Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

mos integrated circuit μ **PD78076Y, 78078Y**

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78076Y and 78078Y add the I²C bus control function to the μ PD78076 and 78078, and are suitable for application in AV products.

Besides a high-speed, high-performance CPU, these microcontrollers have internal ROM, RAM, I/O ports, 8-bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, interrupt control, and various other peripheral hardware.

A one-time PROM version and an EPROM version (common name: μ PD78P078Y), both of which can operate in the same power supply voltage range as the mask ROM version, and various development tools are also available.

The details of the functions are described in the following user's manuals. Be sure to read them before designing. μPD78078, 78078Y Subseries User's Manual: U10641E 78K/0 Series User's Manual – Instructions: U12326E

FEATURES

Item	Program	Data Memory			
Part Number	Memory (ROM)	Internal High-Speed RAM	Internal Buffer RAM	Internal Expansion RAM	Package
μPD78076Y	48 Kbytes	1024 bytes	32 bytes	1024 bytes	100-pin plastic QFP
					(14 $ imes$ 20 mm, resin thickness 2.7 mm)
μPD78078Y	60 Kbytes				100-pin plastic LQFP ^{Note}
					(14 $ imes$ 14 mm, resin thickness 1.40 mm

• Internal high-capacity ROM and RAM

Note Under development

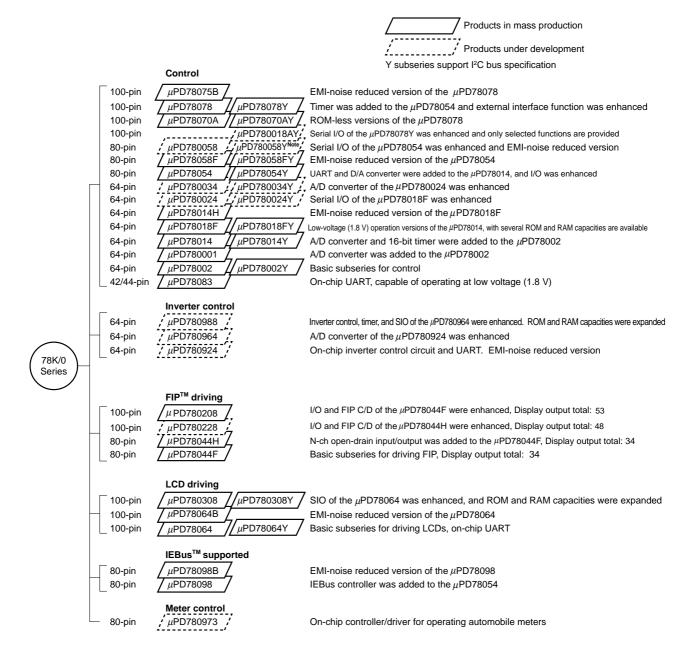
- External memory expansion space: 64 Kbytes
- Minimum instruction execution time can be changed from high-speed (0.4 μs) to ultra-low-speed (122 μs)
- I/O ports: 88 (N-ch open-drain: 8)
- 8-bit resolution A/D converter: 8 channels
- 8-bit resolution D/A converter: 2 channels
- Serial interface: 3 channels
 - 3-wire serial I/O, 2-wire serial I/O, and I²C bus mode: 1 channel
 - 3-wire serial I/O mode: 1 channel
 - 3-wire serial I/O and UART mode: 1 channel
- Timer: 7 channels
- Supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Cellular phones, cordless telephones, AV equipment, etc.

The information in this document is subject to change without notice.

ORDERING INFORMATION


Part Number	Package
μPD78076YGF-×××-3BA	100-pin plastic QFP (14 \times 20 mm, resin thickness 2.7 mm)
μPD78076YGC-×××-8EU ^{Note}	100-pin plastic LQFP (fine pitch) (14 \times 14 mm, resin thickness 1.40 mm)
μPD78078YGF-×××-3BA	100-pin plastic QFP (14 \times 20 mm, resin thickness 2.7 mm)
μPD78078YGC-×××-8EU ^{Note}	100-pin plastic LQFP (fine pitch) (14 \times 14 mm, resin thickness 1.40 mm)

Note Under development

Remark ××× indicates the ROM code suffix.

78K/0 SERIES DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

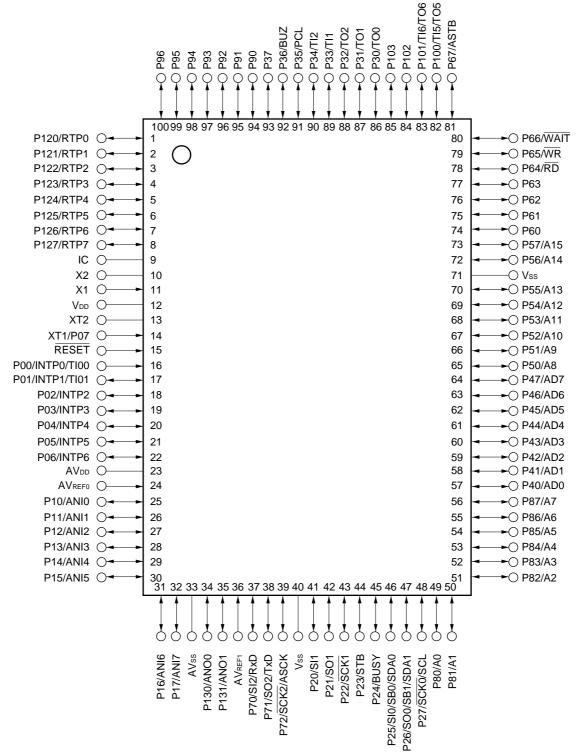
Note Under development

	Function	ROM	Serial Interface		I/O	Vdd
Subseries Name		Capacity				MIN. Value
Control µPD78078Y		48 K to 60 K	3-wire/2-wire/l ² C	: 1 ch	88	1.8 V
	μPD78070AY	_	3-wire with automatic transmit/receive function	: 1 ch	61	2.7 V
			3-wire/UART	: 1 ch		
	μPD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function	: 1 ch	88	
			Time division 3-wire	: 1 ch		
			I ² C bus (supports Multimaster)	: 1 ch		
	μPD780058Y	24 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	68	1.8 V
			3-wire with automatic transmit/receive function	: 1 ch		
			3-wire/time division UART	: 1 ch		
	μPD78058FY	48 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	69	2.7 V
	μPD78054Y	16 K to 60 K	3-wire with automatic transmit/receive function	: 1 ch		2.0 V
			3-wire/UART	: 1 ch		
	μPD780034Y	8 K to 32 K	UART	: 1 ch	51	1.8 V
	μPD780024Y		3-wire	: 1 ch		
			I ² C bus (supports Multimaster)	: 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/I ² C/SBI/I ² C	: 1 ch	53	
			3-wire with automatic transmit/receive function	: 1 ch		
	μPD78014Y	8 K to 32K	3-wire/2-wire/SBI/I ² C	: 1 ch		2.7 V
			3-wire with automatic transmit/receive function	: 1 ch		
	μPD78002Y	8 K to 16 K	3-wire/2-wire/SBI/I ² C	: 1 ch		
LCD driving	μPD780308Y	48 K to 60 K	3-wire/2-wire/l ² C	: 1 ch	57	2.0 V
			3-wire/time division UART	: 1 ch		
			3-wire	: 1 ch		
	μPD78064Y	16 K to 32 K	3-wire/2-wire/I ² C	: 1 ch		
			3-wire/UART	: 1 ch		

The major functional differences among the Y subseries are shown below.

OVERVIEW OF FUNCTION

	Part Number	μΡD78076Y	μPD78078Y			
Item						
Internal	ROM	48 Kbytes	60 Kbytes			
memory High-speed RAM		1024 bytes				
	Buffer RAM	32 bytes				
	Expansion RAM	1024 bytes				
Memory space	ce	64 Kbytes				
General-purp	ose registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4	banks)			
Minimum inst	truction execution	On-chip minimum instruction execution time	variable function			
N	When main system	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (a	at 5.0-MHz operation)			
c	clock selected					
N	When subsystem	122 μ s (at 32.768-kHz operation)				
c	clock selected					
Instruction se	et	16-bit operation				
		• Multiply/divide (8 bits \times 8 bits, 16 bits \div 8 b	bits)			
		• Bit manipulate (set, reset, test, Boolean op	peration)			
		• BCD adjust, etc.				
I/O ports		Total : 88				
		CMOS input : 2				
		• CMOS I/O : 78				
		N-ch open-drain I/O : 8				
A/D converte	r	8-bit resolution x 8 channels				
D/A converte	r	8-bit resolution x 2 channels				
Serial interfa	се	• 3-wire serial I/O/2-wire serial I/O/I ² C bus mode selectable : 1 channel				
		• 3-wire serial I/O mode				
		(up to 32-byte automatic data transmit/rece	eive function is provided) : 1 channel			
		• 3-wire serial I/O/UART mode selectable	: 1 channel			
Timer		16-bit timer/event counter: 1 channel				
		• 8-bit timer/event counter : 4 channels				
		• Watch timer : 1 channel				
		• Watchdog timer : 1 channel				
Timer output		5 (14-bit PWM output \times 1, 8-bit PWM output	× 2)			
Clock output		• 19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,				
		5.0 MHz (@ 5.0-MHz operation with main s	system clock)			
		• 32.768 kHz (@ 32.768-kHz operation with subsystem clock)				
Buzzer outpu	ıt	1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (@ 5.0-MHz operation with main system clock)				
Vectored Maskable		Internal: 15, External: 7				
interrupt	Non-maskable	Internal: 1				
sources	Software	1				
Test input		Internal: 1, External: 1				
Supply voltag	ge	V _{DD} = 1.8 to 5.5 V				
Package		• 100-pin plastic QFP (14 $ imes$ 20 mm, resin thickness 2.7 mm)				
		• 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness 1.40 mm) ^{№te}				


Note Under development

CONTENTS

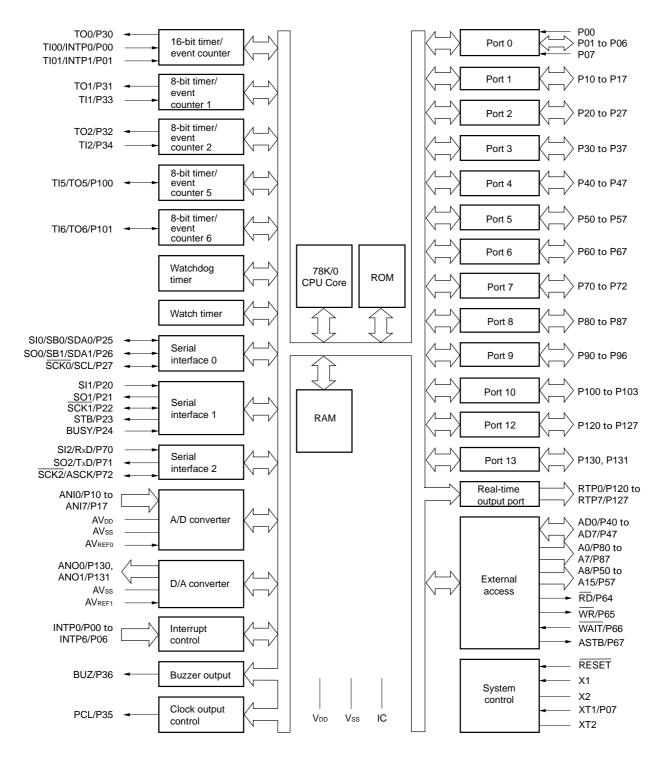
1.	PIN CONFIGURATION (TOP VIEW)	7
2.	BLOCK DIAGRAM	10
3.	PIN FUNCTIONS 3.1 Port Pins 3.2 Non-port Pins 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11 13
4.	MEMORY SPACE	19
5.	PERIPHERAL HARDWARE FUNCTIONS 5.1 Ports 5.2 Clock Generator 5.3 Timer/Event Counter 5.4 Clock Output Control Circuit 5.5 Buzzer Output Control Circuit 5.6 A/D Converter 5.7 D/A Converter 5.8 Serial Interfaces 5.9 Real-Time Output Port	20 21 25 25 26 26 27
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	
	6.2 Test Functions	
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	
8.	STANDBY FUNCTION	34
9.	RESET FUNCTION	35
10.	INSTRUCTION SET	36
11.	ELECTRICAL SPECIFICATIONS	38
12.	CHARACTERISTIC CURVES (REFERENCE VALUE)	67
13.	PACKAGE DRAWINGS	72
14.	RECOMMENDED SOLDERING CONDITIONS	74
API	PENDIX A. DEVELOPMENT TOOLS	75
API	PENDIX B. RELATED DOCUMENTS	78

1. PIN CONFIGURATION (TOP VIEW)

Cautions 1. Connect IC (internally connected) pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

- P01/INTP1/TI01 P00/INTP0/TI00 X1 X2 IC P127/RTP7 P125/RTP5 P06/INTP6 P05/INTP5 P126/RTP6 P04/INTP4 P03/INTP3 P02/INTP2 P124/RTP4 P123/RTP3 P12/ANI2 P11/ANI1 P10/ANI0 P13/ANI3 RESET XT1/P07 XT2 AVREFO AVpd ٨ Ŷ 9 9 9 C Ç Ç С ç 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P14/ANI4 O-75 ► 0 P122/RTP2 74 P15/ANI5 O-2 - P121/RTP1 ()P16/ANI6 O-3 73 - P120/RTP0 P17/ANI7 O-4 72 -O P96 AVss O -O P95 5 71 P130/ANO0 O-6 70 -O P94 P131/ANO1 O-69 -O P93 7 AVREF1 O--O P92 8 68 P70/SI2/RxD O-9 67 -O P91 P71/SO2/TxD O-10 66 -O P90 P72/SCK2/ASCK O-11 65 -O P37 Vss O-12 64 ► P36/BUZ P20/SI1 O-13 63 ← P35/PCL P21/SO1 O-14 62 - P34/TI2 P22/SCK1 O-15 - P33/TI1 61 P23/STB O-16 60 ← P32/TO2 17 59 - P31/TO1 P24/BUSY O-P25/SI0/SB0/SDA0 O-18 58 - P30/TO0 19 57 ► P103 P26/SO0/SB1/SDA1 O-P27/SCK0/SCL O-20 56 ← P102 P80/A0 O-21 55 - P101/TI6/TO6 22 P81/A1 O-54 ← P100/TI5/TO5 P82/A2 O-23 53 ← P67/ASTB P83/A3 O-24 52 ← P66/WAIT 25 P84/A4 O-51 ← P65/WR 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 8 6 P45/AD5 P46/AD6 P47/AD7 P50/A8 P50/A8 P51/A9 P52/A10 P53/A11 P53/A11 P54/A12 0 P55/A13 0 P41/AD1 P42/AD2 P43/AD3 P44/AD4 P85/A5 P86/A6 P87/A7 P87/A7 P340/AD0 P56/A14 P57/A15 P60 6 P61 6 P62 6 P63 6 Vss P64/RD
- 100-pin plastic LQFP (fine pitch) (14 \times 14 mm, resin thickness 1.40 mm) μ PD78076YGC-8EU^{Note}, 78078YGC-8EU^{Note}


Note Under development

Cautions 1. Connect IC (internally connected) pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

A0 to A15	dress Bus P120 to P127 : Port12	
AD0 to AD7	dress/Data Bus P130, P131 : Port13	
ANI0 to ANI7	alog Input PCL : Programm	able Clock
ANO0, ANO1	alog Output RD : Read Stro	be
ASCK	nchronous Serial Clock RESET : Reset	
ASTB	dress Strobe RTP0 to RTP7 : Real-Time	Output Port
AVdd	alog Power Supply RxD : Receive D	lata
AVREF0, AVREF1	alog Reference Voltage SB0, SB1 : Serial Bus	j
AVss	alog Ground SCK0 to SCK2 : Serial Clo	ck
BUSY	sy SCL : Serial Clo	ck
BUZ	zzer Clock SDA0, SDA1 : Serial Dat	а
IC	ernally Connected SI0 to SI2 : Serial Inp	Jt
INTP0 to INTP6	errupt from Peripherals SO0 to SO2 : Serial Out	put
P00 to P07	rt0 STB : Strobe	
P10 to P17	rt1 TI00, TI01 : Timer Inp	Jt
P20 to P27	rt2 TI1, TI2, TI5, TI6 : Timer Inpu	ıt
P30 to P37	rt3 T00 to T02, T05, T06 : Timer Out	put
P40 to P47	rt4 TxD : Transmit I	Data
P50 to P57	rt5 VDD : Power Su	oply
P60 to P67	rt6 Vss : Ground	
P70 to P72	rt7 WAIT : Wait	
P80 to P87	rt8 WR : Write Stro	be
P90 to P96	rt9 X1, X2 : Crystal (M	lain System Clock)
P100 to P103	rt10 XT1, XT2 : Crystal (S	ubsystem Clock)

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/	8-bit input/output port	Input/output can be specified bit-wise.	Input	INTP1/TI01
P02	output		When used as an input port, an on-chip pull-up resistor can be used by means of software.		INTP2
P03	-		resistor can be used by means of software.		INTP3
P04					INTP4
P05					INTP5
P06					INTP6
P07 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/ output	Port 1 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software. ^{Note 2}		Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/output port	ified hit wice		SO1
P22		Input/output can be speci When used as an input p	port, an on-chip pull-up resistor can be used		SCK1
P23		by means of software.			STB
P24					BUSY
P25					SI0/SB0/SDA0
P26					SO0/SB1/SDA1
P27					SCK0/SCL
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output port Input/output can be speci	ified bit-wice		TO1
P32	_		port, an on-chip pull-up resistor can be used		TO2
P33	-	by means of software.			TI1
P34	-				TI2
P35	-				PCL
P36	-				BUZ
P37					_
P40 to P47	Input/ output	Port 4 8-bit input/output port Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be used by means of software. Test input flag (KRIF) is set to 1 by falling edge detection.			AD0 to AD7

Notes 1. When using the P07/XT1 pins as an input port, set to 1 bit 6 (FRC) of the processor clock control register (PCC). (Do not use the on-chip feedback resistor of the subsystem clock oscillator.)

2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, set port 1 to the input mode. At this time, on-chip pull-up resistor is automatically disconnected.

3.1 Port Pins (2/2)

Pin Name	I/O	Function			Alternate Function
P50 to P57	Input/ output	Port 5 8-bit input/output port LEDs can be driven directly. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			A8 to A15
P60	Input/	Port 6	N-ch open-drain input/output	Input	_
P61	output	butput 8-bit input/ output port Input/output can be specified	port. An on-chip pull-up resistor can be specified by mask		
P62		bit-wise.	option. LEDs can be driven		
P63			directly.		
P64			When used as an input port,	Input	RD
P65			an on-chip pull-up resistor can be used by means of software.		WR
P66					WAIT
P67					ASTB
P70	Input/ output	Port 7 3-bit input/output port		Input	SI2/RxD
P71	-	Input/output can be specified b When used as an input port, an	it-wise. n on-chip pull-up resistor can be		SO2/TxD
P72		used by means of software.		SCK2/ASCK	
P80 to P87	Input/ output	Port 8 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			A0 to A7
P90	Input/	Port 9	N-ch open-drain input/output port. An	Input	_
P91	output	7-bit input/output port	on-chip pull-up resistor can be specified by mask option. LEDs can be driven directly.		
P92	-				
P93		Dit-Wise.			
P94	-		When used as an input port, an on-chip		
P95	-		pull-up resistor can be used by means of		
P96	1		software.		
P100	Input/	Port 10		Input	TI5/TO5
P101	output	4-bit input/output port	it-wise. When used as an input port,		TI6/TO6
P102, P103		an on-chip pull-up resistor can be			
P120 to P127	Input/ output	Port 12 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			RTP0 to RTP7
P130, P131	Input/ output	used by means of software. Port 13 2-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			ANO0, ANO1

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After	Alternate
			Reset	Function
INTP0	Input	External interrupt request input for which the active edge (rising edge,	Input	P00/TI00
INTP1		falling edge, or both rising and falling edges) can be specified.		P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial interface serial data input	Input	P25/SB0/SDA0
SI1	-			P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output	Input	P26/SB1/SDA1
SO1	-			P21
SO2	_			P71/TxD
SB0	Input/	Serial interface serial data input/output	Input	P25/SI0/SDA0
SB1	output			P26/SO0/SDA1
SDA0	-			P25/SI0/SB0
SDA1	-			P26/SO0/SB1
SCK0	Input/	Serial interface serial clock input/output	Input	P27/SCL
SCK1	-			P22
SCK2	-			P72/ASCK
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
RxD	Input	Asynchronous serial interface serial data input	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00)		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2	-	External count clock input to 8-bit timer (TM2)		P34
TI5		External count clock input to 8-bit timer (TM5)		P100/TO5
TI6	-	External count clock input to 8-bit timer (TM6)		P101/TO6
TO0	Output	16-bit timer (TM0) output (also used for 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
TO5	1	8-bit timer (TM5) output (also used for 8-bit PWM output)	1	P100/TI5
TO6	1	8-bit timer (TM6) output (also used for 8-bit PWM output)	1	P101/TI6
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After	Alternate
	1,0		Reset	Function
RTP0 to RTP7	Output	Real-time output port from which data is output in synchronization with a trigger	Input	P120 to P127
AD0 to AD7	Input/	Low-order address/data bus at external memory expansion	Input	P40 to P47
	output			
A0 to A7	Output	Low-order address bus at external memory expansion	Input	P80 to P87
A8 to A15	Output	High-order address bus at external memory expansion	Input	P50 to P57
RD	Output	External memory read operation strobe signal output	Input	P64
WR		External memory write operation strobe signal output		P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output which externally latches the address information	Input	P67
		to ports 4, 5, and 8 to access external memory		
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output	Input	P130, P131
AV _{REF0}	Input	A/D converter reference voltage input	_	_
AV _{REF1}	Input	D/A converter reference voltage input	_	_
AVdd	_	A/D converter analog power supply. Connect to VDD.	_	_
AVss	_	A/D converter and D/A converter ground potential. Connect to Vss.	_	_
RESET	Input	System reset input	_	_
X1	Input	Crystal resonator connection for main system clock oscillation	_	_
X2	_		_	_
XT1	Input	Crystal resonator connection for subsystem clock oscillation		P07
XT2	_		_	_
Vdd	_	Positive power supply	_	_
Vss	_	Ground potential	_	_
IC	_	Internally connected. Connect directly to Vss.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-A	Input/output	Independently connect to Vss via a resistor.
P02/INTP2	*		
P03/INTP3	*		
P04/INTP4	*		
P05/INTP5	*		
P06/INTP6	*		
P07/XT1	16	Input	Connected to VDD.
P10/ANI0 to P17/ANI7	11	Input/output	Independently connect to VDD or Vss via a resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0/SDA0	10-A		
P26/SO0/SB1/SDA1	*		
P27/SCK0/SCL	*		
P30/TO0	5-A		
P31/TO1	*		
P32/TO2	*		
P33/TI1	8-A		
P34/TI2	*		
P35/PCL	5-A		
P36/BUZ	*		
P37	*		
P40/AD0 to P47/AD7	5-E	Input/output	Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-A	Input/output	Independently connect to VDD or VSS via a resistor.
P60 to P63	13-B	Input/output	Independently connect to VDD via a resistor.
P64/RD	5-A	Input/output	Independently connect to VDD or VSS via a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			

Table 3-1. Types of Pin Input/Output Circuits (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P70/SI2/RxD	8-A	Input/output	Independently connect to VDD or VSS via a resistor.
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P80/A0 to P87/A7	5-A		
P90 to P93	13-B	Input/output	Independently connect to VDD via a resistor.
P94 to P96	5-A	Input/output	Independently connect to VDD or VSS via a resistor.
P100/TI5/TO5	8-A		
P101/TI6/TO6			
P102, P103	5-A		
P120/RTP0 to			
P127/RTP7			
P130/ANO0,	12-A	Input/output	Independently connect to Vss via a resistor.
P131/ANO1			
RESET	2	Input	—
XT2	16		Leave open.
AVREFO	_		Connect to Vss.
AV _{REF1}			Connect to VDD.
AVdd			
AVss			Connect to Vss.
IC			Connect directly to Vss.

Table 3-1. Types of Pin Input/Output Circuits (2/2)

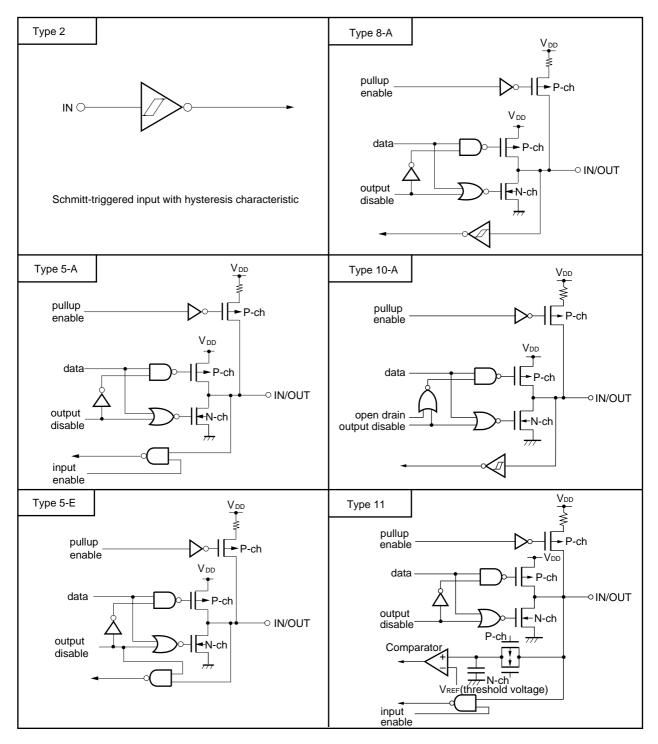


Figure 3-1. Pin Input/Output Circuits (1/2)

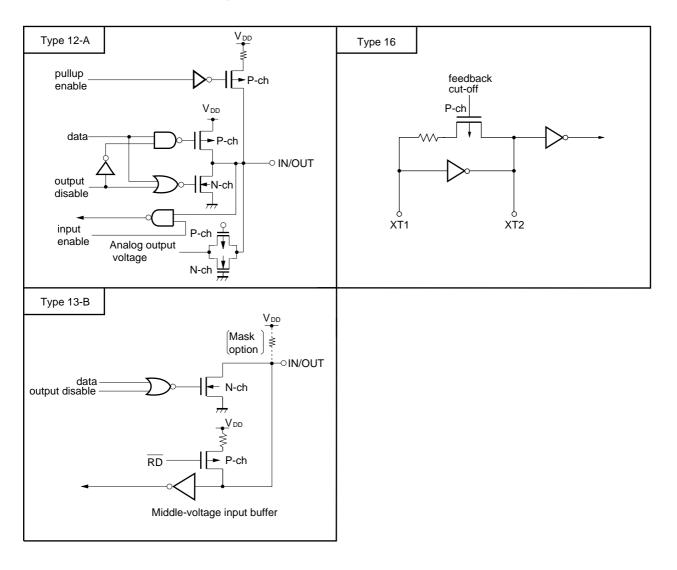
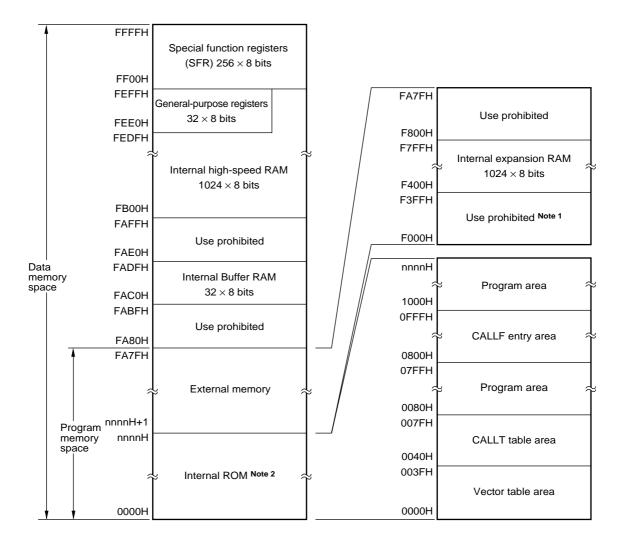



Figure 3-1. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

The memory map of the μ PD78076Y and 78078Y is shown in Figure 4-1.

Figure 4-1. Memory Map

- Notes 1. If external device expansion functions are to be employed for the μPD78078Y, set the size of the internal ROM to 56 Kbytes or below using the memory size switching register (IMS).
 - 2. The internal ROM capacity depends on the product. (See the following table.)

Part Number	Internal ROM Last Address
	nnnnH
μPD78076Y	BFFFH
μPD78078Y	EFFFH

5. PERIPHERAL HARDWARE FUNCTIONS

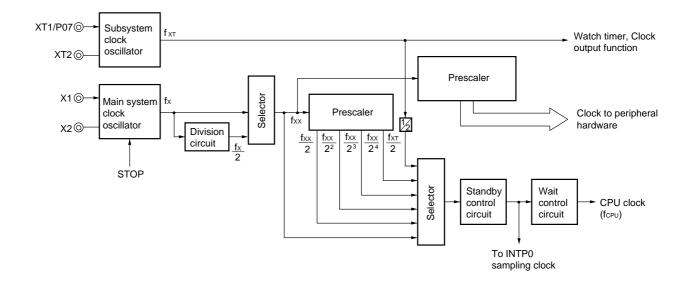
5.1 Ports

Input/output ports are classified into three types.

• CMOS input (P00, P07)	: 2
CMOS input/output (P01 to P06, Port 1 to 5, P64 to P67, Port 7,	
Port 8, P94 to P96, Port 10, Port 12, Port 13)	: 78
 N-ch open-drain input/output (P60 to P63, P90 to P93) 	: 8
Total	: 88

Table 5-1. Functions of Ports

Port Name	Pin Name	Function
Port 0	P00, P07	Input only.
	P01 to P06	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 1	P10 to P17	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 2	P20 to P27	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 3	P30 to P37	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 4	P40 to P47	Input/output port. Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be used by means of software. The test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software. LEDs can be driven directly.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise. An on-chip pull-up resistor can be used by mask option. LEDs can be driven directly.
	P64 to P67	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 7	P70 to P72	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 8	P80 to P87	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 9	P90 to P93	N-ch open-drain input/output port. Input/output can be specified bit-wise. An on-chip pull-up resistor can be used by mask option. LEDs can be driven directly.
	P94 to P96	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 10	P100 to P103	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 12	P120 to P127	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 13	P130, P131	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.


5.2 Clock Generator

There are two kinds of clock generators: main system and subsystem clock generators.

It is possible to change the minimum instruction execution time.

- 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s/12.8 μ s (at main system clock frequency of 5.0 MHz)
- 122 μ s (at subsystem clock frequency of 32.768 kHz)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

There are the following seven timer/event counter channels:

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 4 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Operations of Timer/Event Counters

		16-bit Timer/Event Counter	8-bit Timer/Event Counters 1, 2	8-bit Timer/Event Counters 5, 6	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	2 channels	1 channel	1 channel
mode	External event counter	1 channel	2 channels	2 channels	_	_
Function	Timer output	1 output	2 outputs	2 outputs	—	_
	PWM output	1 output	_	2 outputs	—	_
	Pulse width measurement	2 inputs	_	_	—	_
	Square wave output	1 output	2 outputs	2 outputs	—	_
	One-shot pulse output	1 output	_	_	_	_
	Interrupt request	2	2	2	1	1
	Test input		_		1 input	_

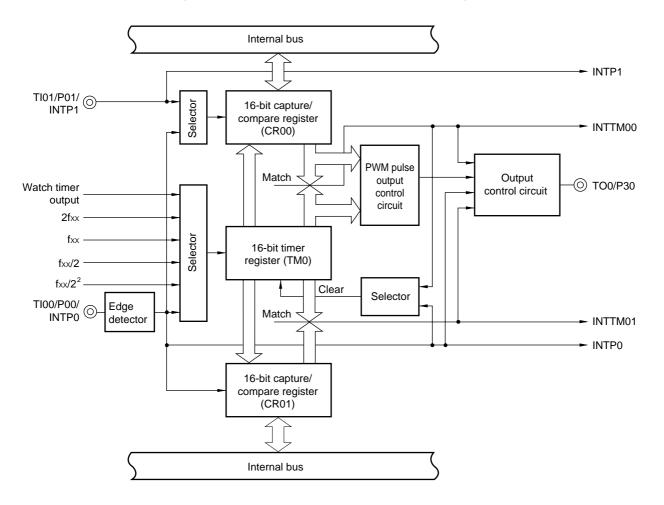
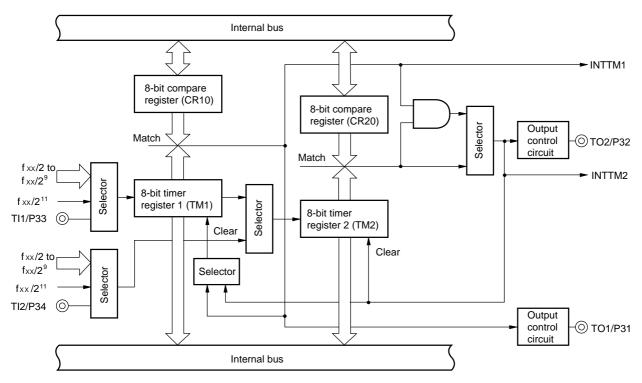



Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

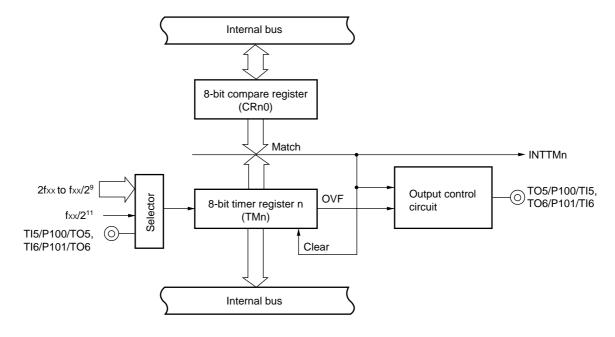


Figure 5-4. 8-Bit Timer/Event Counters 5, 6 Block Diagram

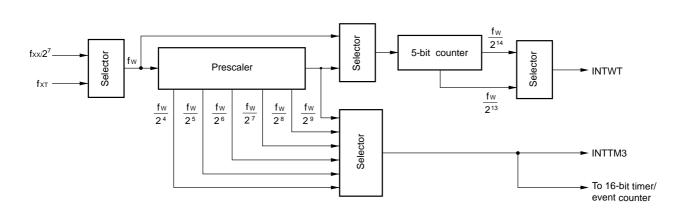
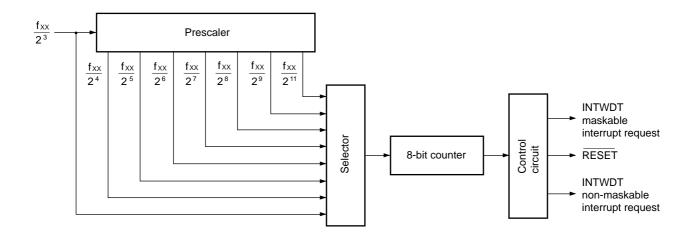



Figure 5-5. Watch Timer Block Diagram

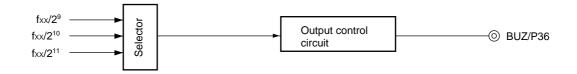
Figure 5-6. Watchdog Timer Block Diagram



5.4 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

- 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (at main system clock frequency of 5.0 MHz)
- 32.768 kHz (at subsystem clock frequency of 32.768 kHz)

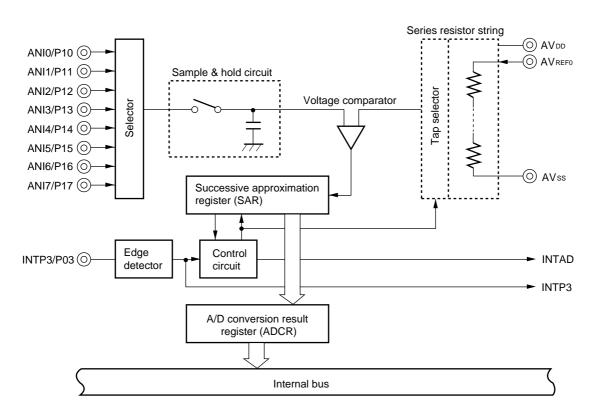


5.5 Buzzer Output Control Circuit

This circuit can output clocks of the following frequencies that can be used for driving buzzers:

• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (at main system clock frequency of 5.0 MHz)

Figure 5-8. Buzzer Output Control Circuit Block Diagram



5.6 A/D Converter

The A/D converter consists of eight 8-bit resolution channels.

A/D conversion can be started by the following two methods:

- Hardware starting
- Software starting

5.7 D/A Converter

The D/A converter consists of two 8-bit resolution channels. The conversion method is the R-2R resistor ladder method.

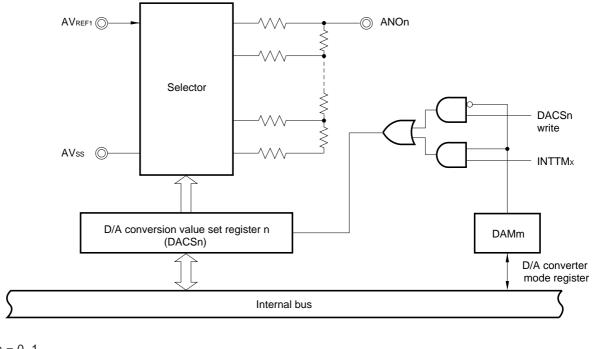


Figure 5-10. D/A Converter Block Diagram

n = 0, 1 m = 4, 5 x = 1, 2

5.8 Serial Interfaces

There are the following three on-chip serial interface channels synchronous with the clock:

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Table 5-3. Types and Functions of Serial Interfaces

Function	Serial Interface Channel 0	Serial Interface Channel 1	Serial Interface Channel 2
3-wire serial I/O mode	√ (MSB/LSB first	(MSB/LSB first	(MSB/LSB first
	switching possible)	switching possible)	switching possible)
3-wire serial I/O mode with	_	(MSB/LSB first	
automatic data transmit/		switching possible)	
receive function			
2-wire serial I/O mode	$\sqrt{(MSB first)}$	_	_
I ² C bus mode	√ (MSB first)	—	_
Asynchronous serial	—	_	(On-chip dedicated baud
interface (UART) mode			rate generator)

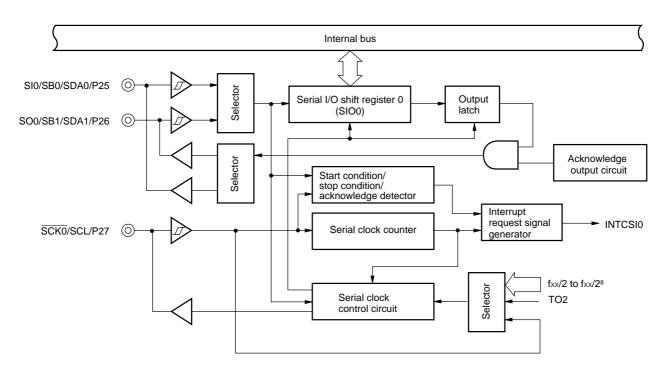


Figure 5-11. Serial Interface Channel 0 Block Diagram

Figure 5-12. Serial Interface Channel 1 Block Diagram

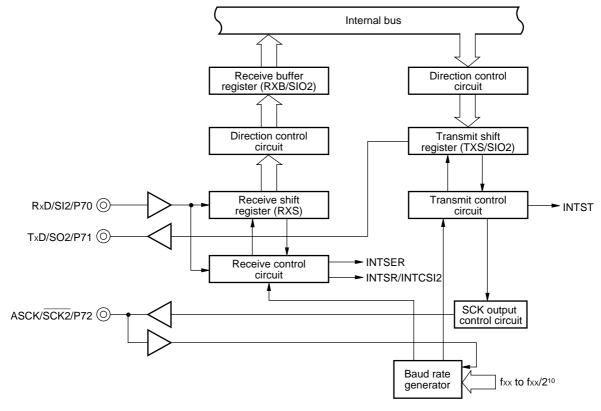


Figure 5-13. Serial Interface Channel 2 Block Diagram

5.9 Real-time Output Port

Data set previously in the real-time output buffer is transferred to the output latch by hardware concurrently with timer interrupt request or external interrupt request generation in order to output to off-chip. This is a real-time output function. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motor, etc.

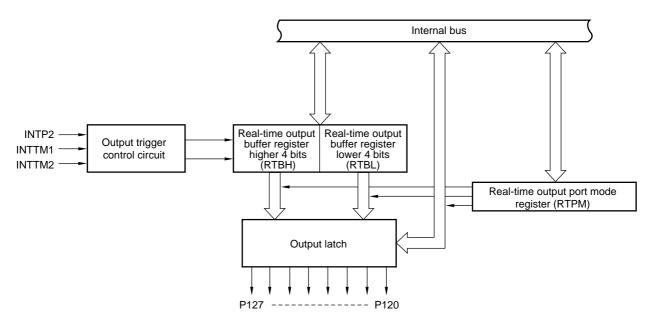


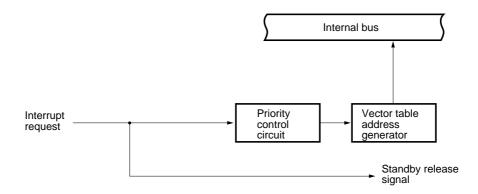
Figure 5-14. Real-time Output Port Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

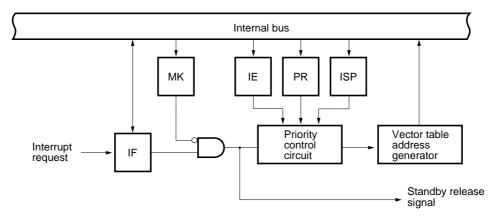
6.1 Interrupt Functions

A total of 24 interrupt sources are provided, divided into the following three types.

- Non-maskable interrupt : 1
- Maskable interrupt : 22
- Software interrupt : 1


Table 6-1.	List of	Interrupt	Sources
------------	---------	-----------	---------

Interrupt	Note 1 Default		Interrupt Source	Internal/	Vector	Basic Note 2
Туре	Priority	Name	Trigger	External	Table Address	Configuration Type
Non- maskable	_	INTWDT	Overflow of watchdog timer (When the watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (When the interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	_
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTCSI0	Completion of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	Completion of serial interface channel 1 transfer		0016H	
	10	INTSER	Occurrence of serial interface channel 2 UART reception error		0018H	
	11	INTSR INTCSI2	Completion of serial interface channel 2 UART reception Completion of serial interface channel 2 3-wire transfer		001AH	
	12	INTST	Completion of serial interface channel 2 UART transmission		001CH	
	13	INTTM3	Reference interval signal from watch timer		001EH]
	14	INTTM00	Generation of matching signal of 16-bit timer register and capture/compare register (CR00)		0020H	
	15	INTTM01	Generation of matching signal of 16-bit timer register and capture/compare register (CR01)		0022H	
	16	INTTM1	Generation of matching signal of 8-bit timer/event counter 1		0024H	-
	17	INTTM2	Generation of matching signal of 8-bit timer/event counter 2		0026H	
	18	INTAD	Completion of A/D conversion		0028H	
	19	INTTM5	Generation of matching signal of 8-bit timer/event counter 5		002AH	
	20	INTTM6	Generation of matching signal of 8-bit timer/event counter 6		002CH	
Software	<u> </u>	BRK	Execution of BRK instruction		003EH	(E)


Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 20 is the lowest order.

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0)

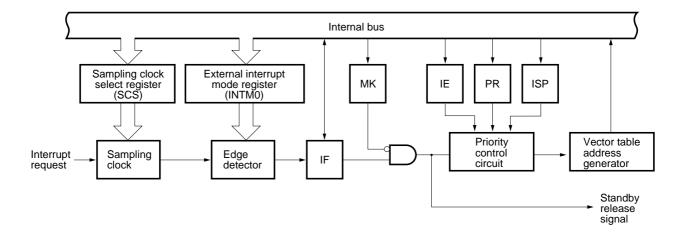
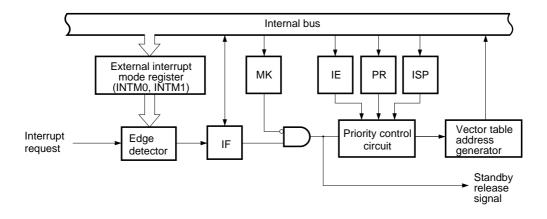
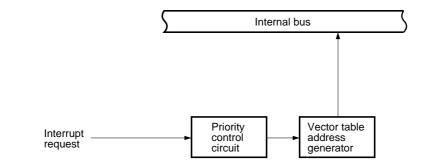




Figure 6-1. Interrupt Function Basic Configuration (2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

- IF : Interrupt request flag
- E : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

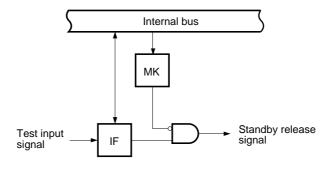

6.2 Test Functions

Table 6-2 shows the two test functions available.

Table (6-2.	Test	Input	Factors
---------	------	------	-------	---------

	Internal/ External	
Name Trigger		
INTWT	Overflow of watch timer	Internal
INTPT4	Detection of falling edge of port 4	External

Figure 6-2. Basic Configuration of Test Function

IF : Test input flag

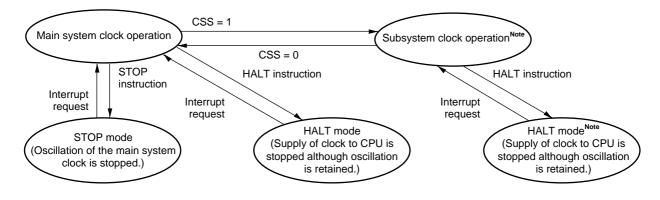
MK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR.

External devices connection uses ports 4 to 6 and port 8.


The external device expansion function has the following two modes:


- Separate bus mode : External devices are connected by using an independent address bus and data bus. Because an external latch circuit is not necessary, this mode is effective for reducing the number of components and the mounting area on a printed wiring board.
- Multiplexed bus mode : External devices are connected by using a time-division multiplexed address/data bus. This mode can reduce the number of ports used when external devices are connected.

8. STANDBY FUNCTION

The standby function is designed to reduce current consumption. It has the following two modes:

- HALT mode : In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode : In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely small power consumption.

Note Current consumption can be reduced by shutting off the main system clock. If the CPU is operating on the subsystem clock, shut off the main system clock by setting MCC (bit 7 in the processor clock control register (PCC)). In this case, a STOP instruction cannot be used.

Caution When switching on the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to provide enough time for oscillation stabilization with the program first.

9. RESET FUNCTION

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	A	۲ ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]		\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	[HL + C] MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
В, С											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C)

Parameter	Symbol	Cond	ditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	AVdd				-0.3 to VDD + 0.3	V
	AV _{REF0}				-0.3 to VDD + 0.3	V
	AV _{REF1}				-0.3 to VDD + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vi1	P00 to P07, P10 to P17, P20 to	o P27, P30 to F	P37, P40 to P47,	-0.3 to VDD + 0.3	V
		P50 to P57, P64 to P67, P70 t	o P72, P80 to I	P87, P94 to P96,		
		P100 to P103, P120 to P127, I				
	VI2	P60 to P63, P90 to P93	N-ch open-	drain	-0.3 to +16	V
Output voltage	Vo				-0.3 to VDD + 0.3	V
Analog input voltage	Van	P10 to P17	Analog inp	ut pin	AVss - 0.3 to AVREF0 + 0.3	V
Output leakage	Іон	Per pin			-10	mA
current, high		Total for P30 to P37, P56,	-15	mA		
		P100 to P103, P120 to P12	27			
		Total for P01 to P06, P10 t	o P17, P20 t	o P27, P40 to	-15	mA
		P47, P50 to P55, P70 to P	72, P80 to P8	87, P130, P131		
Output leakage	I _{OL} Note	Per pin		Peak value	30	mA
current, low				r.m.s.	15	mA
		Total for P50 to P55		Peak value	100	mA
				r.m.s.	70	mA
		Total for P56, P57, P60 to	P63	Peak value	100	mA
				r.m.s.	70	mA
		Total for P30 to P37, P64 t	o P67, P90	Peak value	100	mA
		to P96, P100 to P103, P12	0 to P127	r.m.s.	70	mA
		Total for P20 to P27, P40 t	o P47,	Peak value	50	mA
		P80 to P87		r.m.s.	20	mA
		Total for P01 to P06, P10 t	o P17,	Peak value	50	mA
		P70 to P72, P130, P131		r.m.s	20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage	Tstg				-65 to +150	°C
temperature						

Note The r.m.s. (root mean square) should be calculated as follows: [r.m.s.] = [Peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

CAPACITANCE (TA = 25°C, VDD = VSS = 0 V)

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned to 0 V.			15	pF	
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	IC X2 X1	Oscillation frequency (fx) Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time Note 2	After V _{DD} reaches oscil- lation voltage range MIN.			4	ms
Crystal resonator		Oscillation frequency (fx) Note 1		1.0		5.0	MHz
		Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
	1. <u></u> i 7777	stabilization time Note 2				30	
External clock	x2 x1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	μPD74HCU04	X1 input high/low-level width (txн, txL)		85		500	ns

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (T_A = -40 to +85°C, V_DD = 1.8 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC CHARACTERISTICS for instruction execution time.
 Time required to stabilize oscillation after reset or STOP mode release.

- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should always be the same as that of Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	IC XT2 XT1	Oscillation frequency (f _{XT}) Note 1		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	i 7/7	stabilization time Note 2				10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
	µPD74HCU04	XT1 input high/low-level width (txтн, txт∟)		5		15	μs

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC CHARACTERISTICS for instruction execution time.
 Time required to stabilize oscillation after Vpd reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should always be the same as that of Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- 2. The subsystem clock oscillator is designed to be a circuit with a low amplification level, for low power consumption more prone to malfunction due to noise than that of the main system clock. Therefore, when using the subsystem clock, take special cautions for wiring methods.

RECOMMENDED OSCILLATOR CONSTANT

Manufacturer	Part Number	Frequency	Recomme	ended Circu	it Constant	Oscillation V	oltage Range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
TDK	CCR1000K2	1.00 MHz	150	150	0	2.0	5.5	Surface mount type
	CCR4.0MC3	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	FCR4.0MC5	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type
	CCR5.00MC3	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	FCR5.00MC5	5.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor Insertion type
Murata Mfg.	CSB1000J	1.00 MHz	100	100	5.6	2.2	5.5	Insertion type
Corporation	CSA2.00MG040	2.00 MHz	100	100	0	1.9	5.5	Insertion type
	CST2.00MG040	2.00 MHz	On-chip	On-chip	0	1.9	5.5	On-chip capacitor Insertion type
	CSA4.00MG	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGW	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type
	CSA5.00MG	5.00 MHz	30	30	0	2.0	5.5	Insertion type
	CST5.00MGW	5.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor Insertion type

MAIN SYSTEM CLOCK : CERAMIC RESONATOR (TA = -45 to $+85^{\circ}$ C)

MAIN SYSTEM CLOCK : CERAMIC RESONATOR (TA = -20 to +80°C)

Manufacturer	Part Number	Frequency	Recomme	ended Circu	it Constant	Oscillation Vo	oltage Range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Kyocera	KBR-1000F	1.00 MHz	150	150	0	2.3	5.5	Insertion type
Corporation	KBR-2.0MS	2.00 MHz	82	82	0	2.4	5.5	Insertion type
	PBRC4.00A	4.00 MHz	33	33	0	2.4	5.5	Surface mount type
	PBRC4.00B	4.00 MHz	On-chip	On-chip	0	2.4	5.5	On-chip capacitor Surface mount type
	KBR-4.00MSA	4.00 MHz	33	33	0	2.4	5.5	Insertion type
	KBR-4.00MKS	4.00 MHz	On-chip	On-chip	0	2.4	5.5	On-chip capacitor Insertion type
	PBRC5.00A	5.00 MHz	33	33	0	1.8	5.5	Surface mount type
	PBRC5.00B	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	KBR-5.00MSA	5.00 MHz	33	33	0	1.8	5.5	Insertion type
	KBR-5.00MKS	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (1 of 3)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87,	V _{DD} = 2.7 to 5.5 V	0.7Vdd		Vdd	V
		P94 to P96, P102, P103, P120 to P127, P130, P131		0.8Vdd		Vdd	V
	VIH2	P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101,	V _{DD} = 2.7 to 5.5 V	0.8Vdd		Vdd	V
		RESET		0.85Vdd		Vdd	V
	Vінз	P60 to P63, P90 to P93	VDD = 2.7 to 5.5 V	0.7Vdd		15	V
		(N-ch open-drain)		0.8Vdd		15	V
	VIH4	X1, X2	VDD = 2.7 to 5.5 V	Vdd - 0.5		Vdd	V
				Vdd - 0.2		Vdd	V
	VIH5	XT1/P07, XT2	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.8Vdd		Vdd	V
			2.7 V≤ V _{DD} < 4.5 V	0.9Vdd		Vdd	V
			Note	0.9Vdd		Vdd	V
Input voltage, low	VIL1	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57,	V _{DD} = 2.7 to 5.5 V	0		0.3Vdd	V
		P64 to P67, P71, P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131		0		0.2V _{DD}	V
	VIL2	P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101,	V _{DD} = 2.7 to 5.5 V	0		0.2Vdd	V
		RESET		0		0.15VDD	V
	VIL3	P60 to P63, P90 to P93	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0		0.3Vdd	V
		(N-ch open-drain)	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		0.2Vdd	V
				0		0.1Vdd	V
	VIL4	X1, X2	VDD = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P07, XT2	4.5 V≤ V _{DD} ≤ 5.5 V	0		0.2Vdd	V
			2.7 V≤ V _{DD} < 4.5 V	0		0.1Vdd	V
			Note	0		0.1Vdd	V
Output voltage,	Vон	V _{DD} = 4.5 to 5.5 V, I _{OH} = -1 mA		Vdd - 1.0			V
high		Іон = −100 μА		Vdd - 0.5			V
Output voltage, low	Vol1	P50 to P57, P60 to P63, P90 to P93	V _{DD} = 4.5 to 5.5 V, I _{OL} = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ open-drain, at pulled-up (R = 1 k Ω)			0.2Vdd	V
	Vol3	Ιοι = 400 μΑ				0.5	V

Note For use of P07/XT1 pin as P07, use an inverter to input the reverse phase of P07 to the XT2 pin.

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цінт	Vin = Vdd	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			3	μΑ
	ILIH2		X1, X2, XT1/P07, XT2			20	μΑ
	Іцнз	Vin = 15 V	P60 to P63, P90 to P93			80	μA
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			-3	μΑ
	ILIL2		X1, X2, XT1/P07, XT2			-20	μΑ
	ILIL3		P60 to P63, P90 to P93			-3 ^{Note 1}	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull- up resistor	R1	$V_{IN} = 0 V$, P60 to F	P63, P90 to P93	20	40	90	kΩ
Software pull- up resistor ^{Note 2}	R ₂	$V_{IN} = 0 V,$ P10 to P17, P20 to P27, P30	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	15	40	90	kΩ
		to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	20		500	kΩ

Notes 1. When the pull-up resistors are not connected to P60 to P63 and P90 to P93 (specified by mask option), a low-level input leakage current of $-200 \ \mu$ A (MAX.) flows only for 1.5 clocks (without wait) after a read instruction has been executed to port 6 (P6), port mode register 6 (PM6), port 9 (P9), or port mode register 9 (PM9).

At times other than this 1.5-clock interval, a $-3 \mu A$ (MAX.) current flows.

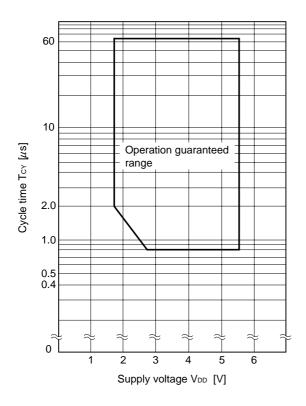
- 2. A software pull-up resistor can be used only in the range of V_{DD} = 2.7 to 5.5 V.
- **Remark** The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Power supply	IDD1	5.0-MHz crystal oscillation	V_{DD} = 5.0 V ±10% Note 5		4.5	13.5	mA
current Note 1	rent Note 1	operating mode	V_{DD} = 3.0 V ±10% Note 6		0.7	2.1	mA
		(fxx = 2.5 MHz) Note 2	$V_{DD} = 2.0 \text{ V} \pm 10\% \text{ Note 6}$		0.4	1.2	mA
		5.0-MHz crystal oscillation operating mode	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\% \text{ Note 5}$		8.0	24.0	mA
	(fxx = 5.0 MHz) Note 3	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\% \text{ Note 6}$		0.9	2.7	mA	
	IDD2	5.0-MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.4	4.2	mA
		HALT mode (fxx = 2.5 MHz) ^{Note 2}	$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.5	mA
		(1xx = 2.3 MHZ)	$V_{DD} = 2.0 \text{ V} \pm 10\%$		280	840	μΑ
		5.0-MHz crystal oscillation HALT mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.6	4.8	mA
	(fxx = 5.0 MHz) Note 3	$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.65	1.95	mA	
	ГООЗ	32.768-kHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		60	120	μΑ
		operating mode Note 4	$V_{DD} = 3.0 \text{ V} \pm 10\%$		32	64	μA
			$V_{DD} = 2.0 \text{ V} \pm 10\%$		24	48	μA
	IDD4	32.768-kHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		25	55	μA
		HALT mode Note 4	$V_{DD} = 3.0 \text{ V} \pm 10\%$		5	15	μA
			VDD = 2.0 V ±10%		2.5	12.5	μA
	IDD5	XT1 = VDD	V _{DD} = 5.0 V ±10%		1	30	μA
		STOP mode When feedback resistor is	VDD = 3.0 V ±10%		0.5	10	μA
		used	V _{DD} = 2.0 V ±10%		0.3	10	μA
	IDD6	XT1 = VDD	VDD = 5.0 V ±10%		0.1	30	μA
		STOP mode When feedback resistor is	VDD = 3.0 V ±10%		0.05	10	μA
		not used	Vdd = 2.0 V ±10%		0.05	10	μA

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (3 of 3)

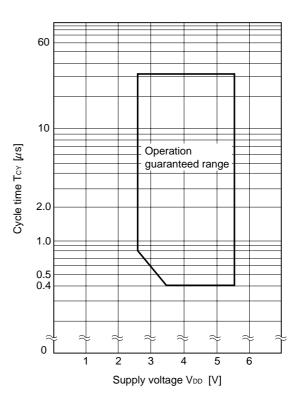
- **Notes 1.** Refers to the current flowing to the V_{DD} pin. The current flowing to the A/D converter, D/A converter, and ports is not included.
 - 2. Operation with main system clock fxx = fx/2 (when oscillation mode select register (OSMS) is set to 00H)
 - 3. Operation with main system clock fxx = fx (when oscillation mode select register (OSMS) is set to 01H)
 - 4. When the main system clock operation is halted
 - 5. Operating in high-speed mode (when the processor clock control register (PCC) is set to 00H).
 - 6. Operating in low-speed mode (when the processor clock control register (PCC) is set to 04H).

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.


AC CHARACTERISTICS

(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main	$f_{XX} = f_X/2^{Note 1}$	VDD = 2.7 to 5.5 V	0.8		64	μs
(Min. instruction		system clock			2.0		64	μs
execution time)			$f_{XX} = f_X^{Note 2}$	$3.5~V \le V_{\text{DD}} \le 5.5~V$	0.4		32	μs
				$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$	0.8		32	μs
		Operating on subsy	ystem clock		40 ^{Note 3}	122	125	μs
TI00 input high/	t⊤ihoo, t⊤iloo	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$,		2/fsam + 0.1 ^{Note 4}			μs
low-level width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$	2/fsam + 0.2 ^{Note 4}			μs		
					2/fsam + 0.5 ^{Note 4}			μs
TI01 input high/	t⊤iHo1, t⊤iLo1	V _{DD} = 2.7 to 5.5 V	10			μs		
low-level width								μs
TI1, TI2, TI5, TI6	fTI1	V _{DD} = 4.5 to 5.5 V			0		4	MHz
input frequency					0		275	kHz
TI1, TI2, TI5, TI6 input high/	t⊤iH1, t⊤iL1	V _{DD} = 4.5 to 5.5 V			100			ns
low-level width					1.8			μs
Interrupt request	tinth, tintl	INTP0		$3.5 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2/fsam + 0.1 ^{Note 4}			μs
input high/low-level				$2.7~V \leq V_{\text{DD}} < 3.5~V$	2/fsam + 0.2 ^{Note 4}			μs
width					2/fsam + 0.5 ^{Note 4}			μs
		INTP1 to INTP6, K	R0 to KR7	V _{DD} = 2.7 to 5.5 V	10			μs
					20			μs
RESET low-	trsl	V _{DD} = 2.7 to 5.5 V			10			μs
level width					20			μs


Notes 1. When oscillation mode select register (OSMS) is set to 00H

- 2. When oscillation mode select register (OSMS) is set to 01H
- 3. The value when using external clock. When using crystal resonator, it is 114 μs (MIN.).
- 4. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible from fxx/2^N, fxx/32, fxx/64, and fxx/128 (when N = 0 to 4).
- **Remarks 1.** fxx: Main system clock frequency (fx or fx/2)
 - 2. fx : Main system clock oscillation frequency

TCY VS VDD (At $f_{XX} = f_X/2$ main system clock operation)

Tcy vs VDD (At fxx = fx main system clock operation)

(2) Read/Write Operation

(a) When MCS = 1, PCC2 to PCC0 = 000B (TA = -40 to + 85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	t ADH		50		ns
Data input time from address	tADD1			(2.85 + 2n)tcy - 80	ns
	tADD2			(4 + 2n)tcy - 100	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trdd1			(2 + 2n)tcr - 100	ns
	trdd2			(2.85 + 2n)tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(2 + 2n)tcy - 60		ns
	trdl2		(2.85 + 2n)tcy - 60		ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{RD} {\downarrow}$	trdwt1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	twrwt			2tcy - 60	ns
WAIT low-level width	tw⊤∟		(1.15 + 2n)tcr	(2 + 2n)tcr	ns
Write data setup time	twos		(2.85 + 2n)tcy - 100		ns
Write data hold time	twdн	Load resistance $\ge 5 \text{ k}\Omega$	20		ns
WR low-level width	twrl		(2.85 + 2n)tcy - 60		ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t ASTRD		25		ns
$\overline{WR} \downarrow$ delay time from ASTB \downarrow	t ASTWR		0.85tcy + 20		ns
ASTB ^{\uparrow} delay time from \overline{RD}^{\uparrow} at external fetch	t rdast		0.85tcy - 10	1.15tcr + 20	ns
Address hold time from $\overline{RD}\uparrow$ at external fetch	trdadh		0.85tcy - 50	1.15tcy + 50	ns
Write data output time from $\overline{\text{RD}}$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		0	50	ns
Address hold time from $\overline{\rm WR} \uparrow$	twradh		0.85tcy - 20	1.15tcy + 40	ns
\overline{RD} delay time from \overline{WAIT}	twrrd		1.15tcy + 40	3.15tcy + 40	ns
$\overline{\mathrm{WR}}$ delay time from $\overline{\mathrm{WAIT}}$	twtwr		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)

2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)

3. tcy = Tcy/4

4. n indicates the number of waits.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	t ADH		0.4tcy - 10		ns
Data input time from address	tadd1			(3 + 2n)tcy - 160	ns
	tADD2			(4 + 2n)tcy - 200	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(1.4 + 2n)tcy - 70	ns
	trdd2			(2.4 + 2n)tcy - 70	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.4 + 2n)tcy - 20		ns
	trdl2		(2.4 + 2n)tcy - 20		ns
$\overline{WAIT} \downarrow$ input time from $\overline{RD} \downarrow$	trdwt1			tcy - 100	ns
	trdwt2			2tcy - 100	ns
$\overline{WAIT} \downarrow$ input time from $\overline{WR} \downarrow$	t wrwt			2tcy - 100	ns
WAIT low-level width	t WTL		(1 + 2n)tcr	(2 + 2n)tcr	ns
Write data setup time	twos		(2.4 + 2n)tcy-60		ns
Write data hold time	twdн	Load resistance $\ge 5 \text{ k}\Omega$	20		ns
WR low-level width	twrl		(2.4 + 2n)tcy - 20		ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t ASTRD		0.4tcy - 30		ns
$\overline{WR} {\downarrow}$ delay time from ASTB ${\downarrow}$	t ASTWR		1.4tcy - 30		ns
ASTB [↑] delay time from RD [↑] at external fetch	t rdast		tcy -10	tcy + 20	ns
Address hold time from $\overline{\text{RD}}^{\uparrow}$ at external fetch	t RDADH		tcy - 80	tcy + 50	ns
Write data output time from \overline{RD}	trdwd		0.4tcy - 30		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		0	60	ns
Address hold time from \overline{WR}^\uparrow	twradh		tcy - 60	tcy + 60	ns
\overline{RD}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtrd		0.6tcy + 180	2.6tcy + 180	ns
\overline{WR} delay time from \overline{WAIT}	twtwr		0.6tcy + 120	2.6tcy + 120	ns

(b) Except when MCS = 1, PCC2 to PCC0 = 000B (T_A = -40 to + 85°C, V_{DD} = 2.7 to 5.5 V)

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)

2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)

3. tcy = Tcy/4

4. n indicates the number of waits.

(3) Serial Interface (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3200			ns
			4800			ns
SCK0 high/low-level width	tĸнı, tĸ∟ı	V _{DD} = 4.5 to 5.5 V	tксү1/2 – 50			ns
			tксү1/2 – 100			ns
SI0 setup time	tsik1	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	100			ns
(to SCK0↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
			400			ns
SI0 hold time (from SCK0↑)	tksi1		400			ns
SO0 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of SO0 output line.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	$4.5 V \leq V_{DD} \leq 5.0$.5 V	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4$.5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$.7 V	3200			ns
				4800			ns
SCK0 high/low-level	tкн2, tкL2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		400			ns
width		$2.7 V \leq V_{DD} < 4.$.5 V	800			ns
		$2.0~V \leq V_{\text{DD}} < 2.7~V$		1600			ns
				2400			ns
SI0 setup time	tsik2	tsik2 VDD = 2.0 to 5.5		100			ns
(to SCK0↑)				150			ns
SI0 hold time (from SCK0↑)	tksi2			400			ns
SO0 output delay time	tkso2	C = 100 pF Note	VDD = 2.0 to 5.5 V			300	ns
from SCK0↓						500	ns
SCK0 rise/fall time	tr2, tr2	When using external device expansion function				160	ns
		When not using device expansion				1000	ns

Note C is the load capacitance of the SO0 output line.

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$R = 1 k\Omega$,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1600			ns
		C = 100 pF Note	$2.0~V \leq V_{\text{DD}} < 2.7~V$	3200			ns
				4800			ns
SCK0 high-level width	tкнз		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	tксүз/2 – 160			ns
				tксүз/2 – 190			ns
SCK0 low-level width	tк∟з		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	tксүз/2 – 50			ns
				tксүз/2 – 100			ns
SB0, SB1 setup time	tsiкз		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	300			ns
(to SCK0↑)			$2.7~V \leq V_{\text{DD}} < 4.5~V$	350			ns
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	400			ns
				500			ns
SB0, SB1 hold time	tksis			600			ns
(from SCK0↑)							
SB0, SB1 output delay time from SCK0↓	tкsоз			0		300	ns

(iii) 2-wire serial I/O mode (SCK0... Internal clock output)

Note R and C are the load resistance and load capacitance of the <u>SCK0</u>, SB0, and SB1 output lines, respectively.

(iv) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү4	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3200			ns
				4800			ns
SCK0 high-level width	t кн4	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	650			ns
		$2.0 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$		1300			ns
				2100			ns
SCK0 low-level width	tĸL4	$2.7~V \leq V_{DD} \leq 5.5~V$		800			ns
		$2.0 \text{ V} \leq \text{V}\text{dd} < 2.7 \text{ V}$		1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tксү4/2			ns
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	$4.5~V \leq V_{DD} \leq 5.5~V$	0		300	ns
time from SCK0 \downarrow		C = 100 pF Note	$2.0~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	0		500	ns
						800	ns
SCK0 rise/fall time	tr4, tf4	When using external device expansion function				160	ns
		When not using expansion functi				1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines, respectively.

(v) I ² C bus mode (SCL Internal clock output
--

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү5	R = 1 kΩ,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			μs
		C = 100 pF Note	$2.0~V \leq V_{\text{DD}} < 2.7~V$	20			μs
				30			μs
SCL high-level width	tкн5		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	tксү5 – 160			ns
				tксү5 – 190			ns
SCL low-level width	tĸ∟5		VDD = 4.5 to 5.5 V	tксү5 – 50			ns
				tксү5 – 100			ns
SDA0, SDA1 setup time	tsik5		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	200			ns
(to SCL↑)			$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	300			ns
				400			ns
SDA0, SDA1 hold time (from SCL↓)	tksi5			0			ns
SDA0, SDA1 output	tĸso5	1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0		300	ns
delay time from SCL \downarrow			$2.0~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	0		500	ns
				0		600	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL ↑	tкsв	-		200			ns
SCL↓ from SDA0,	tsвк		V _{DD} = 2.0 to 5.5 V	400			ns
SDA1↓		-		500			ns
SDA0, SDA1 high- level width	tsвн			500			ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines, respectively.

Parameter	Symbol	Conc	ditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү6			1000			ns
SCL high/low-level	t кн6,	V _{DD} = 2.0 to 5.5	V	400			ns
width	tĸl6			600			ns
SDA0, SDA1 setup time	tsik6	V _{DD} = 2.0 to 5.5	V	200			ns
(to SCL↑)				300			ns
SDA0, SDA1 hold time (from SCL↓)	tksi6			0			ns
SDA0, SDA1 output delay time from SCL↓	tkso6	R = 1 kΩ,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0		300	ns
		C = 100 pF ^{Note}	$2.0~V \leq V_{\text{DD}} < 4.5~V$	0		500	ns
				0		600	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL ↑	tкsв			200			ns
SCL↓ from SDA0,	tsвк	V _{DD} = 2.0 to 5.5	V	400			ns
SDA1↓				500			ns
SDA0, SDA1 high-	tsвн	V _{DD} = 2.0 to 5.5	V	500			ns
level width				800			
SCL rise/fall time	tre, tfe	When using external device expansion function				160	ns
		When not using expansion funct	external device ion			1000	ns

(vi) I²C bus mode (SCL... External clock input)

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines, respectively.

(b) Serial Interface Channel 1

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү7	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.5~V$	1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3200			ns
			4800			ns
SCK1 high/low-level	tkh7, tkl7	V _{DD} = 4.5 to 5.5 V	tксү7/2 – 50			ns
width			tксү7/2 − 100			ns
SI1 setup time	tsık7	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
(to SCK1↑)		$2.7~V \leq V_{\text{DD}} < 4.5~V$	150			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tкsı7		400			ns
SO1 output delay time from $\overline{\text{SCK1}}\downarrow$	t кso7	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO1 output line.

(ii)	3-wire	serial I/O	mode	(SCK1	External	clock input)	
------	--------	------------	------	-------	----------	--------------	--

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксув	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V V	3200			ns
				4800			ns
SCK1 high/low-level	tкнв,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tĸl8	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V V	1600			ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1↑)				150			ns
SI1 hold time (from SCK1↑)	tksi8			400			ns
SO1 output delay time	tkso8	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise/fall time	trs, trs	When using exte expansion function				160	ns
		When not using expansion function				1000	ns

Note C is the load capacitance of the SO1 output line.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK1 high/low-level	tkh9, tkl9	V _{DD} = 4.5 to 5.5 V	tксү9/2 – 50			ns
width			tксүэ/2 – 100			ns
SI1 setup time	tsik9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK1↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tks19		400			ns
SO1 output delay time from $\overline{\text{SCK1}}\downarrow$	tkso9	C = 100 pF Note			300	ns
STB↑ from SCK1↑	tsвd		tксү9/2 – 100		tксү9/2 + 100	ns
Strobe signal	tsвw	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	tксүэ – 30		tксүэ + 30	ns
high-level width		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	tксүэ – 60		tксүэ + 60	ns
			tксүэ – 90		tксүэ + 90	ns
Busy signal setup time (to busy signal detection timing)	teys		100			ns
Busy signal hold time	tвүн	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(from busy signal		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
detection timing)		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	200			ns
			300			ns
SCK1↓ from busy inactive	tsps				2tксүэ	ns

(iii) 3-wire serial I/O mode with	automatic transmit/receive function	(SCK1 Internal clock output)

Note C is the load capacitance of the SO1 output line.

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү10	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 V \le V_{DD} < 4.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3200			ns
				4800			ns
SCK1 high/low-level	t кн10,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tĸ∟10	$2.7 V \le V_{DD} < 4.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	1600			ns
				2400			ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK1↑)				150			ns
SI1 hold time (from SCK1↑)	tksi10			400			ns
SO1 output delay time	tkso10	C = 100 pF Note	VDD = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise/fall time	tr10, tF10	When using external device expansion function				160	ns
		When not using expansion funct				1000	ns

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

Note C is the load capacitance of the SO1 output line.

(c) Serial Interface Channel 2

(i)	3-wire serial I/O	mode (SCK2	Internal cloc	k output)
· · · /	•			

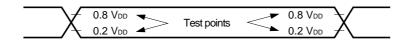
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tксү11	$4.5~V \le V_{\text{DD}} \le 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.5~V$	1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3200			ns
			4800			ns
SCK2 high/low-level	t кн11, t кL11	V _{DD} = 4.5 to 5.5 V	tксү11/2 – 50			ns
width			tксү11/2 – 100			ns
SI2 setup time	tsik11	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
(to SCK2↑)		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	150			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	300			ns
			400			ns
SI2 hold time (from SCK2↑)	tksi11		400			ns
SO2 output delay time from $\overline{\text{SCK2}}\downarrow$	tkso11	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of SO2 output line.

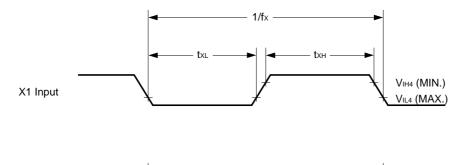
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	t ксү12	$4.5~V \leq V_{DD} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{DD} < 4.5~V$	1600			ns
		$2.0~V \leq V_{\text{DD}} < 2.7~V$	3200			ns
			4800			ns
SCK2 high/low-level	t кн12,	$4.5~V \leq V_{DD} \leq 5.5~V$	400			ns
width	tĸ∟12	$2.7~V \leq V_{\text{DD}} < 4.5~V$	800			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	1600			ns
			2400			ns
SI2 setup time	tsik12	VDD = 2.0 to 5.5 V	100			ns
(to SCK2↑)			150			ns
SI2 hold time (from SCK2↑)	tksi12		400			ns
SO2 output delay time	tkso12	C = 100 pF Note VDD = 2.0 to 5.5 V			300	ns
from SCK2↓					500	ns
SCK2 rise/fall time	tr12, tr12	V_{DD} = 4.5 to 5.5 V When not using external device expansion function			1000	ns
					160	ns

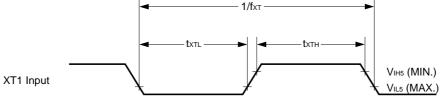
(ii) 3-wire serial I/O mode (SCK2... External clock input)

Note C is the load capacitance of the SO2 output line.

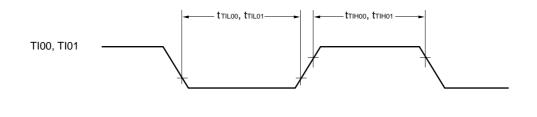

(iii) UART mode (Dedicated baud rate generator output)

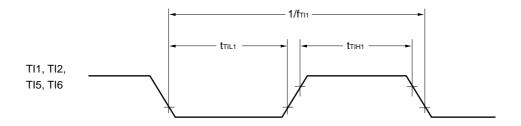
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			78125	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			39063	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			19531	bps
					9766	bps

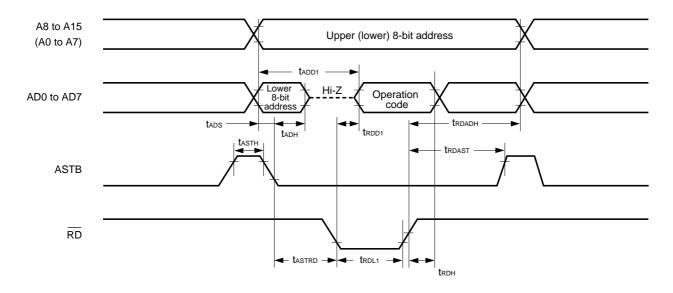

(iv) UART mode (External clock input)

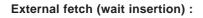

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t ксү13	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3200			ns
			4800			ns
ASCK high/low-level	tкн13, tкL13	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
			2400			ns
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$			19531	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9766	bps
					6510	bps
ASCK rise/fall time	tr13, tr13	V _{DD} = 4.5 to 5.5 V When not using external device expansion function			1000	ns
					160	ns

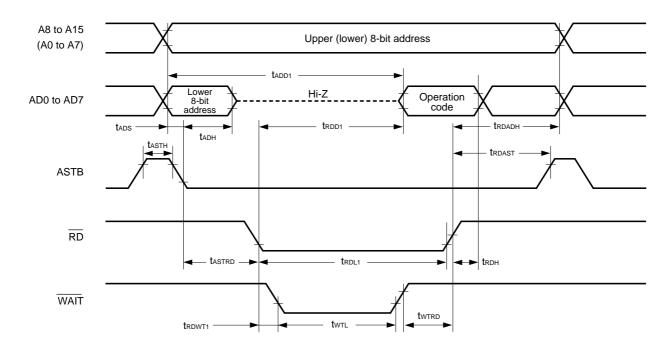
AC Timing Test Points (excluding X1, XT1 Inputs)



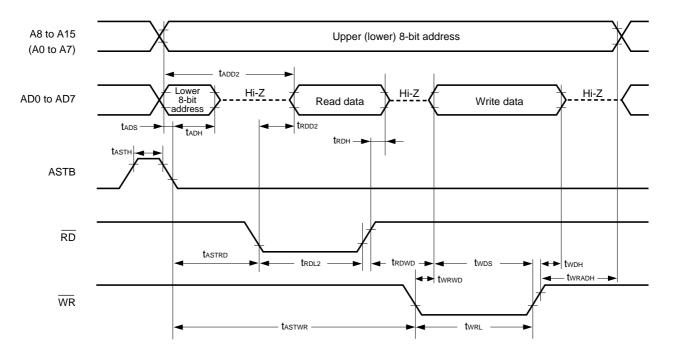

Clock Timing

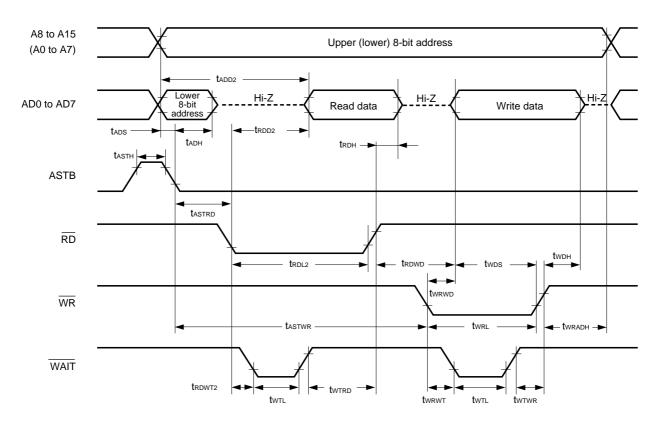

TI Timing



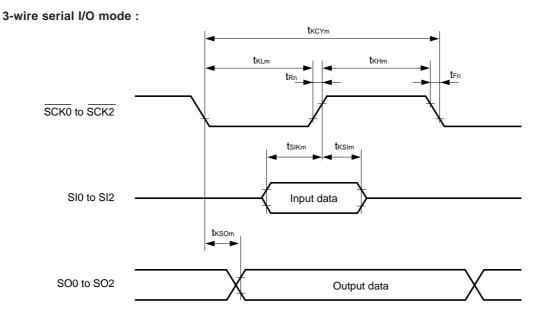

Read/Write Operation

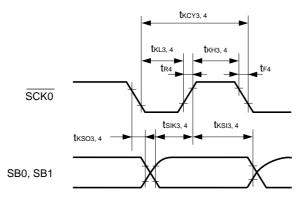
External fetch (no wait) :


Remark () is valid only in the separate bus mode.

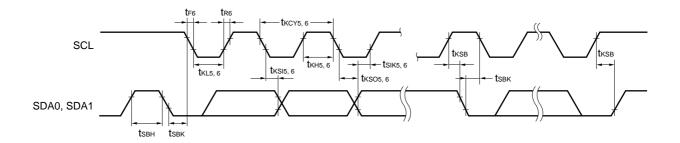

Remark () is valid only in the separate bus mode.

External data access (no wait) :

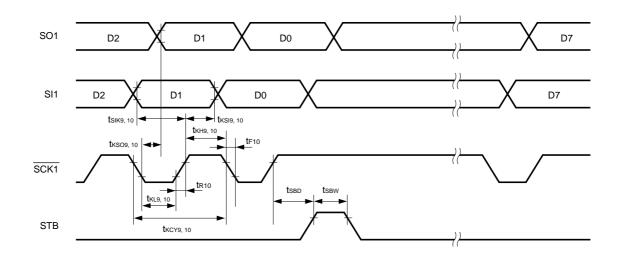

Remark () is valid only in the separate bus mode.

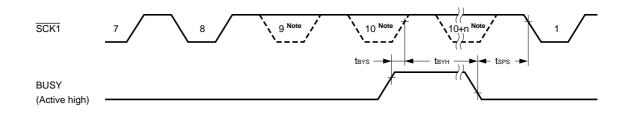

Remark () is valid only in the separate bus mode.

Serial Transfer Timing

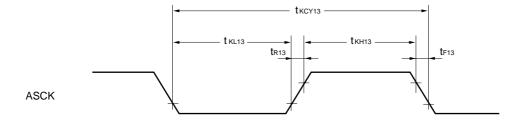


m = 1, 2, 7, 8, 11, 12 n = 2, 8, 12


2-wire serial I/O mode :


I²C bus mode :

3-wire serial I/O mode with automatic transmit/receive function :



3-wire serial I/O mode with automatic transmit/receive function (busy processing) :

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART mode (external clock input) :

A/D CONVERTER CHARACTERISTICS (T_A = -40 to +85°C, AV_{DD} = V_{DD} = 1.8 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7~V \leq AV_{\text{REF0}} \leq AV_{\text{DD}}$			0.6	%
		$1.8~V \leq AV_{\text{REF0}} < 2.7~V$			1.4	%
Conversion time	t CONV	$2.0~\text{V} \leq AV_{\text{DD}} \leq 5.5~\text{V}$	19.1		200	μs
		$1.8~V \leq AV_{\text{DD}} < 2.0~V$	38.2		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		1.8		AVdd	V
Resistance between AVREFO and AVss	RAIREFO		4	14		kΩ

Note Excluding quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

2. fx: Main system clock oscillation frequency

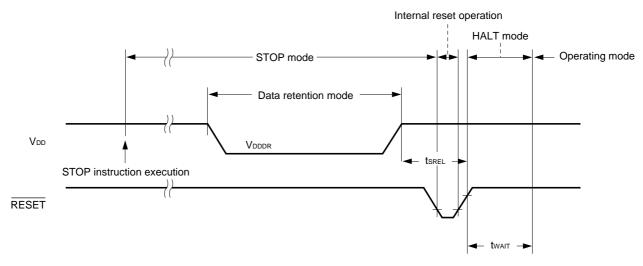
D/A CONVERTER CHARACTERISTICS (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error		$R = 2 M\Omega^{\text{Note 1}}$				1.2	%
		$R = 4 \ M\Omega \ ^{\text{Note 1}}$				0.8	%
		R = 10 MΩ ^{Note 1}				0.6	%
Settling time		Note C=30pF	$4.5 \text{ V} \leq \text{AV}_{\text{REF1}} \leq 5.5 \text{ V}$			10	μs
			$2.7 \text{ V} \leq \text{AV}_{\text{REF1}} < 4.5 \text{ V}$			15	μs
			$1.8 \text{ V} \leq \text{AV}_{\text{REF1}} < 2.7 \text{ V}$			20	μs
Output resistance	Ro	Note 2			10		kΩ
Analog reference voltage	AV _{REF1}			1.8		Vdd	V
Resistance between AV _{REF1} and AV _{SS}	RAIREF1	DACS0, DACS1 = 55H Note 2		4	8		kΩ

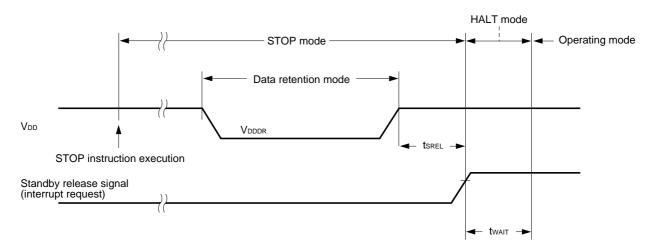
Notes 1. R and C are the D/A converter output pin load resistance and load capacitance, respectively.

2. Value for one D/A converter channel

Remark DACS0, DACS1: D/A Conversion value setting registers 0, 1.

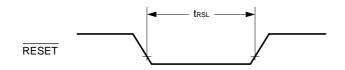

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = -40 to +85°C)

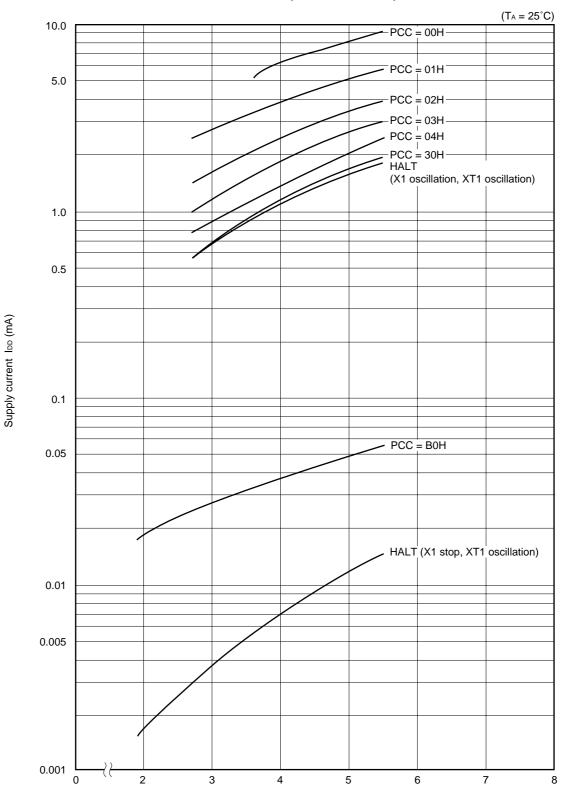
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.8		5.5	V
Data retention power supply current	Idddr	VDDDR = 1.8 V Subsystem clock stop and feed- back resistor disconnected		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms


- **Note** In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection is possible from 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx.
- Remark
 fxx: Main system clock frequency (fx or fx/2)

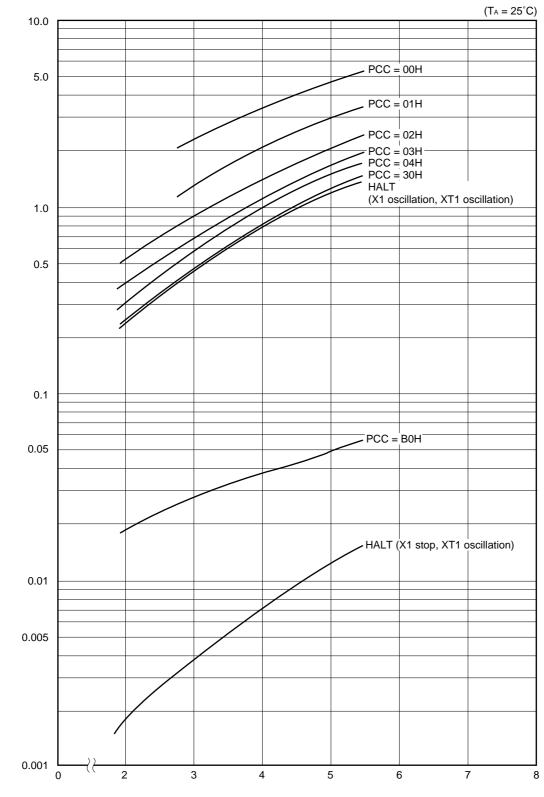
 fx: Main system clock oscillation frequency

Data Retention Timing (STOP mode release by RESET)

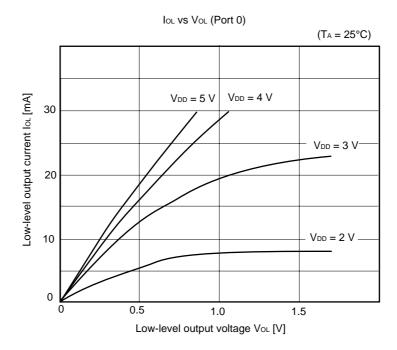

Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

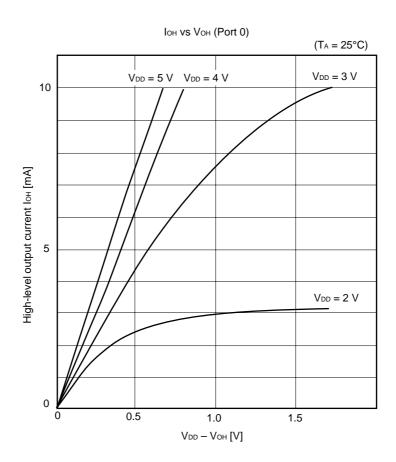

Interrupt Request Input Timing

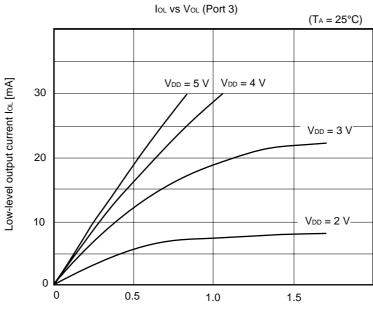
RESET Input Timing

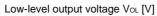

12. CHARACTERISTIC CURVES (REFERENCE VALUE)

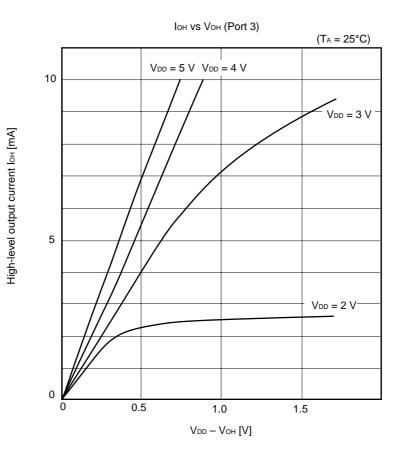
IDD VS VDD (fx = fxx = 5.0 MHz)

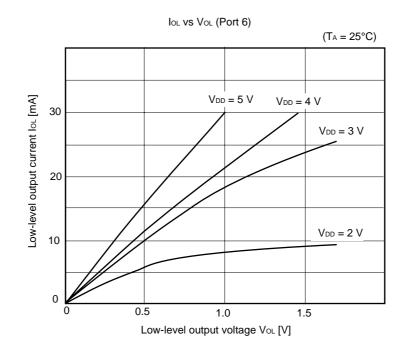

Supply voltage VDD (V)

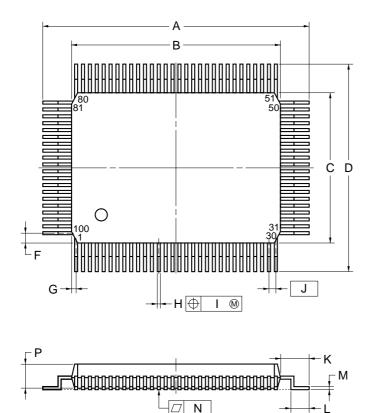

Supply current Ipp (mA)



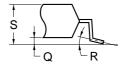

IDD VS VDD (fx = 5.0 MHz, fxx = 2.5 MHz)


Supply voltage VDD (V)





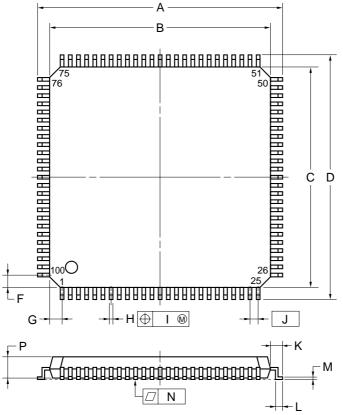
70

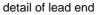


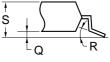
13. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14x20)

detail of lead end


NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
A	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
1	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
	F	2100GF-65-3BA1-3

Remark The external dimensions and material of the ES version are the same as that of the mass-produced version.

100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.00±0.20	0.630±0.008
В	14.00±0.20	0.551 +0.009 -0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	16.00±0.20	0.630 ± 0.008
F	1.00	0.039
G	1.00	0.039
н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
к	1.00±0.20	$0.039^{+0.009}_{-0.008}$
L	0.50±0.20	$0.020^{+0.008}_{-0.009}$
М	$0.17^{+0.03}_{-0.07}$	$0.007^{+0.001}_{-0.003}$
N	0.08	0.003
Р	1.40±0.05	0.055±0.002
Q	0.10±0.05	0.004±0.002
R	3°+7° -3°	3°+7° −3°
S	1.60 MAX.	0.063 MAX.
		S100GC-50-8EU

Remark The external dimensions and material of the ES version are the same as that of the mass-produced version.

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78076Y and 78078Y should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, consult an NEC sales personnel.

Table 14-1. Surface Mounting Type Soldering Conditions

μ PD78076YGF-xxx-3BA : 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm) μ PD78078YGF-xxx-3BA : 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: three or less.	IR35-00-3
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: three or less.	VP15-00-3
Wave soldering	Soldering bath temperature: 260°C max., Duration: 10 sec. max., Number of times: once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max. Duration: 3 sec. max. (per pin row)	_

Cautions 1. Use of more than one soldering method should be avoided (except in the case of partial heating).

2. The soldering conditions for the μ PD78076YGC-xxx-8EU and μ PD78078YGC-xxx-8EU are undefined, since they are still under development.

 \star

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for system development using the μ PD78076Y and 78078Y. Also refer to **(5) Cautions when Using Development Tools**.

(1) Language Processing Software

RA78K/0	Assembler package common to the 78K/0 Series
CC78K/0	C compiler package common to the 78K/0 Series
DF78078	Device file common to the μ PD78078 Subseries
CC78K/0-L	C compiler library source file common to the 78K/0 Series

(2) PROM Writing Tools

PG-1500	PROM programmer	
PA-78P078GF	Programmer adapters connected to the PG-1500	
PA-78P078GC		
PA-78P078KL-T		
PG-1500 controller	PG-1500 control program	

(3) Debugging Tools

• In-circuit emulator (when IE-78K0-NS is used)

IE-78K0-NS ^{Note}	In-circuit emulator common to the 78K/0 Series	
IE-70000-MC-PS-B	Power supply unit for the IE-78K0-NS	
IE-70000-98-IF-C ^{Note}	Interface adapter when using the PC-9800 series (except for notebook computers) as the host machine	
IE-70000-CD-IF ^{Note}	PC card and interface cable when using the PC-9800 series notebook computers as the host machine	
IE-70000-PC-IF-C ^{Note}	Interface adapter when using IBM PC/AT™ and its compatibles as the host machine	
IE-78078-NS-EM1 ^{Note}	Emulation board to common to the μ PD78078 Subseries	
NP-100GC	Emulation probe for 100-pin plastic QFP (GC-8EU type)	
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the NP-100GC and the target system board on which	
	100-pin plastic QFP (GC-8EU type) can be mounted	
EV-9200GF-100	Socket mounted on the target system board for 100-pin plastic QFP (GF-3BA type)	
ID78K0-NS ^{Note}	Integrated debugger for the IE-78K0-NS	
SM78K0	System simulator common to the 78K/0 Series	
DF78078	Device file common to the μ PD78078 Subseries	

Note Under development

 In-circuit Emulator (when IE-78001-R-A is used)

IE-78001-R-A ^{Note}	In-circuit emulator common to the 78K/0 Series	
IE-70000-98-IF-B	Interface adapter when using the PC-9800 series (except for notebook computers)	
IE-70000-98-IF-C ^{Note}	as the host machine	
IE-70000-PC-IF-B	Interface adapter and cable when using IBM PC/AT and its compatibles as the host	
IE-70000-PC-IF-C ^{Note}	machine	
IE-78000-R-SV3	Interface adapter and cable when using EWS as the host machine	
IE-78078-NS-EM1 ^{Note}	Emulation board common to the μ PD78078 Subseries	
IE-78078-R-EM		
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board that is necessary when using the IE-78078-NS-EM1	
	on the IE-78001-R-A	
EP-78064GC-R	Emulation probe for 100-pin plastic QFP (GC-8EU type)	
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R and the target system board on	
	which 100-pin plastic QFP (GC-8EU type) can be mounted	
EV-9200GF-100	Socket mounted on the target system board for 100-pin plastic QFP (GF-3BA type)	
ID78K0	Integrated debugger for the IE-78001-R-A	
SM78K0	System simulator common to the 78K/0 Series	
DF78078	Device file common to the μ PD78078 Subseries	

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for the 78K/0 Series
MX78K0	OS for the 78K/0 Series

(5) Cautions when Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78078.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 or DF78078.
- The NP-100GC and NP-100GF are products of Naito Densei Machidaseisakusho Co., Ltd. (044-822-3813). Contact an NEC distributor about purchasing.
- The TGC-100SDW is a product of TOKYO ELETECH CORPORATION. Refer to: Daimaru Kogyo, Ltd. Tokyo Electronic Components Division (03-3820-7112) Osaka Electronic Components Division (06-244-6672)
- Refer to 78K/0 Series Selection Guide (U11126E) about third-party development tools.
- The host machine and the OS applied to each software are shown below.

Host Machine	PC	EWS	
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]	
	IBM PC/AT and compatibles [Japanese/English Windows]	SPARCstation [™] [SunOS [™]]	
Software		NEWS [™] (RISC) [NEWS-OS [™]]	
RA78K/0	\sqrt{Note}	\checkmark	
CC78K/0	√Note		
PG-1500 controller	\sqrt{Note}	-	
ID78K0-NS	\checkmark	_	
ID78K0	\checkmark	\checkmark	
SM78K0	\checkmark	_	
RX78K/0	\sqrt{Note}		
MX78K0	√Note	\checkmark	

Note DOS-based software

***** APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name		Document No.	
	English	Japanese	
μPD78078, 78078Y Subseries User's Manual	U10641E	U10641J	
μPD78076Y, 78078Y Data Sheet	This document	U10605J	
μPD78P078Y Data Sheet	U10606E	U10606J	
78K/0 Series User's Manual—Instructions	U12326E	U12326J	
78K/0 Series Instruction Table	—	U10903J	
78K/0 Series Instruction Set	—	U10904J	
µPD78078Y Subseries Special Function Register Table		IEM-5601	
78K/0 Series Application Note—Basic (III)	U10182E	U10182J	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.

U11649E

U11539E

U11649J

U11539J

Document Name		Document No.	
		English	Japanese
RA78K Series Assembler Package	Operation	EEU-1399	EEU-809
	Language	EEU-1404	EEU-815
RA78K Series Structured Assembler Preprocessor	i	EEU-1402	U12323J
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
CC78K Series C Compiler	Operation	EEU-1280	EEU-656
	Language	EEU-1284	EEU-655
CC78K/0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
CC78K Series Library Source File			U12322J
PG-1500 PROM Programmer		EEU-1335	U11940J
PG-1500 Controller PC-9800 Series (MS-DOS™) B	ased	EEU-1291	EEU-704
PG-1500 Controller IBM PC Series (PC DOS™) Bas	sed	U10540E	EEU-5008
IE-78K0-NS		To be prepared	To be prepare
IE-78001-R-A		To be prepared	To be prepare
IE-78K0-R-EX1		To be prepared	To be prepare
IE-78078-NS-EM1		To be prepared	To be prepare
IE-78078-R-EM		U10775E	U10775J
EP-78064		EEU-1469	EEU-934
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External part user open	U10092E	U10092J
	interface specifications		
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger EWS Based	Reference		U11151J

Documents Related to Development Tools (User's Manuals)

ID78K0 Integrated Debugger Windows Based

ID78K0 Integrated Debugger PC Based

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.

Guide

Reference

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name		Document No.	
	English	Japanese	
IC Package Manual	C10943X		
Semiconductor Device Mounting Technology Manual	C10535E	C10535J	
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J	
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J	
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J	
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_	
Microcomputer Product Series Guide	—	U11416J	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.

[MEMO]

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829 NEC

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device

before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5