Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75P116 is a version of the μ PD75116 in which the on-chip mask ROM is replaced by one-time PROM which can be written to once only.

Since the μ PD75P116 is capable of program write by a user, it is suitable for evaluation in system development and limited production.

Detailed functional descriptions are shown in the following User's Manual. Be sure to read for design purposes.

 μ PD751 \times Series User's Manual : IEM-922

FEATURES

• μPD75116 compatible

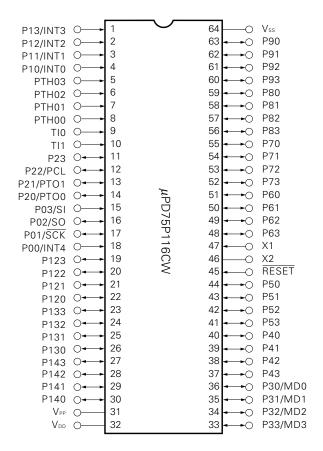
Program memory (PROM) capacitance : 16256 × 8 bits
 Data memory (RAM) capacitance : 512 × 4 bits

• Single power supply 5 V ± 10%

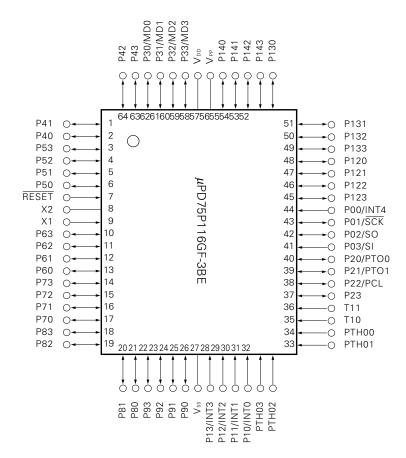
ORDERING INFORMATION

Ordering Code	Package	Quality Grade	*
μPD75P116CW	64-pin plastic shrink DIP (750 mil)	Standard	
μ PD75P116GF-3BE	64-pin plastic QFP (14 \times 20 mm)	Standard	

Please refer to "Quality Grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Note There are no on-chip pull-up resistor and power-on reset function by means of a mask option.

The information in this document is subject to change without notice.

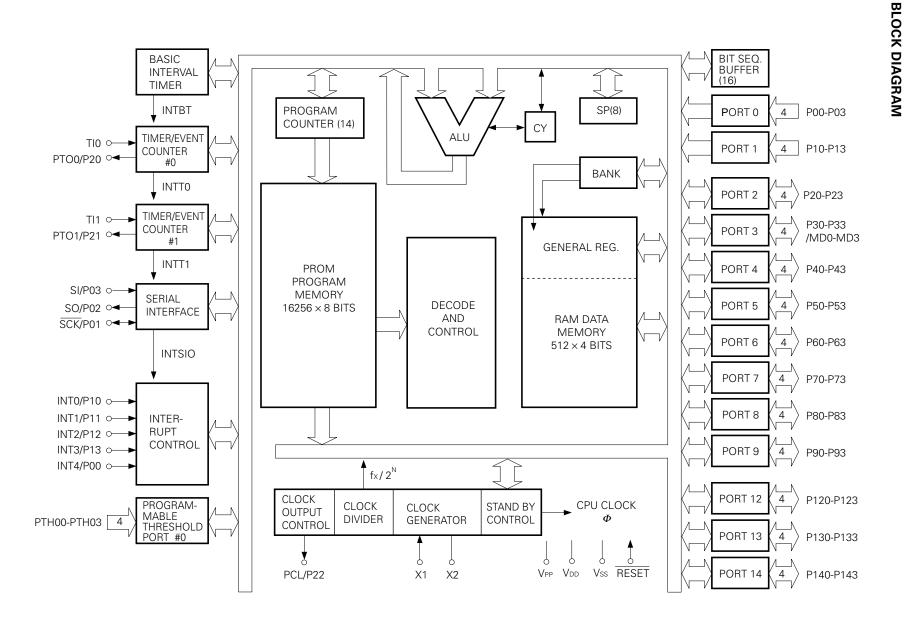


PIN CONFIGURATION (TOP VIEW)

64-pin plastic shrink DIP (750 mil)

64-pin plastic QFP (14 \times 20 mm)

Pin Name


P00 to P03	: Port 0	SCK	: Serial Clock
P10 to P13	: Port 1	SO	: Serial Output
P20 to P23	: Port 2	SI	: Serial Input
P30 to P33	: Port 3	PTO0, PTO1	: Programmable Timer Output
P40 to P43	: Port 4	PCL	: Clock Output
P50 to P53	: Port 5	PTH00 to PTH03	: Programmable Threshold Input
P60 to P63	: Port 6	INTO, INT1, INT4	: External Vectored Interrupt Input
P70 to P73	: Port 7	INT2, INT3	: External Test Input
P80 to P83	: Port 8	TIO, TI1	: Timer Input
P90 to P93	: Port 9	X1, X2	: Clock Oscillation
P120 to P123	3 : Port 12	RESET	: Reset
P130 to P133	3 : Port 13	NC	: No Connection
P140 to P143	3 : Port 14	V_{DD}	: Positive Power Supply
		Vss	: Ground
		V_{PP}	: Programming Power Supply
		MD0 to MD3	: Mode Selection

OVERVIEW OF FUNCTIONS

Item		Description	
Basic instructions		43	
Minimum instruction	on	0.95 μ s, 1.91 μ s, 15.3 μ s (4.19 MHz operation) 3-stage switching capability	
ROM		16256 × 8	
Internal memory	RAM	512 × 4	
General register		4 bits \times 8 \times 4 banks (memory mapping)	
Accumulator		3 types of accumulators corresponding to bit length of manipulated data • 1-bit accumulator (CY),	
Input/output port		Total 58 CMOS input pins : 10 CMOS input/output pins (LED direct drive capability) : 32 Middle-high voltage N-ch open-drain input/output pins (LED direct drive capability) : 12 Comparator input pins (4-bit precision) : 4	
Timer/counter	• 8-bit timer/event counter × 2 • 8-bit basic interval timer (watchdog timer applicable)		
Serial interface	• 8 bits • LSB-first/MSB-first switchable • Two transfer modes (transmit-receive/receive-only mode)		
Vectored interrupt		External : 3, internal : 4	
Test input		External : 2	
Standby		• STOP/HALT mode	
• 8-bit data transfer, comparison, operation, increment/decrement • 1-byte relative branch instruction		GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1	
Operating temperat	ture range	-40 to +85 °C	
Operating voltage		5 V ± 10 %	
Others • Bit manipulation memory (bit sequential buffer : 16 bits) on-chip		Bit manipulation memory (bit sequential buffer : 16 bits) on-chip	
Package		64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20mm)	

Phase-out/Discontinued

CONTENTS

1.	PIN FUNCTIONS	7
	1.1 PORT PINS	7
	1.2 OTHER PINS	
	1.3 PIN INPUT/OUTPUT CIRCUITS	ć
	1.4 RECOMMENDED CONNECTION OF μ PD75P116 UNUSED PINS	10
	1.5 NOTES ON USING P00/INT4 PIN AND RESET PIN	10
2.	DIFFERENCES BETWEEN μ PD75P116 AND μ PD75116	11
3.	PROM (PROGRAM MEMORY) WRITE AND VERIFY	12
	3.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES	12
	3.2 PROGRAM MEMORY WRITE PROCEDURE	13
	3.3 PROGRAM MEMORY READ PROCEDURE	14
4.	ELECTRICAL SPECIFICATIONS	15
5.	PACKAGE INFORMATION	26
6.	RECOMMENDED SOLDERING CONDITIONS	28
ΑP	PPENDIX A. DEVELOPMENT TOOLS	29
ΛD	PRENDLY B. DELATED DOCUMENTATION	20

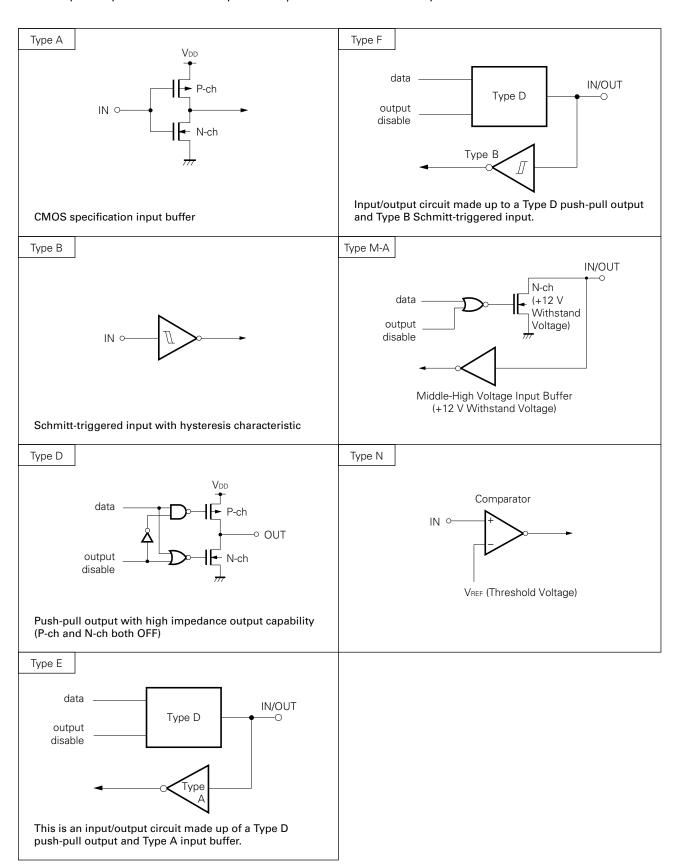
1. PIN FUNCTIONS

1.1 PORT PINS

Pin Name	Input/Output	Dual- Function Pin	Function	8-bit I/O	After Reset	I/O Circuit Type *1
P00	Input	INT4				B
P01	Input/output	SCK	4-bit input port (PORT 0).		lmm.uk	F
P02	Input/output	SO	The impact point (i. Givi G).		Input	E
P03	Input	SI				B
P10		INT0		×		
P11		INT1	4-bit input port (PORT 1)			
P12	Input	INT2	-bit input port (PORT 1).		Input	B
P13		INT3				
P20		PTO0				
P21		PTO1	4-bit input/output port (PORT 2).			_
P22	Input/output	PCL	A Bit inputoutput port (i Oitt 2).	×	Input	E
P23		_	*2			
P30 to P33	Input/output	MD0 to MD3	Programmable 4-bit input/output port (PORT 3). Input/output can be specified bit-wise. *2		Input	E
P40 to P43	Input/output	_	4-bit input/output port (PORT 4). Data input/output pin for program memory (PROM) write/verify (low-order 4 bits).		Input	E
P50 to P53	Input/output	_	4-bit input/output port (PORT 5). Data input/output pin for program memory (PROM) write/verify (high-order 4 bits).	0	Input	E
P60 to P63	Input/output	_	Programmable 4-bit input/output port (PORT 6). Input/output can be specified bit-wise. *2	0	Input	E
P70 to P73	Input/output	_	4-bit input/output port (PORT 7). *2		Input	E
P80 to P83	Input/output	_	4-bit input/output port (PORT 8). *2		Input	E
P90 to P93	Input/output	_	4-bit input/output port (PORT 9). *2		Input	E
P120-P123	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 12). +12 V withstand voltage. *2		Input	M-A
P130-P133	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 13). +12 V withstand voltage. *2	0	Input	M-A
P140-P143	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 14). +12 V withstand voltage. *2	-	Input	M-A

- * 1. O indicates Schmitt-triggered input.
 - 2. LED direct drive capability

1.2 OTHER PINS


Pin Name	Input/Output	Dual- Function Pin	Function	After Reset	I/O Circuit Type *1
PTH00 to PTH03	Input	_	Variable threshold voltage 4-bit analog input port.		N
TI0			External event pulse input to timer/event counter. Or edge detection vectored interrupt input pin, or 1-bit input		(B)
TI1	Input	_	is also possible.		B
PTO0		P20	Timer/event counter output pin.		E
PTO1	Input/output	P21	Time/revent counter output pin.	Input	
SCK	Input/output	P01	Serial clock input/output pin.	Input	F
so	Input/output	P02	Serial data output pin.	Input	Е
SI	Input	P03	Serial data input pin.	Input	B
INT4	Input	P00	Edge detection vector interrupt input pin (detection of both rising and falling edges).		B
INT0		P10	Edge detection vector interrupt input pin (detection edge		
INT1	Input	P11	selectable).		B
INT2		P12			(B)
INT3	Input	P13	Edge detection testable input pin (rising edge detection)		(B)
PCL	Input/output	P22	Clock output pin	Input	E
X1, X2		_	System clock oscillation crystal/ceramic connection pin. When an external clock is used, the clock is input to X1 and the inverted clock is input to X2.		
RESET	Input	_	System reset input pin (low-level active).		B
MD0 to MD3	Input/output	P30 to P33	Mode selection pin for program memory (PROM) write/verify.	Input	E
V _{DD}		_	Positive power supply pin. Applies +6 V for write/verify.		
Vss		_	GND potential pin.		
VPP *2		_	Program voltage impression pin for program memory (PROM) write/verify. Connected to VDD directly in normal operation. Applies +12.5 V for PROM write/verify.		

- * 1. O indicates Schmitt-triggered input.
 - 2. The device will not operate correctly unless V_{PP} is connected to V_{DD} directly in normal use.

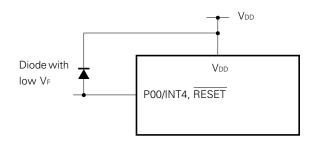
1.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuits of each pin of the μ PD75P116 are shown by in abbreviated form.

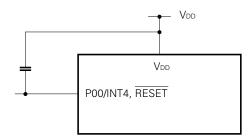
1.4 RECOMMENDED CONNECTION OF μ PD75P116 UNUSED PINS

Pin	Recommended Connection
PTH00 to PTH03	
TIO	Connect to Vss or VDD.
TI1	
P00	Connect to Vss.
P01 to P03	Connect to Vss or VDD.
P10 to P13	Connect to Vss.
P20 to P23	
P30 to P33	
P40 to P43	
P50 to P53	Input status : Connect to Vss or Vdd.
P60 to P63	imput status . Connect to vss of vib.
P70 to P73	Output status : Leave open.
P80 to P83	
P90 to P93	
P120 to P123	
P130 to P133	
P140 to P143	

1.5 NOTES ON USING P00/INT4 PIN AND RESET PIN


The P00/INT4 and $\overline{\text{RESET}}$ pins have a test mode setting function (for IC test) which tests internal operations of pin of the μ PD75P116 in addition to those functions given in 1.1 and 1.2.

The test mode is set when voltage greater than VDD is applied to either pin. Therefore, even during normal operation, the test mode is engaged when noise greater than VDD is added, thus causing interference with normal operation.


For example, this problem may occur if the P00/INT4 and RESET pins wiring is too long, causing line noise.

To avoid this, try to suppress line noise in wiring. If line noise is still high, try elimminating the noise using the exterior add-on components shown in the Figures below.

○ Connect a Diode with Low V_F (0.3 V max.) Between the V_{DD} and the Pin.

○ Connect a Capacitor Between the VDD and the Pin.

2. DIFFERENCES BETWEEN μ PD75P116 AND μ PD75116

The μ PD75P116 is a product in which the program memory (mask ROM) of the μ PD75116 is changed to a user programmable PROM. Other functions of the μ PD75P116 and μ PD75116 are virtually the same only with the differences shown in Table 2-1.

For details of CPU functions and on-chip hardware, see the "µPD75116 User's Manual" (IEM-922).

Table 2-1 Differences between μ PD75P116 and μ PD75116

	Item	μPD75P116	μPD75116		
	itom	,	,		
Program memory		One-time PROM	Mask ROM		
Program memory	0000H-	3F7FH			
		(16256 >	< 8 bits)		
D-4		0000H-	01FFH		
Data memory		(512 ×	4 bits)		
Pull-up resistor (ports 12 to 14)		. No	Mask option		
Power-on reset function		- INO			
Operating vol	tage range	5 V ± 10 %	2.7 to 6.0 V		
	31 pins (SDIP)	VPP	NC		
Pin function	57 pins (QFP)	VPP	INC		
riii iuliction	33 to 36 pins (SDIP)	P33/MD3 to P30/MD0	P33 to P30		
	59 to 62 pins (QFP)	- F33/WD3 to F30/WD0	733 to 730		
Flootii aal amaa	:(f: 4:	Different consumption current, operating temperature range, etc. Refer to the			
Electrical specification		electrical specifications parameters for each data sheet for details.			
Other		Different noise resistance, noise radiation	on, etc., due to difference in the size of		
Other		circuits and mask layout.			

Note The PROM and ROM products differ in noise resistance and noise radiation. If you are considering replacement of the PROM products by the mask ROM product in the transition from preproduction to volume production, this should be thoroughly evaluated with the mask ROM CS product (not ES product).

3. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The ROM built into the μ PD75P116 is a 16256 \times 8-bit PROM. The pins shown in the table below are used to write/verify this PROM. There is no address input; instead, a method to update the address by the clock input from the X1 pin is adopted.

Pin Name	Function
Vpp	Voltage application pin for program memory write/verify (normally VDD potential).
X1, X2	Address update clock inputs for program memory write/ verify. Inverse of X1 pin signal is input to X2 pin.
MD0 to MD3	Operating mode selection pin for program memory write/verify.
P40 to P43 (low-order 4 bits) P50 to P53 (high-order 4 bits)	8-bit data input/output pins for progrm memory write/verify.
V _{DD}	Supply voltage application pin. Applies 5 V \pm 10 % in normal operation, and 6 V for program memory write/verify.

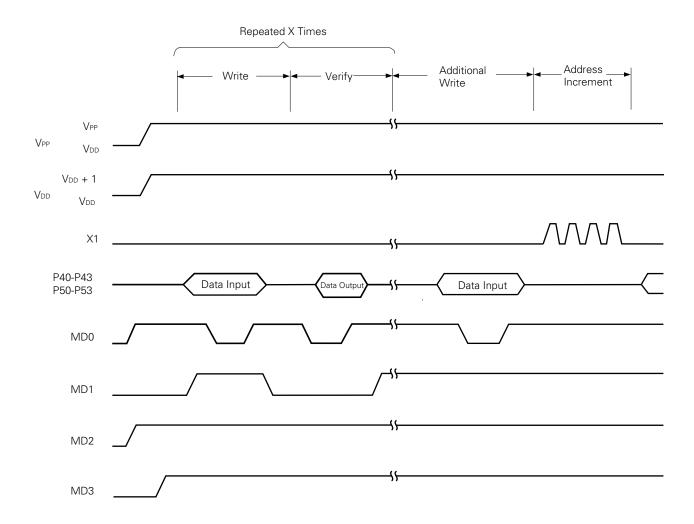
Note Since the μ PD75P116 is a one-time PROM version, UV-ray erasure is not possible.

3.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES

The μ PD75P116 assumes the program memory write/verify mode is +6 V and +12.5 V are applied respectively to the V_{DD} and V_{PP} pins. The table below shows the operating modes available by the MD0 to MD3 pin setting in this mode. The rest of pins are all set at the Vss potential by the pull-down resistor.

	Operating	Mode	Setting			- Operating Mode	
VPP	V _{DD}	MD0	MD1	MD2	MD3		
		Н	L	Н	L	Program memory address zero-clear	
10.5.1/	+6 V	L	Н	Н	Н	Write mode	
+12.5 V		L	L	Н	Н	Verify mode	
		Н	×	Н	Н	Program inhibit mode	

 \times : L or H

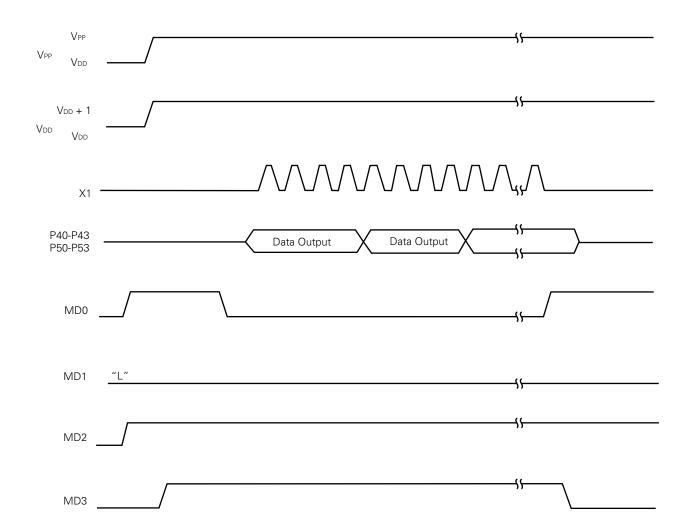


3.2 PROGRAM MEMORY WRITE PROCEDURE

The program memory writing procedure is shown below. High-speed write is possible.

- (1) Pull down a pin which is not used to Vss via the resistor. A low-level signal is input to the X1 pin.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) 10 μ s wait.
- (4) The program memory address 0 clear mode.
- (5) Supply +6 V and +12.5 V respectively to VDD and VPP.
- (6) The program inhibit mode.
- (7) Write data in the 1-ms write mode.
- (8) The program inhibit mode.
- (9) The verify mode. If written, proceed to (10); if not written, repeat (7) to (9).
- (10) (Number of times written in (7) to (9): X) \times 1-ms additional write.
- (11) The program inhibit mode.
- (12) Update (+1) the program memory address by inputting 4 pulses to the X1 pin.
- (13) Repeat (7) to (12) up to the last address.
- (14) The program memory address 0 clear mode.
- (15) Change the VDD and VPP pins voltage to +5 V.
- (16) Power off.

The diagram below shows the procedure of the above (2) to (12).



3.3 PROGRAM MEMORY READ PROCEDURE

The μ PD75P116 can read the content of the program memory in the following procedure.

- (1) Pull down a pin which is not used to Vss via the resistor. A low-level signal is input to the X1 pin.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) 10 μ s wait.
- (4) The program memory address 0 clear mode.
- (5) Supply +6 V and +12.5 V respectively to VDD and VPP.
- (6) The program inhibit mode.
- (7) The verify mode. If clock pulses are input to the X1 pin, data is output sequentially 1 address at a time at the period of inputting 4 pulses.
- (8) The program inhibit mode.
- (9) The program memory address 0 clear mode.
- (10) Change the VDD and VPP pins voltage to +5 V.
- (11) Power off.

The diagram below shows the procedure of the above (2) to (9).

4. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS		RATING	UNIT
Supply voltage	V _{DD}			-0.3 to + 7.0	V
Supply voltage	V _{PP}			-0.3 to 13.5	V
Input voltage	Vıı	Except ports 12	to 14	-0.3 to V _{DD} + 0.3	V
iliput voitage	V ₁₂ *1	Ports 12 to 14		-0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
		1 pin		-15	mA
Output current high	Іон	Total pins		-30	mA
	lot* 2		Peak value	30	mA
		1 pin	Effective value	15	mA
Output aumant laur		Ports 0, 2 to 4, 12 to 14 total	Peak value	100	mA
Output current low			Effective value	36	mA
		Ports 5 to 9 total	Peak value	100	mA
			Effective value	36	mA
Operating temperature	Topt			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +125	°C

^{* 1.} The power supply impedance (pull-up resistor) should be 50 k Ω or more when the voltage exceeding 10 V applied to ports 12, 13 and 14.

Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

^{2.} Effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{\text{duty}}$

OSCILLATION CIRCUIT CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 5 V \pm 10 %)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Ceramic	X1 X2	Oscillator frequency (fxx) *1		2.0		* 3 5.0	MHz
resonator	C1 C2	Oscillation stabilization time *2	After V _{DD} reaches 4.5 V.			4	ms
Crystal	X1 X2 C2	Oscillator frequency (fxx) *1		2.0	4.19	* 3 5.0	MHz
resonator		Oscillation stabilization time *2	After V _{DD} reaches 4.5 V.			10	ms
External	X1 X2	X1 input frequency (fx) *1		2.0		* 3 5.0	MHz
External clock	μPD74HCU04	X1 input high/low level width (txH, txL)		100		250	ns

- * 1. Indicates only oscillation circuit characteristics. Refer to "AC Characteristics" for instruction execution time.
 - 2. Time required to stabilize oscillation after V_{DD} reaches oscillation voltage range MIN. or STOP mode release.
- 3. When the oscillator frequency is 4.19 MHz < fxx \leq 5.0MHz, PCC = 0011 should not be selected as instruction execution time. If PCC = 0011 is selected, 1 machine cycle becomes less than 0.95 μ s, with the result that the specified MIN value of 0.95 μ s cannot be observed.
- ★ Note When the system clock oscillator is used, the following points should be noted concerning wiring in the section enclosed by dots, in order to prevent the effects of wiring capacitance, etc.
 - Keep the wiring as short as possible.
 - Do not cross any other signal lines.
 - Keep away from lines in which a high fluctuating current flows.
 - Ensure that oscillator capacitor connection points are always at the same potential as Vss. Do not ground in a ground pattern in which a high current flows.
 - . Do not take a signal from the oscillator.

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 5 V \pm 10 %)

PARAMETER	SYMBOL	TEST CON	NDITION	S	MIN.	TYP.	MAX.	UNIT
	V _{IH1}	Other than below			0.7V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0 & 1, Tl0 &	1, RESET		0.8V _{DD}		V _{DD}	V
Input voltage high	VIH3	Ports 12 to 14			0.7V _{DD}		12	V
	V _{IH4}	X1, X2			V _{DD} -0.5		V _{DD}	V
	V _{IL1}	Other than below			0		0.3V _{DD}	V
Input voltage low	V _{IL2}	Ports 0 & 1, Tl0 &	1, RESET	Ī	0		0.2V _{DD}	V
	V _{IL3}	X1, X2			0		0.4	V
Output voltage high	Vон	Iон = −1 mA			V _{DD} -1.0			V
		IoL = 15 mA	Ports 0), 2, to 9		0.55	2.0	V
Output voltage low	Vol	IoL = 10 mA	Ports 1	2 to 14		0.35	2.0	V
		loL = 1.6 mA					0.4	V
Input leakage	Ішн1	VIN = VDD	Other	than below			3	μΑ
current high	ILIH2	VIN = VDD	X1, X2				20	μΑ
	Інз	V _{IN} = 12 V	Ports 1	2 to 14			20	μΑ
Input leakage	ILIL1	V 0 V	Except	X1 & X2			-3	μΑ
current low	ILIL2	VIN = 0 V	X1, X2				-20	μΑ
Output leakage	ILOH1	Vout = Vdd	Other	than below			3	μΑ
current high	ILOH2	Vоит = 12 V	Ports 1	2 to 14			20	μΑ
Output leakage current low	Ігог	Vout = 0 V				-3	μА	
_	I _{DD1}	4.19 MHz	V _{DD} = 5	5 V ± 5 % *2		5	10	mA
Power supply current *1	I _{DD2}	Crystal oscillation C1 = C2 = 22 pF	HALT mode*3	$V_{DD} = 5 V \pm 5 \%$		500	1500	μΑ
	IDD3	STOP mode, V _{DD} =	5 V ± 5	%		0.5	20	μΑ

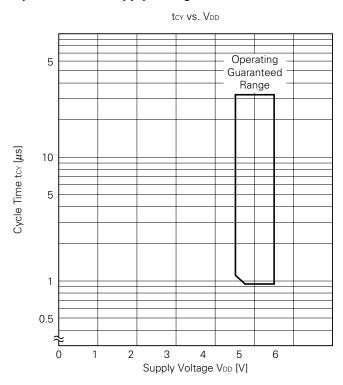
- * 1. Not including current flowing in comparator.
 - 2. When processor clock control register (PCC) is set to 0011 operating in high-speed mode.
 - 3. When PCC is set to 0100 and CPU is halted in HALT mode.

CAPACITANCE (Ta = 25 $^{\circ}$ C, V_{DD} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cin	(ANII			15	pF
Output capacitance	Соит	f = 1 MHz Unmeasured pins returned to			15	pF
I/O capacitance	Сю	0 V.			15	pF

COMPARATOR CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 5 V \pm 10 %)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Comparison accuracy	VACOMP				±100	mV
Threshold voltage	V _{тн}		0		V _{DD}	V
PTH input voltage	V _{IРТН}		0		V _{DD}	V
Comparator circuit current consumption		PTHM7 set to "1"		1		mA


AC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

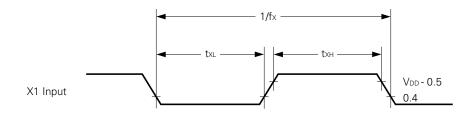
PARAMETER	SYMBOL	TEST CON	IDITION	S	MIN.	TYP.	MAX.	UNIT
CPU clock cycle time* (minimum instruction	tcy		V _{DD} =	4.75 to 5.5 V	0.95		32	μs
execution time = 1 ma- chine cycle)	tcy				1.1		32	μs
TI input frequency	fτι				0		1	MHz
TI input high/low-level	tтıн,				0.48			μs
width	t⊤ı∟				0.40			μ5
	tĸcy			Input	0.8			μs
SCK cycle time	LKCY			Output	0.95			μs
001/1:1/	tкн,			Intput	0.4			μs
SCK high/low-level width	tĸL			Output	tксу/2-50			ns
SI setup time (to SCK1)	tsıк				100			ns
SI hold time (from SCK1)	tksi				400			ns
SO output delay time from SCK↓	tĸso						300	ns
INT0 to INT4 high/low-	tinth,				5			μs
level width	tintl							
RESET low level width	trsl				5			μs

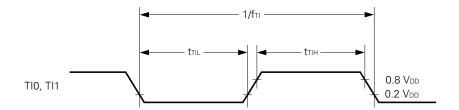
* The cycle time of the CPU clock (Φ) is determined by the oscillator frequency of the connected resonator and the processor clock control register (PCC).

The graph on the below shows the cycle time $\,$ tcy characteristics against supply voltage $V_{\text{DD}}.$

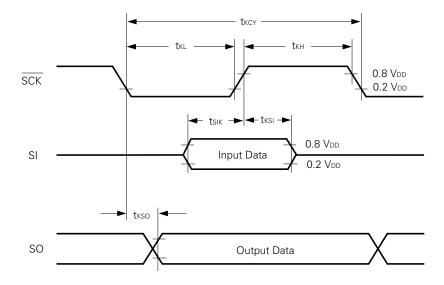
Relation between Cycle Time and Supply Voltage

Note toy vs. VDD characteristics are different from those of the μ PD75P108

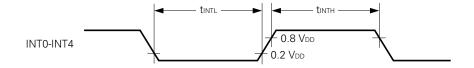


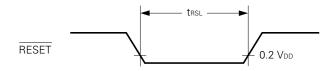

AC Timing Test Point (Excluding ports 0 & 1, TI0, TI1, X1, X2, RESET)

Clock Timing



TI Input Timing

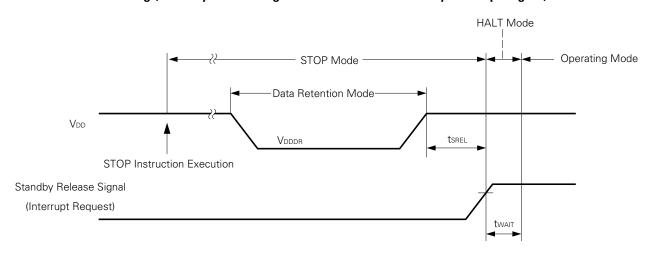



Serial Transfer Timing

Interrupt Input Timing

RESET Input Timing

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = -40 to +85 °C)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention supply voltage	VDDDR		2.0		5.5	V
Data retention power supply current *1	Idddr	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	t srel		0			μs
Oscillation stabilization wait time *2	†wait	Release by RESET		217/fx		ms
Community stabilization want time 2	CVVAII.	Release by interrupt request		*3		ms

- * 1. Does not include current flowing in the comparator.
 - 2. The oscillator stabilization wait time is the time during which CPU operation is halted to prevent unstable operation when oscillation begins.
 - 3. Depends on the setting of the basic interval timer mode register (BTM) (table below).

втмз	BTM2	BTM1	втмо	WAIT Time (Figure in Parentheses is for fxx = 4.19 MHz)
_	0	0	0	2 ²⁰ /fxx (Approx. 250 ms)
_	0	1	1	2 ¹⁷ /fxx (Approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fxx (Approx. 7.82 ms)
_	1	1	1	2 ¹³ /fxx (Approx. 1.95 ms)

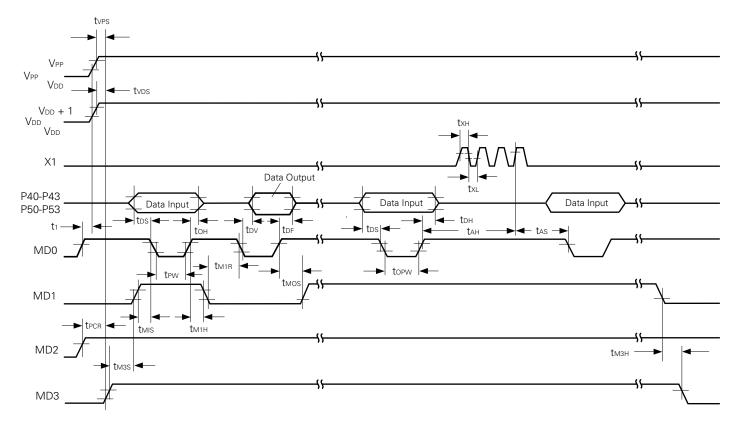
Data Retention Timing (STOP Mode Release by RESET) Internal RESET Operation HALT Mode Operating Mode VDD STOP Instruction Execution RESET Operation HALT Mode Operating Mode

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

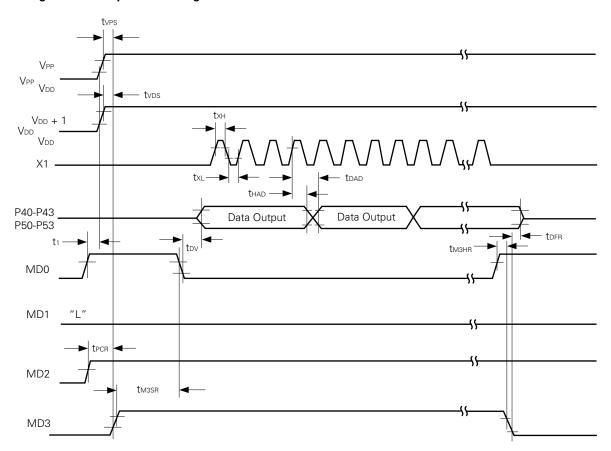
DC PROGRAMMING CHARACTERISTICS (Ta = 25 °C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{SS} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage high	V _{IH1}	Except X1 & X2	0.7V _{DD}		V _{DD}	V
input voitage nigh	V _{IH2}	X1, X2	V _{DD} -0.5		V _{DD}	V
Input voltage low	V _{IL1}	Except X1 & X2	0		0.3 V _{DD}	V
Input voltage low	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	lu	VIN = VIL or VIH			10	μΑ
Output voltage high	Vон	Iон = −1 mA	V _{DD} -1.0			V
Output voltage low	Vol	IoL = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

- Note 1. Ensure that V_{PP} does not reach +13.5 V or above including overshot.
 - 2. Ensure that V_{DD} is applied before V_{PP} and cut off after V_{PP} .

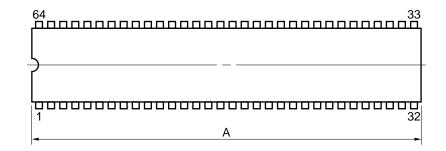

AC PROGRAMMING CHARACTERISTICS (Ta = 25 $^{\circ}$ C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{SS} = 0 V)

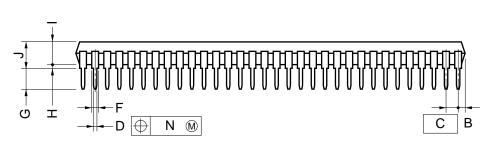
PARAMETER	SYMBOL	*1	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time *2 (to MD0↓)	tas	t AS		2			μs
MD1 setup time (to MD0↓)	t _{M1} s	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time *2 (from MD0↑)	tан	t ah		2			μs
Data hold time (from MD0 [↑])	tон	t DH		2			μs
Data output float delay time from MD0↑	t DF	t DF		0		130	ns
V _{PP} setup time (to MD3↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3↑)	tvos	tvcs		2			μs
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tмоs	tces		2			μs
Data output delay time from MD0 \downarrow	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0↑)	t м1н	t oeh		2			μs
MD1 recovery time (from MD0↓)	t _{M1R}	tor	tm1H + tm1R ≥ 50 μs	2			μs
Program counter reset time	tpcr	_		10			μs
X1 input high-/low-level width	txн, txL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode setting time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1↓)	tмзн	_		2			μs
MD3 setup time (to MD0↓)	t m3SR	_	In program memory read	2			μs
Data output delay time from address *2	t DAD	tacc	In program memory read	2			μs
Data output hold time from address *2	thad	tон	In program memory read	0		130	ns
MD3 hold time (from MD0↑)	tмзнк	_	In program memory read	2			μs
Data output float delay time from MD3↓	tofr	_	In program memory read	2			μs

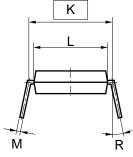

^{* 1.} Corresponding to μ PD27C256 symbol.

^{2.} Internal address signal is incremented by 1 on rise of 4th X1 input, and is not connected to a pin.

Program Memory Write Timing

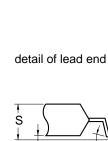

Program Memory Read Timing

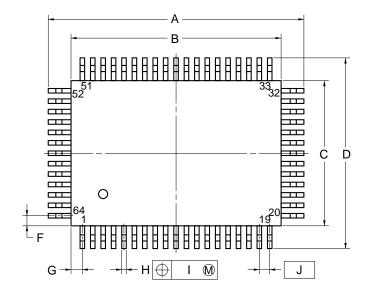


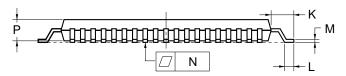


5. PACKAGE INFORMATION

64 PIN PLASTIC SHRINK DIP (750 mil)


NOTE


- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

64 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	0.795 ^{+0.008} -0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	0.016+0.004
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} -0.05	0.006+0.004
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P64GF-100-3B8,3BE,3BR-2

★ 6. RECOMMENDED SOLDERING CONDITIONS

The μ PD75P116 should be mounted under the conditions recommended in the table below.

For details of recommended soldering conditions, refer to the information document "Surface Mount Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 6-1 Surface Mount Type Soldering Conditions

 μ PD75P116GF-3BE : 64-pin plastic QFP (14 imes 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Once Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	IR30-162-1
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: Once Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	VP15-162-1
Wave soldering	Solder bath temperature: 260°C max., Duration: 10 sec. max Number of times: Once Preheating temperature: 120°C max. (package surface temperature), Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	WS60-162-1
Pin part heating	Pin part temperature: 300°C max., Duration: 3 sec. max. (per device side)	_

^{*} For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% 1H.

Note Use of more than one soldering method should be avoided (except in the case of pin part heating).

Table 6-2 Insertion Type Soldering Conditions

 μ PD75P116CW : 64-pin plastic shrink DIP (750 mil)

Soldering Method	Soldering Conditions
Wave Soldering (lead part only)	Solder bath temperature: 260°C max., Duration: 10sec. max.
Pin part heating	Pin part temperature: 260°C max., Duration: 10sec. max.

Note Ensure that the application of (wave soldering) is limited to the lead part and no solder touches the main unit directly.

Notice

A version of this product with improved recommended soldering conditions is available. For details (improvements such as infrared reflow peak temperature extension (230 °C), number of times: twice, relaxation of time limit, etc.), contact NEC sales personnel.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD75P116.

Hardware	IE-75000-R * 1 IE-75001-R		In-circuit emulator for 75X series	
	IE-75000-R-EM *2		Emulation board for IE-75000-R and IE-75001-R	
	EP-75108CW-R		Emulation probe for μPD75P116CW	
	EP-75108GF-R		Emulation probe for μ PD75P116GF	
		EV-9200G-64	A 64-pin conversion socket EV-9200G-64 is provided.	
	PG-1500		PROM programmar	
	PA-75P108CW		This is a PROM programmar adapter for μ PD75P116CW and connects to PG-1500.	
	PA-75P116GF		This is a PROM programmar adapter for μ PD75P116GF and connects to PG-1500.	
Software	IE control program		Host machine • PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A *3) • IBM PC/AT™ series (PC DOS™ Ver.3.1)	
	PG-1500 controller			
	RA75X relocatable assembler			

- * 1 Maintenance product
 - 2 This is not incorporated in the IE-75001-R.
 - **3** A task swap function is provided with Ver.5.00/5.00A; however, a task swap function cannot be used with this software.

Remarks For development tools manufactured by a third pary, see the "75X Series Selection Guide" (IF-151).

★ APPENDIX B. RELATED DOCUMENTATION

List of Device-Related Documents

	Document No.	
User's Manual		
Instruction Application Table		
	(I) Introductory Volume	
Application Note	(II) Remote-Controlled Reception Volume	
Application Note	(III) Bar-Code Reader-Volume	
	(IV) IC Control for MSK Transmission/Reception Volume	
75X Series Selection Guide		

List of Development Tool Related Documents

	Document Name	Document No.	
Hardware	IE-75000-R/IE-75001-R User's Manual		
	IE-75000-R-EM User's Manual		
	EP-75108CW-R User's Manual		
	EP-75108GF-R User's Manual		
	PG-1500 User's Manual		
re	DATEV Assembler Postrone Heavie Manual	Operation Volume	
Software	RA75X Assembler Package User's Manual	Language Volume	
So	PG-1500 Controller User's Manual		

Other Documents

Document Name	Document No.
Package Manual	
Surface Mount Technology Manual	
Quality Grade on NEC Semiconductor Devices	
NEC Semiconductor Device Reliability Quality Control	
Electrostatic Discharge (ESD) Test	
Semiconductor Device Quality Guarantee Guide	
Microcomputer Related Product Guide Other Manufacturer Volume	

Note The above related documents may be changed without notice. Be sure to use the latest documents for design purposes.

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime systems, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.