Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

$\mu \text{PD78146, 78148}$

8 BIT SINGLE-CHIP MICROCOMPUTER

The μ PD78148, with on-chip peripheral hardware, can be used in VCRs and other devices that require digital servo control with software.

The μ PD78P148, with the one-time PROM or EPROM, is also available, which can operate in the same range of the power supply voltage as the mask ROM product. The development tools are also provided for the μ PD78148.

The following user's manual completely describes the functions of the μ PD78148. Be sure to read it before designing an application system.

µPD78148 User's Manual: IEU-1319

FEATURES

CENESAS

- Mass-storage program memory
 - µPD78146 ROM: 24K bytes, RAM: 688 bytes
 - μPD78148 ROM: 32K bytes, RAM: 816 bytes
- I/O lines: 76
- On-chip peripheral hardware suitable for VCR servo control
 - Super timer unit
 - Real-time output ports: 18
 - High-precision A/D converter: 15 channels
- · Clock operation by the subsystem clock
- Serial interface: 2 channels
- · Hardware for receiving remote control signals
- · Operational amplifiers: 2

- Multiplier
- · Built-in powerful interrupt functions providing two service modes
 - Vectored interrupt function/Macro service function

APPLICATIONS

System/servo controlling of separate VCRs and camcorders)

ORDERING INFORMATION

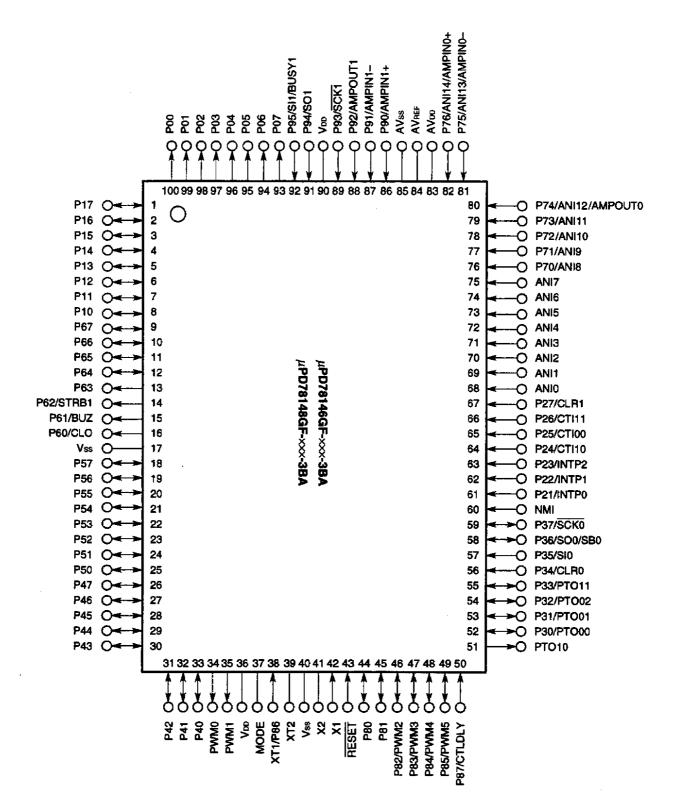
Part number	Package
μPD78146GF-×××-3BA	100-pin plastic QFP (14 × 20 mm)
µPD78148GF-xxx-3BA	100-pin plastic QFP (14 $ imes$ 20 mm)

Remark: xxx: ROM code number

Unless otherwise specified (for functions), the description of the μ PD78148 applies to the μ PD78146.

The information in this document is subject to change without notice.

Major changes in this revision are indicated by stars (±) in the margins.


/

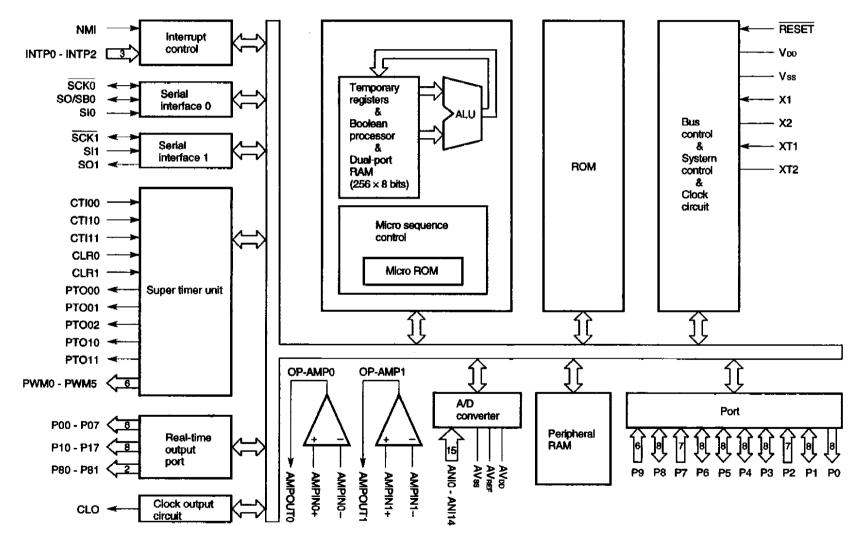
FUNCTIONAL OVERVIEW

item	Product	μPD78146	μPD78148		
Number of basic in tions	struc-	64			
Minimum instruction execution time	n	0.33 μ s (when the microcomputer operates at 12 MHz)			
Internal memory	ROM	24K bytes (24576 × 8 bits)	32K bytes (32768 × 8 bits)		
	RAM	688 bytes	816 bytes		
General register		8 bits \times 8 \times 4 banks (memory mapping)			
Instruction set		16-bit addition, subtraction, comparison Signed multiplication (signed 16 bits × unsigned 8 bits) Unsigned multiplication/division (16 bits × 8 bits, 16 bits + 8 bits) Bit manipulation (transfer, Boolean operation, set, reset, test)			
I/O line			 Input port : 24 (10 ports can also be used as A/D converter input or analog pins for operational amplifiers.) Output port : 12 		
Super timer unit		 Timer 16 bits × 3 8 bits × 3 Counter 22-bit free running counter (FRC) × 1 6-bit up/down counter (UDC) × 1 Capture register 22 bits × 2 16 bits × 3 8 bits × 2 Compare register 16 bits × 7 8 bits × 3 PWM output 12 bits × 2 (carrier frequency: 46.9/23.4 kHz) 14 bits × 1 (carrier frequency: 5.9 kHz) 8 bits × 3 (carrier frequency: 5.9 kHz) 			
Multiplier		Signed 16 bits \times signed 16 bits. Operation time: 2.67 μ s (when the microcomputer operates at 12 MHz)			
Real-time output po	rt	 Timer-connected port output function 18 built-in ports in total The timer for an output trigger can be selected. 			
Serial interface		 2 built-in channels SIO0 : Either NEC format serial bus interface (SBI) or 3-wire serial interface can be selected. SIO1 : Only a 3-wire serial interface is specified. The automatic data send/receive function is provided. (Send/receive buffer: 48 bytes) 			
A/D converter		8-bit resolution × 15 inputs (7 inputs can also be used as input ports.)			
Analog circuit		2 operational amplifiers (Each amplifier can be used separately.)			
Interrupt		 Interrupt source: 25 (5 external and 20 internal) One of the two service modes can be selected (vectored interrupt/macro service). 			
Clock		 Dual clock configuration (Either a main system clock or subsystem clock can be selected.) Can perform counting in the standby mode. 			
Standby		STOP/HALT mode			
Pull-up resistor		48, built-in (The use of built-in pull-up resistors can be specified by software.)			

PIN CONFIGURATION (Top View)

100-pin plastic QFP

Phase-out/Discontinued


Caution Fix the MODE pin at the ground level.

,

~

P00 - P07	: Port 0	CTLDLY	: Control delay input
P10 - P17	: Port 1	ANIO - ANI14	: Analog input 0 - 14
P21 - P27	: Port 2	AMPINO-, AMF	
P30 - P37	: Port 3		: Analog amplifier 0, 1 input ()
P40 - P47	: Port 4	AMPINO+, AMP	
P50 - P57	: Port 5		: Analog amplifier 0, 1 input (+)
P60 - P67	: Port 6	AMPOUT0, 1	: Analog amplifier 0, 1 output
P70 - P76	: Port 7	NMI	: Nonmaskable interrupt
P80 - P87	: Port 8	INTPO - INTP2	: Interrupt from peripherals 0 - 2
P90 - P95	: Port 9	CLO	: Clock output
PWM0 - PWM	5 : Pulse width modulation output 0 - 5	BUZ	: Buzzer clock
CTI00, CTI10, CTI11		AVREF	: Analog reference voltage
	: Capture trigger input 00, 10, 11		: Analog power supply
CLR0, CLR1	: Timer clear input 0, 1	AVss	: Analog ground
PTO00 - PTOC	2, PTO10, PTO11	X1, X2	: Crystal 1, 2 (Main system clock)
	: Programmable timer output	XT1, XT2	: Crystal 1, 2 (Subsystem clock)
	00 - 02, 10, 11	RESET	: Reset
SI0, SI1	: Serial input 0, 1	VDD	: Power supply
SO0, SO1	: Serial output 0, 1	Vss	: Ground
SB0	: Serial bus 0	MODE	: Mode select
SCKO, SCKI	: Serial clock 0, 1		
STRB1	: Serial data transfer strobe 1		

1

BLOCK DIAGRAM

Π

Π

µPD78146, 78148

)

J

NEC

~

CONTENTS

1.	PIN F	UNCTIONS	8
	1.1	PORT PINS	8
	1.2	NON-PORT PINS	10
	1.3	INPUT/OUTPUT CIRCUITS AND CONNECTION OF UNUSED PINS	12
2.	CPU	ARCHITECTURE	15
	2.1	MEMORY SPACE	15
	2.2	PROCESSOR REGISTER	17
		2.2.1 Control Register	17
		2.2.2 General Register	18
		2.2.3 Special Function Register (SFR)	19
	2.3	DATA MEMORY ADDRESSING	24
3.	PERI	PHERAL HARDWARE FUNCTIONS	25
	3.1	PORT FUNCTIONS	25
	3.2		27
	3.3	REAL-TIME OUTPUT PORT (RTP)	29
	3.4	SERIAL INTERFACE	34
	3.5	SUPER TIMER UNIT	37
		3.5.1 Super Timer Unit Function	39
	3.6	ANALOG CIRCUITRY	47
		3.6.1 A/D Converter	47
		3.6.2 Operational Amplifier	49
	3.7	CLOCK FUNCTION	49
	3.8	MULTIPLIER	50
4.	INTE	RRUPT FUNCTIONS	51
	4. 1	VECTORED INTERRUPT AND MACRO SERVICE	51
	4.2	INTERRUPT SOURCES	52
	4.3	MACRO SERVICE FUNCTIONS	53
		4.3.1 Macro Service Modes and Interrupt Requests	57
5.	STAN		58
6.	RESE		59
7.	OPEF	ATIONS OF INSTRUCTIONS	61
	7.1	INSTRUCTION SET (ALPHABETICAL ORDER)	63
8.	ELEC	TRICAL CHARACTERISTICS	65

NEC

μ**PD78146, 78148**

EC	Phase-out/Discontinued μ PD78146, 78	148
9. EXAMPLE		78
10. PACKAGE	DRAWINGS	80
11. RECOMM	ENDED SOLDERING CONDITIONS	81
APPENDIX A	DIFFERENCE BETWEEN μ PD78148 AND RELATED PRODUCTS (μ PD78146, μ PD78P148, AND μ PD78138)	82
APPENDIX B	DEVELOPMENT TOOLS	83

~

1. PIN FUNCTIONS

1.1 PORT PINS (1/2)

Pin	1/0	Dual-function pin	Function
P00 - P07	0	-	 Port 0 (P0): Can be specified to output or high impedance in units of 8 bits. Also function as an 8 bits × 1 or 4 bits × 2 real-time output port.
P10 - P17	1/0	_	 Port 1 (P1): Can be specified to input or output bit by bit. Can directly drive LED. The use of built-in pull-up resistors can be specified by software (P10 - P17). Can be specified as a real-time output port bit by bit.
P21	1	INTPO	Port 2 (P2):
P22		INTP1	The use of built-in pull-up resistors can be specified by software
P23		INTP2	(P22 - P27).
P24		CTI10	
P25		СТ100	
P26		CTI11	
P27		CLR1	
P30	1/0	РТО00	Port 3 (P3):
P31		PT001	P30 - P33 : I/O port (Can be specified to input or output bit by
P32		PTO02	bit.) P34, P35 : Input port
P33		PTO11	P36, P37 : I/O port (Can be specified to input or output bit by
P34	I.	CLR0	bit.)
P35		SIO	 The use of built-in pull-up resistors can be specified by software (P30 - P37).
P36	1/0	SO0/SB0	
P37		SCK0	
P40 - P47	I/O	-	 Port 4 (P4): Can be specified to input or output in units of 8 bits. Can directly drive LED. The use of built-in pull-up resistors can be specified by software (P40 - P47).
P50 - P57	1/0	-	 Port 5 (P5): Can be specified to input or output bit by bit. Can directly drive LED. The use of built-in pull-up resistors can be specified by software (P50 - P57).

Phase-out/Discontinued

PORT PINS (2/2)

Pin	I/O	Dual-function pin	Function
P60	0	CLO	Port 6 (P6):
P61		BUZ	P60 - P63 : Output port
P62		STRB1	P64 - P67 : I/O port (Can be specified to input or output bit by bit.)
P63		-	• The use of built-in puil-up resistors can be specified by software
P64	1/0	_	(P64 - P67).
P65			
P66, P67		_	
P70	1	ANI8	Port 7 (P7)
P71		ANI9	
P72		ANI10	
P73		ANI11	
P74		AMPOUT0/ANI12	
P75		AMPINO-/ANI13	
P76		AMPIN0+/ANI14	
P80	1/0	-	Port 8 (P8):
P81			P80 - P85 : I/O port (Can be specified to input or output bit by
P82		PWM2	bit.) P86, P87 : Input port
P83		РШМЗ	The use of built-in pull-up resistors can be specified by software
P84		PWM4	(P80 - P85).
P85		PWM5	P80 and P81 can be specified as a real-time output port bit by bit.
P86	1	XT1]
P87		CTLDLY	m
P90	1	AMPIN1+	Port 9 (P9)
P91		AMPIN1-	
P92		AMPOUT1	
P93		SCK1]
P94		SO1]
P95		SI1]

,

~

1.2 NON-PORT PINS (1/2)

Pin	1/0	Dual-function pin	Function
PWM0, PWM1	0	_	Super timer unit PWM output
PWM2 - PWM5	0	P82 - P85	Super timer unit PWM output
CLR0	1	P34	Super timer unit input
CT100		P25	
CLR1		P27]
CTI10		P24	
CT 11		P26	
PTO00	0	P30	Super timer unit output
PTO01		P31	
PTO02]	P32]
PTO10	1	_	-
PTO11	0	P33	Super timer unit output Can output the drive waveform corresponding to VISS/VASS postwriting.
SI0	1	P35	Serial data input 0
SOO	1/0	P36/SB0	Serial data output 0 (3-wire serial I/O mode)
SB0	1/0	P36/SO0	Serial data input/output 0 (SBI mode)
SCK0	1/0	P37	Serial clock input/output 0
SI1	1	P95	Serial data input 1
SO1	0	P94	Serial data output 1
SCK1	1/0	P93	Serial clock input/output 1
STRB1	0	P62	Strobe output during automatic SIO1 data transfer
NMI	4	_	Non-maskable interrupt request input
INTP0 - INTP2	1	P21 - P23	External interrupt request input
CTLDLY	-	P87	External time constant circuit connection: The external time constant circuit of CR is connected to this pin when PTO11 is used as VISS/VASS postwriting.
CLO	-	P60	Clock output

μ**PD78146, 78148**

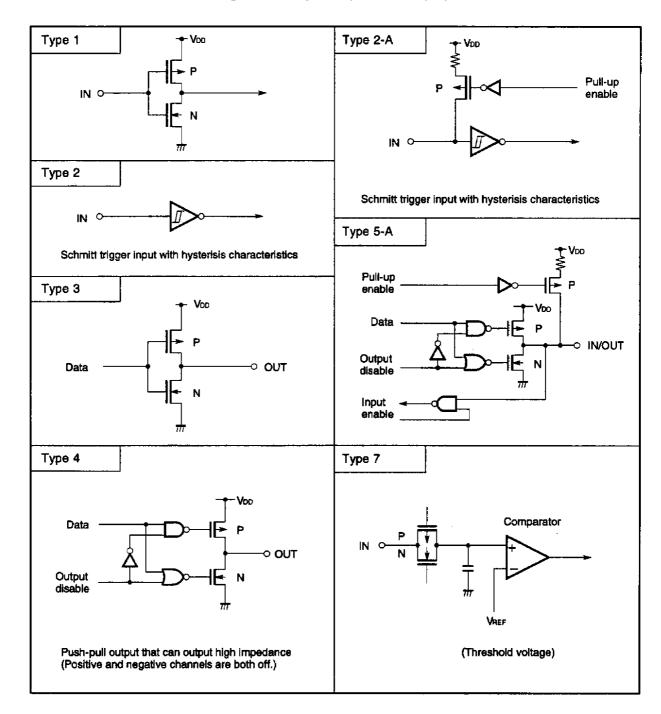
NON-PORT PINS (2/2)

Pin	I/O	Dual-function pin	Function
ANIO - ANI7	Analog	-	Analog signal input to A/D converter
ANI8 - ANI11	input	P70 - P73	
ANI12		P74/AMPOUT0	
ANI13		P75/AMPIN0-	
ANI14		P76/AMPIN0+	
AMPINO-	Analog	P75/ANI13	Inverted input to operational amplifier 0
AMPIN0+	input	P76/ANI14	Uninverted input to operational amplifier 0
AMPOUT0	0	P74/ANI12	Operational amplifier 0 output
AMPIN1-	Analog	P91	Inverted input to operational amplifier 1
AMPIN1+	input	P90	Uninverted input to operational amplifier 1
AMPOUT1	0	P92	Operational amplifier 1 output
RESET	1	-	Reset input
BUZ	0	P61	Buzzer output
AVDD	-	-	Positive power supply of an analog circuit
AVss	-	-	Ground potential of an analog circuit
AVREF	-	-	Reference voltage input to A/D converter
X1	1	-	Crystal connection for main system clock oscillation.
X2	-	-	
XT1	1	 P86	Crystal connection for subsystem clock oscillation.
XT2	-		Crystal connection for clock oscillation
Voo		-	Positive power supply of a digital circuit
Vss	-	-	Ground potential of a digital circuit
MODE	-	_	Fixed at the ground level

Phase-out/Discontinued

1.3 INPUT/OUTPUT CIRCUITS AND CONNECTION OF UNUSED PINS

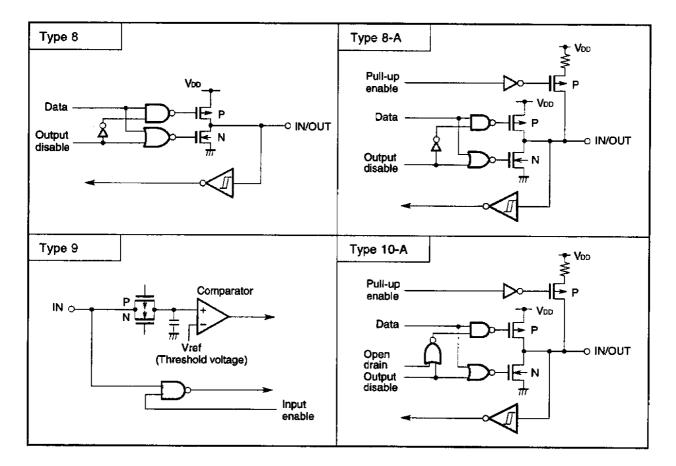
Table 1-1 and Fig. 1-1 show simplified pin input/output circuits.


Table 1-1 I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins

Phase-out/Discontinued

Pin	I/O circuit type	Recommended connection of unused pins
P00 - P07	4	Open
P10 - P17	5-A	Input : Connected to Voo via pull-up resistor Output : Open
P21	2	Connected to Vop
P22 - P27	2-A	
P30 - P33	5-A	Input : Connected to Voo via pull-up resistor Output : Open
P34, P35	2-A	Connected to Voo
P36	10 -A	Input : Connected to Vod via pull-up resistor
P37	8-A	Output : Open
P40 - P47	5-A	Input : Connected to Vop via pull-up resistor
P50 - P57		Output : Open
P60 - P63	3	Open
P64 - P67	5-A	Input : Connected to Voo via pull-up resistor Output : Open
P70 - P76	9	Connected to Vss
P80 - P85	5-A	Input : Connected to Voo via pull-up resistor Output : Open
P86	1	Connected to Vss (Bit 6 of the clock control register is reset.)
P87	1	Connected to Voo
P90 - P92	1	Connected to Vss
P93, P94	8	Connected to Veo via pull-up resistor
P95	2	Connected to Voc
PWM0, PWM1	3	Open
PTO10		
ANIO - ANI7	7	Connected to Vss
RESET	2	-
AVREF	-	Connected to Vss
AVss		

μ**PD78146, 78148**

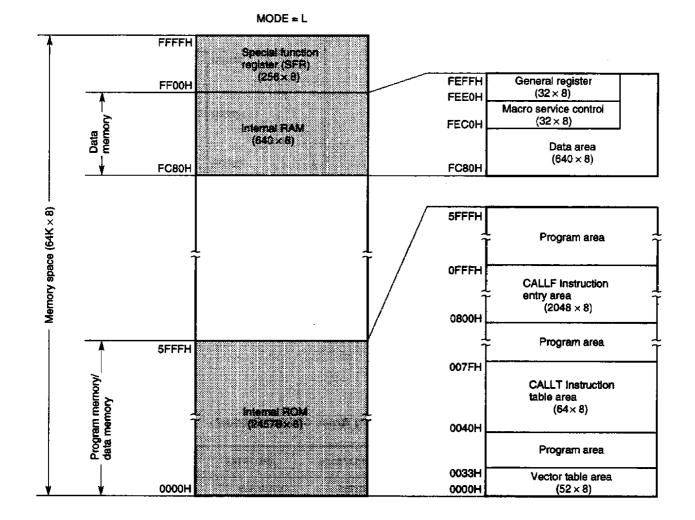

Fig. 1-1 Pin Input/Output Circuits (1/2)

13

.

Fig. 1-1 Pin Input/Output Circuits (2/2)

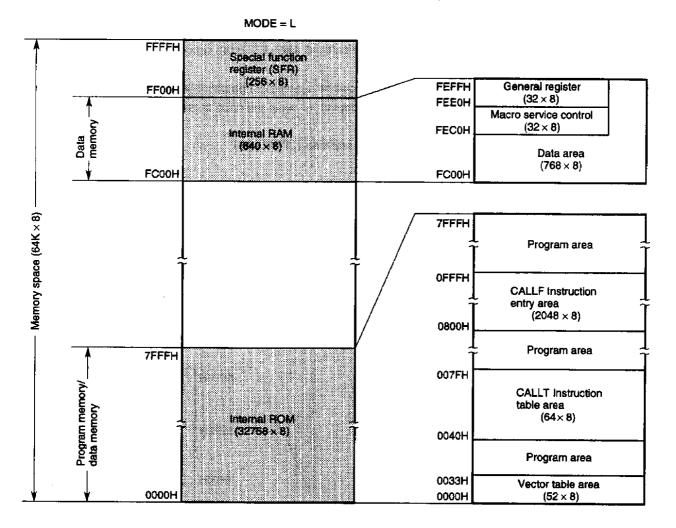
Phase-out/Discontinued


2. CPU ARCHITECTURE

2.1 MEMORY SPACE

Fig. 2-1 and 2-2 show the memory space of the μ PD78146 and μ PD78148 respectively.

Remark Forty-eight bytes from FF90H to FFBFH can be used as peripheral RAM when they are not used as a buffer for automatic transmission and reception of serial interface channel 1.


Fig. 2-1 Memory Map (µPD78146)

Shaded portions indicate internal memory.

15

Fig. 2-2 Memory Map (µPD78148)

Shaded portions indicate internal memory.

Table 2-1 Memory Areas of Each Product	Table 2-1	Memory	Areas o	f Each	Product
--	-----------	--------	---------	--------	---------

Product Item	μPD78146	μPD78148
Internal ROM	24K bytes (0000H - 5FFFH)	32K bytes (0000H - 7FFFH)
Internal RAM	688 bytes (FC80H - FEFFH)	816 bytes (FC00H - FEFFH)

2.2 PROCESSOR REGISTER

Registers of the μ PD78148 are classified into three groups according to their functions:

Phase-out/Discontinued

- Control register
- · General register
- · Special function register (SFR)

2.2.1 Control Register

The control register group controls the program sequence, status, and stack memory. There are three control register:

- Program counter (PC) : 16-bit register
- Program status word (PSW) : 8-bit register
- Stack pointer (SP) : 16-bit register

Fig. 2-3, 2-4, and 2-5 show the configuration of each register.

Fig. 2-3 Configuration of Program Counter (PC)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PC	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

Fig. 2-4 Configuration of Program Status Word (PSW)

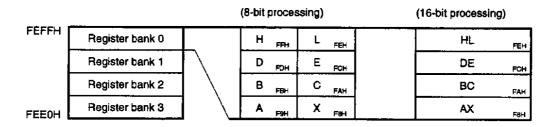
	7	6	5	4	3	2	1	0
PSW	IE	Z	RBS1	AC	RBS0	0	ISP	CY

СҮ	Carry flag
ISP	Interrupt priority status flag
•	Auxiliary carry flag
Ζ	
IE	Interrupt request enable flag

Fig. 2-5 Configuration of Stack Pointer (SP)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SP	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0

2.2.2 General Register


The general register group of the μ PD78148 consists of four banks of general registers. Each bank consists of eight 8-bit registers, so there are 32 registers in total. A pair of 8-bit registers can function as a 16-bit register pair.

Phase-out/Discontinued

The general register group is mapped into addresses from FEE0H to FEFFH of the internal RAM space.

Fig. 2-6 shows the configuration of the general register and Table 2-2 shows the correspondence between function names and absolute names.

Table 2-2 Correspondence between Function Names and Absolute Names

Function name	Absolute name
×	R0
A	R1
С	R2
В	R3
E	R4
D	R5
L	R6
н	R 7

Function name	Absolute name
AX	RP0
BC	RP1
DE	RP2
HL	RP3

2.2.3 Special Function Register (SFR)

The special function register group consists of the registers to which special functions are given such as mode register of the peripheral hardware.

Phase-out/Discontinued

This register group is assigned to the 256-byte space from FF00H to FFFFH. Short direct memory addressing can be applied to the 32-byte area from FF00H to FF1FH, allowing short-word data processing.

Forty-eight bytes from FF90H to FFBFH are used as a buffer for automatic transmission and reception of serial interface channel 1. The area can be accessed in the same way as for peripheral RAM. In SFR addressing, the area cannot be accessed.

Bit manipulation, arithmetic/logical, and move instructions can be executed in all the areas. Table 2-3 lists the special function registers (SFRs). The items in Table 2-2 mean:

- Abbreviation A symbol indicating the address of a built-in special function register
 This can be specified in the operand field of an instruction.
- R/W Indicates whether data can be read from the special function register and/or data can
 be written into the register.

R/W: Can be read and written.

- R : Can be read. (The bits of the register can be tested.)
- W : Can be written.

Manipulation bit unit Indicates the unit of bits that can be manipulated at one time.

- The SFR which can be manipulated in units of 16 bits can be specified in the sfrp operand. An even address is specified for the address specification. The SFR which can be manipulated bit by bit can be specified by a bit manipulation instruction.
- After reset Indicates the status of each register after the RESET input.
- Cautions 1. The addresses to which a special function register is not assigned in the area from FF00H to FFFFH can not be accessed.
 - 2. Do not write data into the register which is only used for data reading. If an attempt is made to write data into such registers, the internal circuit may not operate normally.

Address	Special function register (SFR) name	Abbrevia-	R/W	Manip	ulation	bit unit	After reset	
Audress		tion		1	8	16	After reset	
FF00H	Port 0	P0	R/W	0	0	-	Undefined	
FF01H	Port 1	P1		0	0	1		
FF02H	Port 2	P2	R	0	0	-	1	
FF03H	Port 3	P3	R/W	0	0			
FF04H	Port 4	P4	1	0	0	-	-	
FF05H	Port 5	P5		0	0			
FF06H	Port 6	P6		0	0	-	FOH	
FF07H	Port 7	P7	R	0	0	-	Undefined	
FF08H	16-bit timer 0 compare register 0	CR00	R/W	_	_	0	Undefined	
FF09H				-	-			
FFOAH	16-bit timer 0 compare register 1	CR01	-	_	-	0	4	
FF0BH				_		1		
FF0CH	16-bit timer 0 compare register 2	CR02		-	_	0		
FFODH				-	-			
FFOEH	16-bit timer 1 compare register 0	CR10		-	_	0		
FFOFH				_	_			
FF10H	16-bit timer 1 compare register 1	CR11		-	_	0		
FF11H				-	_			
FF12H	16-bit timer 1 compare register 2	CR12	R		_	0	ĺ	
FF13H				-	-			
FF14H	16-bit FRC capture register 0	CPT0		-	-	0		
FF15H		16 1		-	-			
FF16H	16-bit FRC capture register 1	CPT1	1	_	_	0		
FF17H				-	-			
FF18H	22-blt FRC capture register 2	CPT2H	R	-	_	0	Undefined	
FF19H	(Bits 2 to 17)			-	_			
FF1AH	22-bit FRC capture register 3 Note	СРТЭН	1	_	_	0	1	
FF18H	(Bits 2 to 17)			_	-			
FF1CH	22-bit FRC capture register 2 (Bits 0, 1, and 18 to 21)	CPT2L		0	0	_		
FF1DH	Prescaler mode register 3	PRM3	R/W	0	0	_	0xxxx000	
FF1EH	16-bit timer 2 compare register	CR20	1	_	-	0	Undefined	
F1FH					_			

Table 2-3 Special Function Registers (SFRs) (1/4)

Note Address of six low-order bits is FF42H.

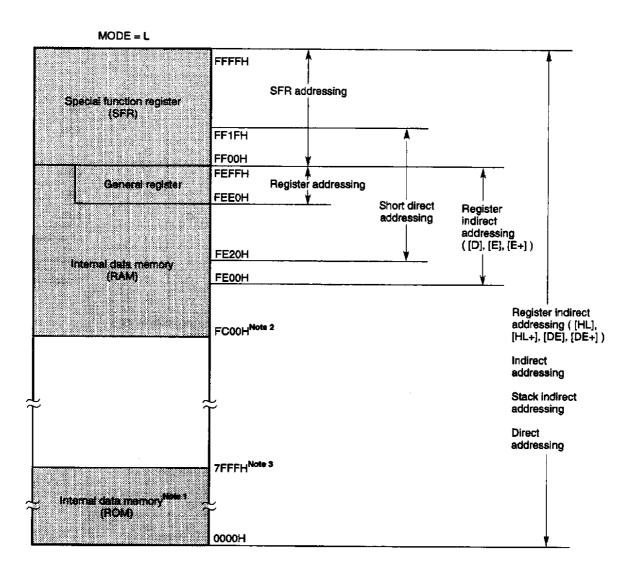
Table 2-3 Special Function Registers (SFRs) (2/4)

Address	Special function register (SFR) name	Abbrevia-	B/W	Manip	ulation	bit unit	After reset
		tion	1	1	8	16	Alto 1030(
FF20H	Port 0 mode register	PM0	w		0	_	FFH
FF21H	Port 1 mode register	PM1		-	0	-	
FF23H	Port 3 mode register	РМЗ		-	0	-	
FF25H	Port 5 mode register	PM5		1	0	-	
FF26H	Port 6 mode register	PM6		1	0	-	FOH
FF28H	Port 8 mode register	PM8	w	-	0	-	FFH
FF2CH	Multiplicand/multiplication result register	MULL	R/W	ł	-	0	Undefined
FF2DH				I	-		
FF2EH	Multiplicator/multiplication result register	MULH		-	-	0	
FF2FH				-	-		
FF30H	16-bit timer register 0	тмо	R	-	-	0	Undefined for
FF31H				-	-		up to 16 clocks
FF32H	16-bit timer register 1	TM1		-	-	0	Cleared to 0 after 17th close
FF33H				-	-		
FF34H	22-bit free running counter	FRC	R	-	-	0	Undefined for up to 16 clocks
FF35H				-	-]	Cleared to 0 after 17th clock
FF36H	16-bit timer register 2	TM2	R	-	-	0	Undefined for up to 16 clocks
FF37H					-		Cleared to 0 after 17th clock
FF38H	Timer control register 0	TMC0	F/W	-	0	-	00H
FF39H	Timer control register 1	TMC1	R/W	-	0	_	оон
FF3AH	Capture mode register	СРТМ	R/W	-	0	-	30H
FF3BH	7-bit counter register	TM6	R	-	0	_	Undefined
FF3CH	6-bit counter register	TM7		-	0	_	
FF3DH	8-bit timer register 3 Note	TM3	₽/W	_	0	-	
FF3EH	8-bit timer 3 compare register	CR30	R/W	-	0	-	Undefined
FF3FH	8-bit timer 3 capture register	CPT30	R	-	0	-	Undefined
FF40H	Register for optional pull-up register	PUO	R/W	0	0	-	00H
FF41H	Port 1 mode control register	PMC1	R/W	0	0	-	00H
FF42H	22-bit FRC capture register 3 (bits 0, 1, and 18 to 21)	CPT3L	R	0	0	-	Undefined
FF43H	Port 3 mode control register	PMC3	R/W	0	0	-	30H
FF44H	16-bit timer 1 compare register 3	CR13	-	_		0	Undefined
FF45H				-	-	ł	
FF46H	Port 1 buffer register	P1L	1	- 0	0		1
FF47H	Port 1 buffer register	P1H	1	0	0	_	
FF48H	Port 8 mode control register	PMC8	-	0	0	_	СОН
FF49H	Port 9 mode control register	PMC9	w	<u> </u>	0	_	27H

Note TM3 can only be read. Writing on TM3 clears TM3 to 00H.

Address	Special function register (SFR) name	Abbrevia-	B/W	Mani	pulation	After reset	
Add1633		tion		1	8	16	After reset
FF4AH	Port 0 buffer register	POL	R/W	0	0	-	Undefined
FF4BH	Port 0 buffer register	P0H		0	0	-	-
FF4CH	Real-time output port control register	RTPC		0	0	-	00Н
FF4DH	Trigger source selection register	TRGS	R/W	0	0	<u> </u>	OOH
FF4EH	Port 8 buffer register	P8L		0	0	-	Undefined
FF4FH	Clock mode register	WM	1	0	0	_	0xxx0x00
FF50H	Input control register	ICR	W	-	0		00H
FF51H	Up/down counter count register	UDC	R/W	-	0		Undefined
FF52H	Capture compare control register	CRC	w	-	0	-	оон
FF53H	Event divider control register	EDVC	w	-	0	† <u>-</u>	Undefined
FF54H	Event counter compare register 1	ECC1		_	0	-	Undefined
FF55H	Event counter compare register 0	ECC0			0		Undefined
FF56H	Event counter	EC	R		0	-	Undefined
FF57H	Prescaler 4 mode register	PRM4	R/ W	0	0	_	00Н
FF58H	Timer 0 output mode register	TOM0	W	-	0	-	××000000
FF59H	Timer 0 output control register	тосо	w	_	0	-	оон
FF5AH	Timer 1 output mode register	TOM1	W	-	0		80H
FF5BH	Timer 1 output control register	TOC1	R/W ^{Note}	-	0	-	00Н
FF5CH	8-bit timer register 4	TM4	R	-	0	-	Cleared for 16th clock
FF5DH	8-bit timer 4 capture compare register	CR40	R/W	0	0		Undefined
FF5EH	8-bit timer register 5	TM5	R	-	0	-	Cleared for 16th clock
FF5FH	8-bit timer 5 compare register	CR50	R/W	0	0	-	Undefined
FF60H	Port 8	P8	R/W	0	0	_	Undefined
FF61H	Port 9	P9	R	0	0	-	i
FF62H	Amplifier mode register	АМРМ	W		0	-	00H
FF63H	Up/down counter compare register	UDCC	W	_	0	-	Undefined
FF64H	A/D conversion mode register 0	ADM0	R/W	0	0	-	00H
FF65H	A/D conversion mode register 1	ADM1	R/W	0	0	-	01H
FF66H	A/D conversion result register 0	ADCR0	R	_	0		Undefined
FF67H	A/D conversion result register 1	ADCR1	R	_	0	-	Undefined
FF70H	PWM control register 0	PWMC0	F/ W	0	0	-	05H
FF71H	PWM control register 1	PWMC1	w	-	ο	-	40H
FF72H	PWM0 modulo register	PWM0	w	-	_	0	Undefined
FF73H				-			
FF74H	PWM1 modulo register	PWM1	1 1	_	-	0	
		1					

Table 2-3 Special Function Registers (SFRs) (3/4)


Note Only bit 0 of TOC1 can be read.

Address	Special function register (SFR) name	Abbrevia	B/W	Mani	pulation	bit unit	After reset
		tion	1 1	1	8	16	Alter reset
FF76H	PWM2 modulo register	PWM2	w	_	0	-	Undefined
FF77H	PWM3 modulo register	PWM3		-	0	-	
FF7AH	PWM4 modulo register	PWM4		-	0	-	
FF7BH	8-bit timer 4 capture register	CR41	R	-	0	-	Undefined
FF7CH	PWM5 modulo register	PWM5	w	-	-	0	
FF7DH]	-	-		
FF7EH	Timer control register 2	TMC2		-	0	-	00H
FF7FH	Clock output mode register	CLOM	R/W	0	0	-	00H
FF80H	Serial interface mode 0 register	CSIMO		0	0	-	
FF81H	Serial interface mode 1 register	CSIM1	R/W	0	0	-	оон
FF82H	Serial bus interface control register	SBIC	R/W	0	0	-	00Н
FF84H	Automatic transfer control register 1	ADTC1	R/W	0	0	-	00H
FF85H	Automatic transfer pointer 1	ADTP1		0	0	-	Undefined
FF86H	Serial shift register 0	SIOO	R/W	0	0	-	Undefined
FF87H	Serial shift register 1	SIO1	R/W	0	0	- 1	Undefined
FF90H	SIO1 buffer area/general RAM	-	R/W	0	0	0	
to FFBFH			Acce	ss impos assing	sible by	SFR]
FFC0H	Standby control register	STBC	R/W	_	0	-	0000×000
FFC4H	Memory mapping register	мм	w	_	0	-	A0H
FFEOH	Interrupt request flag register	IFOL IF	0 R/W	0	0	0	00H
FFE1H	-	IFOH		0	0		
FFE2H		IF1L		0	0	-	
FFE4H	Interrupt mask register	MKOL N	ко	0	0	0	FFH
FFE5H	1	мкон		0	0	1	
FFE6H	1	MK1L		0	0	-	1
FFE8H	Priority specification flag register	PROL P	RO	0	0	0	
FFE9H		PROH		0	0	1	
FFEAH	1	PR1L		0	0	-	1
FFECH	Interrupt service mode register	ISMOL IS	MO	0	0	0	00Н
FFEDH		ISMOH		0	0	1	
FFEEH	1	ISMIL		0	0	-	
	External interrupt mode register	INTMO	R/W	0	0		50H
FFF4H				1			L
FFF4H FFF5H	External capture mode register	INTM1		0	0	-	01H

Table 2-3 Special Function Registers (SFRs) (4/4)

2.3 DATA MEMORY ADDRESSING

Fig. 2-7 shows the data memory map of the μ PD78148 and the applied addressing scheme. With these various addressing, μ PD78148 programs can be coded efficiently.

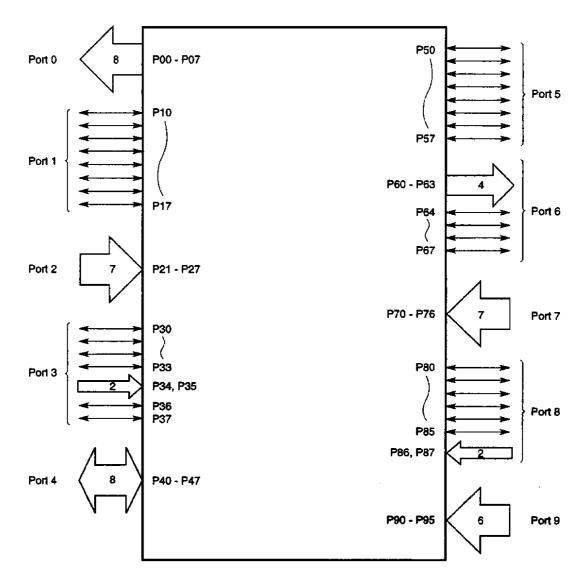
Fig. 2-7 Memory Map and Addressing of Data Memory

Notes 1. Do not place the stack pointer in the SFR area or ROM area.

- **2.** FC80H for μPD78146
- 3. 5FFFH for µPD78146

Shaded portions indicate internal memory.

Caution Forty-eight bytes from FF90H to FFBFH are used as a buffer for automatic transmission and reception of serial interface channel 1. This area can be accessed in the same way as for peripheral RAM. In SFR addressing, the area cannot be accessed.


3. PERIPHERAL HARDWARE FUNCTIONS

3.1 PORT FUNCTIONS

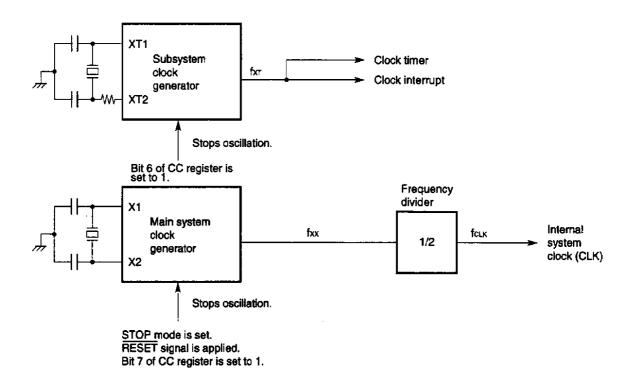
The μ PD78148 is provided with the ports shown Fig. 3-1, which enable a wide variety of control capabilities. Table 3-1 indicates the functions of the ports. The use of a built-in pull-up resistor can be specified by software.

Fig. 3-1 Port Configuration

Phase-out/Discontinued

,

Table 3-1 Port Functions


Port	Pin	1/0	Function
Port 0	P00 - P07	Output	 8-bit output port Also functions as a real-time output port. Specifiable in units of 8 bits for output or high impedance Capable of direct transistor drive
Port 1	P10 - P17	1/0	 8-bit I/O port Also functions as a real-time output port. Specifiable for input or output bit by bit. Can directly drive an LED.
Port 2	P21	input	7-bit input port
	P22 - P27	Input	 Also functions as external interrupt pins and timer input pins.
Port 3	P30 - P33	1/0	8-bit I/O port
	P34, P35	Input	Also functions as timer output pins and a serial I/O pin (SIO0).
	P36, P37	1/0	 Allows input or output to be specified bit by bit for P30 - P33, P36, and P37.
Port 4	P40 - P47	1/0	 8-bit I/O port Specifiable for input or output in units of 8 bits. Can directly drive an LED.
Port 5	P50 - P57	1/0	 8-bit I/O port Specifiable for input or output bit by bit. Can directly drive an LED.
Port 6	P60 - P63	Output	8-bit I/O port
	P64 - P67	1/0	 Allows input or output to be specified bit by bit for P64 - P67.
Port 7	P70 - P76	Input	7-bit input port Also functions as analog input pins and operational amplifier (AMP0) I/O pins.
Port 8	P80 - P85	1/0	8-bit I/O port Also functions as a real-time cutput port, PWM output pins, and subsystem clock.
	P86, P87	Input	 Allows input or output to be specified bit by bit for P80 - P85.
Port 9	P90 - P95	Input	 6-bit input port Also functions as operational amplifier (AMP1) I/O plns and a serial I/O pln (SIO1).

Caution Those ports that allow the specification of a pull-up resistor on a bit-by-bit basis can contain a pullup resistor only in the input mode.

3.2 CLOCK GENERATOR

The clock generator generates and controls an internal system clock (CLK) supplied to the CPU. The clock generator is configured as shown in Fig. 3-2.

Phase-out/Discontinued

Fig. 3-2 Block Diagram of the Clock Generator

Remarks 1. fxx : Crystal oscillator frequency of the main system clock

2. fxr : Crystal oscillator frequency of the subsystem clock

3. folk: Internal system clock frequency

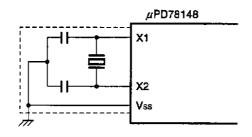
The main system clock generator oscillates with a crystal or ceramic resonator connected to the X1 and X2 pins. The system clock generator stops oscillation when the standby mode (STOP) is set, a RESET signal is applied, or bit 7 of the clock control register is set.

The subsystem clock generator oscillates with a crystal connected to the XT1 and XT2 pins.

The subsystem clock generator stops oscillation when bit 6 of the clock control register is set; the setting of the STOP mode or RESET signal input has no effect.

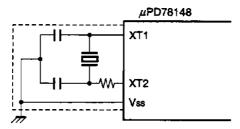
The subsystem clock is used mainly for the clock circuit and an interrupt (INTW) generated at regular intervals.

The frequency divider divides a system clock generator output signal (fxx, fxr) by two to produce an internal system clock (fcuk).


NEC

Phase-out/Discontinued

Fig. 3-3 shows the external circuitry of the main system clock generator. Fig. 3-4 shows the external circuitry of the subsystem clock generator.


Fig. 3-3 External Circuitry of the Main System Clock Generator

(a) Crystal/ceramic oscillator

Fig. 3-4 External Circultry of the Subsystem Clock Generator

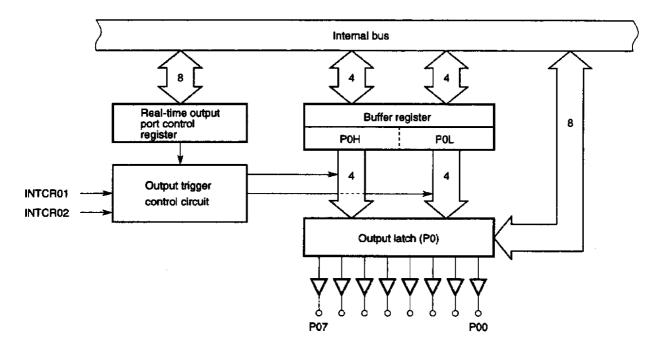
(a) Crystal oscillator

- Caution When using the main system clock generator and subsystem clock generator, run wires in broken lines ([_____]) in Figs. 3-3 and 3-4 according to the following rules to avoid adverse effects caused by stray capacitance or other factors:
 - · Connect components as short as possible.
 - Never cause the wires to cross other signal lines or run near a line carrying a large varying current.
 - Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss at all times. Never connect the capacitor to a ground pattern carrying a large current.
 - · Never extract a signal from the oscillator.

Note, in particular, that the subsystem clock generator is a low-amplification circuit for reduced current consumption.

3.3 REAL-TIME OUTPUT PORT (RTP)

A real-time output port (RTP) consists of two buffers: a port output latch and buffer register.


Phase-out/Discontinued

A real-time output function is available which, upon generation of a timer interrupt or external interrupt, transfers data in the buffer register by hardware to the output latch for output. A port used for this function is called an RTP. The μ PD78148 contains the real-time output ports listed in Table 3-2.

Table 3-2 R	TP Bit	Configu	ration
-------------	--------	---------	--------

	Number of real-time output data bits	Number of bits specifiable as RTP
RTPO	4 bits \times 2 channels 8 bits \times 1 channel	In unit of 4 bits
RTP1	4 bits × 2 channels	Bit by bit
RTP8	2 bits × 1 channel	

Figs. 3-5 to 3-7 show the block diagrams of RTP0, RTP1 and RTP8. Fig. 3-8 shows the types of RTP output trigger sources.

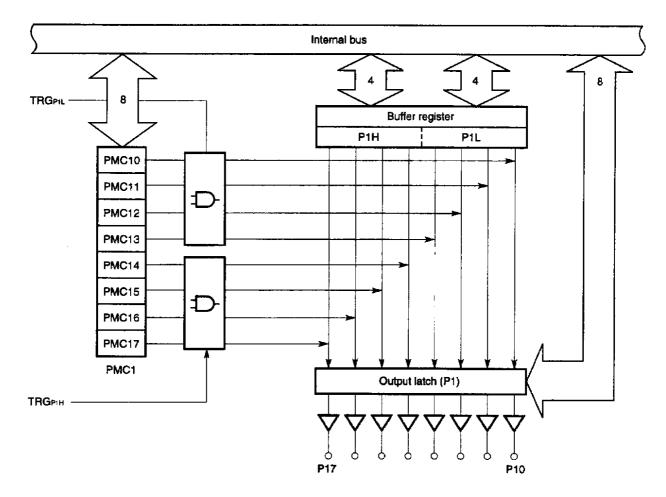
Fig. 3-5 Block Diagram of RTP0

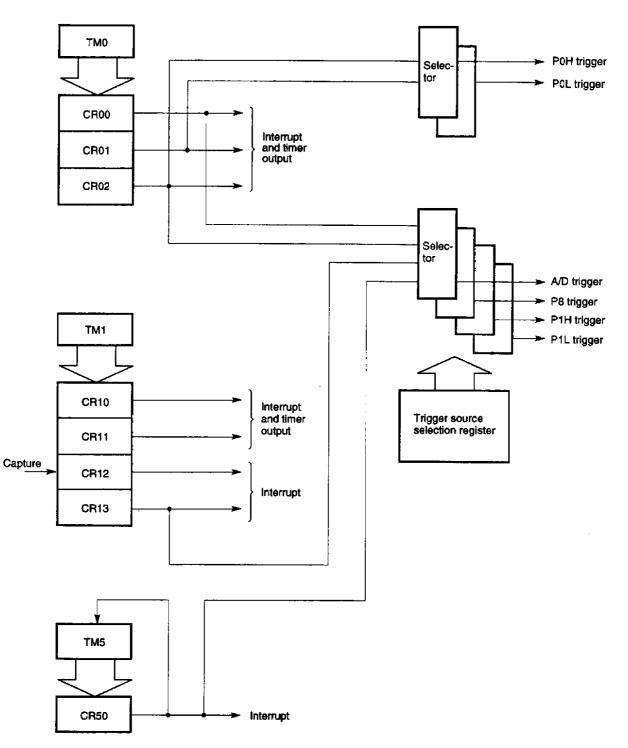
Remark INTCR01, INTCR02 : Signal issued when the contents of the 16-bit timer 0 (TM0) and compare register (CR01, CR02) match

~

/

Fig. 3-6 Block Diagram of RTP1

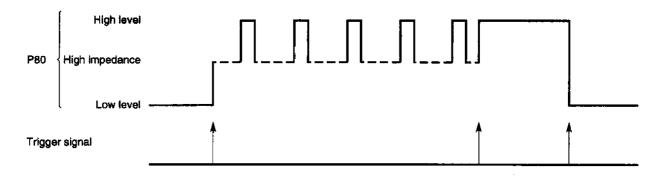


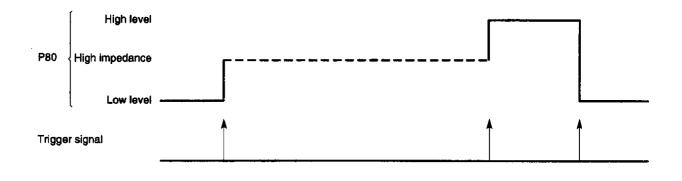

Fig. 3-7 Block Diagram of RTP8

~

~

For RTP1 or RTP8, an arbitrary output trigger can be selected from INTCR00, INTCR02, INTCR13, and INTCR50.


μ**PD78146, 78148**


RTP8 allows the value of the low level, high level, or high impedance to be output in the real-time mode. Furthermore, RTP8 allows a horizontal synchronizing signal to be superimposed, so that RTP8 can be used to generate a pseudo vertical synchronizing signal.

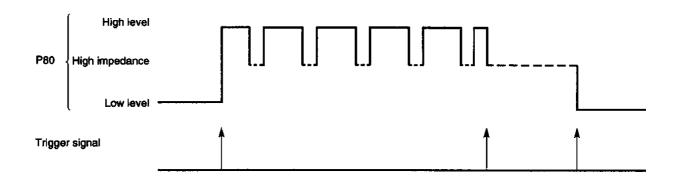

Phase-out/Discontinued

Fig. 3-9 indicates an RTP8 operation timing chart.

Fig. 3-9 RTP8 Operation Timing

3.4 SERIAL INTERFACE

The μ PD78148 contains two channels (channels 0 and 1) for a serial interface:

Channel 0: Three-wire serial interface, Serial bus interface (SBI) Channel 1: Three-wire serial interface with an automatic transfer function

Three-wire serial interface

The three-wire serial interface mode enables 8-bit data transfer using three lines: serial clock (SCK0, SCK1), serial data input (S10, S11), and serial output (S00, S01). This interface is useful for connecting a display controller and peripheral I/O device containing the conventional clock synchronous serial interface.

Phase-out/Discontinued

Serial bus interface (SBI)

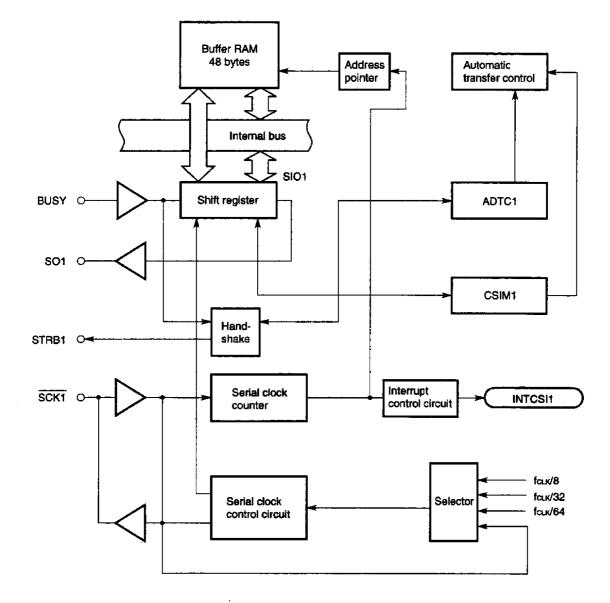

The serial bus interface mode enables 8-bit data transfer to and from more than one device by using two lines: serial clock (SCK0) and serial data bus (SB0). Following the NEC original format, transferred data can be identified as an "address", "command", or "data" by serial data manipulation.

Three-wire serial interface with automatic transfer function

This interface mode has an automatic transfer function added to a three-wire serial interface mode that transfers 8-bit data by using three lines (serial clock ($\overline{SCK1}$), serial data input (S11), and serial output (S01)). The automatic transfer function sends and receives up to 48-byte data. With this function, data can be transferred by hardware to and from a device for on-screen display (OSD) or a device containing a display controller/driver, independently of the CPU. Thus, loads on software can be reduced.

Fig. 3-10 shows the block diagram of channel 0, and Fig. 3-11 shows the block diagram of channel 1.

Fig. 3-10 Block Diagram of Serial Interface Channel 0



~

~

Fig. 3-11 Block Diagram of Serial Interface Channel 1

Phase-out/Discontinued

μ**PD78146, 78148**

3.5 SUPER TIMER UNIT

The μ PD78148 contains a super timer unit which consists of the following timer units.

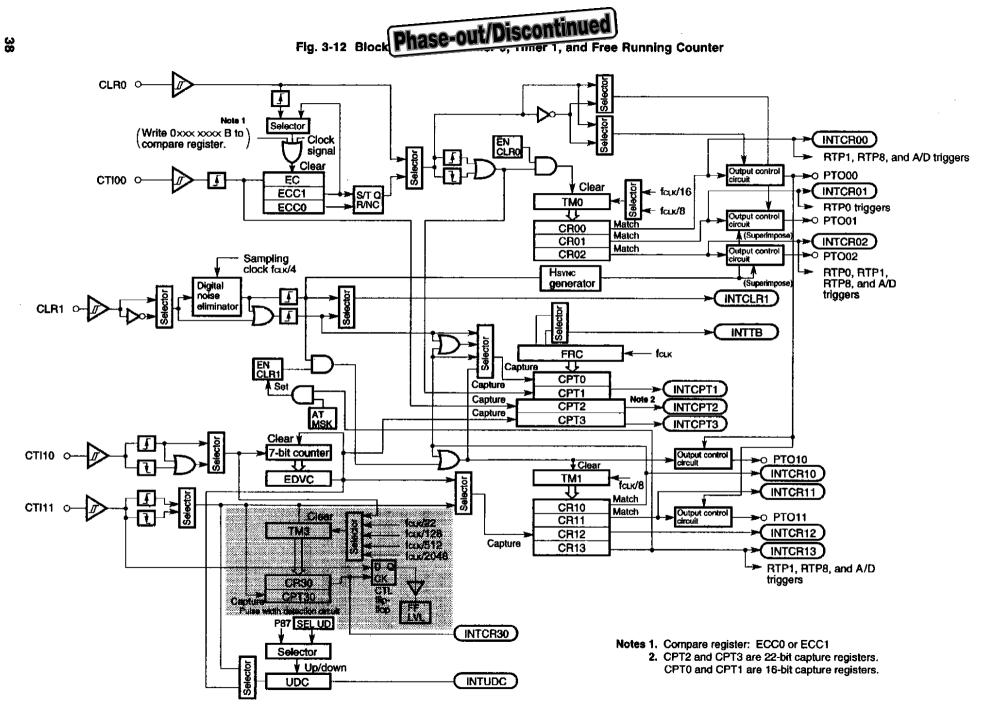

Unit name	Timer/counter	Register	Remarks		
Timer 0 16-bit timer × 1 (TM0)		16-bit compare register × 3	Contains a 6-bit event counter. Contains Hsync generator.		
Free running counter	22-bit counter × 1 (FRC)	 22-bit capture register × 2 16-bit capture register × 2 	Contains a digital noise eliminator. (Vsync separation circuit)		
Timer 1	16-bit timer × 1 (TM1)	 16-bit compare register × 3 16-bit capture register × 1 	7-bit event divider × 1 Contains a VISS/VASS detection		
	8-bit count register × 1 (TM3)	8-bit compare register × 1 8-bit capture register × 1	circuit.		
Timer 2	16-bit timer × 1 (TM2)	• 16-bit compare register × 1	Usable as an interval timer		
Timer 4	8-bit timer × 1 (TM4)	 8-bit capture/compare register × 1 8-bit capture register × 1 	Applicable as remote controller signal reception (capture function using INTP2)		
Timer 5	8-bit timer × 1 (TM5)	8-bit compare register × 1	Usable as a real-time output port output trigger and A/D conversion start trigger		
Up/down counter	6-bit up/down counter (UDC)	6-bit compare register × 1	Usable as a real-time counter		
PWM output unit (PWM0, PWM1)	12-bit counter × 1 (PWM0)	16-bit modulo register × 1 (with higher 12 bits used)	Variable active level of output Carrier frequency selectable (23.4		
	12-bit counter × 1 (PWM1)	16-bit modulo register × 1 (with higher 12 bits used)	kHz/46.9 kHz)		
PWM output unit (PWM2 - PWM4)	8-bit counter × 3 (PWM2 - PWM4)	• 8-bit modulo register × 3	Carrier frequency: 5.9 kHz		
PWM output unit (PWM5)	14-bit counter × 1 (PWM5)	16-bit modulo register × 1 (with higher 14 bits used)	Carrier frequency: 5.9 kHz 14-bit precision PWM pulse		

Table 3-3 Components of the Super Timer Unit

Phase-out/Discontinued

The most significant feature of the super timer unit of the μ PD78148 includes timer 0 (TM0), the free running counter (FRC), and timer 1 (TM1).

Fig. 3-12 shows the configuration of these timer units. The timer units facilitate VCR index search and servo control using software.

μPD78146, 78148

3.5.1 Super Timer Unit Function

(1) Timer 0 unit (TM0): 16-bit timer

Timer 0 is a timer unit suitable for pulse output timing control. By using an external input signal as a trigger, TM0 enables the timing of pulse output to be delayed by programming. Three channels of pulse output are available, and can be used, for example, for VCR sound and video head switching signals.

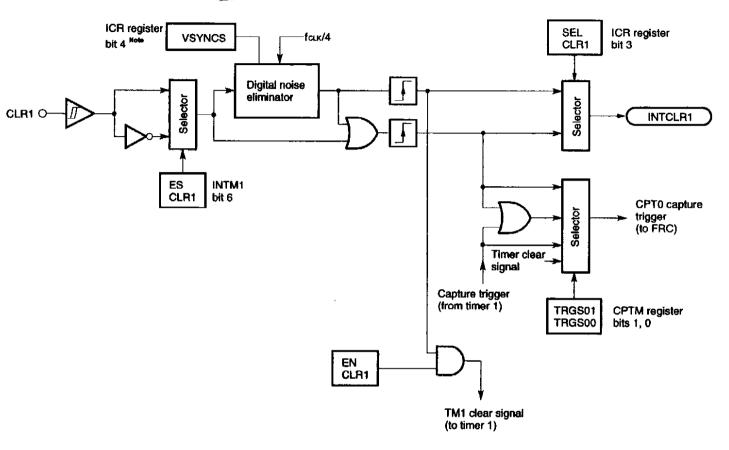
A timer count clock can be selected from fcLk/8 and fcLk/16.

Timer 0 can be used as an output trigger for real-time output ports 0, 1, and 8, and a conversion trigger for A/D converter 1.

(2) Timer 1 unit (TM1): 16-bit timer

Timer 1 is a timer unit for generating a reference signal for internal processing. Timer 1 can be used for various applications such as pulse output and reference signal generation using external trigger input. Timer 1 also allows programmable delay pulse output as with timer 0. Timer 1 contains timer 3 (TM3), which is an 8-bit timer. Timer 3 can be used for external pulse width detection and period measurement.

Timer 1 contains a function that releases a timer 1 clear input (ENCLR1) mask when timer 1 and CR13 match, so that a malfunction due to $\overline{V_{SYNC}}$ noise can be prevented by hardware.


Timer 1 can be used as an output trigger for real-time output port 1 and a conversion trigger for A/D converter 1.

(3) Free running counter unit (FRC): 22-bit counter

The free running counter can be used for external pulse period measurement. This unit contains four capture registers, so that period measurements can be performed for four triggers in parallel. Since a 22-bit counter is used for this unit, a high-precision phase and speed detection is possible for a capstan and VCR drum rotating at high speed.

This unit contains a digital noise eliminator (\overline{V} sync frequency separator) and allows a choice between two elimination pulse widths, so that \overline{V} sync can be separated from a composite synchronizing signal with an extensive distortion. Fig. 3-13 shows the configuration of CLR1 input section.

Ì

Note Noise is eliminated when it has narrower width than specified.

- This bit is used to specify one of the following pulse widths:
- 4/fcLK × 19 or smaller

)

• 4/fclk × 31 or smaller

1

1

1

1

ì

(4) Timer 2 unit (TM2): 16-bit timer

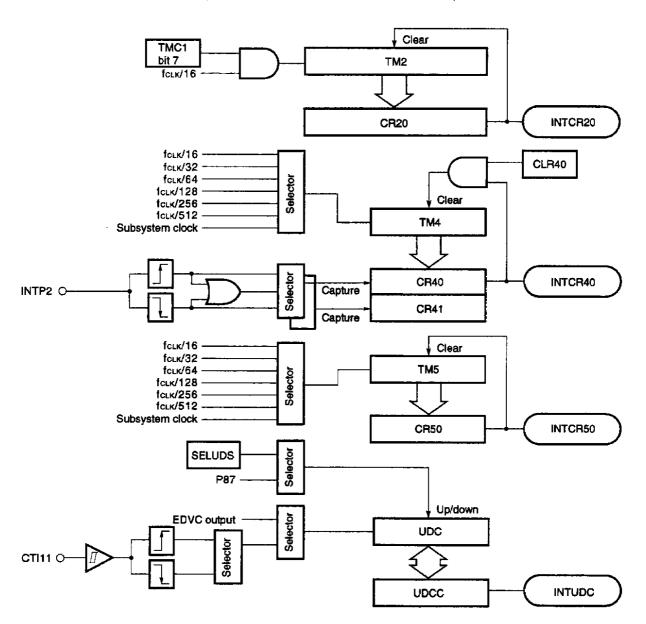
Timer 2 is a general-purpose 16-bit timer unit. When the contents of the compare register match the contents of timer 2, timer 2 is automatically cleared, and functions as an interval timer to initiate an interrupt at the same time.

Phase-out/Discontinued

(5) Timer 4 unit (TM4): 8-bit timer

Timer 4 is an 8-bit timer unit with a prescaler. Timer 4 contains a capture/compare register and a capture register, and generates an interrupt when a capture occurs or a comparison finds a match. This unit can be used, for example, to decode a remote controller signal.

(6) Timer 5 unit (TM5): 8-bit timer


Timer 5 is a general-purpose 8-bit timer unit with a prescaler. When the contents of the compare register match the contents of timer 5, timer 5 is automatically cleared, and functions as an interval timer to initiate an interrupt at the same time.

(7) Up/down counter (UDC)

The up/down counter is a 6-bit up/down counter that counts up or down on a valid edge of the CTI11 input pulse signal. By using this counter, a linear tape counter for a VCR can be built which counts the number of PBCTL signals.

~

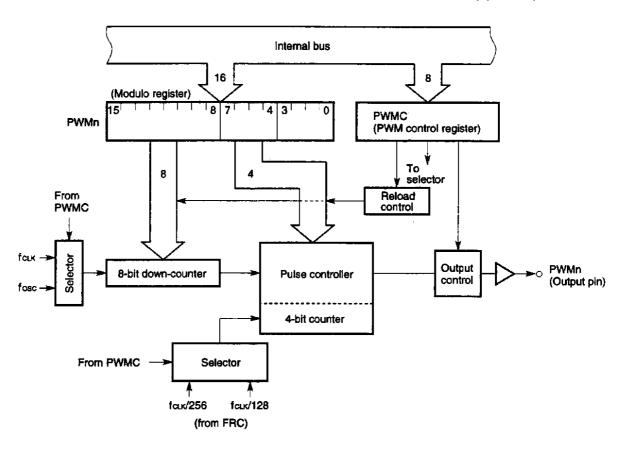
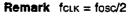
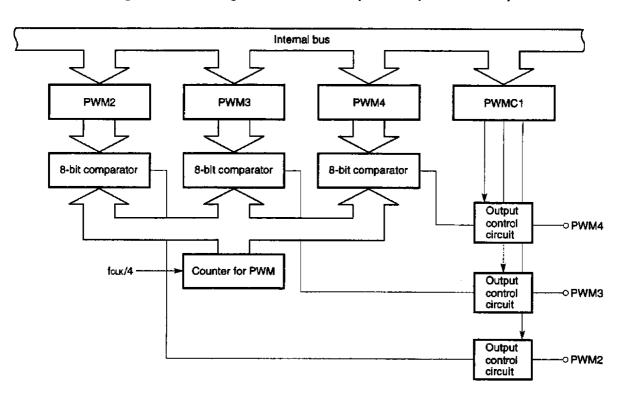

~

Fig. 3-14 Block Diagrams of Timer 2, Timer 4, Timer 5, and Up/Down Counter*


(8) PWM output units (PWM0, PWM1): 12-bit PWM

The PWM0 or PWM1 unit is a pulse width modulation (PWM) output unit with a 12-bit precision. A carrier frequency of 23.4 kHz or 46.9 kHz can be selected. The output of these units is most suitable for DC motor speed control.


Phase-out/Discontinued

(9) PWM output units (PWM2 - PWM4): 8-bit PWM

These units are PWM output units with an 8-bit precision. The carrier frequency is 5.9 kHz. These units can be used for general-purpose analog output.

Phase-out/Discontinued

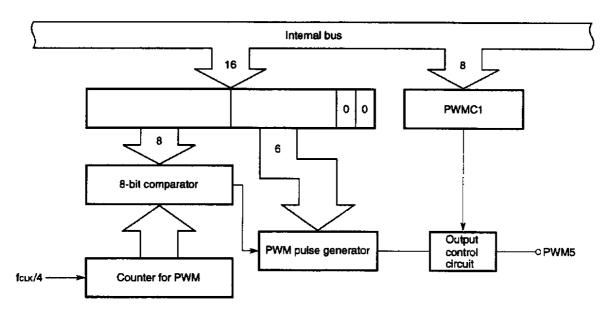
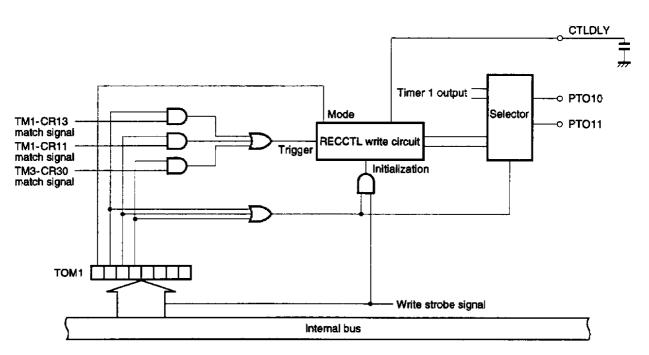


Fig. 3-16 Block Diagram of the PWM Output Units (PWM2 - PWM4)

(10) PWM output unit (PWM5): 14-bit PWM

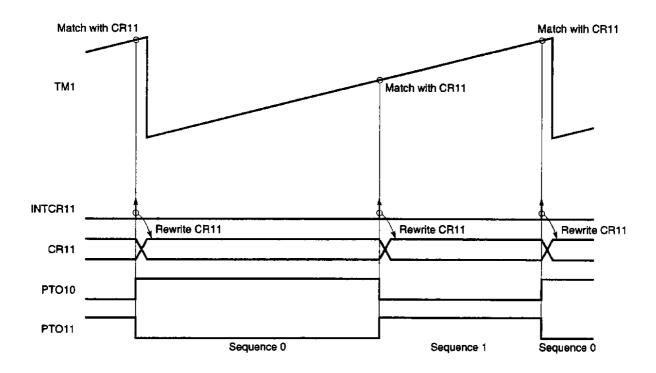
This unit is a PWM output unit with a 14-bit precision. The carrier frequency is 5.9 kHz. This unit can be used for an output application where high-precision analog voltage is required as in the case of a voltage synthesizer.

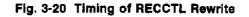
Fig. 3-17 Block Diagram of the PWM Output Unit (PWM5)


(11) RECCTL write circuit

The PTO10 and PTO11 output pins of the super timer unit can be used to write a RECCTL signal.

Phase-out/Discontinued


Two modes are available. One is the REC mode used to write a CTL signal, and the other is the rewrite mode used for rewriting.


In the rewrite mode, the drive state can be gradually shifted so that not rising edges but falling edges only of the CTL signal are subject to rewriting.

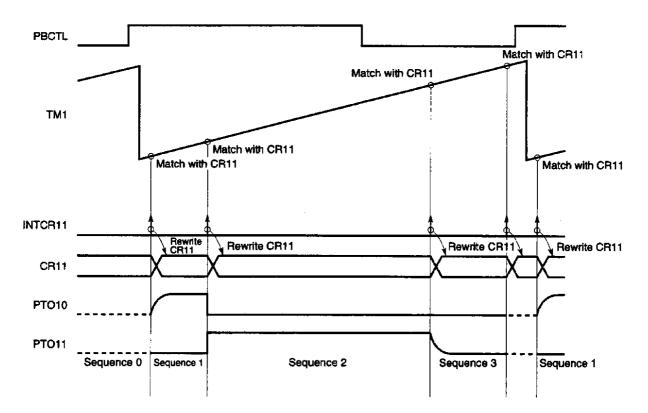


Fig. 3-18 Block Diagram of the RECCTL Write Circuit

Fig. 3-19 Timing of RECCTL Write

3.6 ANALOG CIRCUITRY

3.6.1 A/D Converter

The μ PD78148 contains a fast, high-accuracy 8-bit analog-to-digital (A/D) converter with 15 multiplexed analog inputs (ANI0 to ANI14). Fig. 3-21 shows the block diagram of the A/D converter.

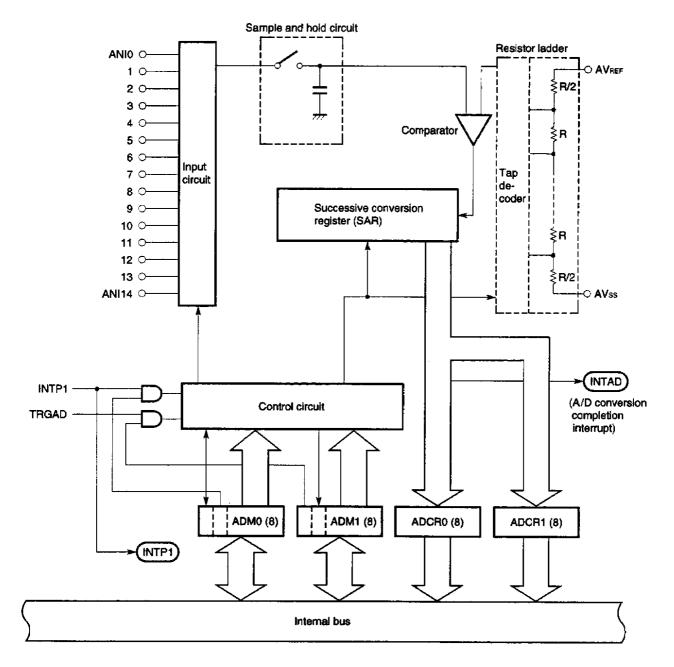
Phase-out/Discontinued

The μ PD78148 contains two A/D conversion mode registers (ADM0, ADM1) and two A/D conversion result registers (ADCR0, ADCR1), so that the A/D converter can be treated as two independent A/D converters.

The A/D converter uses the success approximation system.

The A/D converter has two operation modes: the select mode and scan mode. The select mode converts analog input on a particular pin continuously. The scan mode converts multiple analog inputs sequentially. Furthermore, A/D conversion can be started in phase with an external interrupt request signal.

Conversion requires 20 μ s (at 12 MHz).

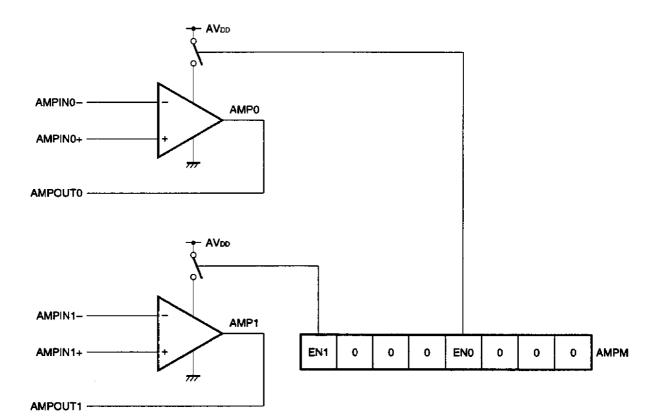

Caution Never apply voltage exceeding the reference voltage for A/D converter (AVREF) to the ANI0 to ANI14 pins in any circumstance.

_

~

~

3.6.2 Operational Amplifier


The µPD78148 contains two operational amplifiers. Each operational amplifier has an inverting input pin, noninverting input pin, and output pin.

Phase-out/Discontinued

Whether to operate the operational amplifiers can be set using a mode register, allowing software control over the operational amplifiers.

If reduced current consumption is required as in the case of the standby mode, the operational amplifiers are to be set to the non-operation mode.

Fig. 3-22 shows the block diagram of the operational amplifiers.

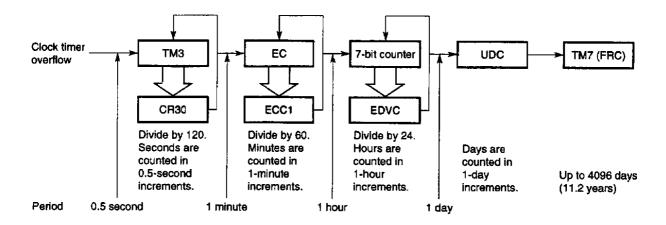
Fig. 3-22 Block Diagram of the Operational Amplifiers

3.7 CLOCK FUNCTION

The μ PD78148 contains a clock function that divides a clock timer overflow signal by hardware. The subsystem clock^{Note} is used for the clock.

This clock function operates independently of the CPU, so the clock function can operate even if the CPU is placed in the standby mode (STOP mode) or reset state. In addition, the clock function allows a low-voltage operation with $V_{DD} = 2.0 V$.

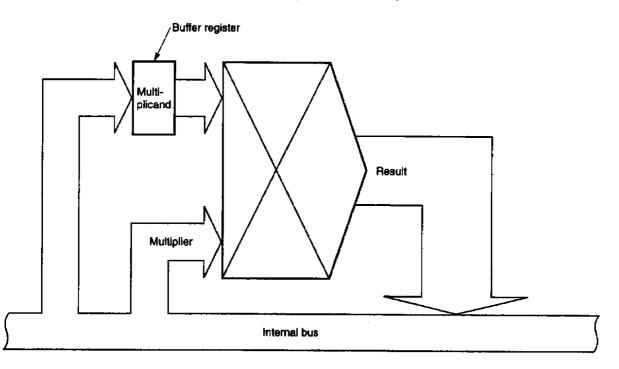
This means that by placing the CPU in the standby mode or reset state, a clock operation with low voltage and low current consumption can be implemented.


The clock function allows count operation for about 10 years.

Note The μPD78148 contains a frequency divider which divides the frequency of the subsystem clock and generates signals at the same interval. When the divider divides the frequency of the clock at 32.768 kHz (source oscillation of the subsystem clock), the divider expends one clock (about 30.5 μs) from when it overflows until it clears its count. Therefore, INTW interrupt generation takes about 30.5 μs more time per 0.5 second. Tune the oscillator frequency of the subsystem clock to 32.770 kHz.

49

Fig. 3-23 shows the block diagram of the clock function.


3.8 MULTIPLIER

The μ PD78148 contains a high-speed multiplier that performs a multiplication (16-bit complement by 16-bit complement) by hardware.

The multiplier can extensively reduce digital filter operation time for servo control (operation time: 2.67 μ s).

Fig. 3-24 shows the block diagram of the multiplier.

4. INTERRUPT FUNCTIONS

The μ PD78148 has a powerful interrupt function that can handle up to 25 interrupt requests (internal and external). Processing for each interrupt request is divided into two processing modes, vectored interrupt handling and macro service, one of which can be selected by software.

Phase-out/Discontinued

4.1 VECTORED INTERRUPT AND MACRO SERVICE

(1) Vectored interrupt

When an interrupt is accepted, the interrupt service routine is executed according to the data contained in the vector table area. The data indicates the start address of the interrupt service routine created by the user. In the vectored interrupt of the μ PD78148, two priority levels can be specified by software. This facilitates the control of multiple interrupts.

(2) Macro service

When an interrupt is accepted, a service set beforehand by firmware is executed. The following macro services are provided.

- Data transfer mode in which data is transferred between the memory and the special function register (SFR)
- Real-time output port control mode in which the real-time output port 0 can be controlled easily
- Counter mode in which the number of interrupt occurrence is counted
- Data pattern identification mode in which data string from external source is identified

Since these services are not performed via the CPU, the CPU statuses (such as SP and PSW) need not be saved and returned. Thus, CPU service time is greatly improved.

4.2 INTERRUPT SOURCES

Table 4-1 lists the interrupt request sources of the μ PD78148. An interrupt vector table is assigned to each source. All the maskable interrupts are provided with macro service routines.

Phase-out/Discontinued

Туре	Default		Interrupt source	Macro	Vectors table	
1344	priority	Name	Trigger	service	address	
Nonmaskable	-	NMI	Pin input edge detection	Not provided	0002H	
Maskable	0 (highest)	INTP0	Pin input edge detection	Provided	0004H	
	1	INTCPT3	EDVC output signal (CPT3 capture)		0006H	
	2	INTCPT2	CTI00 pin input edge detection (CPT2 capture)	<u> </u>	0008H	
	3	INTCR12	CTI11 pin input edge detection/EDVC output signal (CPT12 capture)		000AH	
	4	INTCR00	TM0-CR00 match signal		000CH	
	5	INTCLR1	CLR1 pin input edge		000EH	
	6	INTCR10	TM1-CR10 match signal		0010H	
	7	INTCR01	TM0-CR01 match signal		0012H	
	8	INTCR02	TM0-CR02 match signal		0014H	
	9	INTCR11	TM1-CR11 match signal		0016H	
	10	INTCPT1	Pin input edge detection/EC output signal (CPT1 capture)		0018H	
	11	INTCR20	TM2-CR20 match signal		001AH	
	12	INTCSIO	Serial transfer end (Serial interface channel 0)		001CH	
	13	INTTB	Time base from FRC		001EH	
	14	INTAD	A/D converter 0 conversion end		0020H	
	15	INTP2	Pin input edge detection		0022H	
	16	INTUDC	Up/down counter overflow		0024H	
	17	INTCR30	TM3-CR30 match signal		0026H	
	18	INTCR40	TM4-CR40 match signal	i	0028H	
	19	INTCR50	TM5-CR50 match signal		002AH	
	20	INTCR13	TM1-CR13 match signal		002CH	
	21	INTCSI1	Serial transfer end (Serial interface channel 1)		002EH	
	22	INTW	Clock timer overflow		0030H	
	23 (lowest)	INTP1	Pin input edge detection		0032H	

Table 4-1 Interrupt Request Sources

EDVC	:	Event divider compare register
EC	:	Event counter
CTI00, CTI11, CLR	1:	Capture trigger inputs
TM×	;	Timers 1 to 5
CR××	:	Compare registers 00, 01, 02, 10, 11, 20, 30, 40, 50
FRC	;	Free running counter

Remark The default priority indicates the priority used when two or more interrupts occur simultaneously.

4.3 MACRO SERVICE FUNCTIONS

One of the interrupt processing functions of the μ PD78148 is a built-in macro service function set by the firmware. There are four kinds of macro service function, each of which can be selected by software.

Phase-out/Discontinued

(1) Data transfer mode

When an interrupt occurs, 8-bit data is transmitted between the SFR corresponding to the interrupt and data memory. The address stored in data memory changes every time an interrupt occurs, so that consecutive data can be transmitted. The address in data memory (one from FE00H to FEFFH) and the number of transfer are controlled by software. After the specified number of transfer is completed, a vectored interrupt occurs.

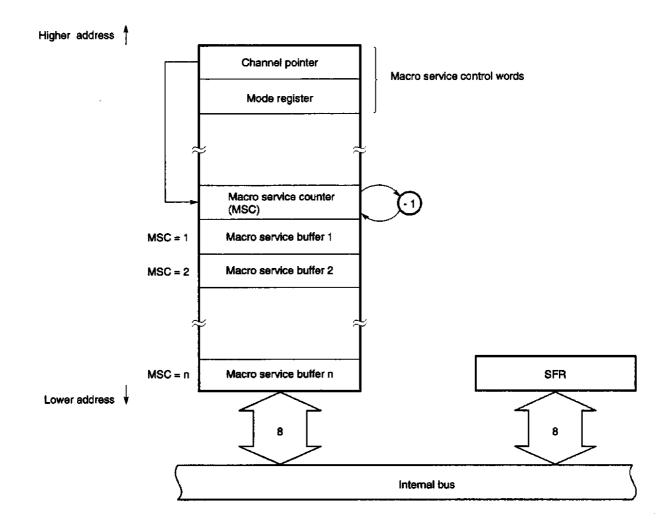
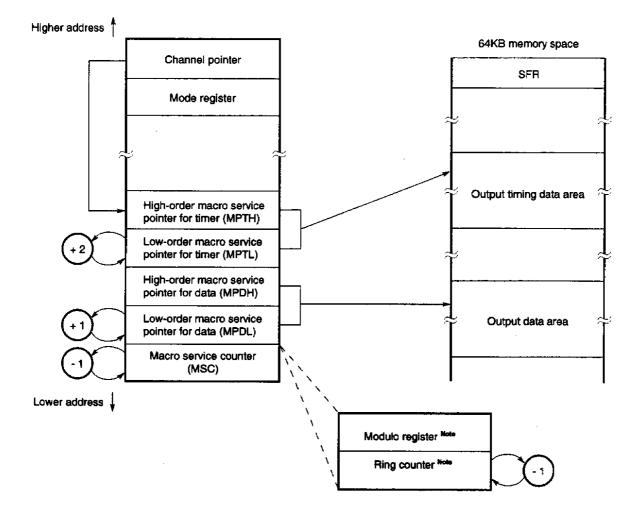


Fig. 4-1 Addressing in Data Transfer Mode

The address of the macro service buffer (low-order 8 bits)

= (The contents of the channel pointer) - (The contents of the macro service counter)

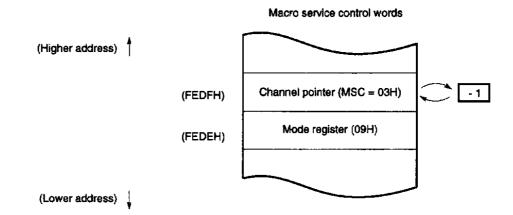
(2) Real-time output port 0 control mode


This macro service is effective when two output triggers of the real-time output port 0, INTCR01 and INTCR02, occur. Whenever one of them occurs, the output pattern profile is transmitted to the buffer registers (P0L, P0H), and the output timing profile is transmitted to the compare register (CR01 or CR02).

Phase-out/Discontinued

After the data transfer of each profile is completed, a vectored interrupt occurs.

This macro service enables various application such as the control of two stepping motors independently, or control of the PWM output or the output of the Head switching signal of the VCR.


Note The modulo register and ring counter are both created only when ring control is used. When the ring counter goes to zero, the contents of the modulo register are reloaded.

(3) Counter mode

This mode decrements the macro service counter (MSC) according to an interrupt occurrence. This can be used to count the number of interrupt occurrence or to divide an interrupt. When the counter reaches 0, a vectored interrupt occurs.

Fig. 4-3 Example of Operation in Counter Mode

Phase-out/Discontinued

(4) Data pattern identification mode (VCR index search control etc.)

This macro service transfers the data from the control flip-flop (CTL flip-flop) to the buffer area when INTCR12 or INTCR30 occurs. Then, the buffer area stores the transferred data by shifting it to the right. And if stored data in the buffer area matches the data in the comparing area which is set beforehand, a vectored interrupt occurs (data pattern identification function).

Phase-out/Discontinued

This macro service can be applicable to easy control of the index search of a VCR. It can also be used to issue a vectored interrupt whenever a number of data storing specified by software is reached. In this case, data of the buffer area and data of the comparing area need not match.

Caution Storing of data to the buffer area is fixed to right shift.

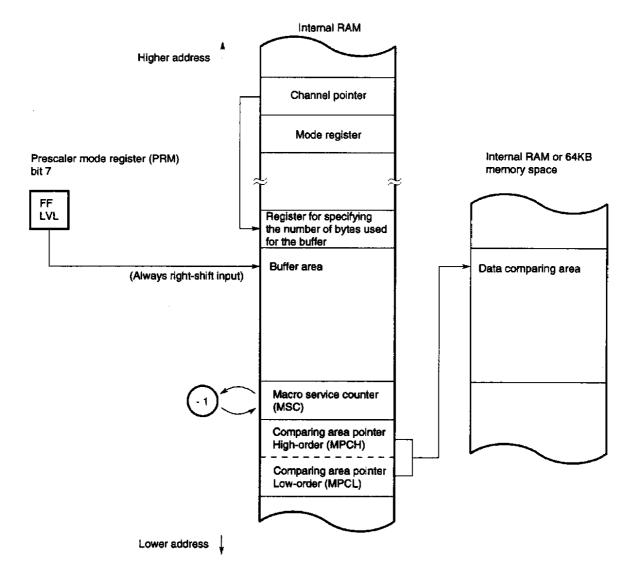


Fig. 4-4 Addressing in Data Pattern Identification Mode

4.3.1 Macro Service Modes and Interrupt Requests

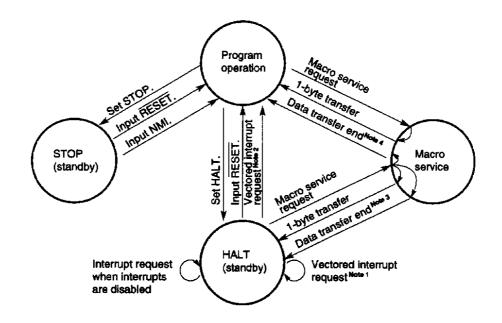
The macro service mode depends upon the type of interrupt request source. Table 4-2 lists the correspondence between the macro service modes and interrupt request sources.

Phase-out/Discontinued

Macro service mode	Interrupt request source which can process the corresponding macro service
Data transfer mode	INTCSI0 INTCSI1 INTAD INTCR30 INTCR40 INTCR50 INTUDC
Real-time output port 0 control mode	INTCR01 INTCR02
Counter mode	All maskable interrupt requests
Data pattern identification mode	INTCR12 INTCR30

Table 4-2 Macro Service Modes and Interrupt Request Sources

5. STANDBY FUNCTION


The μ PD78148 provides a standby function for reduced system power consumption. The standby function has two modes.

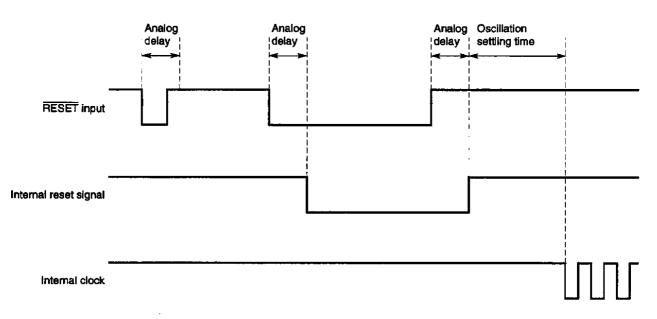
Phase-out/Discontinued

- HALT mode........ This mode stops the CPU operation clock. The total power consumption can be reduced by combining the HALT mode with the normal operation mode.
 When the subsystem clock is used as the CPU clock, the HALT mode, with main system clock generation stopped, can further reduce power consumption.
- STOP mode This mode stops the main system clock generator, thus terminating the operation of the entire system.

This mode achieves such very low power consumption that only leakage currents are allowed. The subsystem clock is not stopped. In this mode, the clock function alone operates.

These modes are programmable.

- Notes 1. Vectored interrupt request with a low priority level (with low priority level interrupts disabled in the HALT mode)
 - 2. Vectored interrupt request with a high priority level, or when low priority level interrupts are enabled in the HALT mode
 - 3. In the case of a macro service with a low priority level (with low priority level interrupts disabled in the HALT mode)
 - 4. In the case of a macro service with a high priority level, or when low priority level interrupts are enabled in the HALT mode


6. RESET FUNCTION

When the low level signal is applied to the RESET input pin, the system is reset and each hardware component is put in the status indicated in Table 6-1. The main system clock unconditionally stops oscillation.

Phase-out/Discontinued

When the signal applied to the RESET input pin goes from low to high, the reset state is released. After a time required for settling oscillation (about 22 ms when the microcomputer operates at 12 MHz), the contents of a reset vector table are loaded into the program counter (PC). Then a branch to the address set in the PC occurs, and program execution starts at the branch destination address. So a reset operation can be started at an arbitrary address. The RESET input pin contains a noise eliminator using analog delays to prevent malfunctions due to noise.

e neoer input pin contains a noise einimator using analog delays to prevent manufations due to

Fig. 6-1 Accepting a Reset Signal

Phase-out/Discontinued

~

Table 6-1 Hardware Statuses during and after Reset

Hardw	are	Status during reset (RESET = L)	Status after reset (RESET = H)		
Main system clock generator		Stops oscillation.	Starts oscillation.		
Subsystem clock (jenerator	Not affected by resetting			
Program counter (PC)	Undefined	Sets the reset vector table value.		
Stack pointer (SP)		Und	efined		
Program status wo	ord (PSW)	Initializa	ed to 02H		
Internal RAM		Undefined. However, if the standby state is released by resetting, the value before the standby state is set is preserved.			
I/O line		Sets the input buffer and output buffer to off.	High-impedance. However, the low-level is output on P60 - 63.		
Clock timer		Not affected by resetting			
Super timer unit	TM3, EC TM6, UDC TM7	Not affected by resetting when the clock function mode is set. When the clock function mode is not set, the super timer unit is initialized by resetti			
Other than above	<u> </u>	Initialized to specified state ^{Note}			
Analog circuit		Cuts off current paths.	Initialized to specified stateNote		
Other hardware		Initialized to specified stateNote			

Note See Table 2-3.

7. OPERATIONS OF INSTRUCTIONS

(1) Operand notation and coding format

Operands are coded in the operand field of each instruction as listed in the coding column of the table below. For details of the operand format, refer to the relevant assembler specifications. When several coding forms are presented, any one of them is selected. Uppercase letters and the symbols, +, #, I, , /, and [], are keywords and must be written as they are. These symbols have the following meanings.

Phase-out/Discontinued

- + : Auto increment
- # : Immediate data
- ! : Address by immediate addressing
- \$: Address by relative addressing
- / : Bit inversion
- []: Indirect addressing

For immediate data, an appropriate numeric or label must be written. The symbols +, #, !, \$, /, and [] must not be omitted when describing labels.

Notation	Description
r, r'	X(R0), A(R1), C(R2), B(R3), E(R4), D(R5), L(R6), H(R7)
r1	A, B
r2	B, C
r3	D, E, E+
r4	D, E
r9, rp'	AX(RP0), BC(RP1), DE(RP2), HL(RP3)
sfr	Special function register abbreviation
sfrp	Special function register abbreviation (16-bit manipulation register)
saddr	FE20H - FF1FH Immediate data or label
saddrp	FE20H - FF1EH Immediate data or label (for 16-bit manipulation)
laddr16	0000H - FFFFH Immediate data or label: Immediate addressing
\$addr16	0000H - FFFFH Immediate data or label: Relative addressing
addr11	800H - FFFH Immediate data or label
addr5	40H - 7EH Immediate data (bit 0 = 0, however) or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
n	3-bit immediate data (0 to 7)
RBn	RB0 - RB3

- **Remarks 1.** Absolute names (R0 to R7 and RP0 to RP3) can be specified in r, r', rp, and rp', as well as functional names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).
 - 2. Immediate addressing is effective for entire address spaces. Relative addressing is effective for the locations within a displacement range of -128 to +127 from the starting address of the next instruction.

μ**PD78146, 78148**

~

~

(2)	Legend		
	A	:	Register A; 8-bit accumulator
	х	:	Register X
	В	:	Register B
	С	:	Register C
	D	:	Register D
	E	:	Register E
	н	:	Register H
	L	:	Register L
	R0 - R7	:	Register 0 to register 7 (absolute name)
	AX	:	Register pair (AX); 16-bit accumulator
	BC	:	Register pair (BC)
	DE	:	Register pair (DE)
	HL	:	Register pair (HL)
	RP0 - RP3	:	Register pair 0 to register pair 3 (absolute name)
	PC	:	Program counter
	SP	;	Stack pointer
	PSW	:	Program status word
	CY	:	Carry flag
	AC	:	Auxiliary carry flag
	Z	:	Zero flag
	RBS0 - RBS1	;	Register bank select flag
	IE	:	Interrupt request enable flag
	STBC	:	Standby control register
	()	:	Contents of memory at an address enclosed in parentheses or at the address specified by a
			register enclosed in parentheses
	××H	:	Hexadecimal number
	XH, XL	:	Eight high-order bits and eight low-order bits of 16-bit register pair

7.1 INSTRUCTION SET (ALPHABETICAL ORDER)

	instruction		Instruction		Instruction
ADD	A, saddr	BF	PSW.bit, \$addr16	DEC	r
ADD	A, sfr	BF	saddr.bit, \$addr16	DEC	saddr
ADD	A, #byte	BF	sfr.bit, \$addr16	DECW	rp
ADD	A, [DE]	BF	X.bil, \$addr16	DI	
ADD	A, [HL]	BL	\$addr16	DIVUW	r
ADD	A, [r4]	BNC	\$addr16	EI	
ADD	A, word [r1]	BNE	\$addr16	INC	r
ADD	r, r	BNL	\$addr16	INC	saddr
ADD	saddr, #byte	BNZ	\$addr16	INCW	rp
ADD	sfr, #byte	BR	rp	MOV	A, PSW
ADDC	A, saddr	BR	laddr16	MOV	A, r
ADDC	A, sfr	BR	\$addr16	MOV	A, saddr
ADDC	A, #byte	BT	A.bit, \$addr16	MOV	A, sfr
ADDC	A, [DE)	вт	PSW.bit, \$addr16	MOV	A, word [r1]
ADDC	A, [HL]	BT	saddr.bit, \$addr16	MOV	A, [DE]
ADDC	A, [r4]	BT	sfr.bit, \$addr16	MOV	A, [DE+]
ADDC	A, word [r1]	вт	X.bit, \$addr16	MOV	A, [HL]
ADDC	r, r		A.bit, \$addr16	MOV	A, [HL+]
ADDC	saddr, #byte		PSW.bit, \$addr16	MOV	A, [r3]
ADDC	sfr, #byte		saddr.bit, \$addr16	MOV	A, laddr16
ADDW	AX, rp	1	sfr.bit, \$addr16	MOV	PSW, A
ADDW	AX, saddrp	1	X.bit, \$addr16	MOV	PSW, #byte
ADDW	AX, strp	BZ	\$addr16	MOV	Г, Т
ADDW	AX, #word	CALL	laddr16	MOV	r, #byte
ADJBA		CALL	np	MOV	saddr, A
ADJBS		CALLF	laddr11	MOV	saddr, #byte
AND	A, saddr	CALLT	[addr5]	MOV	sfr, A
AND	A, sfr	CLR1	A.bit	MOV	sfr, #byte
AND	A, #byte	CLR1	CY	MOV	STBC, #byte
AND	A, [DE]	CLR1	PSW.bit	MOV	word [r1], A
AND	A, [HL]	CLR	saddr.bit	MOV	[DE], A
AND	A, [r4]	CLR1	sfr.bit	MOV	[DE+], A
AND	A, word [r1]	CLR1	X.bit	MOV	[HL], A
AND	saddr, #byte	CMP	A, saddr	MOV	[HL+], A
AND	sfr, #byte	CMP	A, str	MOV	[r3], A
AND	с.,, "_, г, г	CMP	A, #byte	MOV	laddr16, A
AND1	CY, A.bit	CMP	A, [DE]	MOVW	AX, saddrp
AND1	CY, PSW.bit	CMP	A, [HL]	MOVW	AX, strp
AND1	CY, saddr.bit	CMP	A, [r4]	MOVW	AX, SP
AND1	CY, sfr.bit	CMP	A, word [r1]	MOVW	rp, rp
AND1	CY, X.bit	CMP	r, r	MOVW	rp, #word
AND1	CY, /A.bit	CMP	saddr, # byte	MOVW	saddrp, AX
AND1	CY, /PSW.bit	CMP	sfr, #byte	MOVW	saddrp, #word
AND1	CY, /saddr.bit	CMPW	AX, m	MOVW	sfrp, AX
AND1	CY. /sfr.bit	CMPW	AX, saddrp	MOVW	sfrp, #word
AND1	CY, /X.bit	CMPW	AX, strp	MOVW	SP, AX
BC	\$addr16	CMPW	AX, shp AX, #word	MOVW	SP, #word
BE	\$addr16			1	
		DBNZ	r2, \$addr16	MOV1	A.bit, CY
BF	A.bit, \$addr16	DBNZ	saddr, \$addr16	MOV1	CY, A.bit

NEC

Phase-out/Discontinued

μ**PD78146, 78148**

~

~

	Instruction		Instruction		Instruction
MOV1	CY, PSW.bit	OR1	CY, /X.bit	SUBC	A, #byte
MOV1	CY, saddr.bit	PUSH	PSW	SUBC	A, [DE]
MOV1	CY, sfr.bit	PUSH	rp	SUBC	A, [HL]
MOV1	CY, X.bit	POP	PSW	SUBC	A, [r4]
MOV1	PSW.bit, CY	POP	rp	SUBC	A, word [r1]
MOV1	saddr.blt, CY	RET		SUBC	r, r
MOV1	sfr.bit, CY	RETI		SUBC	saddr, #byte
MOV1	X.bit, CY	ROL	r, n	SUBC	sfr, #byte
MULSW	fr	ROLC	r, n	SUBW	AX, rp
MULUW	lr -	ROL4	[r4]	SUBW	AX, saddrp
NOP		ROR	r. n	SUBW	AX, sfrp
NOT1	A.bit	RORC	r, n	SUBW	AX, #word
NOT1	CY	ROR4	[r4]	хсн	A, r
NOT1	PSW.bit	SEL	RBn	хсн	A, saddr
NOT1	saddr.bit	SET1	A.bit	хсн	A, sfr
NOT1	sfr.bit	SET1	CY	хсн	A, [DE]
NOT1	X.bit	SET1	PSW.bit	хсн	A, [HL]
OR	A, saddr	SET1	saddr.bit	хсн	A, [r4]
OR	A, sfr	SET1	sfr.bit	хсн	A, word [r1]
OR	A, #byte	SET1	X.bit	XOR	A, saddr
OR	A, [DE]	SHL	r, n	XOR	A, sfr
OR	A, [HL]	SELW	rp, n	XOR	A, #byte
OR	A, [r4]	SHR	r, n	XOR	A, (DE)
OR	A, word [r1]	SHRW	rp, n	XOR	A, [HL]
OR	r, r	SUB	A, saddr	XOR	A, [r4]
OR	saddr, #byle	SUB	A, sfr	XOR	A, word [r1]
OR	sfr, #byle	SUB	A, #byte	XOR	r, r
OR1	CY, A.bit	SUB	A, [DE]	XOR	saddr, #byte
OR1	CY, PSW.bit	SUB	A, [HL]	XOR	sfr, #byte
OR1	CY, saddr.bit	SUB	A, [r4]	XOR1	CY, A.bit
OR1	CY, sfr.bit	SUB	A, word [r1]	XOR1	CY, PSW.blt
OR1	CY, X.bit	SUB	г, г	XOR1	CY, saddr.bit
OR1	CY, /A.bit	SUB	saddr, #byte	XOR1	CY, sfr.bit
OR1	CY, /PSW, bit	SUB	sfr. #byte	XOR1	CY, X.bit
OR1	CY, /saddr.bit	SUBC	A, saddrp		
OR1	CY, /sfr.bit	SUBC	A, sfr		

Caution Refer to *µPD78148 User's Manual* (IEU-1319) or *µPD78148 instruction Set* (IEM-5536) for the details of the instructions.

8. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS $(T_A = 25 °C)$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Voo	I Voc AVoo I ≤ 0.5 V	-0.5 to +7.0	v
	AVoo		-0.5 to +7.0	v
	AVREF	Vod ≥ AVod	-0.5 to AVpp + 0.3	v
		VDD < AVDD	-0.5 to Vpp + 0.3	v
	AVss		-0.5 to +0.5	v
Input voltage	Vi	· · · · · · · · · · · · · · · · · · ·	-0.5 to Vpo + 0.5	v
Analog input voltage (ANIO - ANI14)	Vian	Voo ≥ AVoo	-0.5 to AVpo + 0.5	V
		Ved < AVDD	-0.5 to Vpo + 0.5	V
Output voltage	Vo		-0.5 to Vpo + 0.5	V
Low-level output current	ło∟	1 pin	15	тлА
		Total of all output pins	100	тA
High-level output current	Іон	1 pin	-10	mA
		Total of all output pins	-50	mA
Operating ambient temperature	Та		-10 to +70	.c
Storage temperature	Tatg	·	-65 to +150	'C

Caution Absolute maximum ratings are rated values beyond which some physical damages may be caused to the product; if any of the parameters in the table above exceeds its rated value even for a moment, the quality of the product may deteriorate. Be sure to use the product within the rated values.

OPERATING CONDITIONS

Clock frequency	Operating ambient temperature (TA)	Supply voltage (Vpc)
4 MHz ≤ fxx ≤ 12 MHz	-10 'C to +70 'C	+4.5 V to +5.5 V
32 kHz ≤ txτ ≤ 35 kHz		+2.0 V to +5.5 V (For clock operation only)

Note For clock operation only

CAPACITANCE $(T_A = 25 C, V_{DD} = V_{SS} = 0 V)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input capacitance	Cı	fc = 1 MHz			20	pF
Output capacitance	Co	0 V on pins other than measured			20	pF
I/O capacitance	Сю	pins			20	pF

OSCILLATOR CHARACTERISTICS (MAIN CLOCK)

 $(T_A = -10 \ C \ to +70 \ C, \ V_{DD} = AV_{DD} = 5.0 \ V \pm 10 \ \%, \ V_{SS} = AV_{SS} = 0 \ V)$

Resonator	Recommended circuit	Parameter	Min.	Max.	Unit
Crystal	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Oscillation frequency (fxx)	4	12	MHz

OSCILLATOR CHARACTERISTICS (SUBCLOCK)

 $(T_A = -10 \ C \ to +70 \ C, \ V_{DD} = AV_{DD} = 2.0 \ V \ to \ 5.5 \ V, \ V_{SS} = AV_{SS} = 0 \ V)$

Resonator	Recommended circuit	Parameter	Min.	Max.	Unit	
Crystal	$XT1 XT2 V_{ES}$ $= C1 C2$ $TT7$	Oscillation frequency (fxr)	32	35	kНz	

- Caution When using the main system clock generator and subsystem clock generator, run wires in broken lines ([[[[]]]]) shown in the above figures according to the following rules to avoid adverse effects caused by stray capacitance or other factors:
 - Connect components as short as possible.
 - Never cause the wires to cross other signal lines or run near a line carrying a large varying current.
 - Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss at all times. Never connect the capacitor to a ground pattern carrying a large current.
 - · Never extract a signal from the oscillator.

Note, in particular, that the subsystem clock generator is a low-amplification circuit for reduced current consumption.

Phase-out/Discontinued µPD

DC CHARACTERISTICS (TA = -10 °C to +70 °C, VDD = AVDD = $5.0 \text{ V} \pm 10 \text{ \%}$, Vss = AVss = 0 V)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Low-level input voltage	VL			0		0.8	V
High-level input voltage	VHI	Pins other than those shown in Note 1		2.2		Vod	v
	VIH2	Pins shown in N	lote 1 ^{Note 2}	0.8Vod	···· <u>-</u> · ··· ·	Voo	V
Low-level output voltage	Volt	lot = 2.0 mA				0.45	v
	Vol2	lot = 8.0 mA ^{Note}	3			1.0	v
High-level output voltage	Vонı	tон = −1.0 mA		Vpo – 1.0			v
	VoH2	loн = −100 µА		Voo - 0.5			V
	Vонз	юн = -5.0 mA ^{Ne}	ote 4	2.0			V
Input leakage current	lu	0 V ≤ VI ≤ Vod				±10	μA
Output leakage current	llo	0 V ≤ Vo ≤ Voo				±10	μA
AVREF current	AIREF				0.2	1.0	mA
Voo supply current	loo1	Operating mode, fxx = 12 MHz			30	50	mA
	IDD2	HALT mode, fxx = 12 MHz			7	30	mA
Data retention voltage	VDDDA	STOP mode		2.0			v
Data retention current Note 5, Note 6	loos	STOP mode VDDDR = 5.5 V	When the subclock operates		15	70	μA
			When the subclock does not operate		0.5	40	μA
		STOP mode VDDDR = 3.0 V	When the subclock operates		3.0	14.0	μA
			When the subclock does not operate		0.3	8.0	μA
		STOP mode VDDDR = 2.0 V	When the subclock operates		1.5	9.0	μA
			When the subclock does not operate		0.2	6.0	μA
Pull-up resistor	RL	$V_i = 0 V$	•	15	30	80	kΩ

Notes 1. Pins X1, X2, RESET, NMI, P21/INTP0, P22/INTP1, P23/INTP2, P24/CTI10, P25/CTI00, P26/CTI11, P27/CLR1, P34/CLR0, P35/SI0, P36/SO0/SB0, P37/SCK0, P93/SCK1, P95/SI1, and MODE

- 2. When using the XT1/P86 pin for input, disconnect the clock noise eliminator and feedback resistor.
- 3. Pins P10 P17, P40 P47, P50 P57

4. Pins P00 - P07

- 5. Current through the AVREF pin is excluded.
- 6. When the subclock is not operating in the STOP mode, disconnect the feedback resistor and clock noise eliminator, and connect the XT1 pin to Voo.

DC CHARACTERISTICS $(T_A = +25 °C, V_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Data retention current Note 1. Note 2	loos	STOP mode VDODA = 5.5 V	When the subclock operates		15.0	40.0	μA
			When the subclock does not operate		0.5	10.0	μA
		STOP mode VDDDR = 3.0 V	When the subclock operates		3.0	10.0	μA
			When the subclock does not operate		0.3	5.0	μA
		STOP mode Votor = 2.0 V	When the subclock operates		1.5	7.0	μA
			When the subclock does not operate		0.2	4.0	μA

Notes 1. Current through the AVREF pin is excluded.

2. When the subclock is not operating in the STOP mode, disconnect the feedback resistor and clock noise eliminator and connect the XT1 pin to Vob.

SERIAL INTERFACE (TA = -10 °C to +70 °C, VDD = AVDD = 5.0 V ± 10 %, Vss = AVss ≈ 0 V)

(1) Channel 0

Parameter	Symbol		Condition	Min.	Max.	Unit
Serial clock cycle time	tovsko	Input	External clock	1.0		μs
		Output	faux divided by 8	1.3		μs
			four divided by 32	5.3		μs
Serial clock low-level width	twsklo	Input	External clock	420		ns
		Output	foux divided by 8	556		ns
			fclk divided by 32	2.5		μs
Serial clock high-level width	twskino	Input	External clock	420		ns
		Output	fcux divided by 8	556		ns
			four divided by 32	2.5		μs
SIO, SBO setup time (before SCK0 1)	tsssko			150		ns
Si0, SB0 hold time (after SCK0 1)	DHSSKO			400		ns
SO0, SB0 output delay time (from SCK0 ↓)	toseskoi		ush-pull output re serial I/O mode)	o	300	ns
	toseskoz	Open-dra (SBI mod	lin output le), R∟ = 1 kΩ	C	800	ПŜ
SB0 high hold time (after SCK0 1)	thsesko	SBI mode	÷	4tcyx		ns
SB0 low setup time (belore $\overline{\text{SCK0}}\downarrow$)	tssesko			4tcvx		ns
SB0 low-level width	twsBLo			4tcvx		ns
SB0 high-level width	twsBH0		· • · · · · · · ·	4tcyx		ns

Remarks 1. The values listed in the above table are obtained when fxx = 12 MHz and $C_L = 100$ pF.

2. folk indicates the internal system clock (fix divided by 2).

3. $t_{CYX} = 1/f_{XX}$

(2) Channel 1

Parameter	Symbol	с	ondition	Min.	Max.	Unit
Serial clock cycle time	ICYSK1	External clock	Automatic transfer	17tovx		ns
		input	Three-wire	13tcvx		ns
		Output	four divided by 8	1.3		μs
			folk divided by 32	5.3		μs
			foux divided by 64	10.6		μs
Serial clock low-level width	twskl1	External clock	Automatic transfer	5tcvx		ns
		input	Three-wire	5tcyx		ns
		Output	four divided by 8	620		ns
			four divided by 32	2.6		μs
			fcux divided by 64	5.3		μs
Serial clock high-level width	twskhi	External clock input	Automatic transfer	9tovx		ns
			Three-wire	5toyx		กร
		Output	four divided by 8	620		ns
			foux divided by 32	2.6		μs
			foux divided by 64	5.3		μs
SI1 setup time (before SCK1 1)	tsssk1		<u> </u>	100		ns
SI1 hold time (after SCK1 1)	tHSSK1			400		ns
SO1 output delay time (from SCK1 ↓)	toseski			0	300	ns
$\overline{\text{SCK1}}(8) \uparrow \rightarrow \text{STRB1} \uparrow$	tostren			twskH1	tcyski	
Strobe signal high-level width	twstre;			tсүзкі — 30	tсүзк1 + 30	ns
BUSY1 setup time referred to BUSY1 detection	tseusy1		· · · · · · · · · · · · · · · · · · ·	100		ns
BUSY1 hold time referred to BUSY1 detection	theusy1			100		ns
BUSY inactive $\rightarrow \overline{SCK1}(1) \downarrow$	tususyı			<u> </u>	tсузкі + twsкні	

Phase-out/Discontinued

Remarks 1. The values listed in the above table are obtained when fxx = 12 MHz and $C_L = 100$ pF.

- 2. four indicates the internal system clock (fix divided by 2).
- 3. $t_{CYX} = 1/f_{XX}$
- 4. The parenthesized number as in SCK1(n) indicates that n-1 SCK1 pulses precede this particular SCK1(n) pulse.
- 5. BUSY1 is detected when $(n+2) \times t_{CYSK1}$ has passed after $\overline{SCK1}(8) \uparrow (n = 0, 1, ...)$.

* *

OTHER OPERATIONS (TA = -10 °C to +70 °C, VDD = AVDD = $5.0 \text{ V} \pm 10 \text{ %}$, Vss = AVss = 0 V)

Para	ameter	Symbol	Condition	Min.	Max.	Unit
CTI00, CTI10, CTI11 Iow-level width		twcn.		4tcvx		ns
CTI00, CTI10, CTI11 high-level width		twcтн		4tcvx		ns
CLR1 low-leve	əł width	tworn	Digital noise eliminator not used	4tcyx		ns
- -			Digital noise eliminator used ICR bit 4 = 0	160lovx		ns
			Digital noise eliminator used ICR bit 4 = 1	256tovx		ns
CLR1 high-level width		twcn1H	Digital noise eliminator not used	4tcyx		ns
			Digital noise eliminator used ICR bit 4 = 0	160tcvx		nŝ
			Digital noise eliminator used ICR bit 4 = 1	2561cvx		ns
Digital noise	Removed	twsep	ICR bit 4 = 0		152tcvx	ns
eliminator	pulse width		ICR bit 4 = 1		248tcvx	ns
	Passed pulse		ICR bit 4 = 0	160tcvx		ns
	width		ICR bit 4 = 1	256tcvx		ns
Have synchro	nization time	tons	ICR bit 4 = 0	772tcvx	778tcrx	ns
(CLR1 $\uparrow \rightarrow$ H	sync 1)		ICR bit 4 = 1	7601cyx	766tcvx	ns
Have cycle tir	ne	toyons	When fx is 12 MHz	63.5		μs
Have active le	evel width	twns	When fx is 12 MHz	5		μs
NMI low-level	width	twniL		10		μs
NMI high-leve	l width	twnin	# ¹⁷¹ "#	10		μs
INTPO - INTP2	2 low-level width	twipt		4toyx		ns
INTPO - INTP2	high-level width	twiph		4tovx		ns
RESET low-le	vel width	twasi		10		μs

CLOCK OUTPUT OPERATION (TA = -10 °C to +70 °C, VDD = AVDD = $5.0 \text{ V} \pm 10 \text{ %}$, Vss = AVss = 0 V)

Parameter	Symbol	Formula	Min.	Max.	Unit
CLO cycle time	toyoL		333	2667	ns
CLO low-level width	tcu	tcya_/2 ±50	116	1 384	ns
CLO high-level width	tсuн	teva./2 ±50	116	1384	ns
CLO rising time	tcua			50	ns
CLO falling time	tCLF			50	n\$

DATA MEMORY LOW-VOLTAGE DATA RETENTION CHARACTERISTICS

Phase-out/Discontinued

 $(T_A = -10 C to +70 C, AV_{SS} = V_{SS} = AV_{REF} = 0 V)$

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Data retention voltage	VDDDR	STOP mode Not	te 1	2.0		5.5	V
Data retention current Note 2, Note 3	IDD3	STOP mode VDDDR = 5.5 V	When the subclock operates		15.0	70.0	μA
			When the subclock does not operate		0.5	40.0	μA
		STOP mode VDDDR = 3.0 V	When the subclock operates		3.0	14.0	μA
			When the subclock does not operate		0.3	8.0	μA
		STOP mode VDDDR = 2.0 V	When the subclock operates		1.5	9.0	μA
			When the subclock does not operate		0.2	6.0	μA
Data retention current Note 2, Note 3 (TA = 25 °C)	1003	STOP mode VDDDR = 5.5 V	When the subclock operates		15.0	40.0	μA
			When the subclock does not operate		0.5	10.0	μA
		STOP mode Voddr = 3.0 V	When the subclock operates		3.0	10.0	μA
			When the subclock does not operate		0.3	5.0	μA
		STOP mode Vodor = 2.0 V	When the subclock operates		1.5	7.0	μA
			When the subclock does not operate		0.2	4.0	μA
Voo rising time	tavo			200			μs
Voo falling time	trvo			200			μs
Voo retention time (referred to STOP mode setting)	thyp			0			ms
STOP release signal input time	TOREL			0	·		ms
Low-level input voltage	VL	Specified pins ^{Ne}	ote 4	0		0.1VDDDR	V
High-level input voltage	νн]		0.9Vooda		VODDA	v

Notes 1. The voltage to keep the subclock operating is lower than the data retention voltage.

- 2. Current through the AVREF pin is excluded.
- 3. When using the XT1/P86 pin for input, disconnect the feedback resistor and clock noise eliminator.
- 4. Pins NMI, RESET, P21/INTP0, P22/INTP1, P23/INTP2, P24/CTI10, P25/CTI00, P26/CTI11, P27/CLR1, P34/CLR0, P35/SI0, P36/SO0/SB0, P37/SCK0, P93/SCK1, P95/SI1, MODE, and P86/XT1 (when the subclock is not operating)

Phase-out/Discontinued

CLOCK FUNCTION (TA = -10 °C to +70 °C, AVss = Vss = 0 V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Voltage to keep the subclock operating	VDDXT		2.0			v
Operating voltage for hard- ware clock function	Vodw		2.0			· V

FLAG FOR DETECTING A BREAK OF SUBCLOCK OPERATION

 $(T_A = -10 C to +70 C, V_{DD} = AV_{DD} = 5.0 V \pm 10 \%, V_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Time duration detected as a	Toscf		45			μs
break of oscillating						

A/D CONVERTER CHARACTERISTICS

 $(T_A = -10 C to +70 C, V_{DD} = AV_{DD} = +5.0 V \pm 10 \%, 3.8 V \le AV_{REF} \le V_{DD}, AV_{SS} = V_{SS} = 0 V)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution			8			bit
Total error		4.0 V S AVREF S VOD			0.4	%
		3.8 V S AVREF S VOD			0.8	%
Quantization error					±1/2	LSB
Conversion time	tconv	ADM0 bit 4 = 0 ^{Note}	360tсух			ns
		ADM0 bit 4 = 1 ^{Note}	240tcvx			ns
Sampling time	tsamp	ADM0 bit 4 = 0 ^{Note}	72tcvx			ns
		ADM0 bit 4 = 1 ^{Note}	48tcyx			ns
Analog input voltage	Vian		-0.3		AVREF + 0.3	v
Reference voltage	AVREF		3.8		Vad	V
AVREF CUITENT	Alref			0.2	1.0	mΑ

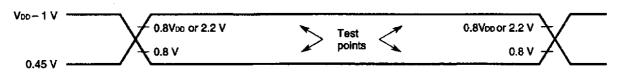
Note The time specified by ADM0 is used even for conversion with ADM1.

CHARACTERISTICS OF THE OPERATIONAL AMPLIFIERS

 $(T_A = -10 \degree C \text{ to } +70 \degree C, V_{DD} = AV_{DD} = 5.0 V \pm 10 \%, AV_{SS} = V_{SS} = 0 V)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Open-loop gain	Av	1	60			dB
Voltage range for common- mode input	Vicm		0.5		3.3	v
Input offset voltage	Vos		-	±10	±20	mV
High-level output current	ЮНОР	$V_{DD} = 5.0 \text{ V}, \text{ Voh} = \text{Vdd}/2$	-4.0	-12.0		mA
Low-level output current	IOLOP	VDD = 5.0 V, VOL = VD0/2	50	130		μA
Slew rate	+			1		V/µs
	-			-4		V/ms
Common-mode rejection ratio	CMRR		60			dB
Supply-voltage rejection ratio	PSRR		60			dB
Unity-gain frequency	fo		1			MHz

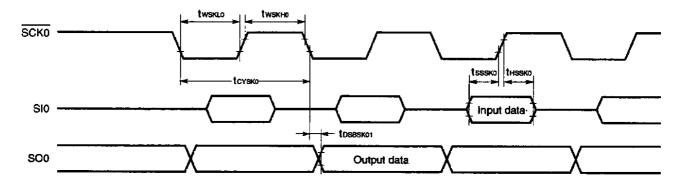
Phase-out/Discontinued


Caution For stable operation, do not decrease the operational amplifier gain below 20 dB.

RECCTL WRITE CIRCUIT (TA = -10 °C to +70 °C, VDD = AVDD = $5.0 \text{ V} \pm 10 \text{ %}$, AVss = Vss = 0 V)

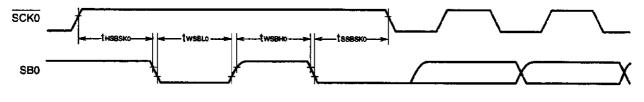
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CTLDLY charge current	Іонст∟	VDD = 5.0 V Voh == 0 V	-500	900	-1300	μA
CTLDLY discharge current	lolon.	V _{DD} = 5.0 V VoL = 5.0 V	1300	2200	3200	μA
PTO10, PTO11 high-level output current	Іонето	Vpo = 5.0 V Voн = 0 V	-6	-12	-22	mA

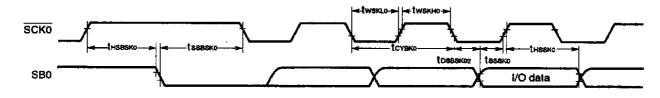
Caution When a 1- μ F capacitor is connected, the time constant for PTO10 or PTO11 is 2 to 5 ms.


AC Timing Test Points

TIMING WAVEFORM

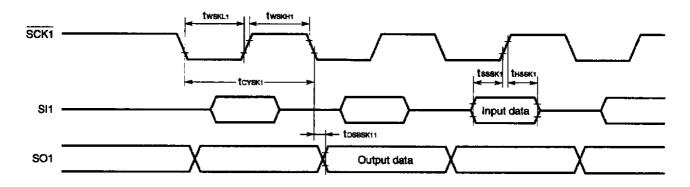
Serial Operation (SIO0)


Three-wire serial I/O mode:

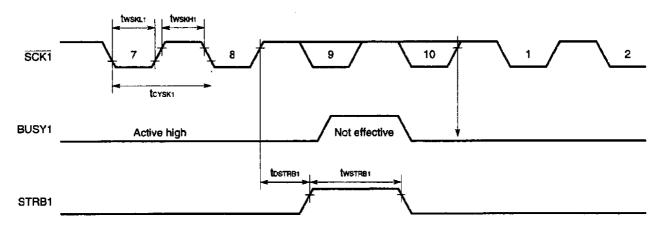

Phase-out/Discontinued

SBI Mode

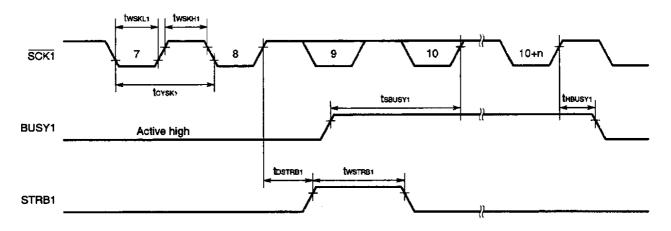
Bus release signal transfer:

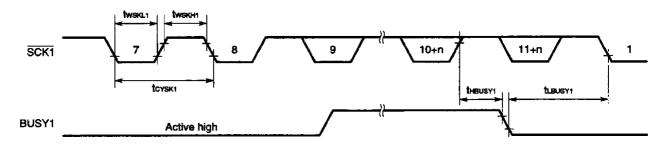


Command signal transfer:



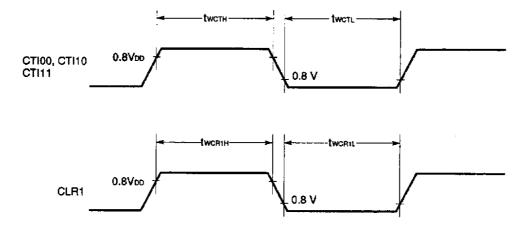
Serial Operation (SIO1)


Three-wire serial I/O mode:

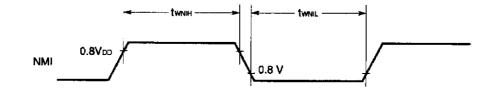

Automatic Transfer Mode (Internal Clock) Without busy-state processing

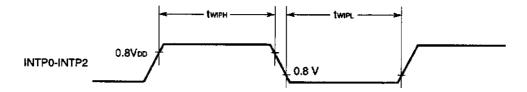
When the busy-state processing continues

When the busy-state processing ends

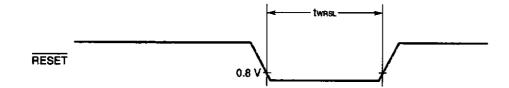

μ**PD78146, 78148**

.....

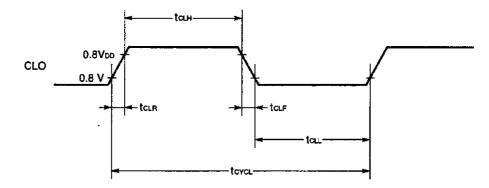

~


~

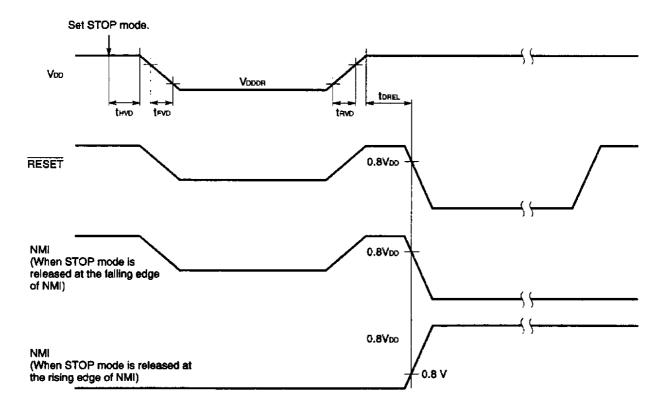
Super Timer Unit Input Timing

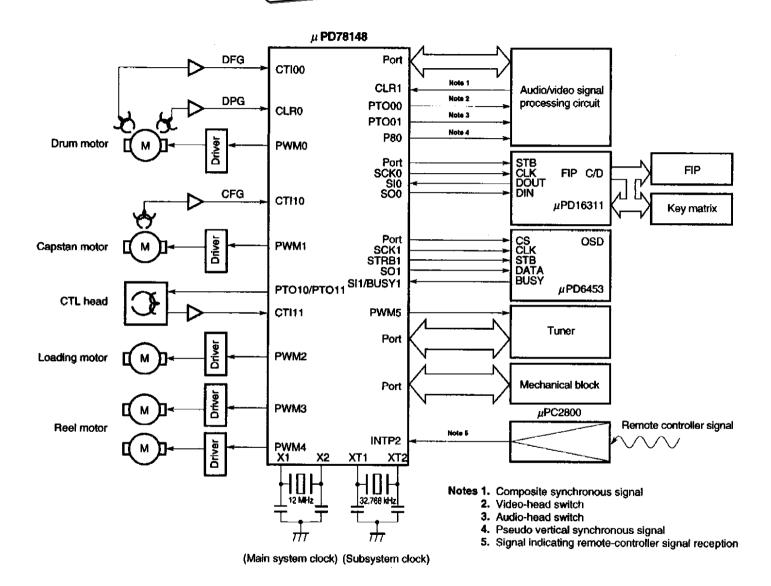


Interrupt Input Timing



Reset Input Timing




Clock Output Timing

Phase-out/Discontinued

)

1

1

9. EXAMPLE OF SYSTEM CONFIGURATION

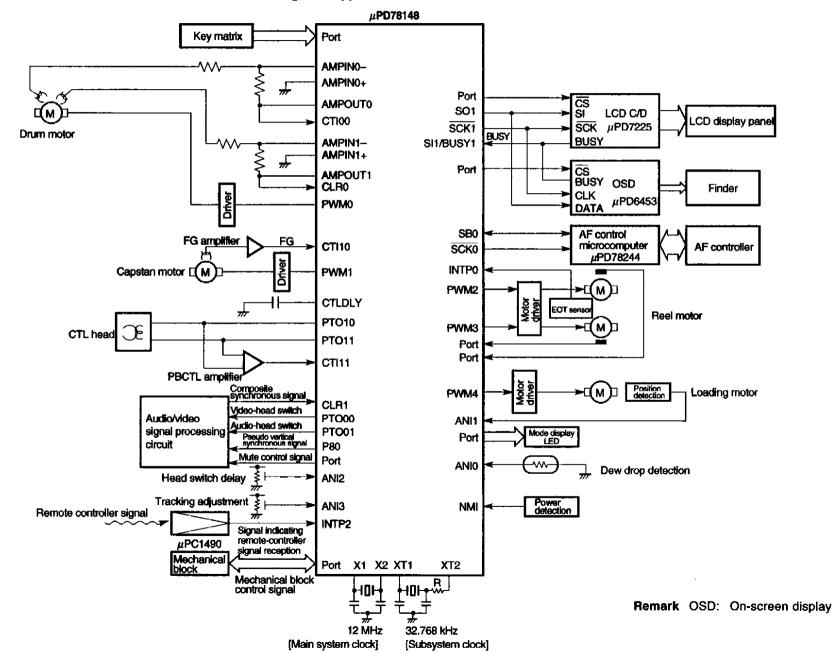
7

П

μPD78146, 78148

1

À.


1

ì

1

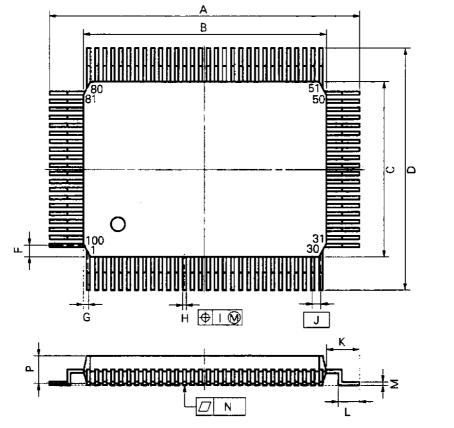
1

Fig. 9-2 Application to Camcorders

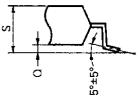
μPD78146, 78148

1

1


J

1


μPD78146, 78148

10. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

	-	P100GF-65-3BA1-2
ITEM	MILLIMETERS	INCHES
A	23.6±0.4	0.929±0.016
В	20.0±0.2	0.795+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
н	0.30±0.10	0.012+0.004
1	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
м	0.15+0.10	0.006 ^{+0.004}
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

11. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

For the details of the recommended soldering conditions refer to our document *SMD Surface Mount Technology Manual* (IEI-1207).

Phase-out/Discontinued

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Table 11-1 Soldering Conditions for Surface-Mount Devices

*

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	 Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (at 210 °C or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 days^{Note} (20 hours of pre-baking is required at 125 °C afterward.) <cautions> Do not start reflow-soldering the device if its temperature is higher than the room temperature because of a previous reflow soldering. Do not use water for flux cleaning before a second reflow soldering. </cautions> 	IR35-207-2
VPS	 Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (at 200 °C or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (20 hours of pre-baking is required at 125 °C afterward.) <cautions> (1) Do not start reflow-soldering the device if its temperature is higher than the room temperature because of a previous reflow soldering. (2) Do not use water for flux cleaning before a second reflow soldering. </cautions> 	VP15-207-2
Wave soldering	Temperature in the soldering vessel: 260 °C or less Soldering time: 10 seconds or less Number of soldering process: 1 Preheating temperature: 120 °C max. (measured on the package surface) Exposure limit: 7 days ^{Note} (20 hours of pre-baking is required at 125 °C afterward.)	WS60-207-1
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for each side of device)	

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: Temperature of 25 °C and maximum relative humidity at 65 % or less

Caution Do not apply more than a single process at once, except for "Partial heating method."

_

APPENDIX A DIFFERENCE BETWEEN μPD78148 AND RELATED PRODUCTS (μPD78146, μPD78P148, AND μPD78138)

	Inction	#PD7814	5	μPD78148	μPD78P148	μ	PD78138
Minimum execution	instruction time	0.33	3 μs (wh	en the microcomputer	operates at 12 MHz)		
ROM type	9		Mask	ROM	PROM	м	ask ROM
ROM cap	acity	24K bytes	5		32K bytes		
RAM cap	acity	688 bytes ^{No}	te 1	816 byte	IS ^{Note 1}	6	40 bytes
I/O	Port			76 ^{Note 2}		1	58
	A/D			15			8
	Others		6 (fo	r operational amplifier l	/0)		0
Real-time	output port		(Output	18 trigger timer can be se	lected.)	(Output trigg	8 jer timer only is set.}
Super timer	Timer	 16 bits × 3 8 bits × 3 				 16 bits > 7 bits × 	
unit	Counter	 22-bit free 6-bit up/dox		counter × 1 hter × 1		18-bit free counter	ee running × 1
	Capture register	 22 bits × 2 16 bits × 3 8 bits × 2 			 18 bits > 16 bits > 7 bits × 	< 4	
	Compare register	 16 bits × 7 8 bits × 3 		 16 bits × 6 7 bits × 1 			
	PWM output	 12 bits × 2 14 bits × 1 8 bits × 3 c 	 12 bits × 2 channels (carrier frequency: 46.9 kHz/23.4 kHz) 				
Multiply in	structions		•	absolute value) × 8 bits complement) × 8 bits (a	•		
Multiplier		16 bits (comple Operation time		× 16 bits (complement) µs			-
A/D conve	erter	8-bit resolution × 15 channels (7 channels can also be used as ports.)			8-bit resolution × 8 channels		
Serial inte	irface	1 1	Chani	nei 0: Either 3-wire SIO nel 1: Only 3-wire SIO is data send/receive function	set. 48-byte auto-	1 channel	Either 3-wire SIO or SBI can be selected.
Analog ci	rcuit		2 operat	ional amplifiers are pro	vided.		_
Interrupt	External			5			5
	Internal	20					12
Package	ackage 100-pin plastic QFP (0.65 mm pltch, 14 × 20 mm) 100-pin ceramic WQFN (14 × 20 mm) (μPD78P148 only)		•	80-pin plast pitch, 14 × ;	ic QFP (0.8 mm 20 mm)		
Vзүнс sөр	arator	Removed pulse width: Either 12.7 μ s or 20.7 μ s can be selected.			Removed pulse width: Either 5.3 μs or 12.0 μs can be selected.		
Remote co reception o	introller signal circuit	8-bit timer 4 (TM4) is provided.				-	
Clock fund	stion	The clock function of hardware is provided.				<u> </u>	

Notes 1. Total of dual-port RAM (256 bytes) and peripheral RAM.

2. 10 port pins are also used for analog input to the A/D converter or as analog pins for the operational amplifiers.

APPENDIX B DEVELOPMENT TOOLS

The following tools are provided for developing a system that employs the μ PD78146 and μ PD78148.

[Hardware]

IE-78140-R	In-circuit emulator applicable for the μ PD78146, μ PD78148, and μ PD78P148. For debugging, connect the emulator to the host machine. The connection of the emulator to the host machine enables symbolic debugging and object file transfer between the emulator and the host machine, thus enhancing debugging efficiency. The emulator has two RS-232-C serial interfaces channels. It can be connected to PROM programmer PG-1500. It also has the Centronics interface so that an object file and symbol file can be downloaded at high speed.
EP-78140GF-R	Emulation probe for the μ PD78146, μ PD78148, and μ PD78P148. A 100-pin conversion socket, EV-9200GF-100, is supplied with the emulation probe, enabling easy development of a system.
EV-9200GF-100	Conversion socket produced for the 100-pin plastic QFP (14 × 20 mm excluding the leads). This socket is mounted on the PC board of the user system. The socket is used together with the EP-78140GF-R.
EV-9900	Jig used for removing the µPD78P148K from the EV-9200GF-100
PG-1500	A PROM programmer. Programs can be written into PROMs in a stand-alone mode or by remote control from a host machine when this programmer is connected with the accessory board and optional programmer adapter. Products programmable with the PG-1500 are commonly used PROMs (256K-bit to 4M-bit) and single chip microcomputers containing PROM.
PA-78P148K	PROM programmer adapter for the μ PD78P148. The adapter is used with the PG-1500.

μ**PD78146, 78148**

~

[Software]

 \star

*

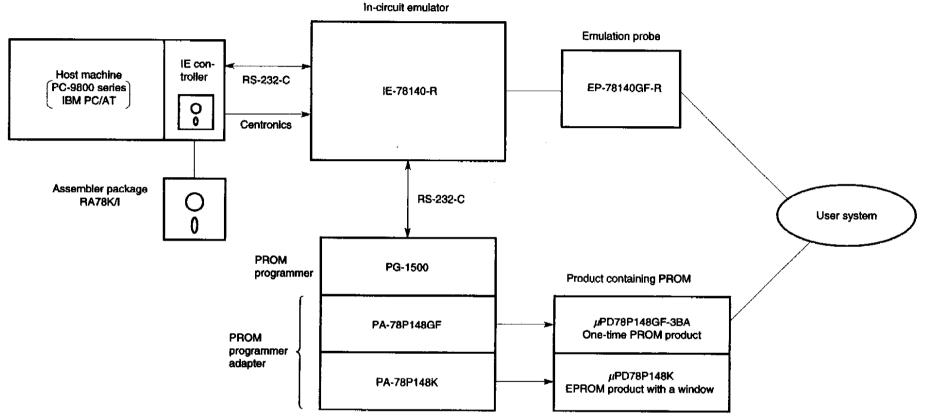
×

RA78K/I relocatable assembler	This relocatable assembler can be used for all 78K/I series emulators. With its macro functions, it allows the user to improve program development efficiency. A structured-programming assembler is also provided, which enables explicit description of program control structures. This assembler greatly improves productivity in program production and maintenance.						
	Host machine	OS	Distribution media	Part number			
	PC-9800 series	MS-DOS TM	3.5-inch 2HD	μS5A13RA78K1			
		to Ver. 5.00A ^{Note}	5.25-inch 2HD	μS5A10RA78K1			
	IBM PC/AT TM or compatibles	See "OS for IBM PC".	5.25-inch 2HC	μS7B10RA78K1			
IE-78130-R control program (IE controller)	This control program allows the user to control the IE-78130-R from the host machine. Its automatic command execution function ensures more efficient debugging.						
	Host machine	OS	Distribution media	Part number			
	PC-9800 series	MS-DOS Ver. 3.30	3.5-inch 2HD	μS5A13IE78130			
		to Ver. 5.00A ^{Note}	5.25-inch 2HD	μS5A10IE78130			
	IBM PC/AT or compatibles	See " OS for IBM PC".	5.25-inch 2HC	μ\$7B10IE78130			
PG-1500 controller	This program enabl parallel interface.	es the host machine to c	ontrol the PG-1500 unde	r the serial interface and			
	Host machine	OS	Distribution media	Part number			
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13PG1500			
		(to Ver. 5.00A ^{Note})	5.25-inch 2HD	μS5A10PG1500			
	IBM PC/AT or	See "OS for IBM	3.5-inch 2HD	μS7B13PG1500			
	compatibles	PC".	5.25-inch 2HC	μ\$7B10PG1500			

Phase-out/Discontinued

- **Note** These software products cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A.
- **Remark** The operation of software products that include the assembler and IE controller is guaranteed only under the OSs on the corresponding host machines described above.

OS for IBM PC


The following operating systems are supported for IBM PC.

OS	Version
PC DOS™	Ver. 3.1 to Ver. 6.3
	J6.1/VNote to J6.3/VNote
IBM DOS™	J5.02/V ^{Note}
MS-DOS	Ver. 5.0 to Ver. 6.2
	5.0/VNote to 6.2/VNote

Note Supports English mode only.

Caution These software products cannot use the task swap function, which is available in Ver. 5.00 and after.

Phase-out/Discontinued

μPD78146, 78148

Cautions on CMOS Devices

Phase-out/Discontinued

(1) Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

(2) CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the Vob or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

(3) Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

MS-DOS is a trademark of Microsoft Corporation. IBM DOS, PC DOS, and PC/AT are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11