Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

mos integrated circuit $\mu PD78058F(A)$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78058F(A) is an 8-bit single-chip microcontroller belonging to the μ PD78058F Subseries of the 78K/0 Series. A stricter quality assurance program is applied to this device, which is classified as special grade, compared to the μ PD78058F, which is classified as standard grade.

The Electro Magnetic Interference (EMI) noise generated inside the μ PD78058F(A) is reduced compared to the μ PD78058 Subseries.

This microcontroller includes a rich assortment of peripheral hardware, such as 8-bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, and interrupt functions.

The μ PD78P058F, a one-time PROM version which can be operated in the same supply voltage range as the mask ROM version, and various development tools are also available.

Details of the function descriptions are described in the following user's manuals. Be sure to read them before designing.

 μ PD78058F, 78058FY Subseries User's Manual : U12068E 78K/0 Series User's Manual – Instructions : U12326E

FEATURES

- EMI noise reduced version (the overall peak level is reduced by 5 to 10 dB.)
- High-capacity on-chip ROM & RAM
- ROM : 60 Kbytes
- High-speed RAM: 1024 bytes
- Buffer RAM : 32 bytes
- Expanded RAM : 1024 bytes
- Package: 80-pin plastic QFP (14 \times 14 mm)
- External memory expansion space: 64 Kbytes
- Minimum instruction execution time can be varied from high-speed (0.4 μ s) to ultra-low-speed (122 μ s)
- I/O ports: 69 (N-ch open-drain: 4)
- 8-bit resolution A/D converter: 8 channels
- 8-bit resolution D/A converter: 2 channels
- Serial interface: 3 channels
- Timer: 5 channels
- Supply voltage: VDD = 2.7 to 6.0 V

APPLICATIONS

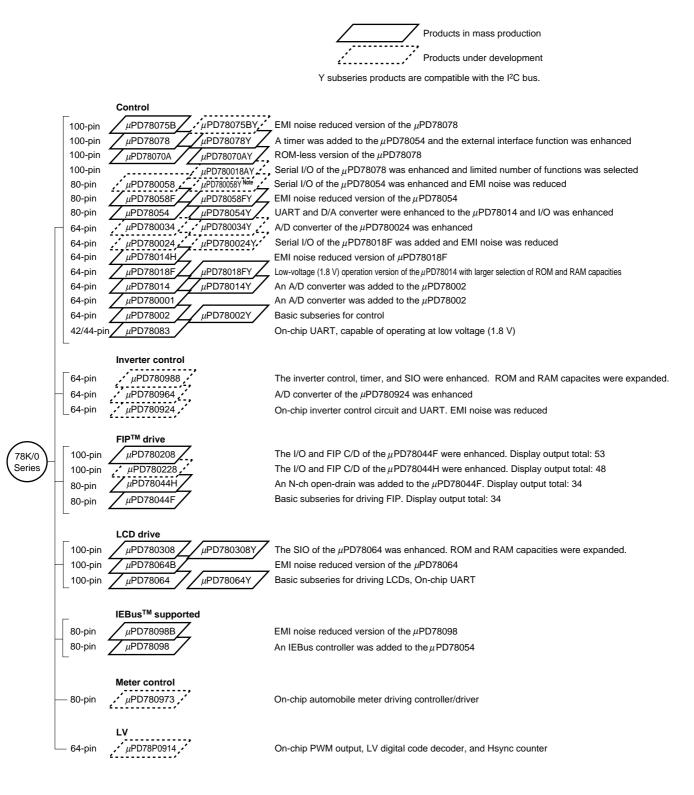
Automobile equipment control units, gas detector/cutoff units, safety devices, etc.

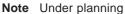
The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPD78058FGC(A)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14 mm)	Special
		(for high-reliability electronic equipment)

Remark ××× denotes the ROM code suffix.


Please refer to "Quality grade on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

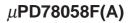

Differences between the μ PD78058F(A) and μ PD78058F

Product name Item	μPD78058F(A)	μPD78058F
Quality grade	Special	Standard
Package	80-pin plastic QFP (14 \times 14 mm, resin thickness 2.7 mm)	 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm) 80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)

78K/0 SERIES PRODUCT DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

NEC

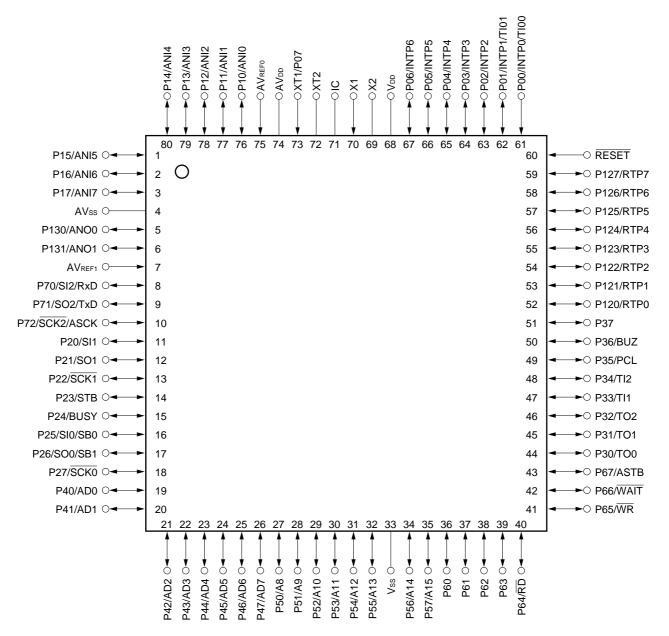

The major functional differences among the subseries are shown below.

	Function	ROM		Tin	ner			10-bit		Serial Interface	1/0	Vdd MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A			Value	Expansior
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	\checkmark
	μPD78078	48 K to 60 K											
	μPD78070A	—									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (Time division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	µPD780034	8 K to 32 K					_	8 ch	_	3 ch (UART: 1 ch, Time	51	1.8 V	
	µPD780024						8 ch	—		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	µPD78018F	8 K to 60 K											
	μPD78014	8 K to 32 K										2.7 V	
	µPD780001	8 K		-	—					1 ch	39		_
	µPD78002	8 K to 16 K			1ch			1			53		
	µPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	_
Inverter	µPD780988	32 K to 60 K	3 ch	Note 1	—	1 ch	—	8 ch	—	3 ch (UART: 2 ch)	47	4.0 V	\checkmark
control	µPD780964	8 K to 32 K		Note 2						2 ch (UART: 2 ch)	1	2.7 V	
	µPD780924						8 ch	-					
FIP	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	—	2 ch	74	2.7 V	—
driving	μPD780228	48 K to 60 K	3 ch	_						1 ch	72	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD driving	μPD780308	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	_	3 ch (Time division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32 K								2 ch (UART: 1 ch)	1		
	μPD78064	16 K to 32 K											
IEBus	μPD78098B	40 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	
supported	μPD78098	32 K to 60 K											
Meter control	μPD780973	24 K to 32 K	3 ch	1 ch	1 ch	1 ch	5 ch	_	—	2 ch (UART: 1 ch)	56	4.5 V	_
LV	μPD78P0914	32 K	6 ch	_	_	1 ch	8 ch	_	_	2 ch	54	4.5 V	

Notes 1. 16-bit timer: 2 channels

10-bit timer: 1 channel

2. 10-bit timer: 1 channel

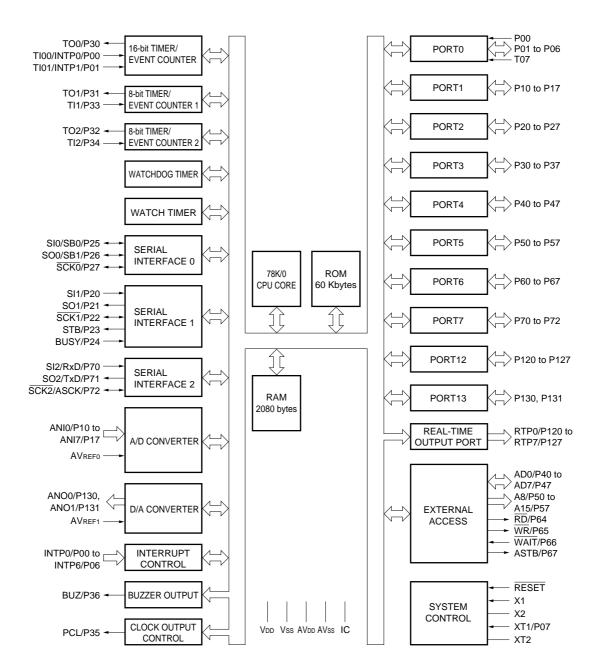

FUNCTIONAL OUTLINE

Item		l	Function					
Inter	nal	ROM		60 Kbytes				
mem	ory	High-s	peed RAM	1024 bytes				
B		Buffer	RAM	32 bytes				
		Expan	ded RAM	1024 Kbytes				
Mem	ory space	;		64 Kbytes				
Gene	eral regist	ers		8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)				
Minir	num instr	uction e	execution time	On-chip minimum instruction execution time cycle modification function				
	When m	ain syst	em clock selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (at 5.0-MHz operation)				
	When su	ubsyster	m clock selected	122 μs (at 32.768-kHz operation)				
Instr	uction set			 16-bit operation Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation) BCD adjust, etc. 				
I/O ports				Total : 69 • CMOS input : 2 • CMOS I/O : 63 • N-ch open-drain I/O : 4				
A/D	converter			• 8-bit resolution × 8 channels				
D/A	converter			• 8-bit resolution × 2 channels				
Seria	I interface	e		 3-wire serial I/O, SBI, or 2-wire serial I/O mode selectable: 1 channel 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel 3-wire serial I/O or UART mode selectable: 1 channel 				
Time	r			 16-bit timer/event counter 8-bit timer/event counter 2 channels Watch timer 1 channel Watchdog timer 1 channel 				
Time	r output			3 (14-bit PWM output enable \times 1)				
Clock output			19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz (during 5.0-MHz operation with main system clock) 32.768 kHz (during 32.768-kHz operation with subsystem clock)					
Buzz	er output			1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (during 5.0-MHz operation with main system clock)				
Vect	ored inter	rupt	Maskable	Internal interrupts: 13, external interrupts: 7				
sour	ce		Non-maskable	Internal interrupt: 1				
			Software	1				
Test input			Internal: 1, external: 1					
Supp	ly voltage	9		V _{DD} = 2.7 to 6.0 V				
Oper	ating amb	pient ter	nperature	$T_{A} = -40 \text{ to } + 85^{\circ}\text{C}$				
Pack	age			80-pin plastic QFP (14 \times 14 mm)				

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	7
2.	BLOCK DIAGRAM	9
3.	PIN FUNCTIONS 1 3.1 Port Pins 1 3.2 Non-port Pins 1 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 1	0 2
4.	MEMORY SPACE	8
5.	PERIPHERAL HARDWARE FUNCTION FEATURES 1 5.1 Ports 1 5.2 Clock Generator 2 5.3 Timer/event Counter 2 5.4 Clock Output Control Circuit 2 5.5 Buzzer Output Control Circuit 2 5.6 A/D Converter 2 5.7 D/A Converter 2 5.8 Serial Interfaces 2 5.9 Real-Time Output Port Functions 2	9 20 20 23 24 25 25
6	INTERRUPT FUNCTIONS AND TEST FUNCTIONS 2 6.1 Interrupt Functions 2 6.2 Test Functions 3	8
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	3
8.	STANDBY FUNCTION	3
9.	RESET FUNCTION	3
10.	INSTRUCTION SET	4
11.	ELECTRICAL SPECIFICATIONS	7
12.	PACKAGE DRAWINGS	3
13.	RECOMMENDED SOLDERING CONDITIONS	4
API	PENDIX A. DEVELOPMENT TOOLS	5
API	PENDIX B. RELATED DOCUMENTS	8

- 1. PIN CONFIGURATION (TOP VIEW)
 - 80-pin plastic QFP (14 × 14 mm) μPD78058FGC(A)-×××-3B9


Cautions 1. Connect directly the Internally Connected (IC) pin to Vss.

- The AV_{DD} pin functions as both an A/D converter power supply and a port power supply. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller need to be reduced, connect the AV_{DD} pin to another power supply that has the same potential as V_{DD}.
- 3. The AVss pin functions as both a ground for A/D and D/A converters and a ground for a port. When the µPD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to a ground line other than Vss.

A8 to A15	:	Address Bus
AD0 to AD7	:	Address/Data Bus
ANI0 to ANI7	:	Analog Input
ANO0, ANO1	:	Analog Output
ASCK	:	Asynchronous Serial Clock
ASTB	:	Address Strobe
AVdd	:	Analog Power Supply
AVREF0, AVREF1	:	Analog Reference Voltage
AVss	:	Analog Ground
BUSY	:	Busy
BUZ	:	Buzzer Clock
IC	:	Internally Connected
INTP0 to INTP6	:	Interrupt from Peripherals
P00 to P07	:	Port0
P10 to P17	:	Port1
P20 to P27	:	Port2
P30 to P37	:	Port3
P40 to P47	:	Port4
P50 to P57	:	Port5
P60 to P67	:	Port6
P70 to P72	:	Port7
P120 to P127	:	Port12
P130, P131	:	Port13

PCL	:	Programmable Clock
RD	:	Read Strobe
RESET	:	Reset
RTP0 to RTP7	:	Real-Time Output Port
RxD	:	Receive Data
SB0, SB1	:	Serial Bus
$\overline{\text{SCK0}}$ to $\overline{\text{SCK2}}$:	Serial Clock
SI0 to SI2	:	Serial Input
SO0 to SO2	:	Serial Output
STB	:	Strobe
TI00, TI01	:	Timer Input
TI1, TI2,	:	Timer Input
TO0 to TO2	:	Timer Output
TxD	:	Transmit Data
Vdd	:	Power Supply
Vss	:	Ground
WAIT	:	Wait
WR	:	Write Strobe
X1, X2	:	Crystal (Main System Clock)
XT1, XT2	:	Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Phase-out/Discontinued

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/	8-bit I/O port	Input/output can be specified bit-wise.	Input	INTP1/TI01
P02	output		When used as an input port, on-chip pull-up resis-		INTP2
P03	-		tor can be used by software.		INTP3
P04	-				INTP4
P05					INTP5
P06	-				INTP6
P07 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/ output	Port 1 8-bit input/output port. Input/output can be spec When used as an input por	cified bit-wise. rt, on-chip pull-up resistor can be used by software. ^{Note 2}	Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/output port.	cified bit-wise. ort, on-chip pull-up resistor can be used by software.		SO1
P22		Input/output can be spec When used as an input p			SCK1
P23					STB
P24]				BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0

Notes 1. When using the P07/XT1 pins as an input port, set 1 in bit 6 (FRC) of the processor clock control register (PCC). The on-chip feedback resistor of the subsystem clock oscillator should not be used.

- 2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input pins, set port 1 to input mode. The on-chip pull-up resistor is cancelled automatically.
- Caution For pins that also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept.
 - (1) Rewrite the output latch of the output for pins used as a port pin.
 - (2) Change the output level of pins used as an output pin, even if they are not used as a port pin.

μ**PD78058F(A)**

3.1 Port Pins (2/2)

Pin Name	I/O	Fun	After Reset	Alternate Function			
P30	Input/	Port 3	Input	TO0			
P31	output	8-bit input/output port. Input/output can be specified bit-wise		TO1			
P32		When used as an input port, on-chip p		TO2			
P33				TI1			
P34				TI2			
P35							
P36					BUZ		
P37					_		
P40 to P47	Input/ output	Port 4 8-bit input/output port. Input/output can be specified in 8-bit When used as an input port, on-chip p Test input flag (KRIF) is set to 1 by fa	Input	AD0 to AD7			
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit-wise When used as an input port, on-chip po	Input	A8 to A15			
P60	Input/	Port 6	N-ch open-drain input/output port.	Input	_		
P61	output	8-bit input/outport port.					
P62		Input/output can be specified bit-wise.	specified by mask option. LED can be driven directly.				
P63							
P64			When used as an input port,	Input	RD		
P65			on-chip pull-up resistor can be used by software.		WR		
P66					WAIT		
P67					ASTB		
P70	Input/	Port 7		Input	SI2/RxD		
P71	output	3-bit input/output port. Input/output can be specified bit-wise	3-bit input/output port.				
P72		When used as an input port, on-chip pu		SCK2/ASCK			
P120 to P127	Input/ output	Port 12 8-bit input/output port. Input/output can be specified bit-wise When used as an input port, on-chip pu	Input	RTP0 to RTP			
P130, P131	Input/ output	Port 13 2-bit input/output port. Input/output can be specified bit-wise When used as an input port, on-chip p	e. ull-up resistor can be used by software.	Input	ANO0, ANO1		

Phase-out/Discontinued

Caution For pins that also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept.

(1) Rewrite the output latch of the output for pins used as a port pin.

(2) Change the output level of pins used as an output pin, even if they are not used as a port pin.

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the effective edge (rising edge, falling	Input	P00/TI00
INTP1		edge, or both rising edge and falling edges) can be specified.		P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SO2				P71/TxD
SB0	Input/	Serial interface serial data input/output.	Input	P25/SI0
SB1	output			P26/SO0
SCK0	Input/	Serial interface serial clock input/output.	Input	P27
SCK1	output			P22
SCK2				P72/ASCk
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI00	Input	External count clock input to the 16-bit timer (TM0)	Input	P00/INTP
TI01		Capture trigger signal input to the capture register (CR00)	1	P01/INTP
TI1		External count clock input to the 8-bit timer (TM1)]	P33
TI2		External count clock input to the 8-bit timer (TM2)	1	P34
TO0	Output	16-bit timer (TM0) output (dual-function as 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output	1	P31
TO2		8-bit timer (TM2)]	P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
TP0 to RTP7	Output	Real-time output port by which data is output in synchronization with a trigger.	Input	P120 to P1
AD0 to AD7	Input/ output	Low-order address/data bus at external memory expansion.		P40 to P4
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P5
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.	1	P65

3.2 Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output.	Input	P130, P131
AV _{REF0}	Input	A/D converter reference voltage input.	_	_
AV _{REF1}	Input	D/A converter reference voltage input.		_
AVdd	—	A/D converter analog power supply (shared with the port power supply)		—
AVss	—	A/D and D/A converter ground potential (shared with the port ground potential)		—
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P07
XT2	_			_
Vdd	—	Positive power supply (except for port).	—	—
Vss	—	Ground potential (except for port).		
IC		Internally connected. Connect to Vss directly.	_	_

- Cautions 1. The AV_{DD} pin functions as both an A/D converter power supply and a port power supply. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AV_{DD} pin to another power supply that has the same potential as V_{DD}.
 - 2. The AVss pin functions as both a ground potential of A/D and D/A converters and a ground potential of a port section. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to a ground line other than Vss.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and the recommended connection of unused pins are shown in Table 3-1.

Phase-out/Discontinued

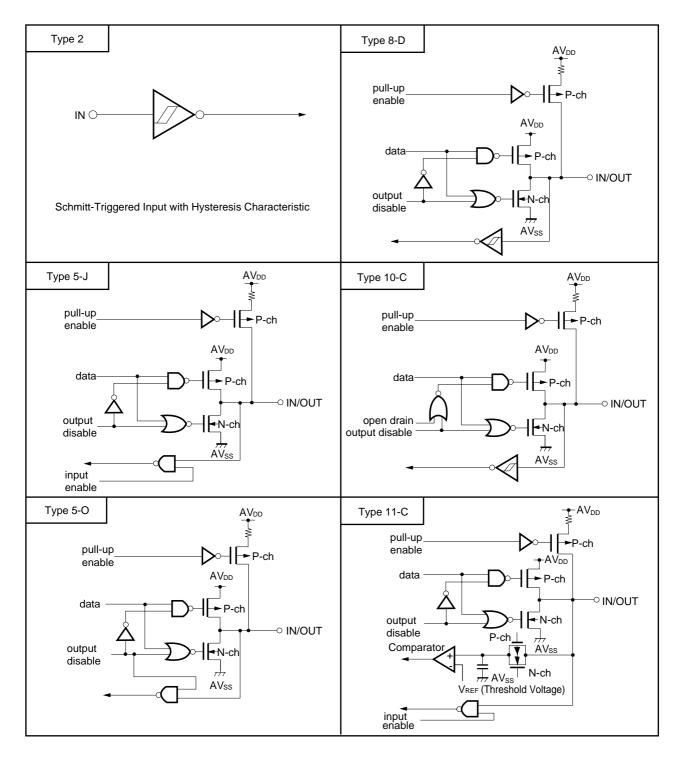
For the input/output circuit configuration of each type, see Figure 3-1.

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-D	Input/output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to VDD.
P10/ANI0 to P17/ANI7	11-C	Input/output	Independently connect to VDD or Vss via a resistor.
P20/SI1	8-D		
P21/SO1	5-J		
P22/SCK1	8-D		
P23/STB	5-J		
P24/BUSY	8-D		
P25/SI0/SB0	10-C		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/TI1	8-D		
P34/TI2			
P35/PCL	5-J		
P36/BUZ	_		
P37			
P40/AD0 to P47/AD7	5-O		Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-J		Independently connect to VDD or VSS via a resistor.
P60 to P63	13-I		Independently connect to VDD via a resistor.
P64/RD	5-J		Independently connect to VDD or VSS via a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			

Table 3-1. Input/Output Circuit Type of Each Pin (1/2)

μ**PD78058F(A)**

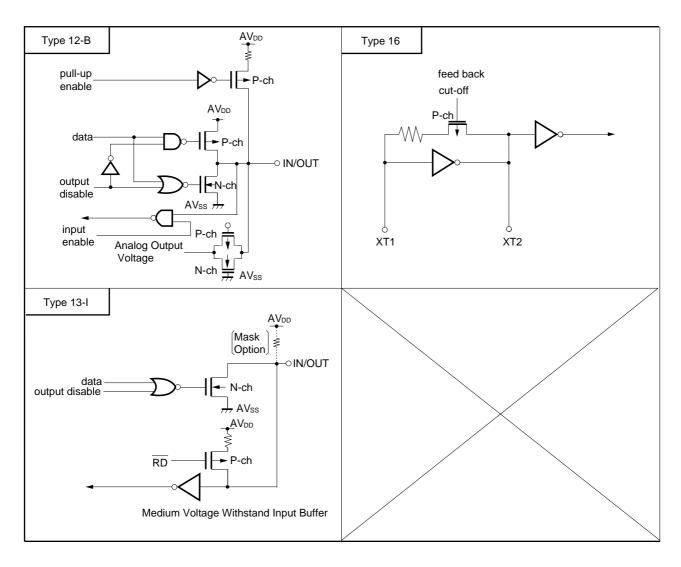
Phase-out/Discontinued


Table 3-1. Input/Output Circuit Type of Each Pin (2/2)

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P70/SI2/RxD	8-D	Input/output	Independently connect to VDD or VSS via a resistor.
P71/SO2/TxD	5-J		
P72/SCK2/ASCK	8-D		
P120/RTP0 to P127/RTP7	5-J		
P130/ANO0, P131/ANO1	12-B	Input/output	Independently connect to Vss via a resistor.
RESET	2	Input	_
XT2	16	_	Leave open.
AVREFO	_		Connect to Vss.
AV _{REF1}			Connect to VDD.
AVdd			Connect to another power supply that has the same potential as $V_{\text{DD}}.$
AVss			Connect to another ground line that has the same potential as Vss.
IC			Connect to Vss directly.

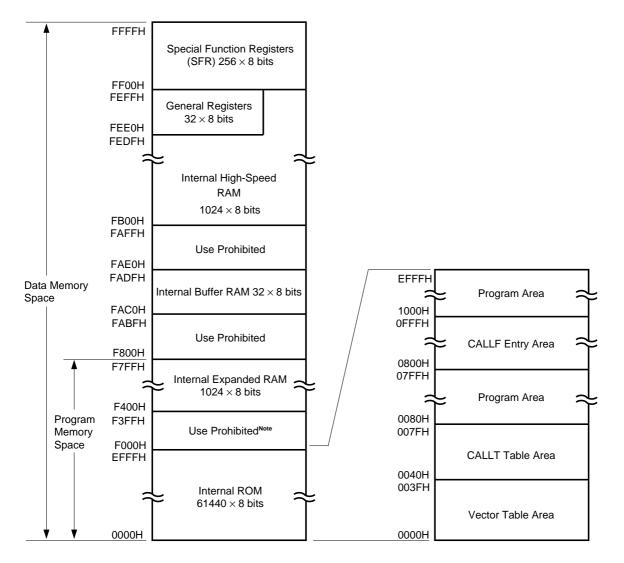
NEC

μ**PD78058F(A)**


Figure 3-1. Pin Input/Output Circuits (1/2)

Phase-out/Discontinued

μ**PD78058F(A)**



4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD78058F(A).

Note When the external device expansion function is used, set the internal ROM capacity to 56 Kbytes or less using the memory size switching register (IMS).

NEC

4

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Ports

The following 3 types of I/O ports are available.

5 51 1			
• CMOS input (P00, P07)	:	2	2
CMOS input/output (P01 to P06, ports 1 to 5, P64 to P67, port 7, port 12, port 13)	:	63	3
N-channel open-drain input/output (P60 to P63)	:	4	4
Total	:	69	9

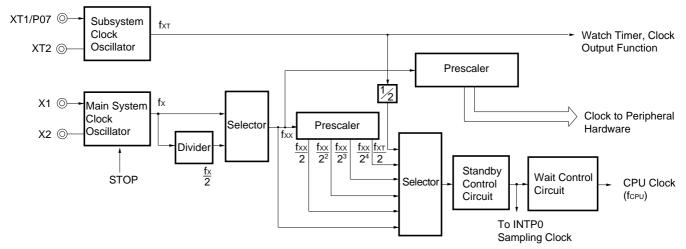
Phase-out/Discontinued

Table 5-1. Port Functions

Name	Pin Name	Function
Port 0	P00, P07	Dedicated input port pins
	P01 to P06	Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.
Port 1	P10 to P17	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.
Port 2	P20 to P27	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.
Port 3	P30 to P37	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.
Port 4	P40 to P47	Input/output port pins. Input/output specifiable in 8-bit units. When used as input port pins, on-chip pull-up resistor can be used by software. Test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software. LED direct drive capability.
Port 6	P60 to P63	N-channel open-drain input/output port pins. Input/output specifiable bit-wise. On-chip pull-up resistor can be used by mask option. LED direct drive capability.
	P64 to P67	Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.
Port 7	P70 to P72	Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.
Port 12	P120 to P127	Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.
Port 13	P130, P131	Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.

NEC

5.2 Clock Generator


Two types of generators, a main system clock generator and a subsystem clock generator, are available. The minimum instruction execution time can also be changed.

Phase-out/Discontinued

• 0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (main system clock: at 5.0-MHz operation)

• 122 μs (subsystem clock: at 32.768-kHz operation)

5.3 Timer/event Counter

The μ PD78058F(A) incorporates 5 channels of the timer/event counter.

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channel
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/Event Counter	8-Bit Timer/Event Counter	Watch Timer	Watchdog Timer	
Op	peration mode					
	Interval timer	1 channel	2 channels	1 channel	1 channel	
	External event counter	1 channel	2 channels	—	_	
Fu	nction					
	Timer	1 output	2 outputs	—	_	
	PWM output	1 output	_	—	_	
	Pulse width measurement	2 inputs	_	—	-	
	Square wave output	1 output	2 outputs	_	_	
	One-shot pulse output	1 output	_	_	_	
	Interrupt request	2	2	1	1	
	Test input	—	—	1 input	-	

Phase-out/Discontinued µPD78058F(A)

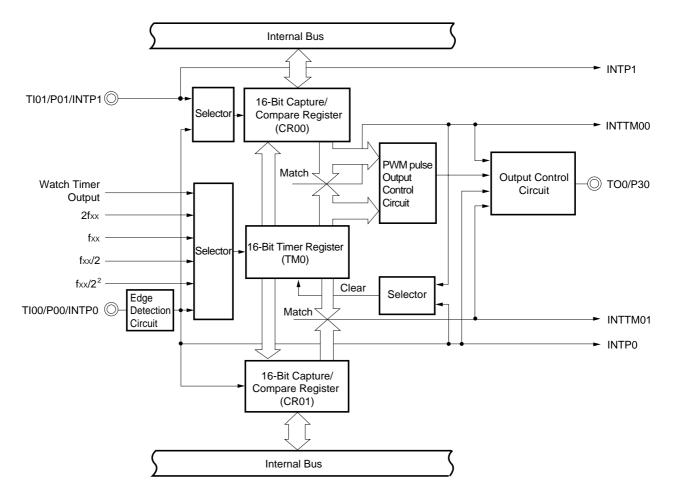


Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

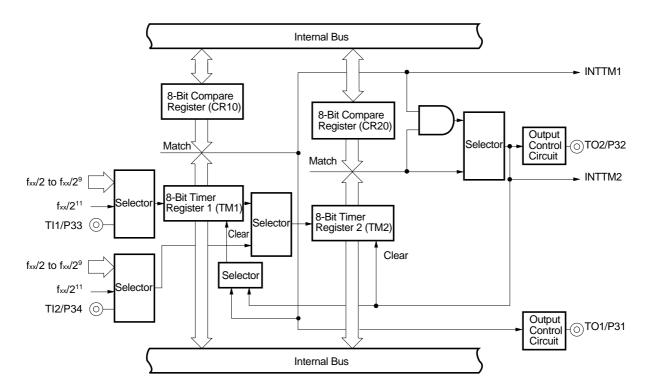


Figure 5-4. Watch Timer Block Diagram

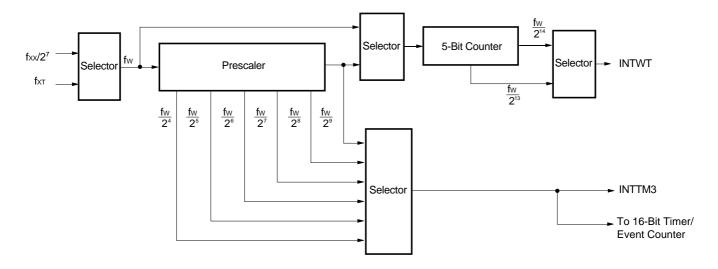
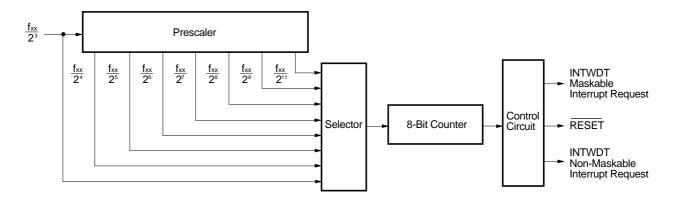
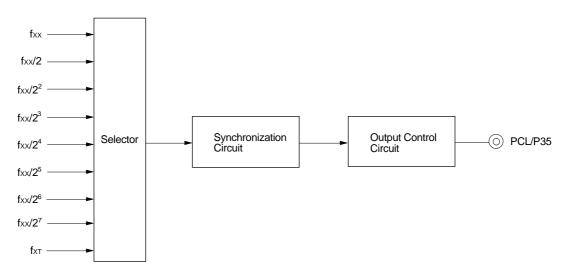



Figure 5-5. Watchdog Timer Block Diagram

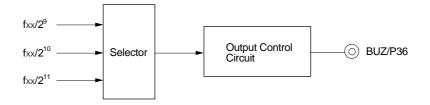
5.4 Clock Output Control Circuit


Clocks with the following frequencies can be output as the clock output.

• 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (main system clock: at 5.0-MHz operation)

Phase-out/Discontinued

• 32.768 kHz (subsystem clock: at 32.768-kHz operation)

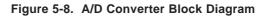


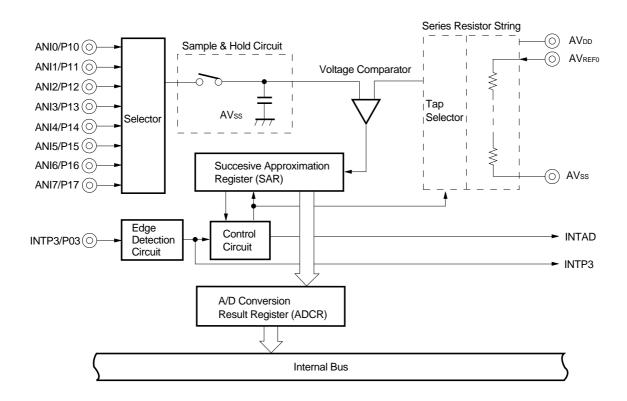
5.5 Buzzer Output Control Circuit

Clocks with the following frequencies can be output as the buzzer output.

• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (main system clock: at 5.0-MHz operation)

NEC

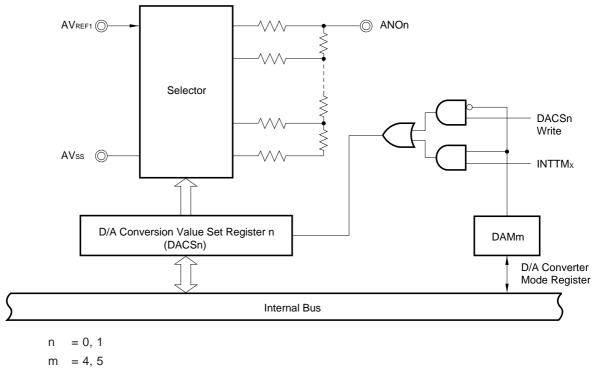

μ**PD78058F(A)**


5.6 A/D Converter

An A/D converter of 8-bit resolution \times 8 channels is incorporated.

The following two types of the A/D conversion operation start-up methods are available.

- Hardware start
- Software start



5.7 D/A Converter

A D/A converter of 8-bit resolution \times 2 channels is available. Conversion method is R-2R resistor ladder method.

Phase-out/Discontinued

x = 1, 2

5.8 Serial Interfaces

3 channels of the clocked serial interface are incorporated.

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Table 5-3.	Types and	Functions	of Serial	Interface
------------	-----------	-----------	-----------	-----------

Function	Serial Interface Channel 0	Serial Interface Channel 1	Serial Interface Channel 2
3-wire serial I/O mode	(MSB/LSB first switchable)	$\sqrt{\text{(MSB/LSB first switchable)}}$	$\sqrt{(\text{MSB/LSB first switchable})}$
3-wire serial I/O mode with automatic transmission/reception function	_	$\sqrt{\rm (MSB/LSB}$ first switchable)	_
SBI (serial bus interface) mode	$\sqrt{(\text{MSB first})}$	_	—
2-wire serial I/O mode	$\sqrt{(\text{MSB first})}$	_	_
Asynchronous serial interface (UART) mode	_	_	(Dedicated baud rate generator incorporated)

Figure 5-10. Serial Interface Channel 0 Block Diagram

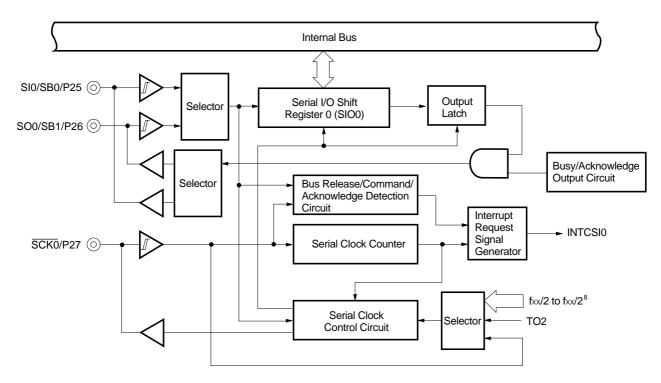
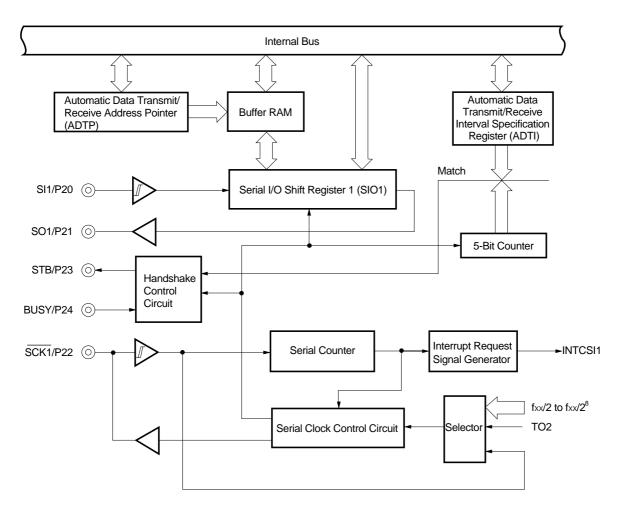
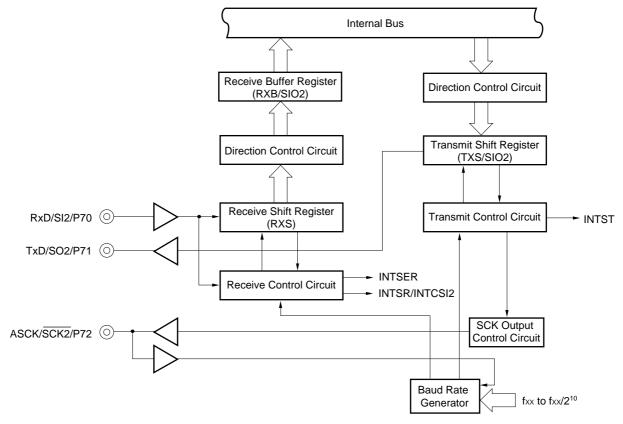




Figure 5-11. Serial Interface Channel 1 Block Diagram

26

5.9 Real-Time Output Port Functions

The real-time output function consists in transferring data set previously in the real-time output buffer register to the output latch by hardware concurrently with a timer interrupt request or external interrupt request generation in order to output to off-chip. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motors, etc.

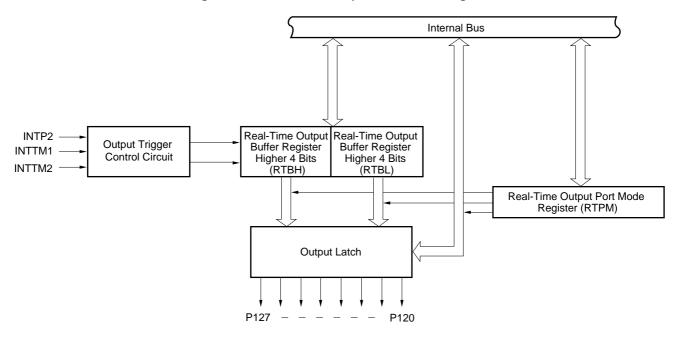


Figure 5-13. Real-Time Output Port Block Diagram

μ**PD78058F(A)**

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

There are 22 interrupt functions of three different types, as shown below.

- Non-maskable : 1
- Maskable : 20
- Software : 1

Interrupt Type	Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
	Priority ^{Note 1}	Name	Trigger	External	Address	Type ^{Note 2}
Non-maskable	_	INTWDT	Watchdog timer overflow (watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1	-		0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTCSI0	End of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	End of serial interface channel 1 transfer		0016H	
	10	10 INTSER Generation of serial interface channel 2 UART receive error			0018H	
	11	INTSR	End of serial interface channel 2 UART reception		001AH	
		INTCSI2	End of serial interface channel 2 3-wire transfer			
	12	INTST	End of serial interface channel 2 UART transmission		001CH	

Table 6-1. Interrupt Source List (1/2)

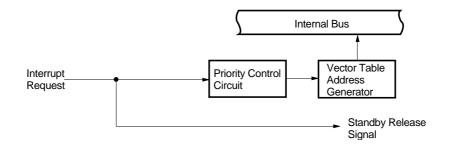
Phase-out/Discontinued

Notes 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 18, the lowest.

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1, respectively.

μ**PD78058F(A)**

Interrupt Type	Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
плентарт туре	Priority ^{Note 1}	Name	Trigger	External	Address	Type ^{Note 2}
Maskable	13	13 INTTM3 Reference time interval signal from watch timer		Internal	001EH	(B)
	14	INTTM00	Generation of match signal of 16-bit timer register and capture/compare register (CR00)		0020H	-
	15	INTTM01	Generation of match signal of 16-bit timer register and capture/compare register (CR01)		0022H	-
	16	INTTM1	Generation of match signal of 8-bit timer/event counter 1		0024H	
	17 INTTM2 Generation of match signal of 8-bit timer/event counter 2		_		0026H	
	18	INTAD	End of conversion by A/D converter		0028H	
Software	_	BRK	BRK instruction execution	_	003EH	(E)


Table 6-1. Interrupt Source List (2/2)

Notes 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 18, the lowest.

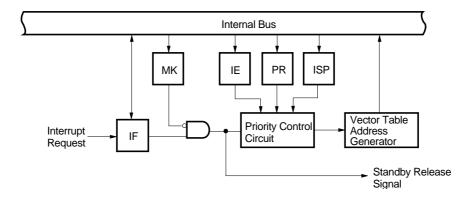

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1, respectively.

Figure 6-1. Interrupt Function Basic Configuration (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0)

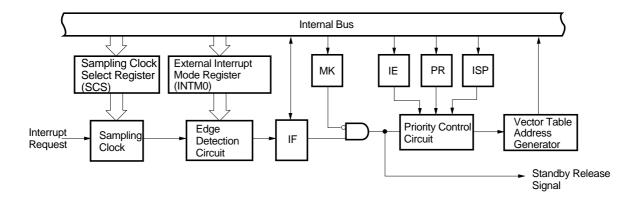
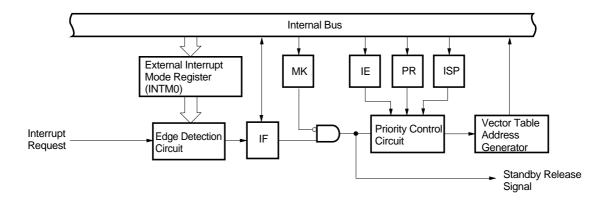
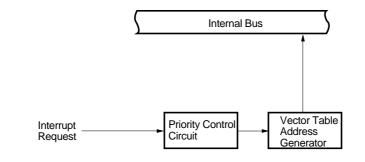




Figure 6-1. Interrupt Function Basic Configuration(2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

6.2 Test Functions

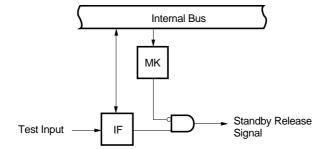

There are two sources of test function as shown in Table 6-2.

Table 6-2. Test Input Source List

Phase-out/Discontinued

	Test Input Source						
Name	Trigger	Internal/external					
INTWT	Watch timer overflow	Internal					
INTPT4	Port 4 falling edge detection	External					

Figure 6-2. Test Function Basic Configuration

IF : Test input flag

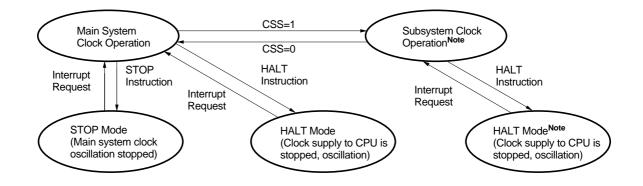
MK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR. Ports 4 to 6 are used for external device connection.

Phase-out/Discontinued

8. STANDBY FUNCTION


There are the following two standby functions to reduce the system power consumption.

• HALT mode : The CPU operating clock is stopped.

The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.

• STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates with ultra-low power consumption using only the subsystem clock.

- **Note** The power consumption is reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) in the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Remark CSS: Bit 4 in the PCC

9. RESET FUNCTION

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog time runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

		,				,		1					
Second Operand First Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		XCH	XCH	XCH	XCH		XCH	ХСН	ХСН		ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC		ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND OR		AND OR	AND OR			AND OR	AND OR			
	CMP		XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
			CIVIP		CIVIP	CIVIP			CIVIP	CIVIP			
r	MOV	MOV											INC
		ADD											DEC
		ADDC											
		SUB											
		SUBC											
		AND											
		OR XOR											
		CMP											
		OWI											
B, C sfr											DBNZ		
	MOV	MOV											
saddr	MOV ADD	MOV									DBNZ		INC DEC
	ADDC												
	SUB												
	SUBC												
	AND												
	OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4
													ROL4
[HL + byte]		MOV											
[HL + B]													
[HL + C]													
х													MULU
С													DIVUW

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second instruction	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Phase-out/Discontinued

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second instruction	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second instruction First instruction	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C)

Parameter	Symbol		Test Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	AVdd				-0.3 to VDD + 0.3	V
	AV _{REF0}				-0.3 to VDD + 0.3	V
	AV _{REF1}				-0.3 to VDD + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VII	P40 to P47, P	10 to P17, P20 to P27, P3 50 to P57, P64 to P67, P7 , P130, P131, X1, X2, XT2	'0 to P72,	-0.3 to V _{DD} + 0.3	V
	Vı2	P60 to P63	N-ch Open-drain		-0.3 to +16	V
Output voltage	Vo				-0.3 to VDD + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin		AVss - 0.3 to AVREF0 + 0.3	V
High-level output	Іон	1 pin			-10	mA
current		P01 to P06, P30	0 to P37, P56, P57, P60 to P6	7, P120 to P127 total	-15	mA
			220 to P27, P40 to P47, P5 2130, P131 total	50 to P55,	-15	mA
Low-level output	IOL ^{Note}	1 pin		Peak value	30	mA
current				Effective value	15	mA
		P50 to P55 to	tal	Peak value	100	mA
				Effective value	70	mA
		P56, P57, P6	0 to P63 total	Peak value	100	mA
				Effective value	70	mA
			20 to P27, P40 to P47,	Peak value	50	mA
		P70 to P72, P	130, P131 total	Effective value	20	mA
		P01 to P06, P	230 to P37, P64 to P67,	Peak value	50	mA
		P120 to P127	total	Effective value	20	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note Effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.

Main System Clock Oscillation Circuit Characteristics (TA = -40 to 85°C, VDD = 2.7 to 6.0 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillator frequency (fx) ^{Note 1}	V _{DD} = Oscillator voltage range	1.0		5.0	MHz
	+ <u>C2</u> +C1	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal resonator		Oscillator frequency (fx) ^{Note 1}		1.0		5.0	MHz
		Oscillation	VDD = 4.5 to 6.0 V			10	
		stabilization time ^{Note 2}				30	ms
External clock		X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	µPD74HCU04Å	X1 input high/low level width (txH, txL)		85		500	ns

Phase-out/Discontinued

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to "AC CHARACTERISTICS" for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 6.0 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	R1≩	Oscillator frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 6.0 V		1.2	2	s
	777	stabilization time ^{Note 2}				10	5
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		XT1 input high/low level width (txтн, txт∟)		5		15	μs

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to "**AC CHARACTERISTICS**" for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches MIN. oscillating voltage frequency.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to mulfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

CAPACITANCE (TA = 25° C, VDD = Vss = 0 V)

Parameter	Symbol	Test Con	Test Conditions			MAX.	Unit
Input capacitance	Сім	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
Input/Output	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131			15	pF
			P60 to P63			20	pF

Remark Unless otherwise specified, alternate pin characteristics are the same as port pin characteristics.

40

Phase-out/Discontinued

DC CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 6.0 V)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P23, P30 to P40 to P47, P50 to P57, P64 P120 to P127, P130, P131		0.7 Vdd		Vdd	V
	VIH2	P00 to P06, P20, P22, P24 to RESET	o P27, P33, P34, P70, P72,	0.8 Vdd		Vdd	V
	Vінз	P60 to P63 (N-ch Open-drair	n)	0.7 Vdd		15	V
	VIH4	X1, X2	X2			Vdd	V
	VIH5	XT1/P07, XT2	V _{DD} = 4.5 to 6.0 V	0.8 Vdd		Vdd	V
				0.9 Vdd		Vdd	V
Input voltage, VIL1 Iow VIL2	VIL1	P10 to P17, P21, P23, P30 to P40 to P47, P50 to P57, P64 P120 to P127, P130, P131		0		0.3 Vdd	V
	VIL2	P00 to P06, P20, P22, P24 to RESET	0		0.2 Vdd	V	
VIL3		P60 to P63	V _{DD} = 4.5 to 6.0 V	0		0.3 Vdd	V
				0		0.2 Vdd	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1/P07, XT2	V _{DD} = 4.5 to 6.0 V	0		0.2 Vdd	V
				0		0.1 Vdd	V
Output voltage,	Vон	VDD = 4.5 to 6.0 V, IOH = -1 n	nA	Vdd - 1.0			V
high		Іон = -100 <i>µ</i> А		Vdd - 0.5			V
Output voltage, low	Vol1	P50 to P57, P60 to P63	V _{DD} = 4.5 to 6.0 V, I _{OL} = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P120 to P127, P130, P131	VDD = 4.5 to 6.0 V, IOL = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	V_{DD} = 4.5 to 6.0 V, N-ch open-drain at pull-up time (R = 1 K Ω)			0.2 Vdd	V
	Vol3	Ιοι = 400 μΑ				0.5	V
Input leakage current, high	ILIH1	Vin = Vdd	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P72, P120 to P127, P130, P131, RESET			3	μΑ
	ILIH2	-	X1, X2, XT1/P07, XT2			20	μA
	Ілнз	V _{IN} = 15 V	P60 to P63			80	μΑ

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Input leakage current, low	ILIL1	$V_{IN} = 0 V$	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131, RESET			-3	μΑ
	Ilil2		X1, X2, XT1/P07, XT2			-20	μΑ
	Ilil3		P60 to P63			-3 ^{Note}	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull-up resistor	R1	V _{IN} = 0 V, P60 to P63		20	40	90	kΩ
Software pull-up resistor	R ₂	V _{IN} = 0 V, P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47,	V _{DD} = 4.5 V to 6.0 V	15	40	90	kΩ
		P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131		20		500	kΩ

Note When the pull-up resistor is not included in P60 to P63 (specified by a mask option), the $-200 \ \mu$ A (MAX.) low-level input leakage current is passed only at the 1.5 clock interval (no wait) when the read instruction to port 6 (PM6) and port mode register (PM6) is executed. At other than the 1.5 interval, $-3 \ \mu$ A (MAX.) is passed.

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Test Condition	S	MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	IDD1	5.0-MHz Crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \%^{\text{Note 5}}$		4	12	mA
current		operating mode (fxx = 2.5 MHz) ^{Note 2}	$V_{DD} = 3.0 \text{ V} \pm 10 \%^{\text{Note 6}}$		0.6	1.8	mA
		5.0-MHz Crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \%^{Note 5}$		6.5	19.5	mA
	operating mode (fxx = 5.0 MHz) ^{Note 3}	$V_{DD} = 3.0 \text{ V} \pm 10 \%^{\text{Note 6}}$		0.8	2.4	mA	
	IDD2	5.0-MHz Crystal oscillation	Vdd = 5.0 V ±10 %		1.4	4.2	mA
		HALT mode (fxx = 2.5 MHz) ^{Note 2}	VDD = 3.0 V ±10 %		0.5	1.5	mA
		5.0-MHz Crystal oscillation	Vdd = 5.0 V ±10 %		1.6	4.8	mA
		HALT mode (fxx = 5.0 MHz) ^{Note 3}	Vdd = 3.0 V ±10 %		0.65	1.95	mA
	IDD3	32.768-kHz Crystal oscillation	Vdd = 5.0 V ±10 %		60	120	μA
		operating mode ^{Note 4}	VDD = 3.0 V ±10 %		32	64	μA
	IDD4	32.768-kHz Crystal oscillation	Vdd = 5.0 V ±10 %		25	55	μA
		HALT mode ^{Note 4}	Vdd = 3.0 V ±10 %		5	15	μA
	IDD5	XT1 = V _{DD} STOP mode	Vdd = 5.0 V ±10 %		1	30	μA
		When feedback resistor is used	Vdd = 3.0 V ±10 %		0.5	10	μA
	IDD6	XT1 = VDD STOP mode	V _{DD} = 5.0 V ±10 %		0.1	30	μA
		When feedback resistor is not used	Vdd = 3.0 V ±10 %		0.05	10	μA

Phase-out/Discontinued

Notes 1. Passed through the Vbb and AVbb pins. Does not include the current which is passed through the A/D converter, D/A converter, and on-chip pull-up resistor.

2. Main system clock fxx = fx/2 operation (when an oscillation mode selection register (OSMS) is set to 00H)

3. Main system clock fxx = fx operation (when the OSMS is set to 01H)

4. When the operation of the main system clock is stopped

5. High-speed mode operation (when a processor clock control register (PCC) is set to 00H)

6. Low-speed mode operation (when the PCC is set to 04H)

AC CHARACTERISTICS

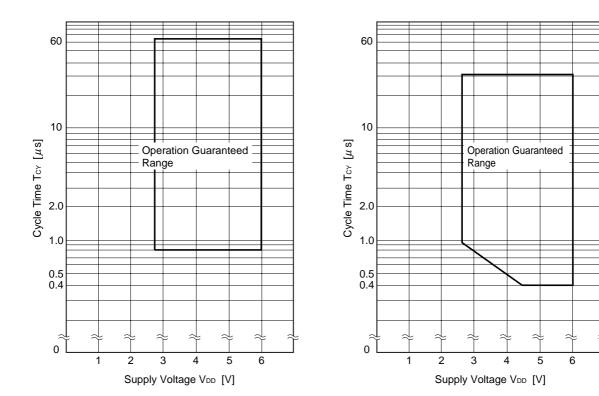
(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Г	est Condition	S	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main	$f_{XX} = f_X/2^{Note 1}$		0.8		64	μs
(Min. instruction		system clock	$f_{XX} = f_X^{Note 2}$	V _{DD} = 4.5 to 6.0 V	0.4		32	μs
execution time)					0.8		32	μs
		Operating on subsy	stem clock		40 ^{Note 3}	122	125	μs
TI00 input high/	tтіноо,	V _{DD} = 4.5 to 6.0 V			2/fsam + 0.1 ^{Note 4}			μs
low-level width	t⊤iLoo				2/fsam + 0.2 ^{Note 4}			μs
TI01 input high/ low-level width	tтіно1, tтіLo1				10			μs
TI1, TI2 input	fтıı	V _{DD} = 4.5 to 6.0 V			0		4	MHz
frequency					0		275	kHz
TI1, TI2 input	tтін1,	V _{DD} = 4.5 to 6.0 V			100			ns
high/low-level width	t⊤ı∟ı				1.8			μs
Interrupt request	tintн,	INTP0		V _{DD} = 4.5 to 6.0 V	2/fsam + 0.1 ^{Note 4}			μs
input high/low-	t intl				2/fsam + 0.2 ^{Note 4}			μs
level width		INTP1 to INTP6, KF	R0 to KR7		10			μs
RESET low level width	trsl				10			μs

Phase-out/Discontinued

Notes 1. When the operation of the main system clock fxx = fx/2 (When oscillation mode selection register is set to 00H)

When the operation of the main system clock fxx = fx (When oscillation mode selection register is set to 01H)


3. Value when the external clock is used. 114 μ s (MIN.) when a crystal resonator is used.

4. Selection of f_{sam} is possible between $f_{xx/2^N}$, $f_{xx/32}$, $f_{xx/64}$ and $f_{xx/128}$ (when N = 0 to 4) using bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS).

μ**PD78058F(A)**

Tcy vs VDD (at fxx = fx/2 main system clock operation)

Tcy vs VDD (at fxx = fx main system clock operation)

Phase-out/Discontinued

(2) Read/Write Operation

(a) When MCS = 1, PCC2 to PCC0 = 000B (T_A = -40 to +85°C, V_{DD} = 4.5 to 6.0 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	tadh 🛛		50		ns
Data input time from address	tadd1			(2.85 + 2n)tcy - 80	ns
	tadd2			(4 + 2n)tcy - 100	ns
Data input time from $\overline{\text{RD}} {\downarrow}$	trdd1			(2 + 2n)tcy - 100	ns
	trdd2			(2.85 + 2n)tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(2 + 2n)tcy - 60		ns
	trdl2		(2.85 + 2n)tcy - 60		ns
$\overline{\text{WAIT}} {\downarrow}$ input time from $\overline{\text{RD}} {\downarrow}$	trdwt1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	t wrwt			2tcy - 60	ns
WAIT low-level width	tw⊤∟		(1.15 + 2n)tcr	(2 + 2n)tcr	ns
Write data setup time	twos		(2.85 + 2n)tcy - 100		ns
Write data hold time	twdh		20		ns
WR low-level width	twrl		(2.85 + 2n)tcy - 60		ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t astrd		25		ns
$\overline{WR} {\downarrow}$ delay time from $ASTB {\downarrow}$	t astwr		0.85tcy + 20		ns
ASTB ^{\uparrow} delay time from \overline{RD}^{\uparrow} in external fetch	t rdast		0.85tcy - 10	1.15tcy + 20	ns
Address hold time from \overline{RD} in external fetch	trdadh		0.85tcy - 50	1.15tcy + 50	ns
Write data output time from $\overline{\rm RD} \uparrow$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	trdwd		0	50	ns
Address hold time from $\overline{WR} \uparrow$	twradh		0.85tcy	1.15tcy + 40	ns
$\overline{RD} \uparrow delay time from \overline{WAIT} \uparrow$	twtrd		1.15tcy + 40	3.15tcy + 40	ns
\overline{WR} \uparrow delay time from \overline{WAIT} \uparrow	twtwr		1.15tcy + 30	3.15tcy + 30	ns

Phase-out/Discontinued

Remarks 1. MCS: Oscillation mode selection register bit 0

2. PCC2 to PCC0: Processor clock control register (PCC) bits 2 to 0

3. tcy = Tcy/4

4. n indicates the number of waits.

μ**PD78058F(A)**

(b) When except MCS = 1, PCC2 to PCC0 = 000B (T_A = -40 to +85°C, V_{DD} = 2.7 to 6.0 V)

Phase-out/Discontinued

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	t adh		0.4tcy - 10		ns
Data input time from address	tadd1			(3 + 2n)tcr – 160	ns
	tadd2			(4 + 2n)tcr - 200	ns
Data input time from $\overline{\text{RD}} {\downarrow}$	trdd1			(1.4 + 2n)tcr - 70	ns
	trdd2			(2.4 + 2n)tcr - 70	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.4 + 2n)tcy - 20		ns
	trdl2		(2.4 + 2n)tcy - 20		ns
$\overline{\text{WAIT}} {\downarrow} \text{ input time from } \overline{\text{RD}} {\downarrow}$	t RDWT1			tcy - 100	ns
	trdwt2			2tcy - 100	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	t wrwt			2tcy - 100	ns
WAIT low-level width	tw⊤∟		(1 + 2n)tcr	(2 + 2n)tcr	ns
Write data setup time	twos		(2.4 + 2n)tcy - 60		ns
Write data hold time	twdн		20		ns
\overline{WR} low-level width	twrl		(2.4 + 2n)tcy - 60		ns
$\overline{\text{RD}}{\downarrow}$ delay time from $\text{ASTB}{\downarrow}$	t astrd		0.4tcy - 30		ns
$\overline{WR} {\downarrow}$ delay time from $ASTB {\downarrow}$	t astwr		1.4tcy - 30		ns
ASTB ^{\uparrow} delay time from \overline{RD}^{\uparrow} in external fetch	t rdast		tcy - 10	tcy + 20	ns
Address hold time from RD↑ in external fetch	t rdadh		tcy – 50	tcy + 50	ns
Write data output time from $\overline{\text{RD}}\uparrow$	trdwd		0.4tcy - 20		ns
Write data output time from $\overline{\rm WR} \downarrow$	trdwd		0	60	ns
Address hold time from $\overline{WR} \uparrow$	twradh		tcy	tcy + 60	ns
\overline{RD}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtrd		0.6tcy + 180	2.6tcy + 180	ns
\overline{WR} delay time from \overline{WAIT}	twtwr		0.6tcy + 120	2.6tcy + 120	ns

Remarks 1. MCS: Oscillation mode selection register (OSMS) bit 0

2. PCC2 to PCC0: Processor clock control register (PCC) bits 2 to 0

3. tcy = Tcy/4

4. n indicates the number of waits.

- (3) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)
 - (a) Serial interface channel 0
 - (i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү1	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK0 high/low-level	tĸH1, tĸL1	V _{DD} = 4.5 to 6.0 V	tксү1/2 – 50			ns
width		tксү1/2 – 100			ns	
SI0 setup time (to	tsik1	V _{DD} = 4.5 to 6.0 V	100			ns
SCK0↑)			150			ns
SI0 hold time (from SCK0↑)	tksii		400			ns
SO0 output delay time from $\overline{SCK0}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK0}$ and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... Internal clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK0 high/low-level	tkh2, tkl2	VDD = 4.5 to 6.0 V	400			ns
width			800			ns
SI0 setup time (to SCK0↑)	tsiк2		100			ns
SI0 hold time (from SCK0↑)	tksi2		400			ns
SO0 output delay time from $\overline{SCK0}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK0 rise, fall time	tr2, tr2	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the load capacitance of the SO0 output line.

μ**PD78058F(A)**

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 6.0 V	,	800			ns
				3200			ns
SCK0 high/low-level	tкнз, tк∟з	V _{DD} = 4.5 to 6.0 V	,	tксүз/2 – 50			ns
width				tксүз/2 – 150			ns
SB0, SB1 setup time	tsik3	V _{DD} = 4.5 to 6.0 V	,	100			ns
(to SCK0↑)				300			ns
SB0, SB1 hold time (from SCK0↑)	tкsıз			tксүз/2			ns
SB0, SB1 output	tкsoз	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		250	ns
delay time from $\overline{\text{SCK0}}\downarrow$		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsвl			tксүз			ns

Phase-out/Discontinued

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү4	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK0 high/low-level	tkh4, tkl4	V _{DD} = 4.5 to 6.0 V		400			ns
width				1600			ns
SB0, SB1 setup time	tsik4	V _{DD} = 4.5 to 6.0 V		100			ns
(to SCK0↑)				300			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tксү4/2			ns
SB0, SB1 output	tkso4	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from $\overline{SCK0}\downarrow$		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв		•	tkCY4			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксү4			ns
SB0, SB1 high-level width	tsвн			tксү4			ns
SB0, SB1 low-level width	tsв∟			tксү4			ns
SCK0 rise, fall time	tr4, tf4	When using external device expansion function				160	ns
		When not using extern function	nal device expansion			1000	ns

Phase-out/Discontinued

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	R = 1 kΩ,		800			ns
SCK0 high-level width	tкн5	$C = 100 \text{ pF}^{Note}$		tксү5/2 – 160			ns
SCK0 low-level width	tĸl5		V _{DD} = 4.5 to 6.0 V	tксү5/2 – 50			ns
				tксү₅/2 – 150			ns
SB0, SB1 setup time	tsik5		V _{DD} = 4.5 to 6.0 V	300			ns
(to SCK0↑)				350			ns
SB0, SB1 hold time (from SCK0↑)	tksi5			600			ns
SB0, SB1 output delay time from $\overline{SCK0}\downarrow$	tkso5			0		300	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	t ксү6			1600			ns
SCK0 high-level width	tкнө			650			ns
SCK0 low-level width	tkl6			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from SCK0↑)	tksi6			tксү6/2			ns
SB0, SB1 output	tKSO6	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from $\overline{SCK0}\downarrow$		C = 100 pF ^{Note}		0		500	ns
SCK0 rise, fall time	tre, tre	When using external device expansion function				160	ns
		When not using extern function	nal device expansion			1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(b) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1...Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү7	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK1 high/low-level width	tĸн⁊, tĸ∟⁊	VDD = 4.5 to 6.0 V	tксү7/2 – 50			ns
			tксү7/2 – 100			ns
SI1 setup time (to SCK1↑)	tsik7	VDD = 4.5 to 6.0 V	100			ns
			150			ns
SI1 hold time (from SCK1↑)	tksi7		400			ns
SO1 output delay time from SCK1↓	tkso7	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK1}$ and SO1 output line.

(ii) 3-wire serial I/O mode (SCK1...External clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксув	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK1 high/low-level width	tkh8, tkl8	V _{DD} = 4.5 to 6.0 V	400			ns
			800			ns
SI1 setup time (to SCK1↑)	tsik8		100			ns
SI1 hold time (from SCK1↑)	tksi8		400			ns
SO1 output delay time from SCK1↓	tкso8	C = 100 pF ^{Note}			300	ns
SCK1 rise, fall time	trs, tfs	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the load capacitance of the SO1 output line.

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Phase-out/Discontinued

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүэ	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK1 high/low-level width	tkh9, tkl9	V _{DD} = 4.5 to 6.0 V	tксү9/2 — 50			ns
			tксү9/2 – 100			ns
SI1 setup time (to SCK1↑)	tsik9	V _{DD} = 4.5 to 6.0 V	100			ns
			150			ns
SI1 hold time (from $\overline{SCK1}$)	tหรเด		400			ns
SO1 output delay time from SCK1↓	tks09	C = 100 pF ^{Note}			300	ns
STB↓ from SCK1↑	tsвd		tксүэ/2 – 100		tксү9/2 + 100	ns
Strobe signal high-level width	tsвw		tксү9/2 – 30		tксү9/2 + 30	ns
Busy signal setup time (to busy signal detection timing)	tBYS		100			ns
Busy signal hold time (from	tвүн	V _{DD} = 4.5 to 6.0 V	100			ns
busy signal detection timing)			150			ns
$\overline{SCK1}\downarrow$ from busy inactive	tsps				21ксүэ	ns

Note C is the load capacitance of the $\overline{SCK1}$ and SO1 output lines.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t КСҮ10	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
SCK1 high/low-level width	t кн10, t кL10	VDD = 4.5 to 6.0 V	400			ns
			800			ns
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	t KSI10		400			ns
$\frac{\text{SO1 output delay time from}}{\text{SCK1}}\downarrow$	tkso10	C = 100 pF ^{Note}			300	ns
SCK1 rise, fall time	t R10, t F10	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the load capacitance of the SO1 output line.

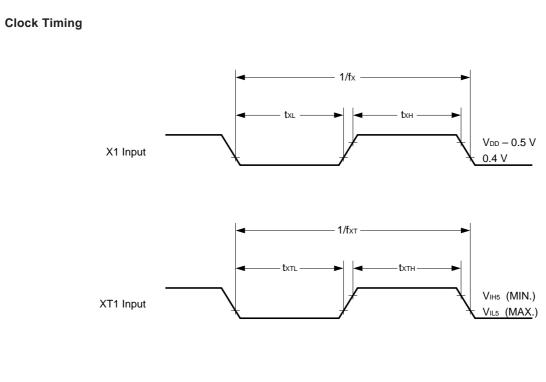
\star (c) Serial interface channel 2

(i) 3-wire serial I/O mode (SCK2...Internal clock output)

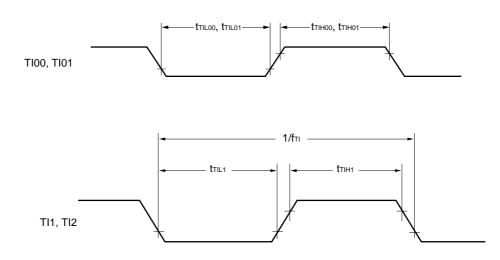
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy11	VDD = 4.5 to 6.0 V	800			ns
			1600			ns
SCK2 high/low-level width	t KH11, t KL11	VDD = 4.5 to 6.0 V	tксү11/2 – 50			ns
			tксү11/2 – 100			ns
SI2 setup time (to SCK21)	tsik11	VDD = 4.5 to 6.0 V	100			ns
			150			ns
SI2 hold time (from $\overline{\text{SCK2}}$)	t KSI11		400			ns
SO2 output delay time from $\overline{\text{SCK1}}\downarrow$	tKSO11	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK2 and SO2 output lines.

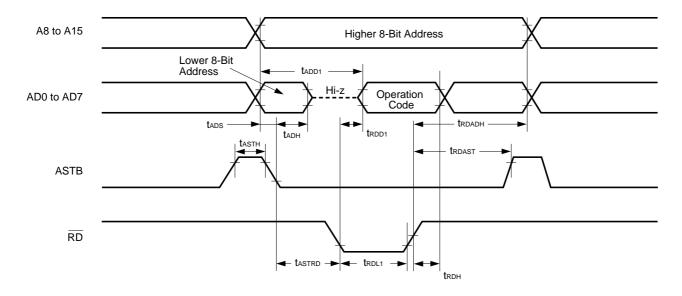
(ii) UART mode (Dedicated baud rate generator output)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 6.0 V			78125	bps
					39063	bps

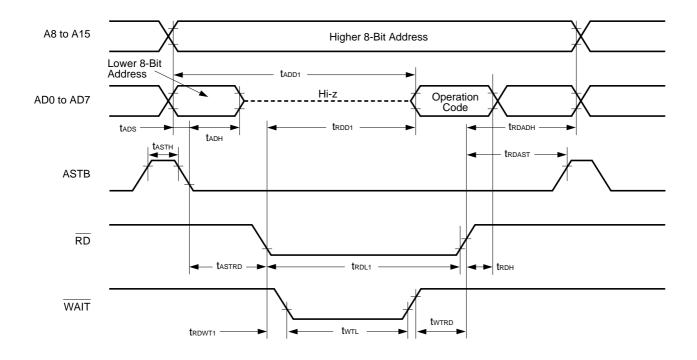
(iii) UART mode (External clock input)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tKCY12	V _{DD} = 4.5 to 6.0 V	800			ns
			1600			ns
ASCK high-/low-level width	tкн12, tкL12	V _{DD} = 4.5 to 6.0 V	400			ns
			800			ns
Transfer rate		VDD = 4.5 to 6.0 V			39063	bps
					19531	bps
ASCK rise, fall time	t R12, t F12	V _{DD} = 4.5 to 6.0 V When not using external device expansion function			1000	ns
					160	ns

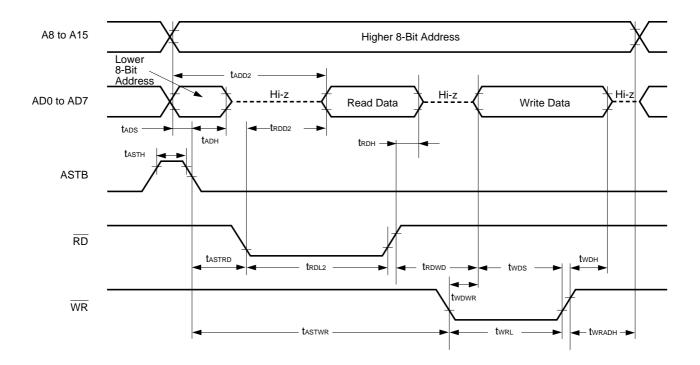
AC Timing Test Point (Excluding X1, XT1 Input)



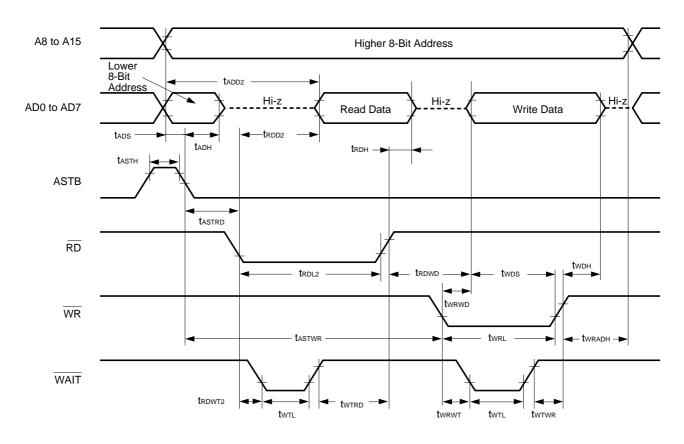
TI Timing



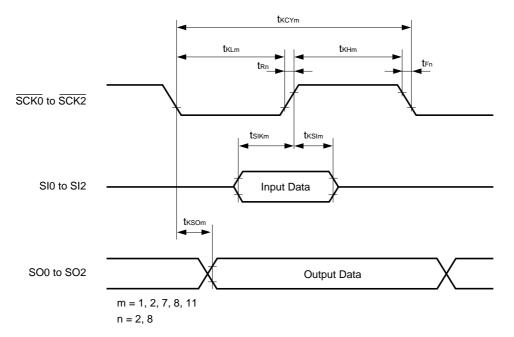
Read/Write Operation


External Fetch (No Wait) :

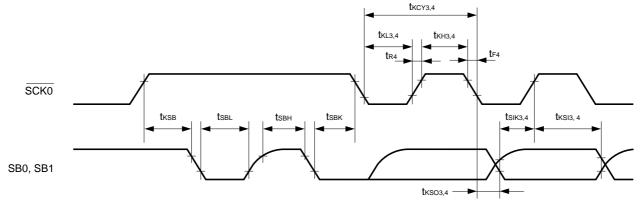
External Fetch (Wait Insertion) :



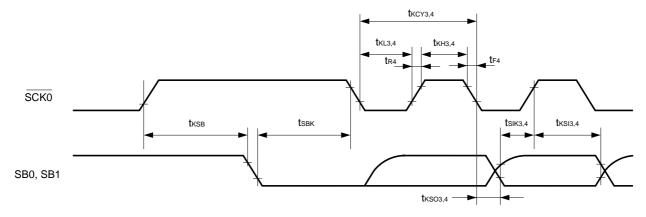
External Data Access (No Wait) :

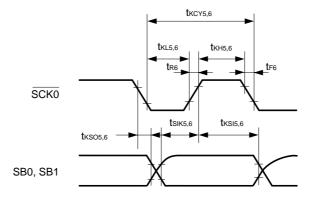

Phase-out/Discontinued

External Data Access (Wait Insertion) :

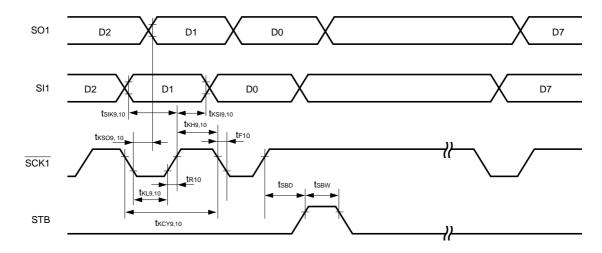


Serial Transfer Timing

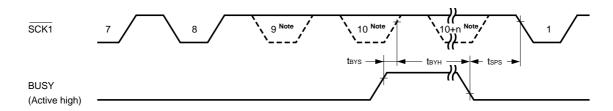

3-wire Serial I/O Mode :


SBI Mode (Bus Release Signal Transfer) :

SBI Mode (Command Signal Transfer) :

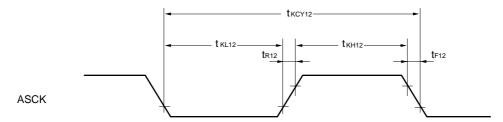


2-wire Serial I/O Mode :



Phase-out/Discontinued

3-wire Serial I/O Mode with Automatic Transmit/Receive Function :



3-wire Serial I/O Mode with Automatic Transmit/Receive Function (Busy processing) :

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART Mode (External Clock Input) :

Phase-out/Discontinued

A/D Converter Characteristics ($T_A = -40$ to $+85^{\circ}C$, $AV_{DD} = V_{DD} = 2.7$ to 6.0 V, $AV_{SS} = V_{SS} = 0$ V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7 \text{ V} \leq AV_{REF0} \leq AV_{DD}$			±0.6	%
Conversion time	tconv		19.1		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.7		AVDD	V
Resistance between AVREFO and AVss	RAIREFO		4	14		kΩ

Note Overroll error excluding quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

Caution For pins that also function as port pins (refer to 3.1 Port Pins), do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).

- (1) Rewrite the output latch while the pin is used as a port pin.
- (2) Change the output level of the pin used as an output pin, even if it is not used as a port pin.
- **Remarks 1.** fxx: Main system clock frequency (fx or fx/2)
 - 2. fx: Main system clock oscillation frequency

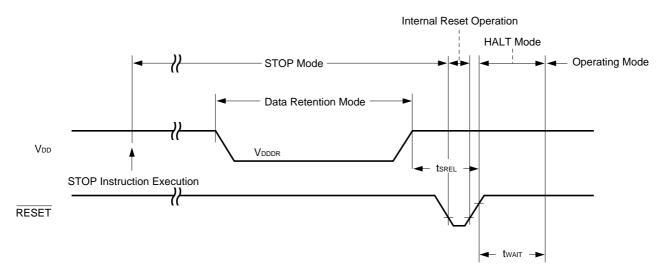
D/A Converter Characteristics (T_A = -40 to +85°C, V_{DD} = 2.7 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error		$R = 2 M\Omega^{Note 1}$				1.2	%
		$R = 4 M\Omega^{Note 1}$				0.8	%
		$R = 10 M\Omega^{Note}$	1			0.6	%
Settling time		C = 30 pF Note 1	$4.5 \text{ V} \leq \text{AV}_{\text{REF1}} \leq 6.0 \text{ V}$			10	μs
			$2.7 \text{ V} \leq \text{AV}_{\text{REF1}} < 4.5 \text{ V}$			15	μs
Output resistance	Ro	Note 2	•		10		kΩ
Analog reference voltage	AV _{REF1}			2.0		Vdd	V
Resistance between AVREF1 and AVss	RAIREF1	DACS0, DACS	S1 = 55H ^{Note 2}	4	8		kΩ

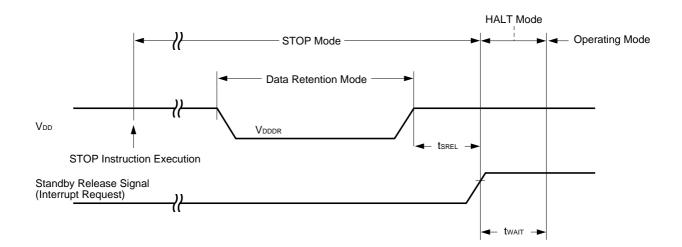
Notes 1. R and C denote the D/A converter output pin load resistance and load capacitance, respectively.2. Value for 1 D/A converter channel

Remark DACS0, DACS1: D/A conversion value setting register 0, 1

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

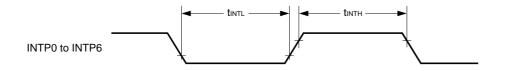

Phase-out/Discontinued

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.8		6.0	V
Data retention power supply current	Idddr	V _{DDDR} = 1.8 V Subsystem clock stop and feed-back resister disconnected		0.1	10	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization wait time	twait	Release by RESET		217/fx		ms
		Release by interrupt request		Note		ms

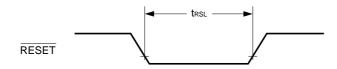

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.

Remark fxx: Main system clock frequency (fx or fx/2) fx: Main system clock oscillatior frequency

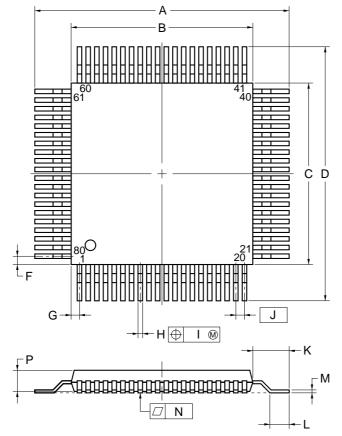
Data Retention Timing (STOP Mode Release by RESET)



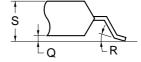
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



Interrupt Request Input Timing



RESET Input Timing



12. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551\substack{+0.009\\-0.008}$
С	14.0±0.2	$0.551\substack{+0.009\\-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031\substack{+0.009\\-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		S80GC-65-3B9-5

Remark Dimensions and materials of ES product are the same as those of mass-production products.

13. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E).**

Phase-out/Discontinued

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 13-1. Surface Mounting Type Soldering Conditions

μ PD78058FGC(A)-×××-3B9 : 80-pin Plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature : 260°C max., Duration : 10 sec. max., Number of times: once, Preheating temperature : 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max. Duration: 3 sec. max. (per pin row)	_

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78058F(A).

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	Assembler package common to the 78K/0 Series
CC78K/0 ^{Notes 1, 2, 3, 4}	C compiler package common to the 78K/0 Series
DF78054 ^{Notes 1, 2, 3, 4}	Device file common to the μ PD78054 Subseries
CC78K/0-L ^{Notes 1, 2, 3, 4}	C compiler library source file common to the 78K/0 Series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P054GC	Programmer adapters connected to PG-1500
PG-1500 controller ^{Notes 1, 2}	PG-1500 control program

Notes 1. PC-9800 series based

- **2.** IBM PC/AT[™] and compatibles based
- **3.** HP9000 series 700[™] based, SPARCstation[™] based
- 4. NEWS[™] based

Remark The RA78K/0 and CC78K/0 are used in combination with the DF78054.

★ Debugging Tools

(1) In-circuit Emulators (when IE-78K0-NS is used)

In-circuit emulator common to 78K/0 Series
Power supply unit for IE-78K0-NS
Interface adapter when PC-9800 series (except for notebooks) is used as host machine.
Interface adapter and cable when PC-9800 series notebook is used as host machine.
Interface adapter when IBM PC/AT or compatibles is used as host machine.
Emulation board to emulate μ PD780308 Subseries
Emulation probe for 80-pin plastic QFP (GC-3B9 type)
Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type)
Integrated debugger for IE-78K0-NS
System simulator common to 78K/0 Series
Device file for μ PD78054 Subseries

Phase-out/Discontinued

(2) In-circuit Emulators (when IE-78001-R-A is used)

IE-78001-R-A ^{Note 5}	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-B IE-70000-98-IF-C ^{Note 5}	Interface adapter when PC-9800 series (except for notebooks) is used as host machine.
IE-70000-PC-IF-B IE-70000-PC-IF-C ^{Note 5}	Interface adapter when IBM PC/AT or its compatibles is used as host machine.
IE-78000-R-SV3	Interface adapter and cable when EWS is used as host machine.
IE-780308-NS-EM1 ^{Note 5}	Emulation board common to μ PD780308 Subseries
IE-78K0-R-EX1 ^{Note 5}	Emulation probe conversion board that is necessary when using IE-780308-NS-EM1 on IE-78001-R-A
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80	Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type)
ID78K0 ^{Notes 1, 2, 3, 4}	Integrated debugger for IE-78001-R-A
SM78K0 ^{Notes 2, 3}	System simulator common to 78K/0 Series
DF78054 ^{Notes 1, 2, 3, 4}	Device file for μ PD78054 Subseries

Notes 1. HP9000 series 700 based, SPARCstation based

- 2. PC-9800 series based
- 3. IBM PC/AT and compatibles based
- **4.** NEWS[™] based
- 5. Under development

Remarks 1. The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78054.

 The NP-80GC is a product of Naito Densei Machida Seisakusho Co., Ltd. (044-822-3813). Contact an NEC sales representative about purchasing.

NEC

Real-Time OS

RX78K/0 ^{Notes 1, 2, 3, 4}	Real-time OS for the 78K/0 Series
MX78K/0 ^{Notes 1, 2, 3, 4}	Real-time OS for the 78K/0 Series

Phase-out/Discontinued

Notes 1. PC-9800 series based

- 2. IBM PC/AT[™] and its compatibles based
- 3. NEWS based
- **4.** HP9000 series 700[™] based, SPARCstation[™] based

Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (U11126E).

2. The RX78K/0 is used in combination with the DF78054.

 \star

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

	Document Name	Document No. (English)	Document No. (Japanese)
	μPD78058F, 78058FY Subseries User's Manual	U12068E	U12068J
	μPD78058F(A) Data Sheet	This document	U12325J
	μ PD78P058F Data Sheet	U11796E	U11796J
	78K/0 Series User's Manual – Instructions	U12326E	U12326J
	78K/0 Series Instruction Set	_	U10904J
	78K/0 Series Instruction Table	_	U10903J
r	78K/0 Series Application Note Basics (III)	U10182E	U10182J

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest documents.

* * *

 \star

Development Tool Related Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
RA78K Series Assembler Package	Operation	EEU-1399	EEU-809
	Language	EEU-1404	EEU-815
RA78K Series Structured Assembler Preprocesso	r	EEU-1402	U12323J
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly language	U11801E	U11801J
	Structured assembly language	U11789E	U11789J
CC78K Series C Compiler	Operation	EEU-1280	EEU-656
	Language	EEU-1284	EEU-655
CC78K/0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
CC78K Series Library Source File		-	U12322J
PG-1500 PROM Programmer		EEU-1335	U11940J
PG-1500 Controller PC-9800 Series (MS-DOS) based		EEU-1291	EEU-704
PG-1500 Controller IBM PC series (PC DOS) based IE-78K0-NS IE-78001-R-A		U10540E	EEU-5008
		To be prepared	To be prepared
		To be prepared	To be prepared
IE-780308-NS-EM1		To be prepared	To be prepared
EP-78230		EEU-1515	EEU-985
SM78K0 System Simulator, Windows™ based	Reference	U10181E	U10181J
SM78K Series System Simulator	External parts user open interface specification	U10092E	U10092J
ID78K0-NS Integrated Debugger		Under preparation	To be prepared
ID78K0 Integrated Debugger, EWS based	Reference	_	U11151J
ID78K0 Integrated Debugger, PC based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger, Windows based	Guide	U11649E	U11649J

Phase-out/Discontinued

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest documents.

Embedded Software Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

	Document Name	Document No. (English)	Document No. (Japanese)
	IC Package Manual	C10943X	
	Semiconductor Device Mounting Technology Manual	C10535E	C10535J
	Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
	NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
*	Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
	Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J
	Microcontroller Related Product Guide — Third Party	_	C11416J

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

[MEMO]

-NOTES FOR CMOS DEVICES-

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Phase-out/Discontinued

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41

Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8

FIP and IEBus are trademarks of NEC Corporation. MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. PC/AT, and PC DOS are trademarks of International Business Machines Corporation. HP9000 series is a trademark of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. NEWS is a trademark of Sony Corporation.

Phase-out/Discontinued

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5