Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT $\mu PD75P0116$

4-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD75P0116 replaces the μ PD750108's internal mask ROM with a one-time PROM and features expanded ROM capacity.

Because the μ PD75P0116 supports programming by users, it is suitable for use in prototype testing for system development using the μ PD750104, 750106, or 750108 products, and for use in small-lot production.

Detailed information about product features and specifications can be found in the following document μ PD750108 User's Manual: U11330E

FEATURES

- Compatible with µPD750108
- Memory capacity:
 - PROM : 16384 \times 8 bits
 - RAM : 512×4 bits

• Can operate in same power supply voltage as the mask ROM version μ PD750108

• VDD = 1.8 to 5.5 V

ORDERING INFORMATION

Part number	Package	ROM (× 8 bits)
μPD75P0116CU	42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)	16384
μPD75P0116CU-A	42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)	16384
μ PD75P0116GB-3BS-MTX	44-pin plastic QFP (10 $ imes$ 10 mm, 0.8-mm pitch)	16384
μ PD75P0116GB-3BS-MTX-A	44-pin plastic QFP (10 $ imes$ 10 mm, 0.8-mm pitch)	16384

Caution On-chip pull-up resistors by mask option cannot be provided.

Remark Products with "-A" at the end of the part number are lead-free products.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

FUNCTION LIST

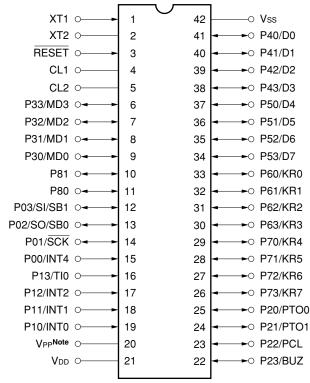
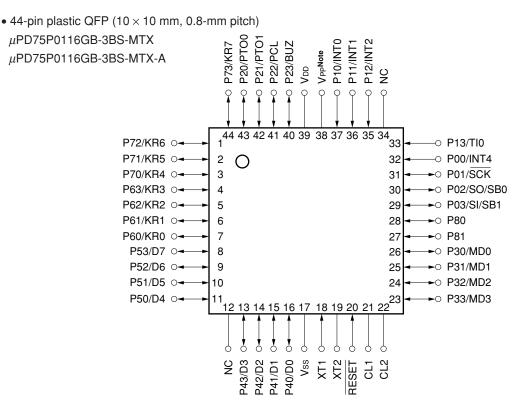
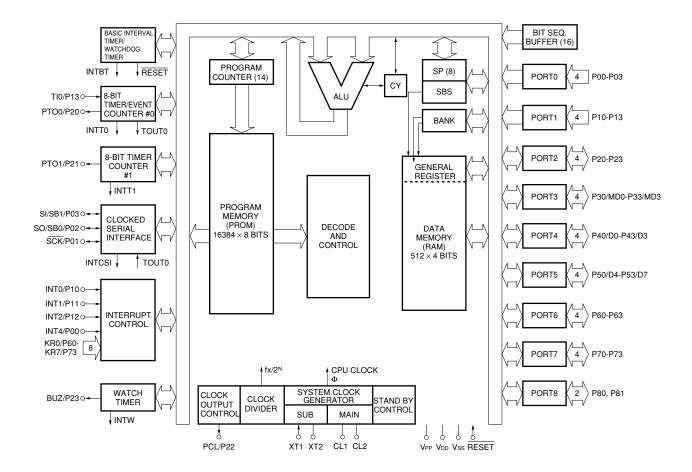

Item			Function		
Instruction execution time			 4, 8, 16, 64 μs (main system clock: at 1.0 MHz operation) 2, 4, 8, 32 μs (main system clock: at 2.0 MHz operation) 122 μs (subsystem clock: at 32.768 kHz operation) 		
On-chip memory		PROM	1638	34 × 8 bits	
		RAM	512	× 4 bits	
General register				4-bit operation: 8×4 banks 8-bit operation: 4×4 banks	
I/O port	CMOS input	t	8	Connection of on-chip pull-up resistor specifiable by software: 7	
	CMOS I/O		18	Direct LED drive capability Connection of on-chip pull-up resistor specifiable by software: 18	
	N-ch open c	Irain I/O	8	Direct LED drive capability 13 V withstand voltage	
	Total		34		
Timer	Timer		 4 channels 8-bit timer/event counter: 1 channel 8-bit timer counter: 1 channel (with watch timer output function) Basic interval timer/watchdog timer: 1 channel Watch timer: 1 channel 		
Serial interface			 3-wire serial I/O mode Switching of MSB/LSB-first 2-wire serial I/O mode SBI mode 		
Bit sequential buffer ((BSB)		16 b	its	
Clock output (PCL)			 Φ, 125, 62.5, 15.6 kHz (main system clock: at 1.0 MHz operation) Φ, 250, 125, 31.3 kHz (main system clock: at 2.0 MHz operation) 		
Buzzer output (BUZ)			 2, 4, 32 kHz (subsystem clock: at 32.768 kHz operation) 0.488, 0.977, 7.813 kHz (main system clock: at 1.0 MHz operation) 0.977, 1.953, 15.625 kHz (main system clock: at 2.0-MHz operation) 		
Vectored interrupt			External: 3 Internal: 4		
Test input			External: 1 Internal: 1		
System clock oscillation circuit		Main system clock oscillation RC oscillation circuit (with external resistor and capacitor) Subsystem clock oscillation crystal oscillation circuit			
Standby function			STOP/HALT mode		
Operating ambient temperature			$T_{A} = -40 \text{ to } +85 \degree \text{C}$		
Supply voltage			VDD	= 1.8 to 5.5 V	
Package			· ·	in plastic shrink DIP (600 mil, 1.778-mm pitch) in plastic QFP (10 \times 10 mm, 0.8-mm pitch)	

TABLE OF CONTENTS


1.	PIN CONFIGURATION (Top View)	4
2.	BLOCK DIAGRAM	6
3.	PIN FUNCTIONS 3.1 Port Pins 3.2 Non-port Pins 3.3 I/O Circuits for Pins 3.4 Handling of Unused Pins 1	7 8 9
4.	SWITCHING BETWEEN MK I AND MK II MODES 1 4.1 Differences between Mk I Mode and Mk II Mode 1 4.2 Setting of Stack Bank Selection (SBS) Register 1	2
5.	DIFFERENCES BETWEEN μ PD75P0116 AND μ PD750104, 750106, AND 750108 14	4
6.	MEMORY CONFIGURATION1	5
7.	INSTRUCTION SET 1	7
8.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY 2 8.1 Operation Modes for Program Memory Write/Verify 2 8.2 Steps in Program Memory Write Operation 2 8.3 Steps in Program Memory Read Operation 3 8.4 One-Time PROM Screening 3	28 29 30
9.	ELECTRICAL SPECIFICATIONS	2
10.	CHARACTERISTIC CURVES (REFERENCE VALUE)	6
11.	RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUE) 4	7
12.	PACKAGE DRAWINGS	9
13.	RECOMMENDED SOLDERING CONDITIONS	1
ΑΡ	PENDIX A. FUNCTION LIST OF μ PD750008, 750108, AND 75P0116	2
ΑΡ	PENDIX B. DEVELOPMENT TOOLS	4
AP	PENDIX C. RELATED DOCUMENTS	8

1. PIN CONFIGURATION (Top View)

- 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) μPD75P0116CU
- ★ μPD75P0116CU-A



Note Directly connect VPP to VDD in the normal operation mode.

PIN NAMES

: Buzzer Clock : Main System Clock (RC) : Data Bus 0-7	P70-P73 P80, P81 PCL	: Port7 : Port8 : Programmable Clock
: External Vectored Interrupt 0, 1, 4	PTO0, PTO1	: Programmable Timer Output 0, 1
: External Test Input 2	RESET	: Reset
: Key Return 0-7	SB0, SB1	: Serial Data Bus 0, 1
: Mode Selection 0-3	SCK	: Serial Clock
: No Connection	SI	: Serial Input
: Port0	SO	: Serial Output
: Port1	TIO	: Timer Input 0
: Port2	Vdd	: Positive Power Supply
: Port3	Vpp	: Programming Power Supply
: Port4	Vss	: Ground
: Port5	XT1, XT2	: Subsystem Clock (Crystal)
: Port6		
	: Main System Clock (RC) : Data Bus 0-7 : External Vectored Interrupt 0, 1, 4 : External Test Input 2 : Key Return 0-7 : Mode Selection 0-3 : No Connection : Port0 : Port1 : Port2 : Port3 : Port4 : Port5	: Main System Clock (RC)P80, P81: Data Bus 0-7PCL: External Vectored Interrupt 0, 1, 4PTO0, PTO1: External Test Input 2RESET: Key Return 0-7SB0, SB1: Mode Selection 0-3SCK: No ConnectionSI: Port0SO: Port1TI0: Port2VDD: Port3VPP: Port5XT1, XT2

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

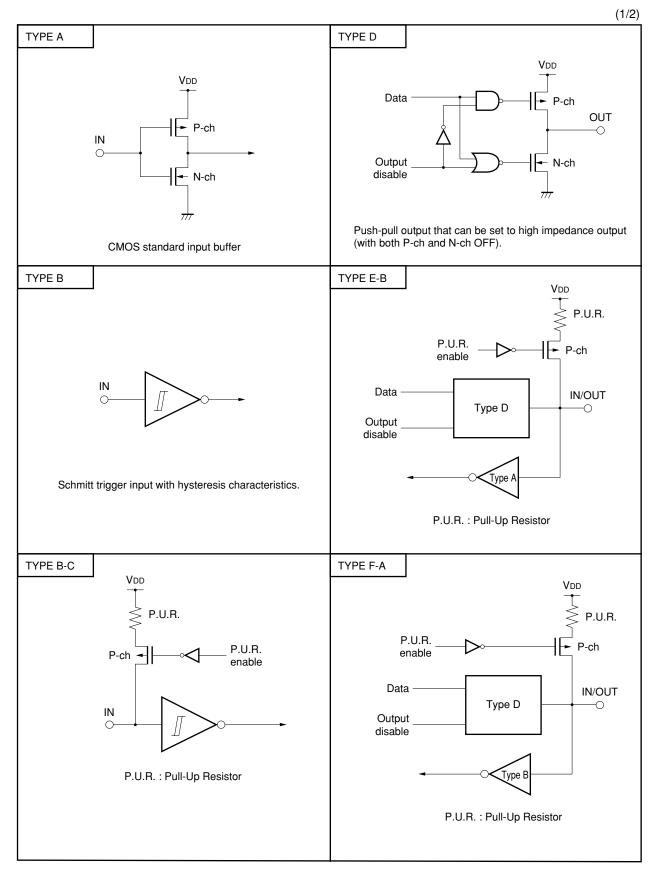
3.1 Port Pins

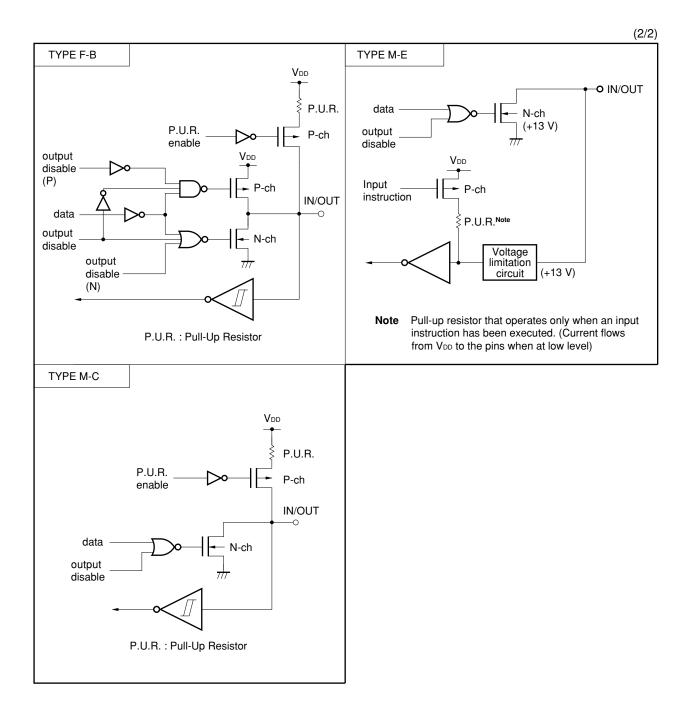
Pin name	I/O	Shared by	Function	8-bit I/O	When reset	I/O circuit type Note 1
P00	I	INT4	This is a 4-bit input port (PORT0).	×	Input	
P01	I/O	SCK	For P01 to P03, on-chip pull-up resistor connections are software-specifiable in 3-bit units.			<f>-A</f>
P02	I/O	SO/SB0				<f>-B</f>
P03	I/O	SI/SB1	_			<m>-C</m>
P10	I	INT0	This is a 4-bit input port (PORT1).	×	Input	-C
P11		INT1	 On-chip pull-up resistor connections are software- specifiable in 4-bit units. P10/INT0 can select noise elimination circuit. 			
P12		INT2	P 10/IN 10 can select noise elimination circuit.			
P13	1	TIO	_			
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2).	×	Input	E-B
P21	1	PTO1	On-chip pull-up resistor connections are software- specifiable in 4-bit units.			
P22		PCL	_			
P23	1	BUZ	_			
P30	I/O	MD0	This is a programmable 4-bit I/O port (PORT3).	×	Input	E-B
P31		MD1	Input and output can be specified in single-bit units. On-chip pull-up resistor connections are software-specifiable in 4-bit units.			
P32		MD2				
P33		MD3				
P40 Note 2	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4).	0	High-	
P41 Note 2		D1	In the open-drain mode, withstands up to 13 V.		impedance	M-E
P42 Note 2	Note 2 D2		-			
P43 Note 2	1	D3	_			
P50 Note 2	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5).		High-	мп
P51 Note 2	1	D5	In the open-drain mode, withstands up to 13 V.		impedance	M-E
P52 Note 2		D6	-			
P53 Note 2		D7	_			
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6).	0	Input	<f>-A</f>
P61		KR1	 Input and output can be specified in single-bit units. On-chip pull-up resistor connections are software- 			
P62	-	KR2	 specifiable in 4-bit units. 			
P63	-	KR3	This is a 4-bit I/O port (PORT7).			
P70	I/O	KR4			Input	<f>-A</f>
P71	KR5 KR6		On-chip pull-up resistor connections are software- specifiable in 4-bit units.			
P72			-			
P73	1	KR7	1			
P80	I/O	_	This is a 2-bit I/O port (PORT8).	×	Input	E-B
P81	1	_	 On-chip pull-up resistor connections are software- specifiable in 2-bit units. 			

Notes 1. Circuit types enclosed in brackets indicate Schmitt triggered inputs.

2. Low-level input current leakage increases when input instructions or bit manipulation instructions are executed.

3.2 Non-port Pins


Pin name	I/O	Shared by	Function		When reset	I/O circuit type Note 1
TIO	1	P13	External event pulse input to timer/event counter		Input	-C
PTO0	0	P20	Timer/event counter output	Timer/event counter output		
PTO1		P21	Timer counter output			
PCL		P22	Clock output			
BUZ		P23	Outputs any frequency (for buzzer or sy	stem clock trimming)		
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0		P02	Serial data output Serial data bus I/O			<f>-B</f>
SI/SB1		P03	Serial data input Serial data bus I/O			<m>-C</m>
INT4	I	P00	Edge-triggered vectored interrupt input (Detects both rising and falling edges).			
INT0	I	P10	Edge-triggered vectored interrupt input (detected edge is selectable). With noise eliminator /asynch selectable INT0/P10 can select noise elimination circuit. Asynchronous Rising edge-triggered testable input Asynchronous		Input	-C
INT1		P11				
INT2		P12				
KR0-KR3	I	P60-P63	Falling edge-triggered testable input		Input	<f>-A</f>
KR4-KR7	I	P70-P73	Falling edge-triggered testable input		Input	<f>-A</f>
CL1	_	—	Resistor (R) and capacitor (C) connection		—	_
CL2	_		clock oscillation. External clock cannot	be input.		
XT1	I	_	Crystal resonator connection for subsys	tem clock.		
XT2			If using an external clock, input it to XT1 ed clock to X2. XT1 can be used as a 1			
RESET	I	_	System reset input (low level active)			
MD0-MD3	I	P30-P33	Mode selection for program memory (P	ROM) write/verify.	Input	E-B
D0-D3	I/O	P40-P43	Data bus pin for program memory (PROM) write/verify.		Input	M-E
D4-D7		P50-P53				
V _{PP} Note 2	_	_	Programmable voltage supply in program memory (PROM) write/verify mode. In normal operation mode, connect directly to VDD. Apply +12.5 V in PROM write/verify mode.			-
Vdd	—	—	Positive power supply		_	_
Vss	_	_	Ground potential		_	_


Notes 1. Circuit types enclosed in brackets indicate Schmitt triggered inputs.

2. During normal operation, the VPP pin will not operate normally unless connected to VDD pin.

3.3 I/O Circuits for Pins

The I/O circuits for the μ PD75P0116's pin are shown in schematic diagrams below.

3.4 Handling of Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss or VDD
P01/SCK	Individually connect to Vss or VDD via resistor
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0-P12/INT2	Connect to Vss or VDD
P13/TI0	
P20/PTO0	Input mode : individually connect to Vss or VDD
P21/PTO1	via resistor Output mode : open
P22/PCL	
P23/BUZ	
P30/MD0-P33/MD3	
P40/D0-P43/D3	Connect to Vss
P50/D4-P53/D7	
P60/KR0-P63/KR3	Input mode : individually connect to Vss or VDD
P70/KR4-P73/KR7	via resistor Output mode : open
P80, P81	· · · · · · · · · · · · · · · · · · ·
XT1 ^{Note}	Connect to Vss or VDD
XT2 ^{Note}	Open
Vpp	Make sure to connect directly to VDD

Table 3-1. Handling of Unused Pins

Note When the subsystem clock is not used, set SOS. 0 to 1 (not to use the internal feedback resistor).

4. SWITCHING BETWEEN MK I AND MK II MODES

Setting a stack bank selection (SBS) register for the μ PD75P0116 enables the program memory to be switched between the Mk I mode and the Mk II mode. This capability enables the evaluation of the μ PD750104, 750106, or 750108 using the μ PD75P0116.

When the SBS bit 3 is set to 1: sets Mk I mode (corresponds to Mk I mode of μ PD750104, 750106, and 750108) When the SBS bit 3 is set to 0: sets Mk II mode (corresponds to Mk II mode of μ PD750104, 750106, and 750108)

4.1 Differences between Mk I Mode and Mk II Mode

Table 4-1 lists the differences between the Mk I mode and the Mk II mode of the μ PD75P0116.

Item		Mk I mode	Mk II mode		
Program counter		PC13-0	PC13-0		
Program memory (bytes)		16384	16384		
Data memory (bits)	512×4			
Stack Stack bank		Selectable from memory banks 0 and 1			
	Stack bytes	2 bytes	3 bytes		
Instruction	BRA !addr1 CALLA !addr1	None	Provided		
Instruction	CALL !addr	3 machine cycles	4 machine cycles		
execution time CALLF !faddr		2 machine cycles	3 machine cycles		
Supported mask ROM versions and mode		Mk I mode of μPD750104, 750106, and 750108	Mk II mode of μPD750104, 750106, and 750108		

Table 4-1. Differences between Mk I Mode and Mk II Mode

Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series. This mode enhances the software compatibility with products which have more than 16K bytes. When the Mk II mode is selected, the number of stack bytes (usable area) used in execution of a subroutine call instruction increases by 1 per stack compared to the Mk I mode. Furthermore, when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine cycle. Therefore, when more importance is attached to RAM utilization or throughput than software compatibility, use the Mk I mode.

4.2 Setting of Stack Bank Selection (SBS) Register

Use the stack bank selection register to switch between the Mk I mode and the Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to $100 \times B^{Note}$ at the beginning of the program. When using the Mk II mode, be sure to initialize it to $000 \times B^{Note}$.

Note Set the desired value for \times .

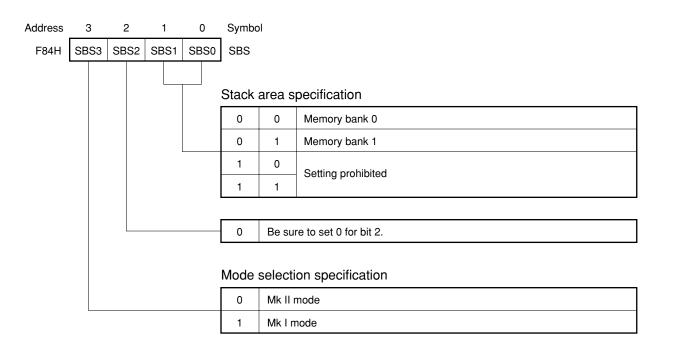


Figure 4-1. Format of Stack Bank Selection Register

Caution SBS3 is set to "1" after RESET input, and consequently the CPU operates in the Mk I mode. When using instructions for the Mk II mode, set SBS3 to "0" to enter the Mk II mode before using the instructions.

5. DIFFERENCES BETWEEN $\mu \text{PD75P0116}$ AND $\mu \text{PD750104},$ 750106, AND 750108

The μ PD75P0116 replaces the internal mask ROM in the μ PD750104, 750106, and 750108 with a one-time PROM and features expanded ROM capacity. The μ PD75P0116's Mk I mode supports the Mk I mode in the μ PD750104, 750106, and 750108 and the μ PD75P0116's Mk II mode supports the Mk II mode in the μ PD750104, 750106, and 750108.

Table 5-2 lists differences among the μ PD75P0116 and the μ PD750104, 750106, and 750108. Be sure to check the differences between corresponding versions beforehand, especially when a PROM version is used for debugging or prototype testing of application systems and later the corresponding mask ROM version is used for full-scale production.

Please refer to the μ PD750108 User's Manual (U11330E) for details on CPU functions and on-chip hardware.

Item		μPD750104	μPD750106	μPD750108	μPD75P0116	
Program counter		12-bit	13-bit		14-bit	
Program memory (bytes)		Mask ROM 4096	Mask ROM Mask ROM 6144 8192		One-time PROM 16384	
Data memory (×	4 bits)	512				
Mask options	Pull-up resistor for port 4 and port 5	Yes (On-chip/not o	Yes (On-chip/not on-chip can be specified.)			
	Wait time when releasing STOP mode by interrupt generation	Yes (2 ⁹ /fcc or none	Yes (2 ⁹ /fcc or none) Note			
	Feedback resistor for subsystem clock	Yes (can select us	No (usable)			
Pin connection	Pins 6-9 (CU)	P33-P30			P33/MD3-P30/MD0	
	Pins 23-26 (GB)					
	Pin 20 (CU)	IC			Vpp	
	Pin 38 (GB)					
	Pins 34-37 (CU)	P53-P50		P53/D7-P50/D4		
	Pins 8-11 (GB)					
	Pins 38-41 (CU)	P43-P40			P43/D3-P40/D0	
	Pins 13-16 (GB)					
Other		Noise resistance and noise radiation may differ due to the different circuit complexities mask layouts.			circuit complexities and	

Table 5-1. Differences between μ PD75P0116 and μ PD750104, 750106, and 750108

Note 2⁹/fcc : 256 μs at 2.0 MHz, 512 μs at 1.0 MHz

Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).

6. MEMORY CONFIGURATION

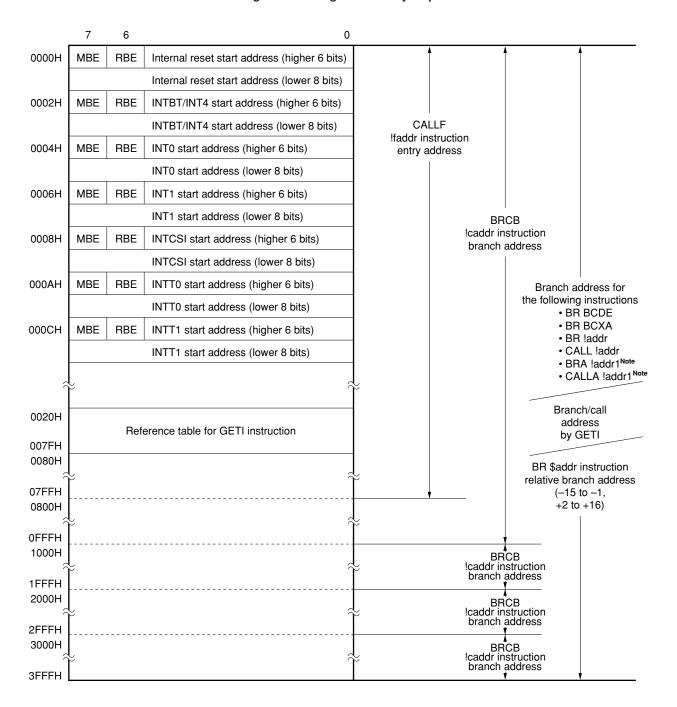


Figure 6-1. Program Memory Map

Note Can be used only at Mk II mode.

Remark For instructions other than those noted above, the "BR PCDE" and "BR PCXA" instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

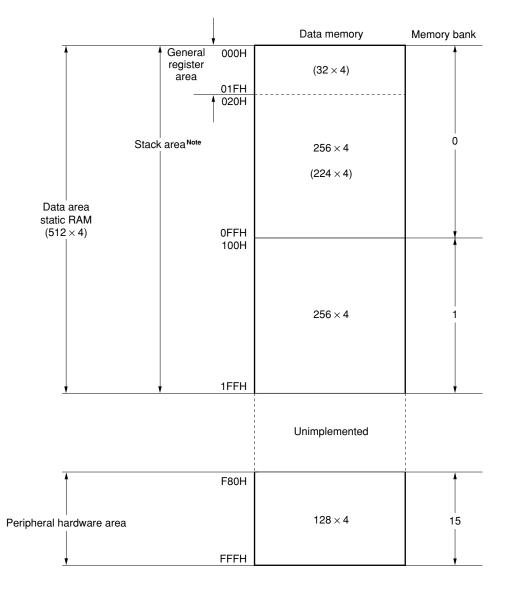


Figure 6-2. Data Memory Map

Note For the stack area, one memory bank can be selected from memory bank 0 or 1.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, refer to the **RA75X Assembler Package User's Manual - Language** (**EEU-1363**)). When there are several codes, select and use just one. Upper-case letters, and + and – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Instead of mem, fmem, pmem, bit, etc, a register flag symbol can be described as a label descriptor. (For further description, refer to the μ PD750108 User's Manual (U11330E)) Labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL–, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label Note
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	0000H-3FFFH immediate data or label
addr1	0000H-3FFFH immediate data or label (in Mk II mode only)
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0-PORT8
IEXXX	IEBT, IECSI, IET0, IET1, IE0-IE2, IE4, IEW
RBn	RB0-RB3
MBn	MB0, MB1, MB15

Note When processing 8-bit data, only even addresses can be specified.

(2) Operation legend					
Α	: A register; 4-bit accumulator				
В	: B register				
С	: C register				
D	: D register				
Е	: E register				
Н	: H register				
L	: L register				
Х	: X register				
XA	: Register pair (XA); 8-bit accumulator				
BC	: Register pair (BC)				
DE	: Register pair (DE)				
HL	: Register pair (HL)				
XA'	: Expansion register pair (XA')				
BC'	: Expansion register pair (BC')				
DE'	: Expansion register pair (DE')				
HL'	: Expansion register pair (HL')				
PC	: Program counter				
SP	: Stack pointer				
CY	: Carry flag; bit accumulator				
PSW	: Program status word				
MBE	: Memory bank enable flag				
RBE	: Register bank enable flag				
PORTn	: Port n (n = 0 to 8)				
IME	: Interrupt master enable flag				
IPS	: Interrupt priority select register				
IE×××					
RBS	: Register bank select register				
MBS	: Memory bank select register				
PCC	: Processor clock control register				
•	: Delimiter for address and bit				
(××)	: Contents of address ××				
××Н	: Hexadecimal data				

(3) Description of symbols used in addressing area

	MB = MBE • MBS	4
*1		
	MBS = 0, 1, 15	
*2	MB = 0	
	MBE = 0 : MB = 0 (000H-07FH)	
*3	MB = 15 (F80H-FFFH)	Data memory addressing
3	MBE = 1 : MB = MBS	
	MBS = 0, 1, 15	
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	
*6	addr = 0000H-3FFFH	
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1	
1	(Current PC) +2 to (Current PC) +16	
	caddr = 0000H-0FFFH (PC13, 12 = 00B) or	
*8	1000H-1FFFH (PC13, 12 = 01B) or	Program memory
	2000H-2FFFH (PC13, 12 = 10B) or	addressing
	3000H-3FFFH (PC13, 12 = 11B)	
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	
*11	addr1 = 0000H-3FFFH (Mk II mode only)	

Remarks 1. MB indicates access-enabled memory banks.

- **2.** In area *2, MB = 0 for both MBE and MBS.
- **3.** In areas *4 and *5, MB = 15 for both MBE and MBS.
- 4. Areas *6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- No skip S = 0
- Skipped instruction is 1-byte or 2-byte instruction S = 1
- Skipped instruction is 3-byte instruction Note S = 2

Note 3-byte instructions: BR laddr, BRA laddr1, CALL laddr, CALLA laddr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcr) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, # n4	1	1	A ← n4		String-effect A
		reg1, # n4	2	2	reg1 ← n4		
		XA, # n8	2	2	XA ← n8		String-effect A
		HL, # n8	2	2	$HL \leftarrow n8$		String-effect B
		rp2, # n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \gets (HL)$	*1	
		A, @HL+	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L + 1$	*1	L = 0
		A, @HL–	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L - 1$	*1	L = FH
		A, @rpa1	1	1	$A \leftarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
	A, mem	2	2	$A \leftarrow (mem)$	*3		
		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
		mem, A	2	2	$(mem) \leftarrow A$	*3	
		mem, XA	2	2	$(mem) \leftarrow XA$	*3	
		A, reg	2	2	$A \leftarrow reg$		
		XA, rp'	2	2	$XA \leftarrow rp'$		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2 + S	$A \leftrightarrow (HL)$, then $L \leftarrow L + 1$	*1	L = 0
		A, @HL–	1	2 + S	$A \leftrightarrow (HL)$, then $L \leftarrow L - 1$	*1	L = FH
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp'	2	2	$XA \leftrightarrow rp'$		
Table	MOVT	XA, @PCDE	1	3	$XA \leftarrow (PC_{13\text{-}8} + DE)ROM$		
reference		XA, @PCXA	1	3	$XA \leftarrow (PC_{13\text{-}8} + XA)_{ROM}$		
		XA, @BCDE	1	3	XA ← (BCDE) _{ROM} Note	*6	
		XA, @BCXA	1	3	$XA \leftarrow (BCXA)_{ROM}$ Note	*6	

Note As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	$CY \gets (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow (pmem7-2 + L3-2.bit(L1-0))$	*5	
		CY, @H + mem.bit	2	2	CY ← (H + mem₃-o.bit)	*1	
		fmem.bit, CY	2	2	$(fmem.bit) \leftarrow CY$	*4	
		pmem.@L, CY	2	2	$(pmem_{7-2} + L_{3-2}.bit(L_{1-0})) \leftarrow CY$	*5	
		@H + mem.bit, CY	2	2	(H + mem₃-₀.bit) ← CY	*1	
Operation	ADDS	A, #n4	1	1 + S	$A \leftarrow A + n4$		carry
		XA, #n8	2	2 + S	$XA \leftarrow XA + n8$		carry
		A, @HL	1	1 + S	$A \gets A + (HL)$	*1	carry
		XA, rp'	2	2 + S	$XA \leftarrow XA + rp'$		carry
		rp'1, XA	2	2 + S	rp'1 ← rp'1 + XA		carry
	ADDC	A, @HL	1	1	$A, CY \gets A + (HL) + CY$	*1	
		XA, rp'	2	2	$XA, CY \leftarrow XA + rp' + CY$		
SUE		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1 + XA + CY$		
	SUBS	A, @HL	1	1 + S	$A \gets A - (HL)$	*1	borrow
		XA, rp'	2	2 + S	$XA \leftarrow XA - rp'$		borrow
		rp'1, XA	2	2 + S	$rp'1 \leftarrow rp'1 - XA$		borrow
	SUBC	A, @HL	1	1	$A,CY \gets A - (HL) - CY$	*1	
		XA, rp'	2	2	$XA,CY \gets XA - rp' - CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1 - XA - CY$		
	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \wedge rp'$		
		rp'1, XA	2	2	rp'1 ← rp'1 ∧ XA		
	OR	A, #n4	2	2	A ← A v n4		
		A, @HL	1	1	$A \gets A \lor (HL)$	*1	
		XA, rp'	2	2	$XA \gets XA \ v \ rp'$		
		rp'1, XA	2	2	rp'1 ← rp'1 v XA		
	XOR	A, #n4	2	2	A ← A ¥ n4		
		A, @HL	1	1	$A \leftarrow A \not \forall (HL)$	*1	
		XA, rp'	2	2	XA ← XA v rp'		
		rp'1, XA	2	2	rp'1 ← rp'1 v XA		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Accumulator	RORC	А	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
manipulate	NOT	Α	2	2	$\overline{A} \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1 + S	reg ← reg + 1		reg = 0
decrement		rp1	1	1 + S	rp1 ← rp1 + 1		rp1 = 00H
		@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg – 1		reg = FH
		rp'	2	2 + S	$rp' \leftarrow rp' - 1$		rp' = FFH
Compare	SKE	reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
		@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2 + S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2 + S	Skip if A = reg		A = reg
		XA, rp'	2	2 +S	Skip if XA = rp'		XA = rp'
Carry flag	SET1	CY	1	1	CY ← 1		
manipulate	CLR1	CY	1	1	$CY \leftarrow 0$		
	SKT	CY	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Memory bit	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
manipulate		fmem.bit	2	2	(fmem.bit) ←1	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 1	*5	
		@H + mem.bit	2	2	(H + mem₃-0.bit) ← 1	*1	
	CLR1	mem.bit	2	2	$(\text{mem.bit}) \leftarrow 0$	*3	
		fmem.bit	2	2	(fmem.bit) ← 0	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 0	*5	
		@H + mem.bit	2	2	(H + mem₃-o.bit) ← 0	*1	
	SKT	mem.bit	2	2 + S	Skip if(mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if(fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H + mem.bit	2	2 + S	Skip if(H + mem3-0.bit) = 1	*1	(@H + mem.bit) = 1
	SKF	mem.bit	2	2 + S	Skip if(mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if(fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H + mem.bit	2	2 + S	Skip if(H + mem3-0.bit) = 0	*1	(@H + mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if(fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit (L1-0)) = 1 and clear	*5	(pmem.@L) = 1
		@H + mem.bit	2	2 + S	Skip if(H + mem3-0.bit) = 1 and clear	*1	(@H + mem.bit) = 1
	AND1	CY, fmem.bit	2	2	$CY \gets CY \land \text{(fmem.bit)}$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem7-2 + L3-2.bit(L1-0))$	*5	
		CY, @H + mem.bit	2	2	$CY \leftarrow CY \land (H + mem_{3-0}.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \leftarrow CY v$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY v (pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	$CY \leftarrow CY v (H + mem_{3-0}.bit)$	*1	
	XOR1	CY, fmem.bit	2	2	$CY \leftarrow CY + (fmem.bit)$	*4	
		CY, pmem.@L	2	2	CY ← CY ¥ (pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	CY ← CY ¥ (H + mem₃-₀.bit)	*1	

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	BR Note 1	addr			PC13-0 ← addr Assembler selects the most appropriate instruction among the following: • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1		_	PC13-0 ← addr1 Assembler selects the most appropriate instruction among the following: • BRA laddr1 • BR laddr • BRCB lcaddr • BR \$addr1	*11	
		!addr	3	3	PC13-0 ← addr	*6	
		\$addr	1	2	PC13-0 ← addr	*7	
		\$addr1	1	2	PC13-0 ← addr1		
		PCDE	2	3	PC13-0 ← PC13-8 + DE		
		PCXA	2	3	$PC_{13-0} \leftarrow PC_{13-8} + XA$		
		BCDE	2	3	$PC_{13\text{-}0} \gets BCDE^{Note 2}$	*6	
		BCXA	2	3	PC13-0 ← BCXA Note 2	*6	
	BRA Note 1	!addr1	3	3	PC13-0 ← addr1	*11	
	BRCB	!caddr	2	2	$PC_{13-0} \leftarrow PC_{13, 12} + caddr_{11-0}$	*8	

Notes 1. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.2. As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	CALLA Note	!addr1	3	3	$(SP-5) \leftarrow 0, 0, PC_{13,12}$	*11	
stack control					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP - 2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13-0} \leftarrow addr1, SP \leftarrow SP - 6$		
	CALL Note	!addr	3	3	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$	*6	
					$(SP-3) \leftarrow (MBE, RBE, PC_{13, 12})$		
					$PC_{13-0} \leftarrow addr, SP \leftarrow SP - 4$	-	
				4	$(SP - 5) \leftarrow 0, 0, PC_{13,12}$		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13-0} \leftarrow addr, SP \leftarrow SP - 6$		
	CALLF Note	!faddr	2	2	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$	*9	
					$(SP-3) \leftarrow (MBE, RBE, PC_{13, 12})$		
					$PC_{13-0} \leftarrow 000 + faddr, SP \leftarrow SP - 4$		
				3	$(SP - 5) \leftarrow 0, 0, PC_{13,12}$		
					$(SP-6)(SP-3)(SP-4) \gets PC_{11\text{-}0}$		
					$(SP - 2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13\text{-}0} \gets O00 + faddr, SP \gets SP - 6$		
	RET Note		1	3	(MBE, RBE, PC _{13, 12}) \leftarrow (SP + 1)		
					$PC_{11\text{-}0} \rightarrow (SP)(SP+3)(SP+2)$		
					$SP \leftarrow SP + 4$		
					$\times, \times, MBE, RBE \leftarrow (SP + 4)$		
					0, 0, PC ₁₃₋₁₂ ← (SP + 1)		
					$PC_{11-0} \leftarrow (SP)(SP + 3)(SP + 2)$		
					$SP \leftarrow SP + 6$		
	RETS Note		1	3 + S	(MBE, RBE, PC _{13, 12}) ← (SP + 1)		Unconditional
					$PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2)$		
					$SP \leftarrow SP + 4$		
					then skip unconditionally		
					$\times, \times, MBE, RBE \leftarrow (SP + 4)$		
					0, 0, PC ₁₃₋₁₂ ← (SP + 1)		
					PC11-0 ← (SP)(SP + 3)(SP + 2)		
					$SP \leftarrow SP + 6$		
					then skip unconditionally		
	RETI Note		1	3	MBE, RBE, PC13, 12 ← (SP + 1)		<u> </u>
					PC11-0 ← (SP)(SP + 3)(SP + 2)		
					$PSW \leftarrow (SP + 4)(SP + 5), SP \leftarrow SP + 6$		
					0, 0, PC _{13, 12} ← (SP + 1)	1	
					PC11-0 ← (SP)(SP + 3)(SP + 2)		
					$PSW \leftarrow (SP + 4)(SP + 5), SP \leftarrow SP + 6$		

Note Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	PUSH	rp	1	1	$(SP - 1)(SP - 2) \leftarrow rp, SP \leftarrow SP - 2$		
stack control		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP + 1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$MBS \leftarrow (SP + 1), RBS \leftarrow (SP), SP \leftarrow SP + 2$		
Interrupt	EI		2	2	$IME(IPS.3) \leftarrow 1$		
control		IExxx	2	2	IE××× ← 1		
	DI		2	2	$IME(IPS.3) \leftarrow 0$		
		IExxx	2	2	IE××× ← 0		
I/O	IN Note 1	A, PORTn	2	2	$A \leftarrow PORTn$ (n = 0 - 8)		
		XA, PORTn	2	2	$XA \leftarrow PORTn_{+1}, PORTn (n = 4, 6)$		
	OUT Note 1	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 2 - 8)		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA (n = 4, 6)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2 ← 1)		
	STOP		2	2	Set STOP Mode(PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n (n = 0 - 3)$		
		MBn	2	2	MBS ← n (n = 0, 1, 15)		
	GETI Note 2, 3	taddr	1	3	When using TBR instruction	*10	
					PC13-0 ← (taddr)5-0 + (taddr + 1)		
					When using TCALL instruction		
					$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$		
					$(SP - 3) \leftarrow MBE, RBE, PC_{13, 12}$		
					PC13-0 ← (taddr)5-0 + (taddr + 1)		
					$SP \leftarrow SP - 4$		
					 When using instruction other than TBR or TCALL Execute (taddr)(taddr + 1) instructions 		Determined by referenced instruction
			1	3	When using TBR instruction	*10	
					PC13-0 ← (taddr)5-0 + (taddr + 1)		
				4	When using TCALL instruction		
					(SP − 5) ← 0, 0, PC _{13, 12}		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP - 2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr + 1)$		
					$SP \leftarrow SP - 6$		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr + 1) instructions		Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- **2.** TBR and TCALL are assembler directives for the GETI instruction's table definitions.
- 3. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory in the μ PD75P0116 is a 16384 × 8-bit electronic write-enabled one-time PROM. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the CL1 pins is used instead of address input as a method for updating addresses.

Pin name	Function
Vpp	Pin (usually VDD) where programming voltage is applied during program memory write/verify
CL1, CL2	Clock input to the CL1 pin for address updating during program memory write/verify. Leave the CL2 pin open.
MD0/P30-MD3/P33	Operation mode selection pin for program memory write/verify
D0/P40-D3/P43 (lower 4) D4/P50-D7/P53 (higher 4)	8-bit data I/O pin for program memory write/verify
VDD	Pin where power supply voltage is applied. Power voltage range for normal operation is 1.8 to 5.5 V. Apply 6.0 V for program memory write/verify.

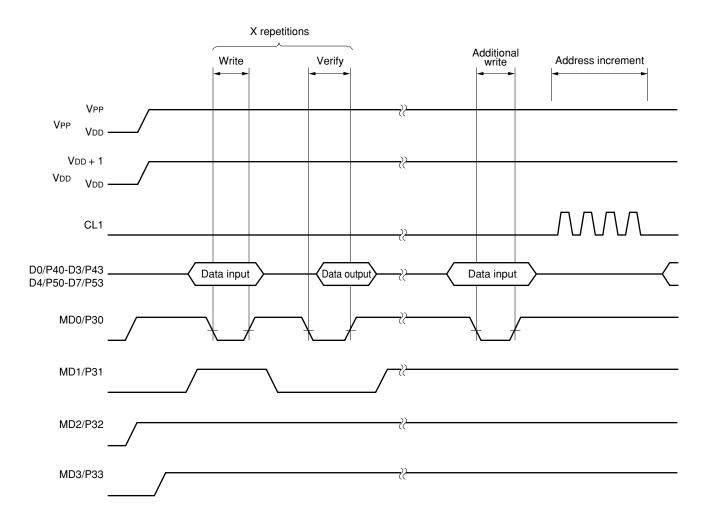
Caution Pins not used for program memory write/verify should be processed as follows.

- All unused pins except XT2 Connect to Vss via a pull-down resistor
- XT2 pin Leave open

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the μ PD75P0116's V_{DD} pin and +12.5 V is applied to its V_{PP} pin, program write/verify modes are in effect. Furthermore, the following detailed operation modes can be specified by setting pins MD0 to MD3 as shown below.

O	peration mo	de speci	ification			Operation mode
Vpp	Vdd	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	н	н н		Write mode
		L	L	н	н	Verify mode
		н	×	н	н	Program inhibit mode

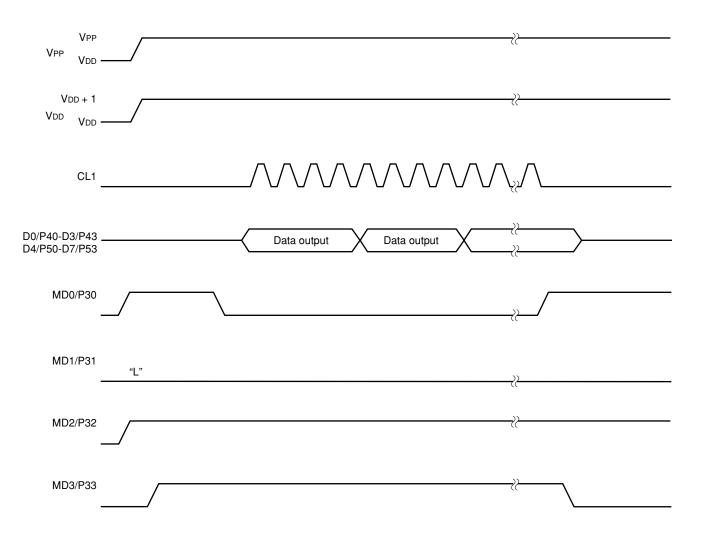

Remark X: L or H

8.2 Steps in Program Memory Write Operation

High-speed program memory write can be executed via the following steps.

- (1) Pull down unused pins to Vss via resistors. Set the CL1 pin to low.
- (2) Apply +5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Zero-clear mode for program memory addresses.
- (5) Apply +6 V to VDD and +12.5 V power to VPP.
- (6) Write data using 1-ms write mode.
- (7) Verify mode. If write is verified, go to step (8) and if write is not verified, go back to steps (6) and (7).
- (8) X [= number of write operations from steps (6) and (7)] \times 1 ms additional write
- (9) 4 pulse inputs to the CL1 pin updates (increments +1) the program memory address.
- (10) Repeat steps (6) to (9) until the last address is completed.
- (11) Zero-clear mode for program memory addresses.
- (12) Apply +5 V to the V_DD and V_PP pins.
- (13) Power supply OFF

The following diagram illustrates steps (2) to (9).



8.3 Steps in Program Memory Read Operation

The μ PD75P0116 can read out the program memory contents via the following steps.

- (1) Pull down unused pins to Vss via resistors. Set the CL1 pin to low.
- (2) Apply +5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Zero-clear mode for program memory addresses.
- (5) Apply +6 V power to VDD and +12.5 V to VPP.
- (6) Verify mode. When a clock pulse is input to the CL1 pin, data is output sequentially to one address at a time based on a cycle of four pulse inputs.
- (7) Zero-clear mode for program memory addresses.
- (8) Apply +5 V power to the VDD and VPP pins.
- (9) Power supply OFF

The following diagram illustrates steps (2) to (7).

8.4 One-Time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC Electronics. Therefore, NEC Electronics recommends the screening process, that is, after the required data is written to the PROM and the PROM is stored under the high- temperature conditions shown below, the PROM should be verified.

Storage temperature	Storage time
125 °C	24 hours

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		-0.3 to +7.0	V
PROM supply voltage	VPP		-0.3 to + 13.5	V
Input voltage	VII	Other than ports 4, 5	-0.3 to V _{DD} +0.3	V
	V ₁₂	Ports 4, 5 (N-ch open drain)	-0.3 to + 14	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
High-level output current	Іон	Per pin	-10	mA
		Total of all pins	-30	mA
Low-level output current	lol	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Caution If the absolute maximum rating of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance (T_A = 25 $^{\circ}$ C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Pins other than tested pins: 0 V			15	pF
I/O capacitance	Сю				15	pF

Main System Clock Oscillation Circuit Characteristics (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC oscillation		Oscillation frequency (fcc) Note		0.4		2.0	MHz

- **Note** The oscillation frequency shown above indicates characteristics of the oscillation circuit only. For the instruction execution time and oscillation frequency characteristics, refer to **AC Characteristics**.
- Caution When using the main system clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:
 - · Keep the wiring length as short as possible.
 - \cdot Do not cross the wiring with other signal lines.
 - · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.
 - Do not ground to a power supply pattern through which a high current flows.
 - \cdot Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 R C3 C4	Oscillation frequency (f _{XT}) Note 1		32	32.768	35	kHz
		Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V		1.0	2	S
						10	S
External clock		XT1 input frequency (f _{XT}) Note 1		32		100	kHz
		XT1 input high-, low-level widths (txTH, txTL)		5		15	μs

Notes 1. The oscillation frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to **AC Characteristics**.

- 2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.
- Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:
 - $^{\rm \cdot}$ Keep the wiring length as short as possible.
 - \cdot Do not cross the wiring with other signal lines.
 - · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.
 - Do not ground to a power supply pattern through which a high current flows.
 - \cdot Do not extract signals from the oscillation circuit.

The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

Symbol Parameter Conditions MIN. TYP. MAX. Unit 15 Low-level IOL Per pin mΑ 150 output current Total of all pins mΑ V_{IH1} High-level input Ports 2, 3, 8 $2.7 \leq V_{\text{DD}} \leq 5.5 ~\text{V}$ 0.7 VDD Vdd V voltage $1.8~\leq V_{\text{DD}} \leq 2.7~V$ $0.9 \ V_{\text{DD}}$ V_{DD} V Ports 0, 1, 6, 7, RESET $2.7~\leq V_{\text{DD}} \leq 5.5~V$ 0.8 VDD Vdd V VIH2 $1.8~\leq V_{\text{DD}} \leq 2.7~V$ 0.9 VDD VDD V V Vінз Ports 4, 5 (N-ch open drain) $2.7~\leq V_{\text{DD}} \leq 5.5~V$ $0.7 \ V_{\text{DD}}$ 13 V $1.8~\leq V_{\text{DD}} \leq 2.7~V$ 0.9 VDD 13 V VIH4 XT1 VDD-0.1 Vdd Low-level input Ports 2-5, 8 $2.7 \le V_{\text{DD}} \le 5.5 ~\text{V}$ 0 0.3 VDD V VIL1 V voltage $1.8 \le V_{\text{DD}} \le 2.7~V$ 0 0.1 VDD Ports 0, 1, 6, 7, RESET V VIL2 $2.7 \le V_{\text{DD}} \le 5.5 ~\text{V}$ 0 0.2 VDD 0 0.1 VDD V $1.8 \le V_{\text{DD}} \le 2.7~V$ VIL3 XT1 0 0.1 V SCK, SO, ports 2, 3, 6-8 High-level output Vон VDD-0.5 V voltage Iон = -1.0 mA Low-level output SCK. SO. $I_{OL} = 15 \text{ mA}, V_{DD} = 5.0 \text{ V} \pm 10 \%$ V VOL1 0.2 2.0 0.4 V voltage ports 2-8 lo∟ = 1.6 mA V_{OL2} SB0, SB1 N-ch open drain 0.2 VDD V Pull-up resistor $\geq 1 \ k\Omega$ High-level input ILIH1 $V_{IN} = V_{DD}$ Pins other than XT1 3 μA leakage current LIH2 XT1 20 μA $V_{IN} = 13 V$ Ports 4, 5 (N-ch open drain) 20 μA Ілнз Low-level input $V_{IN} = 0 V$ Pins other than ports 4, 5, XT1 -3 μA LIL1 -20 leakage current LIL2 XT1 μΑ **I**LIL3 Ports 4, 5 (N-ch open drain) When -3 μA input instruction is not executed Ports 4, 5 (N-ch -30 μA open drain) When input $V_{DD} = 5.0 V$ -10 -27 μΑ instruction is $V_{\text{DD}} = 3.0 \text{ V}$ -3 -8 μA executed $V_{OUT} = V_{DD}$ SCK, SO/SB0, SB1, Ports 2, 3, 6-8 3 High-level output LOH1 μΑ Vout = 13 V Ports 4, 5 (N-ch open drain) 20 leakage current LOH2 μΑ Low-level output LOL $V_{OUT} = 0 V$ -3 μA leakage current Internal pull-up R∟ $V_{\text{IN}}\,=\,0~V$ Ports 0-3, 6-8 (except P00 pin) 50 100 200 kΩ resistor

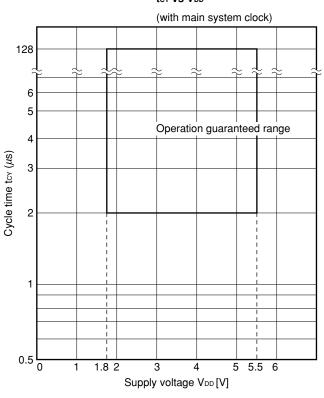
DC Characteristics (TA = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		C	onditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	1.0 MHz Note 2	$V_{DD} = 5.0$	V ± 10 % ^{No}	te 3		0.9	1.8	mA
		RC oscillation $R = 22 k\Omega$,	VDD = 3.0	V ± 10 % ^{No}	te 4		250	500	μA
	IDD2	C = 22 pF	HALT	VDD = 5.0	V ± 10 %		370	920	μA
			mode	VDD = 3.0	V ± 10 %		170	340	μA
	Idd3	32.768	Low-	VDD = 3.0	V ± 10 %		55.0	200	μA
			mode Note 6	VDD = 2.0	V ± 10 %		22.0	70.0	μA
		oscillation		VDD = 3.0	V, T _A = 25 °C		55.0	90.0	μA
			Low current	VDD = 3.0	V ± 10 %		50.0	150	μA
			dissipation mode Note 7	VDD = 3.0	V, T _A = 25 °C		50.0	85.0	μA
	IDD4		HALT Lo mode vo		$V_{\text{DD}}=3.0~\text{V}\pm10~\%$		5.0	30.0	μA
				mode voltage mode Note 6	V_{DD} = 2.0 V \pm 10 %		2.5	10.0	μA
				IIIOGE	$V_{DD} = 3.0 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C}$		5.0	10.0	μA
				Low current consumption	V_{DD} = 3.0 V \pm 10 %		4.0	15.0	μA
				mode Note 7	$V_{\text{DD}}=3.0~V,~T_{\text{A}}=25~^{\circ}\text{C}$		4.0	7.0	μA
	-	$V_{DD} = 5.0$	$V_{DD} = 5.0 \text{ V} \pm 10 \%$			0.05	5.0	μA	
		STOP mode VDD = 3	VDD = 3.0	V ± 10 %			0.02	2.5	μA
					Ta = 25 °C		0.02	0.2	μA

DC Characteristics (TA = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Notes 1. The current flowing through the internal pull-up resistor is not included.

- 2. Including the case when the subsystem clock oscillates.
- **3.** When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
- 4. When the device operates in low-speed mode with PCC set to 0000.
- 5. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
- 6. When the suboscillation circuit control register (SOS) is set to 0000.
- 7. When SOS is set to 0010.
- 8. When SOS is set to 00×1, and the suboscillation circuit feedback resistor is not used (×: don't care).


Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time ^{Note 1}	tcy	Operates with	Operates with main system clock				128	μs
(minimum instruction execution time = 1 machine cycle)		Operates with	h subsystem clock		114	122	125	μs
TI0 input frequency	fтı	VDD = 2.7 to \$	5.5 V		0		1.0	MHz
					0		275	kHz
TI0 high-, low-level	t⊤iн, t⊤i∟	VDD = 2.7 to \$	V _{DD} = 2.7 to 5.5 V					μs
widths					1.8			μs
Interrupt input high-,	tinth,	INT0		IM02 = 0	Note 2			μs
low-level widths	tintl			IM02 = 1	10			μs
		INT1, 2, 4			10			μs
		KR0-KR7			10			μs
RESET low-level width	trsl				10			μs
RC oscillation	fcc	R = 22 kΩ,	V _{DD} = 2.7 to 5.5 V		0.9	1.0	1.3	MHz
frequency		C = 22 pF	V _{DD} = 1.8 to 5.5 V		0.55	1.0	1.3	MHz

AC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Notes 1. The cycle time of the CPU clock (ϕ) (minimum instruction execution time) when the device operates with the main system clock is determined by the time constant of the connected resistor (R) and capacitor (C), and the value of the processor clock control register (PCC). When the device operates with the subsystem clock, the cycle time of the CPU clock (ϕ) is determined by the oscillation frequency of the connected oscillator (and external clock), and the values of the system clock control register (SCC) and processor clock control register (PCC).

The figure on the below shows the supply voltage V_{DD} vs. cycle time toy characteristics when the device operates with the main system clock.

2. 2tcy or 128/fcc depending on the setting of the interrupt mode register (IM0).

tcy vs Vdd

Serial Transfer Operation

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү1	V _{DD} = 2.7 to 5.5 V		1300			ns
				3800			ns
SCK high-, low-level widths	tĸ∟ı,	VDD = 2.7 to 5.5 \	/	tксү1/2-50			ns
	tкнı			tксү1/2—150			ns
SINote 1 setup time	tsik1	VDD = 2.7 to 5.5 \	/	150			ns
(vs. SCK ↑)				500			ns
SI ^{Note 1} hold time	tksi1	VDD = 2.7 to 5.5 \	/	400			ns
(vs. SCK ↑)				600			ns
$\overline{SCK} \downarrow \to SO^{Note 1}$ output	tkso1	$R_{L} = 1 \ k\Omega^{Note \ 2}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
delay time		C∟ = 100 pF		0		1000	ns

2-wire and 3-wire serial I/O modes (\overline{SCK} ··· internal clock output): (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

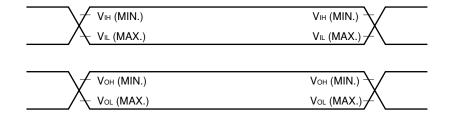
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү2	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK high-, low-level widths	tĸ∟₂,	VDD = 2.7 to 5.5 \	/	400			ns
	t кн2			1600			ns
SINote 1 setup time	tsik2	VDD = 2.7 to 5.5 \	/	100			ns
(vs. SCK ↑)				150			ns
SI ^{Note 1} hold time	tksi2	VDD = 2.7 to 5.5 \	/	400			ns
(vs. SCK ↑)				600			ns
$\overline{\text{SCK}} \downarrow \rightarrow \text{SO}^{\text{Note 1}}$ output	tkso2	$R_L = 1 \ k\Omega$ Note 2	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C∟ = 100 pF		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

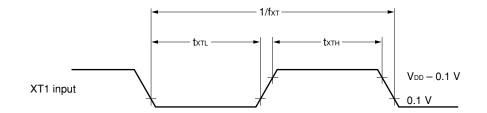
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	VDD = 2.7 to 5.5	V	1300			ns
				3800			ns
SCK high-, low-level widths	tкьз	V _{DD} = 2.7 to 5.5 V	/	tксүз/2-50			ns
	tкнз			tксүз/2—150			ns
SB0, 1 setup time	tsıкз	V _{DD} = 2.7 to 5.5 V	/	150			ns
(vs. SCK ↑)				500			ns
SB0, 1 hold time (vs. $\overline{\text{SCK}}$ 1)	tหรเช			tксүз/2			ns
$\overline{SCK}\downarrow \to SB0, 1 \text{ output}$	tкsoз	$R_L = 1 \ k\Omega$ Note	V _{DD} = 2.7 to 5.5 V	0		250	ns
delay time		C∟ = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, \ 1 \downarrow$	tкsв			tксүз			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк			tксүз			ns
SB0, 1 low-level width	tsBL			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

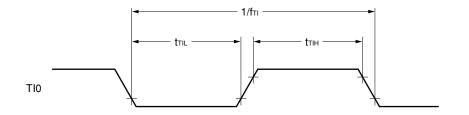
SBI mode (\overline{SCK} ··· internal clock output (master)): (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)


Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.

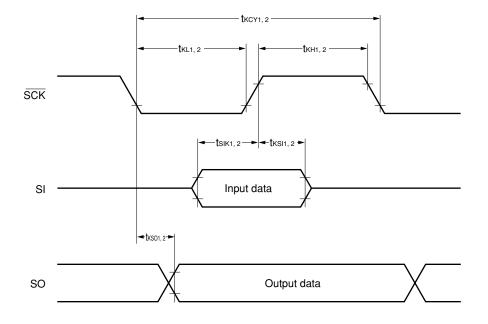
SBI mode (\overline{SCK} ··· external clock input (slave)): (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)


Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү4	V _{DD} = 2.7 to 5.5 V	/	800			ns
				3200			ns
SCK high-, low-level widths	tĸL4	V _{DD} = 2.7 to 5.5 V	/	400			ns
	tкн4			1600			ns
SB0, 1 setup time	tsik4	V _{DD} = 2.7 to 5.5 V	/	100			ns
(vs. SCK ↑)				150			ns
SB0, 1 hold time (vs. $\overline{\text{SCK}}$ \uparrow)	tksi4			tксү4/2			ns
$\overline{SCK}\downarrow \to SB0, 1 \text{ output}$	tkso4	$R_L = 1 \ k\Omega$ Note	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		300	ns
delay time		C∟ = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, \ 1 \downarrow$	tкsв			tkcy4			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк			tксү4			ns
SB0, 1 low-level width	tsвl			tксү4			ns
SB0, 1 high-level width	tsвн			tксү4			ns

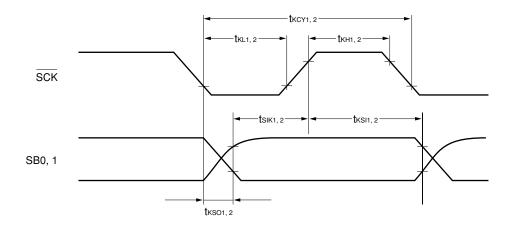
Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.


AC Timing Test Points (except XT1 input)

Clock timing

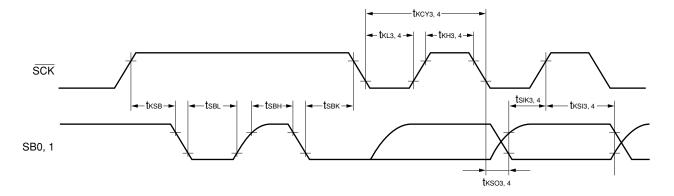


TI0 timing

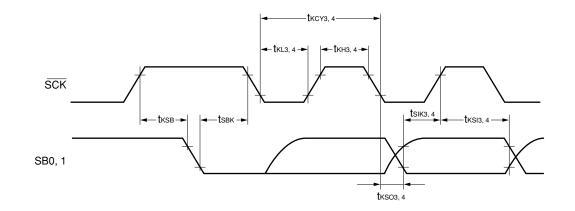


Serial Transfer Timing

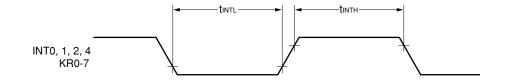
3-wire serial I/O mode

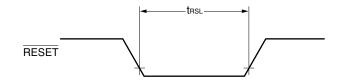


2-wire serial I/O mode



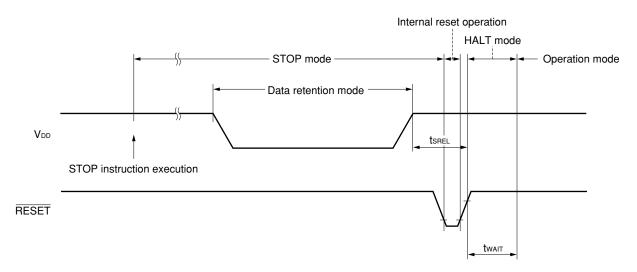
Serial Transfer Timing


Bus release signal transfer

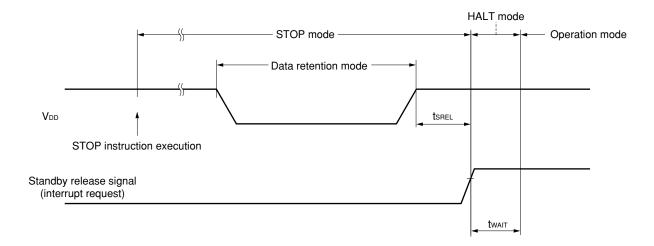

Command signal transfer

Interrupt input timing

RESET input timing



Data Retention Characteristics of Data Memory in STOP Mode and at Low Supply Voltage (TA = -40 to +85 $^\circ\text{C}$)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Released by RESET		56/fcc		μs
wait time Note 1		Released by interrupt request		512/fcc		μs

Note The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.

Data retention timing (when STOP mode released by RESET)

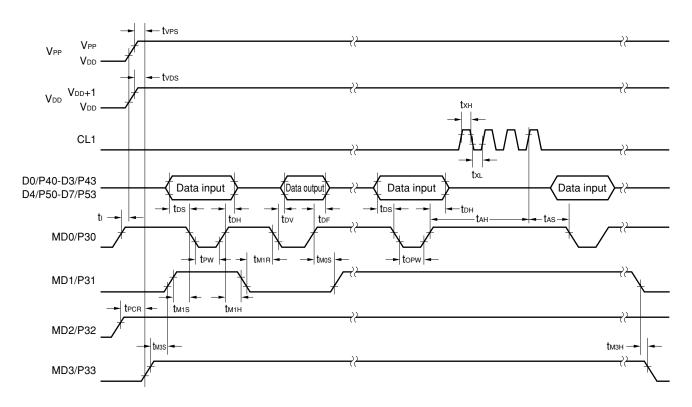
Data retention timing (standby release signal: when STOP mode released by interrupt signal)

DC Programming Characteristics (TA = 25 \pm 5 °C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0V)

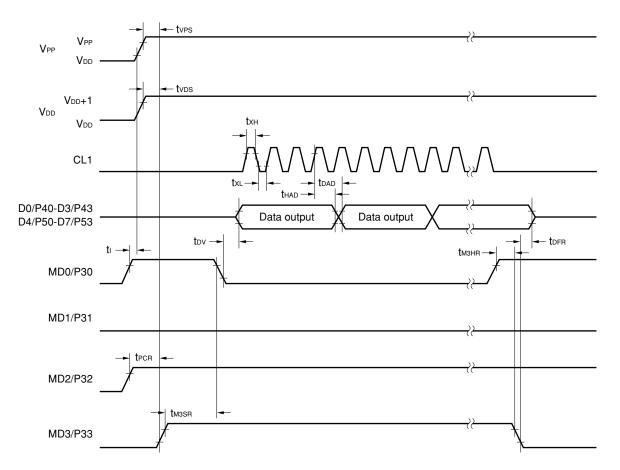
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Other than CL1 pin	0.7 Vdd		Vdd	V
	VIH2	CL1	V _{DD} - 0.5		Vdd	V
Input voltage, low	VIL1	Other than CL1 pin	0		0.3 VDD	V
	VIL2	CL1	0		0.4	V
Input leakage current	lu	$V_{IN} = V_{IL} \text{ or } V_{IH}$			10	μA
Output voltage, high	Vон	Іон = − 1 mA	Vdd - 1.0			V
Output voltage, low	Vol	lo∟ = 1.6 mA			0.4	V
VDD supply current	loo				30	mA
VPP supply current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

Cautions 1. Keep VPP to within +13.5 V, including overshoot.

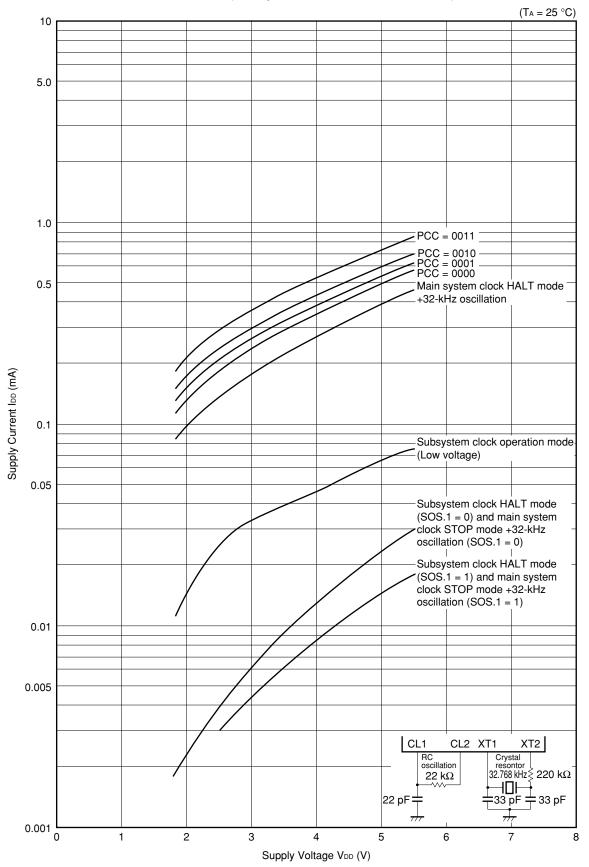
2. Apply VDD before VPP and turn it off after VPP.


Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note 2} (vs. MD0 ↓)	tas	tas		2			μs
MD1 setup time (vs. MD0 \downarrow)	tm₁s	toes		2			μs
Data setup time (vs. MD0 $\downarrow)$	tos	tos		2			μs
Address hold time Note 2 (vs. MD0 ↑)	tан	tан		2			μs
Data hold time (vs. MD0 ↑)	tон	tон		2			μs
MD0 $\uparrow \rightarrow$ data output float delay time	tdf	t dF		0		130	ns
V _{PP} setup time (vs. MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (vs. MD3 ↑)	tvds	tvcs		2			μs
Initial program pulse width	tew	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (vs. MD1 \uparrow)	tмos	tces		2			μs
MD0 $\downarrow \rightarrow$ data output delay time	tov	tov	$MD0 = MD1 = V_{IL}$			1	μs
MD1 hold time (vs. MD0 ↑)	tм1н	tоен	tмıн + tмıв ≥ 50 <i>µ</i> s	2			μs
MD1 recovery time (vs. MD0 \downarrow)	tm1R	tor		2			μs
Program counter reset time	t PCR	_		10			μs
CL1 input high-, low-level width	tx∺, tx∟			0.125			μs
CL1 input frequency	fcc	_				4.19	MHz
Initial mode set time	tı	_		2			μs
MD3 setup time (vs. MD1 \uparrow)	tмзs	_		2			μs
MD3 hold time (vs. MD1 \downarrow)	tмзн	—		2			μs
MD3 setup time (vs. MD0 \downarrow)	tмзsr	_	When program memory is read	2			μs
Address $^{\text{Note 2}} \rightarrow$ data output delay time	t dad	tacc	When program memory is read			2	μs
Address $^{Note\ 2} \rightarrow$ data output hold time	thad	tон	When program memory is read	0		130	ns
MD3 hold time (vs. MD0 ↑)	tмзнв		When program memory is read	2			μs
MD3 $\downarrow \rightarrow$ data output float delay time	t dfr		When program memory is read			2	μs

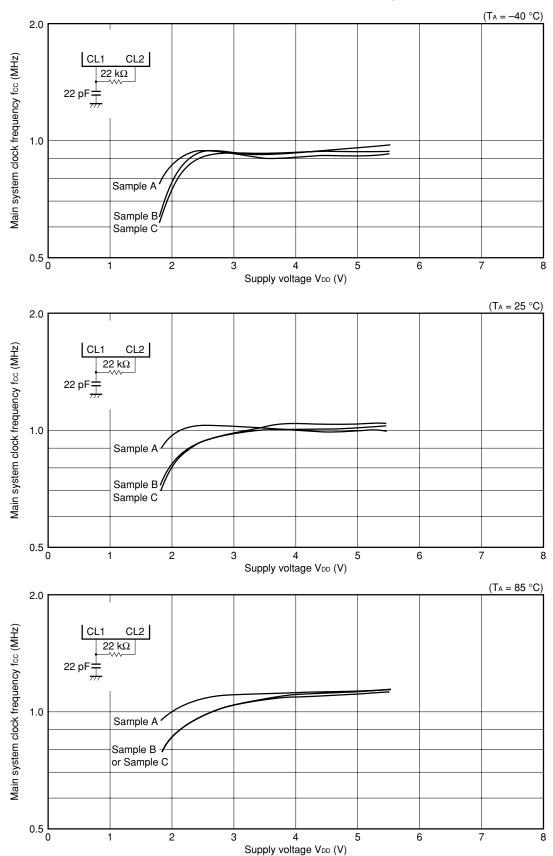
AC Programming Characteristics (T_A = 25 \pm 5 °C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{SS} = 0 V)


Notes 1. Symbol of corresponding µPD27C256A

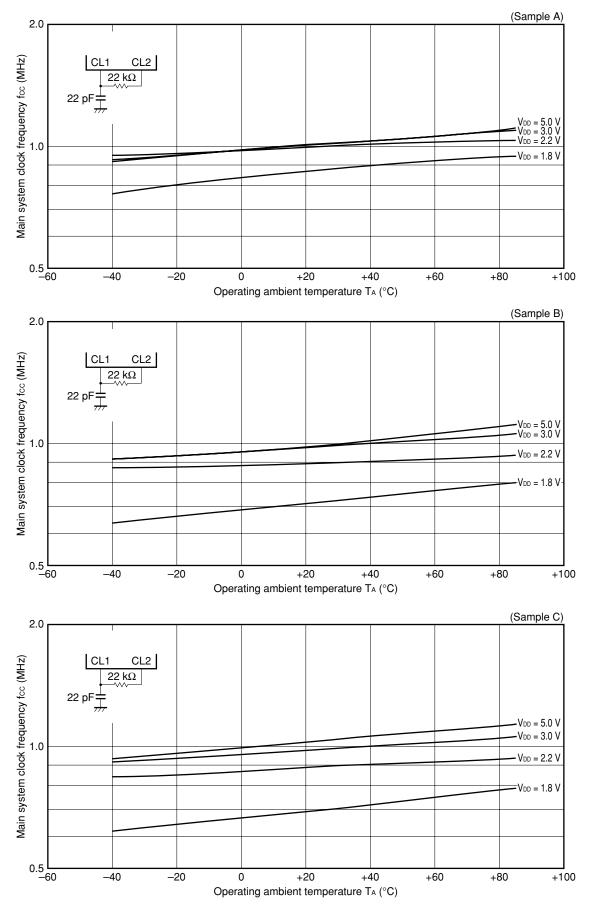
^{2.} The internal address signal is incremented by one at the rising edge of the fourth CL1 input and is not connected to a pin.


Program Memory Write Timing

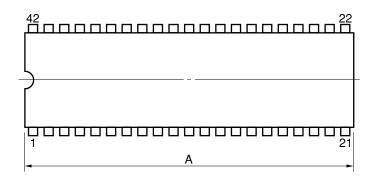
Program Memory Read Timing

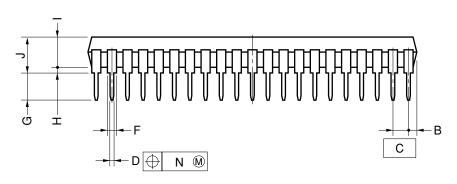


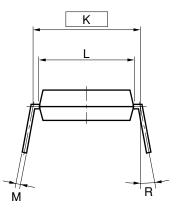
10. CHARACTERISTICS CURVES (REFERENCE VALUE)


IDD VS VDD (Main system clock : 1.0 MHz RC oscillation)

11. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUE)

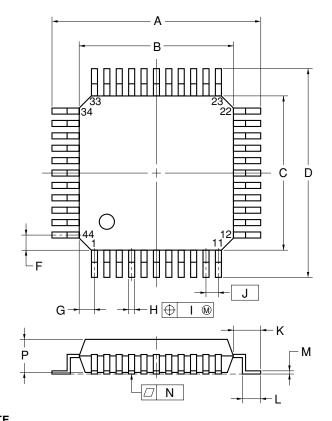

fcc vs VDD (RC oscillation, R = $22k\Omega$, C = 22 pF)


fcc vs T_A (RC oscillation, R = 22k Ω , C = 22 pF)

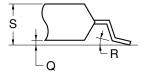


12. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)



NOTES


- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	39.13 MAX.	1.541 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°
		P42C-70-600A-1

44 PIN PLASTIC QFP (□10)

detail of lead end

NOTE

Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	13.2±0.2	$0.520^{+0.008}_{-0.009}$
В	10.0±0.2	$0.394\substack{+0.008\\-0.009}$
С	10.0±0.2	$0.394\substack{+0.008\\-0.009}$
D	13.2±0.2	$0.520\substack{+0.008\\-0.009}$
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	$0.015\substack{+0.003\\-0.004}$
1	0.16	0.007
J	0.8 (T.P.)	0.031 (T.P.)
к	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009 -0.008
М	0.17 ^{+0.06} -0.05	0.007+0.002 -0.003
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3° ^{+7°} -3°
S	3.0 MAX.	0.119 MAX.
		S44GB-80-3BS

13. RECOMMENDED SOLDERING CONDITIONS

The μ PD75P0116 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 13-1. Surface Mounting Type Soldering Conditions

(1) μ PD75P0116GB-3BS-MTX: 44-pin plastic QFP (10 × 10 mm, 0.8 mm pitch)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

\star (2) μ PD75P0116GB-3BS-MTX-A: 44-pin plastic QFP (10 \times 10 mm, 0.8 mm pitch)

Undefined

Remark Products with "-A" at the end of the part number are lead-free products.

Table 13-2. Insertion Type Soldering Conditions

 μ PD75P0116CU: 42-pin plastic shrink DIP (600 mil, 1.778 mm pitch) μ PD75P0116CU-A: 42-pin plastic shrink DIP (600 mil, 1.778 mm pitch)

Soldering method	Soldering conditions
Wave soldering (pin only)	Soldering bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (for each pin)

Caution Apply wave soldering to pins only. See to it that the jet solder does not contact with the chip directly.

Remarks 1. Products with "-A" at the end of the part number are lead-free products.

2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

APPENDIX A. FUNCTION LIST OF $\mu\text{PD750008},$ 750108, AND 75P0116

Program mem Data memory CPU	nory	Mask ROM			
				One-time PROM	
		0000H-1FFFH		0000H-3FFFH	
		$(8192 \times 8 \text{ bits})$		(16384 × 8 bits)	
CPU		000H-1FFH			
CPU		$(512 \times 4 \text{ bits})$			
		75XL CPU			
General regis	ter	(4 bits \times 8 or 8 bits \times 4) \times 4	4 banks		
Main system o	clock oscillation circuit	Crystal/ceramic oscillation circuit	RC oscillation circuit (exter	nal resistor and capacitor)	
Start-up time	after reset	2 ¹⁷ /fx, 2 ¹⁵ /fx	56/fcc fixed		
		(Selected by mask option)			
Wait time afte	er releasing STOP	2 ²⁰ /fx, 2 ¹⁷ /fx, 2 ¹⁵ /fx, 2 ¹³ /fx	2 ⁹ /fcc, no wait	29/fcc fixed	
	interrupt occurrence	(Selected by setting BTM)	(Selected by mask option)		
Subsystem cl	ock oscillation circuit	Crystal oscillation circuit			
Instruction	When main system	• 0.95, 1.91, 3.81, 15.3 μs	• 4, 8, 16, 64 μs (at fcc = 1	0 MHz operation)	
execution clock is selected time		(at fx = 4.19-MHz operation) • 0.67, 1.33, 2.67, 10.7 μ s (at fx = 6.0-MHz operation)	• 2, 4, 8, 32 μ s (at fcc = 2.0	• •	
	When subsystem clock is selected	122 μs (at 32.768 kHz operation)			
I/O port	CMOS input	8 (on-chip pull-up resistors	8 (on-chip pull-up resistors can be specified in software: 7)		
	CMOS input/output	18 (on-chip pull-up resistors can be specified in software)			
	N-ch open drain	8 (on-chip pull-up resistors can be specified in 8 (no mas		8 (no mask option)	
	input/output	software), Withstand voltage is 13 V		Withstand voltage is 13 V	
	Total	34			
Timer		4 channels	4 channels		
		 8-bit timer counter: 	• 8-bit timer counter (with v	vatch timer output function	
		1 channel	1 channel		
		8-bit timer/event counter:	8-bit timer/event counter:		
		1 channel	Basic interval timer/watch	idog timer: 1 channel	
		Basic interval timer/	Watch timer: 1 channel		
		watchdog timer: 1 channel			
0 1 1 1 1 1 1		Watch timer: 1 channel			
Serial interfac	ce	3 modes are available	MSB/LSB can be selected for	er transfar tan hit	
		• 2-wire serial I/O mode	WOD/LOD call be selected it	n transfer top bit	
		SBI mode			
Clock output	(PCL)	• Φ, 524, 262, 65.5 kHz	• Φ, 125, 62.5, 15.6 kHz		
olook output	(102)	(Main system clock:	(main system clock: at 1.0	0-MHz operation)	
		at 4.19-MHz operation)	• Φ, 250, 125, 31.3 kHz		
		• Φ, 750, 375, 93.8 kHz	(main system clock: at 2.0	0-MHz operation)	
		(Main system clock:		. ,	
		at 6.0-MHz operation)			
Buzzer output	t (BUZ)	• 2, 4, 32 kHz	• 2, 4, 32 kHz		
		(Main system clock:	(Subsystem clock: at 32.7	768-kHz operation)	
		at 4.19-MHz operation	• 0.488, 0.977, 7.813 kHz		
		or subsystem clock:	(Main system clock: at 1.0		
		at 32.768-kHz operation)	• 0.977, 1.953, 15.625 kHz		
		• 2.93, 5.86, 46.9 kHz (Main system clock: at 6.0-MHz operation)	(Main system clock: at 2.0	0-MHz operation)	

			(2/2)
Parameter	μPD750008	μPD750108	μPD75P0116
Vectored interrupt	External: 3, internal: 4		
Test input	External: 1, internal: 1		
Operation supply voltage	V _{DD} = 2.2 to 5.5 V V _{DD} = 1.8 to 5.5 V		
Operating ambient temperature	$T_{A} = -40$ to +85 °C		
Package	 42-pin plastic shrink DIP 44-pin plastic shrink QFP	(600 mil, 1.778-mm pitch) (10 \times 10 mm, 0.8-mm pitch)	

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD75P0116. The 75XL series uses a common relocatable assembler, in combination with a device file matching each machine.

RA75X relocatable assembler	Host machine			Part number
		OS	Supply medium	(product name)
	PC-9800 series	MS-DOS™	3.5" 2HD	μS5A13RA75X
		$\left(\begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2 } ^{\text{Note}} \end{array} \right)$	5" 2HD	μS5A10RA75X
	IBM PC/AT™	Refer to OS for	3.5" 2HC	μS7B13RA75X
	or compatible	IBM PCs	5" 2HC	μS7B10RA75X

Device file	Host machine			Part number
		OS	Supply medium	(product name)
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13DF750008
		(Ver.3.30 to Ver.6.2 ^{Note})	5" 2HD	μS5A10DF750008
	IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13DF750008
	or compatible	IBM PCs	5" 2HC	μS7B10DF750008

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swap function, but it does not work with this software.

Remark The operation of the assembler and device file is guaranteed only on the above host machines and OSs.

PROM Write Tools

Hardware	PG-1500	 A stand-alone system can be configured of a single-chip microcomputer with on-chip PROM when connected to an auxiliary board (companion product) and a programmer adapter (separately sold). Alternatively, a PROM programmer can be operated on a host machine for programming. In addition, typical PROMs in capacities ranging from 256 K to 4 M bits can be programmed. This is a PROM programmer adapter for the μPD75P0116CU/GB. It can be used when connected to a PG-1500. 				
	PA-75P008CU					
Software	PG-1500 controller	Establishes serial and parallel connections between the PG-1500 and a host machine for host- machine control of the PG-1500.				
		Host machine			Part number	
			OS	Supply medium	(product name)	
		PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13PG1500	
		(Ver.3.30 to Ver.6.2 Note 5" 2HD μS5A10PG1500				
		IBM PC/AT	Refer to OS for	3.5" 2HD	μS7B13PG1500	
		or compatible	IBM PCs	5" 2HC	μS7B10PG1500	

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

Remark Operation of the PG-1500 controller is guaranteed only on the above host machine and OSs.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P0116. Various system configurations using these in-circuit emulators are listed below.

Hardware	IE-	75000-R ^{Note 1}	development of applica of the µPD750108 subs 75300-R-EM and emul These products can be and PROM programme	ation systems that use 7 series, the IE-75000-R is lation probe EP-75008C applied for highly efficier er.	sed for hardware and soft 5X or 75XL Series produ used with a separately so CU-R or EP-75008GB-R. Int debugging when conne lation board (IE-75000-F	ucts. For development old emulation board IE- ected to a host machine
	IE-	75001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems that use 75X or 75XL Series products. The IE-75001-R is used with a separately sold emulation board IE-75300-R-EM and emulation probe EP-75008CU-R or EP-75008GB-R. These products can be applied for highly efficient debugging when connected to a host machine and PROM programmer.			
	IE-	75300-R-EM	This is an emulation board for evaluating application systems that use the μ PD750108 subseries. It is used in combination with the IE-75000-R or IE-75001-R in-circuit emulator.			
	EP	-75008CU-R	This is an emulation probe for the μ PD75P0116CU. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.			
	EP	-75008GB-R EV-9200G-44	This is an emulation probe for the μ PD75P0116GB.			
Software	IE	control program		rol the IE-75000-R or IE- '5001-R via an RS-232-	75001-R on a host mach C or Centronics I/F.	ine when connected to
			Host machine			Part number
				OS	Supply medium	(product name)
			PC-9800 series	MS-DOS	3.5" 2HD	μS5A13IE75X
				$\left(\begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2 Note 2} \end{array}\right)$	5" 2HD	μS5A10IE75X
			IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13IE75X
			or compatible	IBM PCs	5" 2HC	μS7B10IE75X

Notes 1. This is a service part provided for maintenance purpose only.

2. Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

- Remarks 1. Operation of the IE control program is guaranteed only on the above host machine and OSs.
 - **2.** The μ PD750108 subseries consists of the μ PD750104, 750106, 750108 and 75P0116.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

OS	Version
PC DOS™	Ver.3.1 to Ver.6.3
	J6.1/V ^{Note} to J6.3/V ^{Note}
MS-DOS	Ver.5.0 to Ver.6.22
	5.0/VNote to J6.2/VNote
IBM DOS™	J5.02/VNote

Note Supports English version only.

Caution Ver 5.0 and above include a task swapping function, but this software is not able to use that function.

APPENDIX C. RELATED DOCUMENTS

Some of the following related documents are preliminary. This document, however, is not indicated as preliminary.

Device Related Documents

Document name	Docum	Document No.		
	Japanese	English		
μPD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)	U12301J	Planned		
Data Sheet				
μPD75P0116 Data Sheet	U12603J	This document		
µPD750108 User's Manual	U11330J	U11330E		
μPD750008, 750108 Instruction List	U11456J	-		
75XL Series Selection Guide	U10453J	U10453E		

Development Tool Related Documents

	Document name			ent No.
Document name			Japanese	English
	IE-75000 R/IE-75001-R User's Manu	Jal	EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	U11354E
Hardware	EP-750008CU-R User's Manual		EEU-699	EEU-1317
	EP-750008GB-R User's Manual		EEU-698	EEU-1305
	PG-1500 User's Manual		U11940J	EEU-1335
	RA75X Assembler Package	Operation	EEU-731	EEU-1346
	User's Manual	Language	EEU-730	EEU-1363
Software	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) Base	EEU-5008	U10540E

Other Documents

Document name	Document No.		
	Japanese	English	
IC Package Manual	C10943X		
Semiconductor Device Mounting Technology Manual	C10535J	C10535E	
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E	
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E	
Static Electricity Discharge (ESD) Test	MEM-539	-	
Semiconductor Devices Quality Guarantee Guide	C11893J	MEI-1202	
Guide for Products Related to Microcomputer : Other Companies	C11416J	_	

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. NEC Electronics America, Inc. (U.S.) Santa Clara, California Duesseldorf, Germany Hong Kong Tel: 0211-65030 Tel: 2886-9318 Tel: 408-588-6000 800-366-9782 Sucursal en España Madrid, Spain Seoul Branch Tel: 091-504 27 87 Seoul. Korea Tel: 02-558-3737 Succursale Française Vélizy-Villacoublay, France Tel: 01-30-675800 Shanghai, P.R. China Tel: 021-5888-5400 • Filiale Italiana Milano, Italy Tel: 02-66 75 41

- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-2654010
- Tyskland Filial Taeby, Sweden Tel: 08-63 87 200
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.

NEC Electronics Shanghai Ltd.

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

J05.6

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).