No. of waits = 0	124		ns
ASTB high-level width	twsth *		52		ns
WR↓ delay time from address	toaw *		129		ns
Data output time from ASTB↓	tostop *			142	ns
Data output time from WR↓	towoo			60	ns
 WR↓ delay time from ASTB↓	tostwi *	With refreshing disabled	52		ns
THE GOIDY CHIEF HOME ACTES	tostw2 *	With refreshing enabled	129		ns
Data setup time (to WR↑)	tsoowr *	No. of waits = 0	146		ns
Data setup time (to WR↓)	tsoowr *	With refreshing enabled	22		ns
Data hold time (from WR1) *	thwod		20		ns
ASTB↑ delay time from WR↑	towst *		42		ns
	twwL1 *	With refreshing disabled No. of waits = 0	196		ns
WR low-level width	twwL2 *	With refreshing enabled No. of waits = 0	114		ns
WAIT↓ input time from address	tdawt *			146	ns
WAIT↓ input time from ASTB↓	tostwt *			84	ns

^{*} The hold time includes the time to hold the V_{OH} and V_{OL} under the load conditions of $C_L=100$ pF and $R_L=2$ k Ω .

+

Remarks 1. The values in the above table are based on " $f_{XX} = 12$ MHz and $C_L = 100$ pF".

^{2.} For a parameter with an * in the SYMBOL column, refer to "tovx DEPENDENT BUS TIMING DEFINITION" as well.

READ/WRITE OPERATION (2/2)

PARA	PARAMETER		TEST CONDITIONS	MIN.	MAX.	UNIT
WAIT hold time	from ASTB↓	tнsтwт*	No. of external waits = 1	174		ns
WAIT↑ delay tin	ne from ASTB↓	tostwt+*	No. of external waits = 1		273	ns
WAIT↓ input tim	ne from RD↓	torwil*			22	ns
WAIT hold time	from RD↓	thrwr*	No. of external waits = 1	87		ns
WAIT↑ delay tim	ne from RD↓	torwth*	No. of external waits = 1		186	ns
Data input time	from WAIT↑	towrio*			62	ns
WR↑ delay time	from WAIT↑	towtw*		154	-	ns
RD↑ delay time	from WAIT↑	towra*		72		ns
WAIT input time (At refresh disal		towwt.*			22	ns
WAIT hold time	Refresh disabled	thwwT1*	No. of external waits = 1	87		ns
from WR↓	Refresh enabled	thwwT2*	No. of external waits = 1	5		ns
WAIT↑ delay	Refresh disabled	towwr ₁ *	No. of external waits = 1		186	ns
time from WR↓	Refresh enabled	towwrh2*	No. of external waits = 1		104	ns
REFRQ↓ delay ti	me from RD↑	torreq*		154		ns
REFRQ↓ delay ti	me from WR↑	towrfa*		72		ns
REFRQ low-leve	l width	twrfal*		120		ns
ASTB↑ delay tin	ne from REFRQ↑	tDRFQST*		280		ns

- **Remarks** 1. The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".
 - 2. For a parameter with an * in the SYMBOL column, refer to "toyx DEPENDENT BUS TIMING **DEFINITION**" as well.

SERIAL OPERATION

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
		Input	External clock	1.0		μs
Serial clock cycle time	tcysk	0	Internal divided by 16	1.3		μs
		Output	Internal divided by 64	5.3		με
		Input	External clock	420		ns
Serial clock low-level width	twskl		Internal divided by 16	556		ns
		Output	Internal divided by 64	2.5		μs
		Input	External clock	420		ns
Serial clock high-level width	twsкн	Output -	Internal divided by 16	556		ns
			Internal divided by 64	2.5		μs
SI, SB0 setup time (to SCK1)	tsssk			150		ns
SI, SB0 hold time (from SCK↑)	thssk			400		ns
SO/SB0 output delay time	tosbsk1		oush-pull output serial I/O mode)	0	300	ns
(from SCK↓)	tosask2	Open-dr	ain output (SBI mode),	0	800	ns
SB0 high hold time (from SCK↑)	thsesk	001		4		tcyx
SB0 low setup time (to SCK↓)	tssask	SBI mod	16	4		tcyx
SB0 low-level width	twsBL			4		tcyx
SB0 high-level width	twsвн			4		tcvx

Remarks The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

OTHER OPERATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
NMI low-level width	twniL		10		μs
NMI high-level width	twnih		10		μs
INTP0 to INTP5 low-level width	twitt		24		tcyx
INTP0 to INTP5 high-level width	twiтн		24		tcyx
RESET low-level width	twrsL		10		μs
RESET high-level width	twash		10		μs

EXTERNAL CLOCK TIMING

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input low-level width	twxL	,	30	130	ns
X1 input high-level width	twxн		30	130	ns
X1 input rise time	txr		0	30	ns
X1 input fall time	txf		0	30	ns
X1 input clock cycle time	tcyx		82	250	ns

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, VDD = +5 V ± 10 %, Vss = AVss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			bit
Overall error *		$4.0 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}$ Ta = -10 to +70°C			0.4	%
Overall entities		3.4 V ≤ AV _{REF} ≤ V _{DD} Ta = -10 to +70°C			0.8	%
		4.0 V ≤ AVREF ≤ VDD			0.8	%
Quantization error					±1/2	LSB
Conversion time	tconv	82 ns ≤ tcvx < 125 ns (The FR bit of ADM is to be "0")	360			tcyx
Conversion time	tconv	125 ns ≤ tcyx ≤ 250 ns (The FR bit of ADM is to be "1")	240			tcyx
		82 ns ≤ tcyx < 125 ns (The FR bit of ADM is to be "0")	72			tcvx
Sampling time	T SAMP	125 ns ≤ tcyx ≤ 250 ns (The FR bit of ADM is to be "1")	48			tcvx
Analog input voltage	Vian		-0.3		AVREF +0.3	V
Analog input impedance	Ran			1000		МΩ
Reference voltage	AVREF		3.4		Voo	٧
A.V.	A I	fxx = 12 MHz		1.5	5.0	mA
AVREF current	Alref	STOP mode		0.2	1.5	mA

^{*} Quantization error is not included. Represented by the ratio to full-scale value.

toyx DEPENDENT BUS TIMING DEFINITION (1/2)

PARAMETER	SYMBOL	EXPRESSION	MIN./MAX.	12 MHz	UNIT
X1 input clock cycle time	tcyx		MIN.	82	ns
Address setup time (to ASTB↓)	tsast	tcyx - 30	MIN.	52	ns
RD↓ delay time from address	t dar	2tcvx - 35	MIN.	129	ns
Address float time (from RD↓)	trar	tcvx/2 - 30	MIN.	11	ns
Data input time from address	t DAID	(4 + 2n) teyx - 100	MAX.	228*	ns
Data input time from ASTB↓	tostio	(3 + 2n) tcyx - 65	MAX.	181*	ns
Data input time from RD↓	torio	(2 + 2n) tcvx - 64	MAX.	100*	ns
RD↓ delay time from ASTB↓	tostr	tcyx - 30	MIN.	52	ns
Address active time from RD↑	tdra	2tcyx - 40	MIN.	124	ns
ASTB↑ delay time from RD↑	torst	2tcyx - 40	MIN.	124	ns
RD low-level width	twrL	(2 + 2n) tcyx - 40	MIN.	124*	ns
ASTB high-level width	twsтн	tcyx - 30	MIN.	52	ns
WR↓ delay time from address	tdaw	2tcyx - 35	MIN.	129	ns
Data output time from ASTB↓	tostod	tcyx + 60	MAX.	142	ns
		tcyx - 30			
WD delevations from ACTD	tostw1	(With refreshing disabled)	MIN.	52	ns
WR↓ delay time from ASTB↓		2tcyx - 35	14151	400	
	tostw2	(With refreshing enabled)	MIN.	129	ns
Data setup time (to WR1)	tsoowr	(3 + 2n) tcyx - 100	MIN.	146*	ns
D		tcyx - 60			
Data setup time (to WR↓)	tsobwe	(With refreshing enabled)	MIN.	22	ns
ASTB↑ delay time from WR↑	towst	tcyx - 40	MIN.	42	ns
		(3 + 2n) tcyx - 50	BAINI	106#	
WD law lavel width	twwL1	(With refreshing disabled)	MIN.	196*	ns
WR low-level width		(3 + 2n) tcyx - 50	B.AJA.I		
	twwL2	(With refreshing enabled)	MIN.	114*	ns
WAIT↓ input time from address	tdawt	3tcyx - 100	MAX.	146	ns
WAIT↓ input time from ASTB↓	t DSTWT	2tcyx - 80	MAX.	84	ns

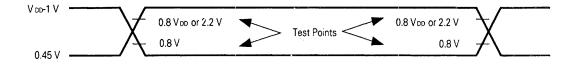
Remarks "n" indicates the number of waits.

* When n = 0

toxx DEPENDENT BUS TIMING DEFINITION (2/2)

PARA	METER	SYMBOL	EXPRESSION	MIN./MAX.	12 MHz	UNIT
WAIT hold time	from ASTB↓	tнsтwт	2Xtcvx + 10	MIN.	174*	ns
WAIT↑ delay tim	ne from ASTB↓	t ostwth	2(1 + X)tcyx - 55	MAX.	273*	ns
WAIT↓ input tim	ne from RD↓	†DRWTL	tcyx - 60	MAX.	22	ns
WAIT hold time	from RD↓	thrwt	(2X - 1)tcyx + 5	MIN.	87*	ns
WAIT↑ delay tim	ne from RD↓	t DRWTH	(2X + 1)tcvx - 60	MAX.	186*	ns
Data input time	from WAIT1	†DWTID	tcyx - 20	MAX.	62	ns
WR↑ delay time	from WAIT↑	t owtw	2tcyx - 10	MIN.	154	ns
RD↑ delay time	RD↑ delay time from WAIT↑		tcyx - 10	MIN.	72	ns
1	WAIT input time from WR↓ (At refresh disabled)		tcyx - 60	MAX.	22	ns
WAIT hold time	Refresh disabled	thwwT1	(2X - 1)tcvx + 5	MIN.	87*	ns
from WR↓	Refresh enabled	thwwT2	2(X - 1)tcyx + 5	MIN.	5*	ns
WAIT↑ delay	Refresh disabled	towwTH1	(2X + 1)tcyx - 60	MAX.	186*	ns
time from WR↓	time from WR↓ Refresh enabled		2Xtcyx - 60	MAX.	104*	ns
REFRQ↓ delay time from RD↑		torrea	2tcyx - 10	MIN.	154	ns
REFRQ↓ delay time from WR↑		†DWRFQ	tcvx - 10	MIN.	72	ns
REFRQ low-leve	l width	twrfol.	2tcyx - 44	MIN.	120	ns
ASTB↑ delay tim	ne from REFRQ↑	t DRFQST	4tcyx - 48	MIN.	280	ns

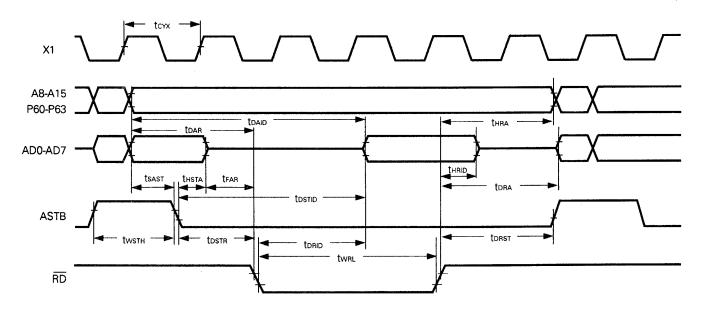
- Remarks 1. X: The number of the external wait. (1, 2, ...)
 - 2. $t_{CYX} = 82 \text{ ns } (f_{XX} = 12 \text{ MHz})$
 - 3. "n" indicates the number of waits.
- * When X = 1

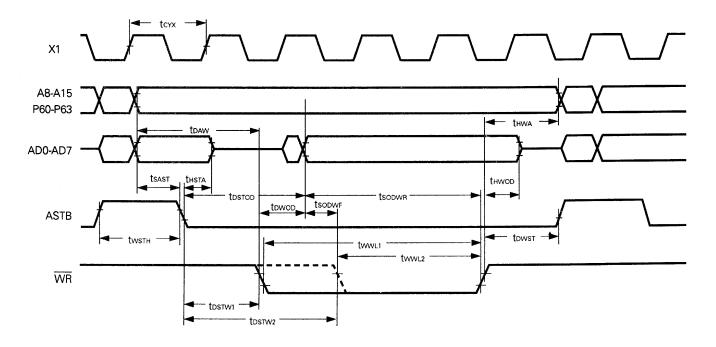


DATA RETENTION CHARACTERISTICS (Ta = -40 to +85 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention voltage	VDDDR	STOP mode	2.5		5.5	V
	lana	VDDDR = 2.5 V		2	20	μΑ
Data retention current	IDDDR	VDDDR = 5 V ±10 %		. 5	50	μΑ
V _{DD} rise time	trvd.		200			μs
VDD fall time	trvo		200			μs
V _{DD} hold time (from	thvo		0			ms
STOP mode setting)						
STOP release signal input time	t D&EL		0			ms
Oscillation stabilization		Crystal resonator	30			ms
wait time	twait	Ceramic resonator	5			ms
Low-level input voltage	VIL	Specific pin*	0		0.1 VDDDR	٧
High-level input voltage	ViH	oposino pini	0.9 VDDDR		VDDDR	V

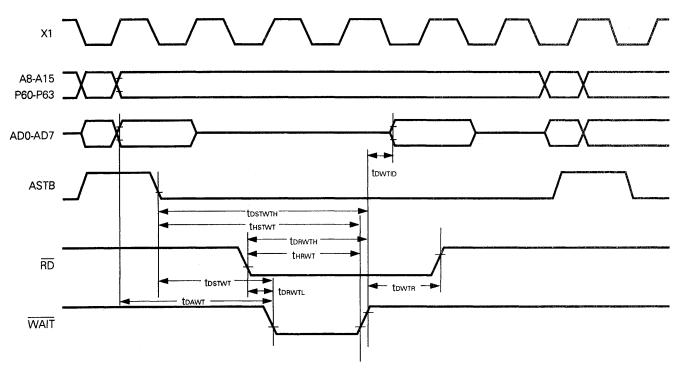
* RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0, EA pins


AC Timing Test Point

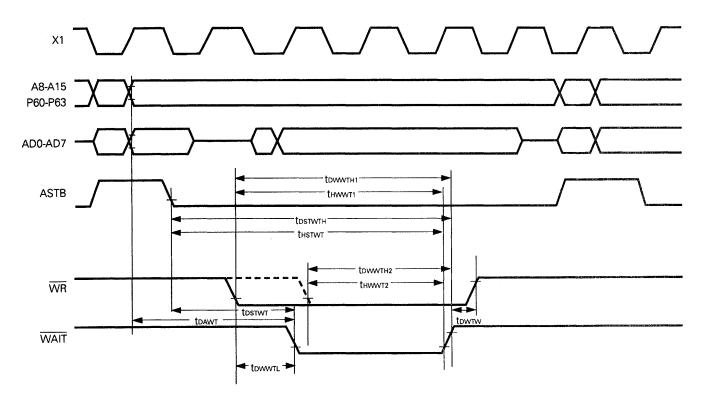


Timing Waveform

Read operation



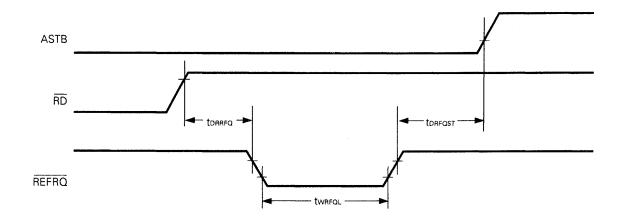
Write operation

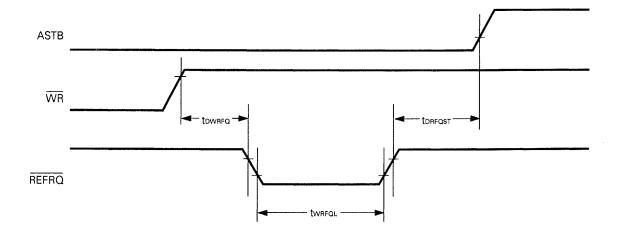


External WAIT Signal Input Timing

Read operation

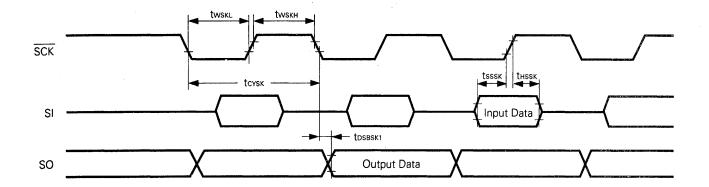
Write operation

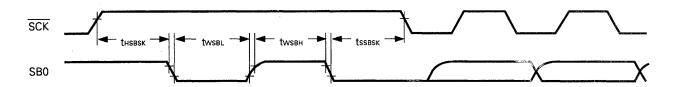




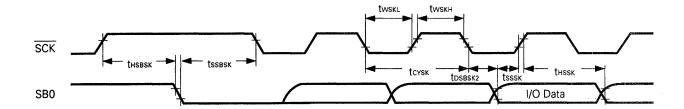
Refresh Timing Waveform

Refresh after read


Refresh after write

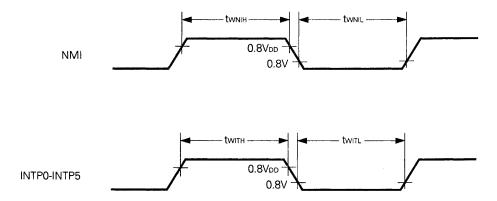

Serial Operation

3-wire serial I/O mode

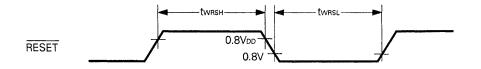


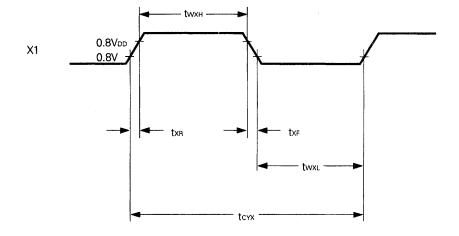
SBI Mode

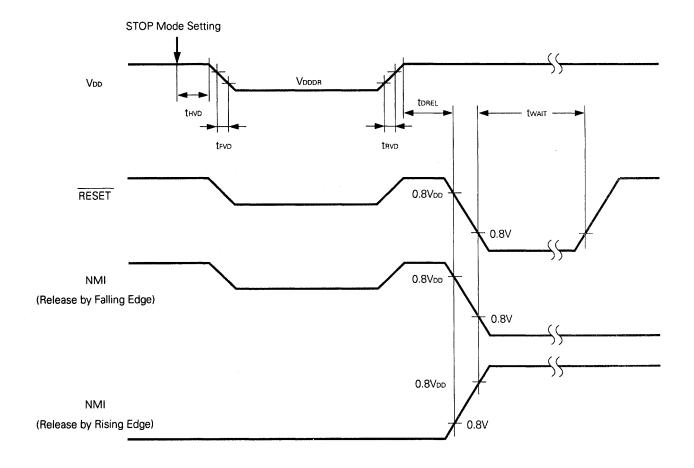
Bus release signal transfer



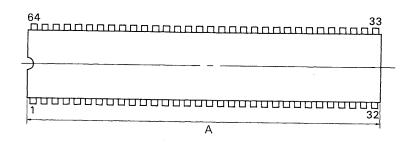
Command signal transfer

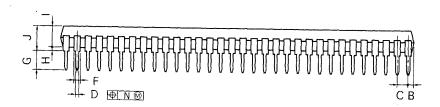


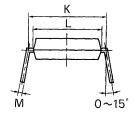

Interrupt Input Timing


Reset Input Timing

External Clock Timing


Data Retention Characteristics

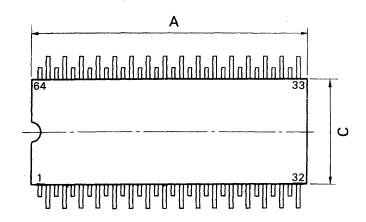


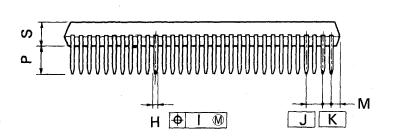


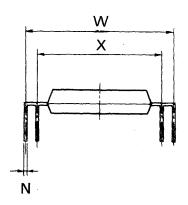
7. PACKAGE INFORMATION

64PIN PLASTIC SHRINK DIP (750 mil)

P64C-70-750A,C


NOTES

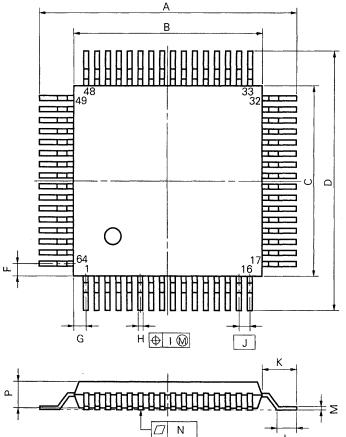

- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ^{±0:10}	0.020-0.005
F	0.9 MIN.	0.035 MIN.
G	3.2 ^{±0:3}	0.126 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 +0.10	0.010-0.004
N	0.17	0.007

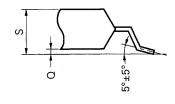
Phase-out/Discontinued

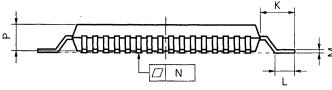
64 PIN PLASTIC QUIP

P64GQ-100-36


NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

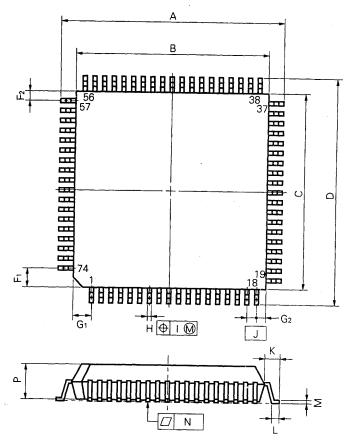

ITEM	MILLIMETERS	INCHES
Α	41.5 ^{+0.3}	1.634-0.008
С	16.5	0.650
Н	0.50 ^{±0.10}	0.020+0.004
I	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
K	1.27 (T.P.)	0.050 (T.P.)
М	1.1-8.75	0.043+0.000
N	0.25 ^{±8.08}	0.010+8.883
Р	4.0 ^{±0.3}	0.157-8.813
S	3.6 ^{±0.1}	0.142+0.004
W	24.13 ^{±1.05}	0.950 ^{±0.042}
Х	19.05 ^{±1.05}	0.750 ^{±0.042}



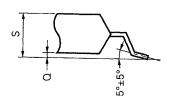
64 PIN PLASTIC QFP (□14)

detail of lead end

NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P64GC-80-AB8-3

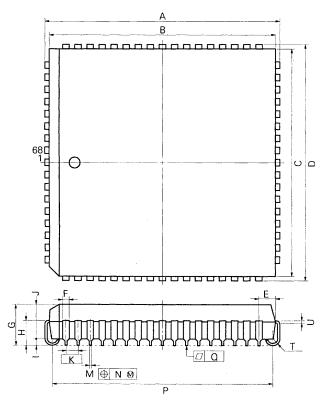

ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	0.014+0.004
1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
Κ	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.15+0.10	0.006+0.004
N	0.10	0.004
Р	2.55	0.100
Ω	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

Phase-out/Discontinued

74 PIN PLASTIC QFP (□20)

detail of lead end

NOTE

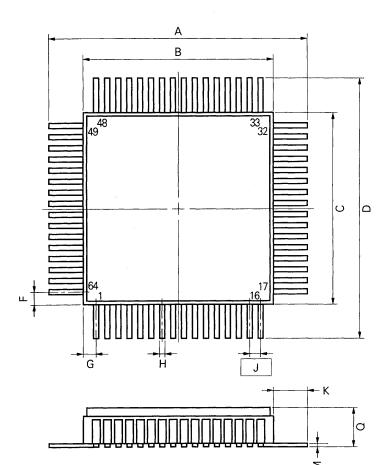

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

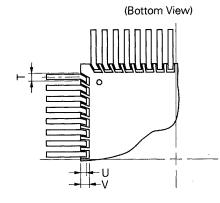
S74GJ-100-5BJ-2

		574GJ-100-5BJ-2
ITEM	MILLIMETERS	INCHES
Α	23.2±0.4	0.913+0.017
В	20.0±0.2	0.787 ^{+0.009} _{-0.008}
С	20.0±0.2	0.787+0.009
D	23.2±0.4	0.913+0.017
F ₁	2.0	0.079
F ₂	1.0	0.039
G1	2.0	0.079
G2	1.0	0.039
Н	0.40±0.10	0.016+0.004
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004
N	0.12	0.005
Р	3.7	0.146
Q	0.1±0.1	0.004±0.004
S	4.0 MAX.	0.158 MAX.

68 PIN PLASTIC QFJ (□950 mil)

NOTE


Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


P68L-50A1-2

ITEM	MILLIMETERS	INCHES
Α	25.2±0.2	0.992±0.008
В	24.20	0.953
С	24.20	0.953
D	25.2±0.2	0.992±0.008
Е	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173+0.009
Н	2.8±0.2	0.110+0.009
1.	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±1.0	0.016+0.004
N	0.12	0.005
Р	23.12±0.20	0.910+0.009
Q	0.15 ⁻	0.006
Т	R 0.8	R 0.031
U	0.20+0.10	0.008+0.004

For μ PD78212GC(A)- $\times\times$ -AB8 and 78214GC(A)- $\times\times$ -AB8 only

64 PIN CERAMIC QFP (14 \times 14) (FOR ES)

	Σ	X64B-80A-1
ITEM	MILLIMETERS	INCHES
Α	22.0±0.4	0.866±0.016
В	14.0	0.551
С	14.0	0.551
D	22.0±0.4	0.866±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.32	0.013
J	0.8 (T.P.)	0.031 (T.P.)
K	4.0±0.15	0.157+0.007
М	0.25	0.01
Q	3.0 MAX.	0.119 MAX.
Т	0.55	0.022
U	1.0	0.039
٧	1.2	0.047

8. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions, refer to the information document "Surface Mount Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 8-1 Surface Mounting Type Soldering Conditions

(1) μ PD78212GC(A)- $\times\times$ -AB8, 78214GC(A)- $\times\times$ -AB8 : 64-pin plastic QFP (\Box 14 mm)

		Recommended
Soldering Method	Soldering Conditions	Condition
		Symbol
	Package peak temperature: 230°C, Duration: 30 sec. max. (at 210°C or above)	
Infrared reflow	Number of times: Once	IR30-162-1
	Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	
	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above)	
VPS	Number of times: Once	VP15-162-1
	Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	
	Solder bath temperature: 260°C max., Duration: 10 sec. max.	
Wave Soldering	Number of times: Once	WS60-162-1
	Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	
	Preheating temperature: 120°C max. (package surface temperature)	
Pin part heating	Pin part temperature: 300°C max., Duration: 3 sec. max. (per device side)	<u></u>

(2) μ PD78214GJ(A)-×××-5BJ : 74-pin plastic QFP (\square 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230°C, Duration: 30 sec. max. (at 210°C or above) Number of times: Once Time limit: 7 days* (thereafter 10 hours prebaking required at 125°C)	IR30-107-1
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above) Number of times: Once Time limit: 7 days* (thereafter 10 hours prebaking required at 125°C)	VP15-107-1
Pin part heating	Pin part temperature: 300°C max., Duration: 3 sec. max. (per device side)	

(3) μ PD78214L(A)- $\times\times\times$: 68-pin plastic QFJ (\square 950 mil)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above) Number of times: Once Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	VP15-162-1
Pin part heating	Pin part temperature: 300°C max., Duration: 3 sec. max. (per device side)	

^{*} For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.

Note Use of more than one soldering method should be avoided (except in the case of pin part heating).

Table 8-2 Insert Type Soldering Conditions

 μ PD78212CW(A)-×××, 78213CW(A), 78214CW(A)-××× : 64-pin plastic shrink DIP μ PD78213GQ(A)-36, 78214GQ(A)-×××-36 : 64-pin plastic QUIP

Recommended Condition Symbol	Soldering Conditions
Wave soldering (lead part only)	Solder bath temperature: 260°C max., Duration: 10 sec. max.
Pin part heating	Pin part temperature: 260°C max., Duration: 10 sec. max.

Note Ensure that the application of wave soldering is limited to the lead part and no solder touches the main unit directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using μ PD78212(A), μ PD78213(A) and μ PD78214(A).

Language Processing Software

RA78K/II* 1,2,3	78K/II series common assembler package
CC78K/II*1,2,3	78K/II series common C compiler package
CC78K/II-L*1,2,3	78K/II series common C compiler library source file

PROM Progamming Tools

PG-1500	PROM programmer
PA-78P214CW PA-78P214GC PA-78P214GJ PA-78P214GQ PA-78P214L	Programmer adapters connected to PG-1500
PG-1500 controller*1,2	Control program for PG-1500

Debugging Tools

IE-78240-R-A IE-78240-R*4 IE-78210-R*4	μPD78214 subseries common in-circuit emulators
IE-78200-R-BK	78K/II series common break board
IE-78210-R-EM*4 IE-78240-R-EM IE-78200-R-EM*4	Emulation boards for μ PD78214 subseries evaluation
EP-78210CW*4 EP-78240CW-R EP-78210GC*4 EP-78240GC-R EP-78210GJ*4 EP-78240GJ-R EP-78210GQ*4 EP-78240GQ-R EP-78240LP-R	μPD78214 subseries common emulation probes
EV-9200G-74 EV-9200GC-64	Sockets mounted onto user system board for 74-pin plastic QFP and 64-pin plastic QFP
SD78K/II*1, 2	Screen debugger for IE-78240-R-A
DF78210*1, 2	Device file for μPD78214 subseries

Real-Time OS

<u> </u>	
RX78K/II*1,2,3	78K/II series common real-time OS

Real-Time OS

FE9000*1, FE9200*2	Fuzzy knowledge data creation tool
FT9080*1, FT9085*2	Translator
FI78K/II *1,2	Fuzzy inference module
FD78K/II*1,2	Fuzzy inference debugger

- * 1. PC-9800 series (MS-DOS™) based.
 - 2. IBM PC/ATTM (PC DOSTM) based.
 - 3. HP9000 series 300™ (HP-UX™) based, SPARCstation™ (Sun OS™) based, EWS-4800 series™ (EWS-UX/V™) based.
 - 4. No longer manufactured and not available for purchase.

Remarks For development tools manufactured by a third party, see the "78K/II Series Development Tools Selection Guide (EF-231)".

★ APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No. (Japanese)	Document No. (English)
μPD78214 Series User's Manual Hardware Vo	lume	IEM-5119	IEU-1236
78K/II Series User's Manual Instruction Volume		IEU-754	IEU-1311
	Introductory Volume	IEA-607	IEA-1220
78K/II Series Application Note	Application Volume	IEA-700	IEA-1282
Total Conso Application Notes	Floating-Point Operation Program Volume	IEA-686	IEA-1273
78K/II Series Selection Guide		IF-304	IF-1160
78K/II Series Instruction Application Table		IEM-5101	_
78K/II Series Instruction Set		IEM-5102	_
μΡD78214 Series Mode Register Application Table		IEM-5100	

Development Tool Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
	Operation Volume	EEU-809	EEU-1399
RA78K Series Assembler Package	Language Volume	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	,	EEU-817	EEU-1402
CC78K Series C Compiler	Operation Volume	EEU-656	EEU-1280
CC/ok Series C Compiler	Language Volume	EEU-655	EEU-1284
CC78K Series Library Source File		EEU-777	-
PG-1500PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller		EEU-704	EEU-1291
IE-78240-R-A In-Circuit Emulator		EEU-796	EEU-1395
IE-78240-R In-Circuit Emulator	Hardware Volume	EEU-705	EEU-1322
ie-/8240-n in-Circuit Emulator	Software Volume	EEU-706	EEU-1331
IE-78210-R	Hardware Volume	EEP-640	EEP-1027
IE-782 IU-R	Software Volume	EEM-685	EEM-1024
JE 70040 D.O	PC-9800 Series Based	EEM-677	EEU-1260
IE-78210-R System Software	IBM PC Series Based	EEM-753	EEM-1027
CD70V/II C D. I MO DOC D	Primer	EEU-841	
SD78K/II Screen Debugger MS-DOS Based	Reference	EEU-813	_
CD79K/II Carray Dalay and DC DCC D	Primer		_
SD78K/II Screen Debugger PC-DOS Based	Reference		EEU-1447
78K/II Series Development Tools Selection Guide		EF-231	_

Note The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Built-In Software Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
	Introductory Volume	EEU-910	
RX78K/II Real-Time OS	Installation Volume	EEU-884	
NA/8N/II Real-Time OS	Debugger Volume	EEU-895	
	Technical Volume	EEU-885	
Fuzzy Knowledge Data Creation Tools		EEU-829	EEU-1438
78/O, 78K/II, 87AD Series Fuzzy Inference Development Support System	Translator	EEU-862	EEU-1444
78K/II Series Fuzzy Inference Development support System	Fuzzy Inference Module	EEU-860	EEU-1440
78K/II series Fuzzy Inference Debugger		EEU-917	EEU-1459

Other Related Documents

Document Name	Document No. (Japanese)	Document No. (English)
QTOP Microcomputer Brochure	IB-5040	_
Package Manual	IEI-635	IEI-1213
Surface Mount Technology Manual	IEI-616	IEI-1207
Quality Grades on Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability & Quality Manual	IEM-5068	
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Devices Quality Control Guarantee Guide	MEI-603	MEI-1202
Microcomputer Related Products Guide Other Manufacturers Volume	MEI-604	_

Note The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime systems, etc.

M4 92.6

EWS-4800 series and EWS-UX/V are trademarks of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Sun OS is a trademark of Sun Microsystems Corporation.

HP9000 series 300 and HP-UX are trademarks of Hewlett-Packard Company.