Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

RENESAS

MOS INTEGRATED CIRCUIT Phase-out/Discontinued $\mu PD75028$

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75028 is a 75X series 4-bit single-chip microcomputer.

The minimum instruction execution time of the μ PD75028's CPU is 0.95 μ s. In addition to this high-speed capability, the chip contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function that follows the NEC standard format, providing powerful features and high cost performance.

A PROM version, μ PD75P036, is also available. The μ PD75P036 is suitable for small-scale production or experimental production in system development.

Detailed functional description for the μ PD75028 is shown in the following user's manual. Be sure to read it when starting design.

μPD75028 User's Manual: IEU-

FEATURES

- Fast execution time (@4.19 MHz)
 - High speed cycle: 0.95 μs
 - Low-voltage cycles: 1.91 μ s and 15.3 μ s
- Power-reducing operation
 - With system clock operating at 32.768 kHz (execution time: 122 μ s)
- A/D converter
 - 8-channel, 8-bit
- Low-voltage operation possible (VDD = 2.7 to 6.0 V)
- Four timers
 - One of them can be used as PWM output, 16-bit counter for an integrating A/D converter, etc.
- NEC standard serial bus interface
 - SBI mode
- Very low-power clock operation: 5 μA TYP. (at 3 V in HALT mode)

APPLICATIONS

Electric home appliances, air conditioners, cameras, and electronic measuring instruments

ORDERING INFORMATION

Part number	Package	Quality grade
μ PD75028CW- \times \times	64-pin plastic shrink DIP (750 mil)	Standard
μ PD75028GC- \times ×-AB8	64-pin plastic QFP (🗆 14 mm)	Standard

Remark ××× is a mask ROM code number.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

FUNCTION TABLE

ltem		Function				
Instruction execution time		 0.95, 1.91, 15.3 μs (at main system clock of 4.19 MHz) 122 μs (at subsystem clock of 32.768 kHz) 				
Internal memory	ROM	8064 × 8 bits				
Internal memory	RAM	512 X 4 bits				
General registers		• 8: in 4-bit • 4: in 8-bit				
			12	CMOS input pins	Selectable by software	
I/O ports		48	24	CMOS I/O pins (Of these, four can directly drive LEDs.)	Of these, 27 can have pull-up resistors, and 4 can have pull- down resistors.	
			12	N-ch open-drain I/O pins (Of these, eight can directly drive LEDs.)	Break-down voltage: 10 V Mask-option pull-up resistors are available.	
Timer		 4 channels Clock timer Multi-function timer 				
Serial interface		 3-wire ser 2-wire ser SBI mode 				
A/D converter				X 8 channels (successive app oltage: V _{DD} = 2.7 to 6.0 V	proximation)	
Bit sequential buffer		16 bits				
Clock output function		Φ, fx/2 ³ , fx/2 ⁴	⁴ , fx/2 ⁶			
Vectored interrupts		External: 3,	Intern	al: 4		
Test input		External: 1,	Intern	al: 1		
			mic/crystal oscillator for main system clock tal oscillator for subsystem clock			
Standby function		STOP/HALT mode				
Operating ambient temper	rature	-40 °C +70 °C				
Operating power supply v	oltage	2.7 to 6.0 V				
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 mm) 				

μ**PD75028**

★

CONTENTS

- 1. PIN CONFIGURATION (TOP VIEW) ... 4
- 2. BLOCK DIAGRAM ... 6
- 3. PIN FUNCTIONS ... 7
 - 3.1 PORT PINS ... 7
 - 3.2 NON-PORT PINS ... 9
 - 3.3 PIN INPUT/OUTPUT CIRCUITS ... 11
 - 3.4 MASK OPTION SELECTION ... 13
 - 3.5 HANDLING UNUSED PINS ... 14
- 4. MEMORY MAPPING ... 15

5. PERIPHERAL HARDWARE FUNCTIONS ... 18

- 5.1 PORTS ... 18
- 5.2 CLOCK GENERATOR CIRCUIT ... 19
- 5.3 CLOCK OUTPUT CIRCUIT ... 20
- 5.4 BASIC INTERVAL TIMER ... 21
- 5.5 CLOCK TIMER ... 22
- 5.6 TIMER/EVENT COUNTER ... 23
- 5.7 SERIAL INTERFACE ... 25
- 5.8 A/D CONVERTER ... 27
- 5.9 MULTI-FUNCTION TIMER (MFT) ... 28
- 5.10 BIT SEQUENTIAL BUFFER: 16 BITS ... 30
- 6. INTERRUPT FUNCTIONS ... 31
- 7. STANDBY FUNCTION ... 33
- 8. RESET OPERATION ... 34
- 9. INSTRUCTION SET ... 36
- **10. ELECTRICAL SPECIFICATIONS ... 43**
- 11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY) ... 57
- 12. PACKAGE DRAWINGS ... 63
- 13. RECOMMENDED SOLDERING CONDITIONS ... 65

APPENDIX A. DEVELOPMENT TOOLS ... 66

APPENDIX B. RELATED DOCUMENTS ... 67

★

- 1. PIN CONFIGURATION (TOP VIEW)
 - 64-pin plastic shrink DIP (750 mil)

• 64-pin plastic QFP (
14 mm)

IC: Internally Connected (should be connected directly to VDD)

PIN NAMES

P00 - 03	:	Port 0
P10 - 13	:	Port 1
P20 - 23	:	Port 2
P30 - 33	:	Port 3
P40 - 43	:	Port 4
P50 - 53	:	Port 5
P60 - 63	:	Port 6
P70 - 73	:	Port 7
P80 - 83	:	Port 8
P90 - 93	:	Port 9
P100 - 103	3:	Port 10
P110 - 113	3:	Port 11
KR0 - 7	:	Key Return
SCK	:	Serial Clock
SI	:	Serial Input
SO	:	Serial Output
SB0, 1	:	Serial Bus 0, 1
RESET	:	Reset Input
TI0	:	Timer Input 0
PTO0	:	Programmable Timer Output 0
BUZ	:	Buzzer Clock
PCL	:	Programmable Clock
INT0, 1, 4	:	External Vectored Interrupt 0, 1, 4
INT2	:	External Test Input 2
X1, 2	:	Main System Clock Oscillation 1, 2
XT1, 2	:	Subsystem Clock Oscillation 1, 2
MAR	:	Reference Integration Control
MAI	:	Integration Control
MAZ	:	Autozero Control
MAT	:	External Comparate Timing Input
PPO	:	Programmable Pulse Output … MFT timer mode
AN0 - 7	:	Analog Input 0 - 7
AV _{REF+}	:	Analog Reference (+)
AVREF-	:	Analog Reference (–)
AVdd	:	Analog VDD
AVss	:	Analog Vss
Vdd	:	Positive Power Supply
Vss	:	Ground

Remark MFT: Multi-Function Timer

N **BLOCK DIAGRAM**

N Z

uPD75028

6

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin name	Input/ output	Shared pin	Function	8-bit I/O	When reset	I/O circuit type ^{Note 1}
P00	Input	INT4	4-bit input port (PORT0).	×	Input	B
P01	I/O	SCK	For P01 - P03, pull-up resistors can be			€-A
P02	I/O	SO/SB0	provided by software in units of 3 bits.			Ĵ-В
P03	I/O	SI/SB1				M-C
P10	Input	INT0	With noise elimination function	×	Input	B-C
P11		INT1	4-bit input port (PORT1).			
P12		INT2	Pull-up resistors can be provided by			
P13		TI0	software in units of 4 bits.			
P20	I/O	PTO0	4-bit I/O port (PORT2).	×	Input	E-B
P21		PPO	Pull-up resistors can be provided by			
P22	1	PCL	software in units of 4 bits.			
P23		BUZ				
P30 Note 2	I/O	-	Programmable 4-bit I/O port (PORT3).	×	Input	E-B
P31 Note 2	1	_	I/O can be specified bit by bit. Pull-up			
P32 Note 2	1	_	resistors can be provided by software in units of 4 bits.			
P33 Note 2	1	_				
P40 - P43 Note 2	I/O	-	N-ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided for each bit (mask option). Withstand voltage is 10 V in open-drain mode.		High level (when pull- up resistors are provided) or high impedance	Μ
P50 - P53 Note 2	I/O	-	N-ch open-drain 4-bit I/O port (PORT5). A pull-up resistor can be provided for each bit (mask option). Withstand voltage is 10 V in open-drain mode.		High level (when pull- up resistors are provided) or high impedance	Μ

Note 1. The circle (\bigcirc) indicates the Schmitt trigger input.

2. Can directly drive LEDs.

3.1 PORT PINS (2/2)

Pin name	Input/ output	Shared pin	Function	8-bit I/O	When reset	I/O circuit type ^{Note}
P60	I/O	KR0	Programmable 4-bit I/O port (PORT6).	0	Input	́Б-А
P61		KR1	I/O can be specified bit by bit. Pull-up			
P62		KR2	resistors can be provided by software in units of 4 bits.			
P63		KR3				
P70	I/O	KR4	4-bit I/O port (PORT 7).		Input	Э-А
P71		KR5	A pull-up resistor can be provided by			
P72		KR6	software in units of 4 bits			
P73		KR7				
P80 - P83	I/O	_	4-bit I/O port (PORT 8). A pull-up resistor can be provided by software in units of 4 bits.	×	Input	E-B
P90 - P93	I/O	-	4-bit I/O port (PORT 9). A pull-up resistor can be provided by software in units of 4 bits.	-	Input	E-D
P100	I/O	MAR	N-ch open drain 4-bit I/O port (PORT 10).	×	High level	М
P101		MAI	A pull-up resistor can be provided for		(when pull-up	
P102		MAZ	each bit (mask option). Withstand voltage is 10 V in open-drain		resistors are provided) or	
P103		MAT	mode.		high impedance	
P110	Input	AN0	4-bit input port (PORT11).	1	Input	Y-A
P111]	AN1				
P112	1	AN2				
P113		AN3				

Note The circle (\bigcirc) indicates the Schmitt trigger input.

3.2 NON-PORT PINS (1/2)

Pin name	Input/ output	Shared pin		Function		When reset	l/O circuit type ^{Note 1}
TIO	Input	P13	Input for receiving for timer/event co		ent pulse signal	-	B-C
PTO0	I/O	P20	Timer/event count	ter output		Input	E-B
PCL	I/O	P22	Clock output			Input	E-B
BUZ	I/O	P23	Output for arbitra buzzer output or s		-	Input	E-B
SCK	I/O	P01	Serial clock I/O			Input	(F)-A
SO/SB0	I/O	P02	Serial data output Serial bus I/O	t		Input	(F)-В
SI/SB1	I/O	P03	Serial data input Serial bus I/O			Input	M-C
INT4	Input	P00	Edge detection ve rising edge or fall			_	B
INTO	Input	P10	U U	Edge detection vectoredClock synchro- nous		-	B-C
INT1		P11	edge selectable)		Asynchronous		
INT2	Input	P12	Edge detection testable input Asynchronous (rising edge detection)		_	B-C	
KR0 - KR3	I/O	P60 - P63	Parallel falling edg	ge detection	testable input	Input	(F)-A
KR4 - KR7	I/O	P70 - P73	Parallel falling ed	ge detection	testable input	Input	Ē-A
MAR	I/O	P100	In MFT integrat- ing A/D	Reverse inte output	egration signal	Note 2	М
MAI	I/O	P101	converter mode	Integration	signal output	Note 2	М
MAZ	I/O	P102		Auto-zero s	ignal output	Note 2	М
MAT	I/O	P103		Comparator	r input	Note 2	М
PPO	I/O	P21	In MFT timer Timer pulse output mode		Input	E-B	
AN0 - AN3	Input	P110 - P113	For A/D 8-bit analog input		Input	Y-A	
AN4 - AN7		_	converter only			Y	
AV _{REF+}	Input	-	Reference voltage input (AV _{DD} side)		-	Z-A	
AV _{REF-}	Input	-	Reference voltage input (AVss side)		-	Z-A	
AVDD	-	-		Positive pov	wer supply	-	-
AVss	-	-		Ground		-	-

Note 1. The circle (\bigcirc) indicates the Schmitt trigger input.

2. High level (in use of on-chip pull-up resistor) or high impedance

Remark MFT: Multi-Function Timer

3.2 NON-PORT PINS (2/2)

Pin name	Input/ output	Shared pin	Function	When reset	I/O circuit type ^{Note}
X1, X2	Input	_	Crystal/ceramic connection for main system clock generation. When external clock signal is used, it is applied to X1, and its reverse phase signal is applied to X2.	_	_
XT1, XT2	Input	_	Crystal connection for subsystem clock generation. When external clock signal is used, it is applied to XT1, and its reverse phase signal is applied to XT2, XT1 can be used as a 1-bit input (test).	_	_
RESET	Input	_	System reset input	_	B
IC	-	-	Internally connected. (To be connected to V_{DD})	-	-
Vdd	_	-	Positive power supply	_	_
Vss	_	_	GND potential	-	-

Note The circle (\bigcirc) indicates the Schmitt trigger input.

3.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuit of each μ PD75028 pin is shown below in a simplified manner.

3.4 MASK OPTION SELECTION

The following mask options are available for selection for each pin.

Pin name	Mas	k option
P40 - P43, P50 - P53, P100 - P103	 Pull-up resistor provided (specificable bit by bit) 	 Pull-up resistor not provided (specifiable bit by bit)
XT1, XT2	 Feedback resistor provided (if a subsystem clock is used) 	 Feedback resistor not provided (if a subsysem clock is not used)

★ 3.5 HANDLING UNUSED PINS

Table 3-1 Handling Unused Pins

Pin name	Recommended connection			
P00/INT4	Connected to Vss			
P01/SCK				
P02/SO/SB0	Connected to Vss or VDD			
P03/SI/SB1				
P10/INT0-P12/INT2	Connected to Vss			
P13/TI0				
P20/PTO0				
P21				
P22/PCL				
P23/BUZ				
P30-P33				
P40-P43				
P50-P53	Input mode : Connected to Vss or Vod			
P60-P63	Output mode : Left unconnected			
P70-P73				
P80-P83				
P90-P93				
P100-P103				
P110/AN0-P113/AN3	Connected to Vss or VDD			
AN4-AN7				
AV _{REF+}				
AV _{REF-}	Connected to Vss			
AVss				
AVDD	Connected to VDD			
XT1	Connected to Vss or VDD			
XT2	Left unconnected			
IC	Directly connected to VDD			

Phase-out/Discontinued

4. MEMORY MAPPING

- Program memory (ROM) : 8064 X 8 bits (0000H-1F7FH)
 - 0000H-0001H
 - 0002H-000DH
- : A vector table where a program start address is written upon resetting.
- : A vector table where a program start address is written upon interrup-
- tion.
- 0020H-007FH : A table area referenced by GETI instruction.
- Data memory
 - Data area : 512 X 4 bits (000H-1FFH)
 - Peripheral hardware area : 128 X 4 bits (F80H-FFFH)

Fig. 4-1 Program Memory Map

Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

There are the following three types of ports:

- CMOS input ports (port 0, 1, 11) : 12
- CMOS I/O ports (port 2, 3, 6, 7, 8, 9) : 24
- N-ch open-drain I/O ports (port 4, 5, 10) : 12
- Total

★

Table 5-1 Port Functions

48

Port name	Function	Operation/features	Remarks
PORT0 PORT1	4-bit Input	Can be read or tested regard- less of the operation mode of the shared pin.	Shared with the SO/SB0, SI/SB1, SCK, INT0-2, 4, and TI0 pins.
PORT2 PORT7	4-bit I/O	Can be specified for input/ output in 4-bit units. Port 6 and	Port 2 pins are also used as PTO0, PPO, PCL, and BUZ.
		7 can be paired to input/output data in 8-bit units.	Port 7 pins are also used as KR4-7.
PORT3 ^{Note} PORT6		Can be specified for input/ output in bit units.	Port 6 pins are also used as KR0 - 3.
PORT4 ^{Note} PORT5 ^{Note}	4-bit I/O (N-ch open drain,	Can be specified for input/ output in 4-bit units. Port 4 and	Pull-up resistor mask-option is available for each bit.
PORT10	can sustain 10 V)	5 can be paired to input/output data in 8-bit units.	Port 10 pins are also used as \overline{MAR} , \overline{MAI} , \overline{MAZ} , and \overline{MAT} .
PORT8 PORT9	4-bit I/O	Can be specified for input/ output in 4-bit units.	
PORT11	4-bit Input	4-bit port dedicated to input	Port 11 is shared with pins AN0 to AN3.

Note Can directly drive LEDs.

5.2 CLOCK GENERATOR CIRCUIT

The operation of the clock generator is determined by the processor clock control register (PCC) and the system clock control register (SCC).

Two types of clock frequencies are available: main system clock and subsystem clock frequencies.

It is possible to vary the instruction execution time.

- 0.95 μ s, 1.91 μ s, 15.3 μ s (at main system clock of 4.19 MHz)
- 122 μ s (at subsystem clock of 32.768 kHz)

Remarks 1. fx = Main system clock frequency

- 2. fxt = Subsystem clock frequency
- 3. PCC: Processor clock control register
- 4. SCC: System clock control register
- 5. One clock cycle of Φ (tcv) is equal to 1 machine cycle of an instruction. For the tcv, refer to 10. ELECTRICAL SPECIFICATIONS AC characteristics.

NEC

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs clock pulses through the P22/PCL pin. It is used to output clock pulses to a remote control output or peripheral LSI.

• Clock output (PCL): Φ, 524 kHz, 262 kHz, 65.5 kHz (at fx = 4.19 MHz)

The configuration of the clock output circuit is shown below.

Remark Measures are taken to prevent outputting a narrow pulse when selecting clock output enable/disable.

5.4 BASIC INTERVAL TIMER

The basic interval timer has these functions:

- · Interval timer operation which generates a reference timer interrupt
- · Watchdog timer application which detects a program runaway
- · Selection of wait time for releasing the standby mode and counting the wait time

Phase-out/Discontinued

· Reading out the count value

Fig. 5-3 Basic Interval Timer Configuration

Note Instruction execution

NEC

5.5 CLOCK TIMER

The μ PD75028 has a built-in 1-ch clock timer. The clock timer has the following functions:

- Sets the test flag (IRQW) with a 0.5-sec interval. The standby mode can be released by IRQW.
- The 0.5-second interval can be generated from either the main system clock or subsystem clock.
- The time interval can be made 128 times faster (3.91 ms) by selecting the fast mode. This is convenient for program debugging, testing, etc.

Phase-out/Discontinued

- Any of the frequencies 2.048 kHz, 4.096 kHz, and 32.768 kHz can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that a zero-second start of the clock can be made.

Fig. 5-4 Clock Timer Block Diagram

() is for fx = 4.194304 MHz, fxT = 32.768 kHz.

5.6 TIMER/EVENT COUNTER

The µPD75028 has a built-in 1-ch timer/event counter. The timer/event counter has the following functions:

- Programmable interval timer operation
- Outputs square-wave signal of an arbitrary frequency to the PTO0 pin
- Event counter operation
- Divides the TI0 pin input by N and outputs to the PTO0 pin (frequency divider operation)
- · Supplies serial shift clock to the serial interface circuit
- Count condition read out function

Fig. 5-5 Timer/Event Counter Block Diagram

Note 1. Instruction execution

2. For details, see Fig. 5-1.

5.7 SERIAL INTERFACE

The serial interface has the following modes:

- 3-wire serial I/O mode (Start bit (MSB or LSB) switchable)
- 2-wire serial I/O mode (MSB-first)
- SBI mode (MSB-first)

In 3-wire serial I/O mode, the serial interface allows connection to 75X series, 78K series, and various I/O devices.

Phase-out/Discontinued

In 2-wire serial I/O mode and SBI mode, it allows connection to two or more devices.

Fig. 5-6 Serial Interface Block Diagram

μ**PD75028**

5.8 A/D CONVERTER

The μ PD75028 contains an 8-bit analog/digital (A/D) converter that has eight analog input channels (AN0 - AN7).

The A/D converter employs the successive-approximation method.

Fig. 5-7 Configuration of the A/D Converter

5.9 MULTI-FUNCTION TIMER (MFT)

The µPD75028 contains one channel of the multi-function timer (MFT). MFT has the following functions:

(1) 8-bit timer mode

- Programmable interval timer operation
- Square wave output of any frequency to PPO pin

(2) PWM output mode

• Output of 6-, 7-, or 8-bit precision PWM signal to PPO pin

(3) 16-bit free-running timer mode

- · Interval timer operation to cause an interrupt to occur at given time intervals
- Applicable as a one-shot timer

(4) Integration A/D converter mode

- Output of 16-bit integration A/D converter control signal
- 13-, 14-, 15-, or 16-bit resolution can be selected

µPD75028

29

NEC

Phase-out/Discontinued

5.10 BIT SEQUENTIAL BUFFER: 16 BITS

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially updated by bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

Address FC3H FC2H FC1H **FC0H** 2 Bit 3 2 3 2 1 2 1 0 3 1 0 0 3 1 0 Т Т BSB3 BSB2 BSB1 BSB0 Symbol ł 4 ł ł L register L = F $L = C \quad L = B$ L=8 L=7 L = 4 L = 3L = 0→ DECS L INCS L 🗲

Fig. 5-9 Bit Sequential Buffer Format

Remark For pmem.@L addressing, the specification bit is shifted according to the L register.

6. INTERRUPT FUNCTIONS

The μ PD75028 has 7 different interrupt sources. In addition, multiple interrupts are possible by software control. Two types of test source are also provided. Of these, INT2 has two edge detection testable inputs. The interrupt control circuit of the μ PD75028 has the following functions:

Phase-out/Discontinued

- Hardware controlled vector interrupt function which can control whether or not to accept an interrupt using the interrupt flag (IExxx) and interrupt master enable flag (IME).
- The interrupt start address can be set arbitrarily.
- Interrupt request flag (IRQ×××) test function (an interrupt generation can be confirmed by software).
- Standby mode release (interrupts to be released can be selected by the interrupt enable flag).

Fig. 6-1 Interrupt Control Circuit Block Diagram

7. STANDBY FUNCTION

The μ PD75028 has two different standby modes (STOP mode and HALT mode) to reduce power dissipation while waiting for program execution.

		STOP mode	HALT mode	
Instructi	on for setting	STOP instruction	HALT instruction	
System	clock for setting	Can be set only when operating on the main system clock	Can be set either with the main system clock or the subsystem clock	
Opera- Clock generator tion		Only the main system clock stops its operation	Only the CPU clock Φ stops its operation (oscillation continues)	
status	Basic interval timer	Does not operate	Can operate only at main system clock Φ oscillation. (IRQBT is set at reference time intervals.)	
	Serial interface	Can operate only when the external SCK input is selected for the serial clock	Can operate only when external SCK input is selected as the serial clock or at main system clock oscillation.	
	Timer/event counter	Can operate only when the TI0 pin input is selected for the count clock	Can operate only when TI0 pin input is specified as the count clock or at main system clock oscillation.	
	Clock timer	Can operate when fxT is selected as the count clock	Can operate	
	A/D converter	Does not operate	Can operate ^{Note}	
	Multi-function timer	Does not operate	Can operate ^{Note}	
External interrupt CPU		INT1, INT2, and INT4 can operate. Only INT0 cannot operate.		
		Does not operate		
Release	signal	An interrupt request signal from hard- ware whose operation is enabled by the interrupt enable flag or the RESET signal input	An interrupt request signal from hard- ware whose operation is enabled by the interrupt enable flag or the RESET signal input	

Table 7-1 Standby Mode Statuses

Note Operation is possible only when the main system clock operates.

8. RESET OPERATION

When the $\overline{\text{RESET}}$ signal is input, the μ PD75028 is reset and all hardware is initialized as indicated in Table 8-1. Fig. 8-1 shows the reset operation timing.

Fig. 8-1 Reset Operation by RESET Input

Table 8-1 Status of All Hardware after Reset (1/2)

		Hardware	RESET input in standby mode	RESET input during operation		
Program counter (PC)			program memory are set to PC	The contents of the lower 5 bits of address 0000H of the program memory are set to PC12 - 8, and the contents of address 0001H are set to PC7 - 0.		
PSW	Carr	y flag (CY)	Retained	Undefined		
	Skip	flag (SK0-2)	0	0		
	Inter	rupt status flag (IST0)	0	0		
	Bank	c enable flag (MBE)	The contents of bit 7 of address is set to MBE.	0000H of the program memory		
Stack p	ointer (S	SP)	Undefined	Undefined		
Data m	emory (RAM)	Retained Note	Undefined		
	l purpos I, L, D, E	e register :, B, C)	Retained	Undefined		
Bank se	election	register (MBS)	0	0		
Basic in	nterval	Counter (BT)	Undefined	Undefined		
timer		Mode register (BTM)	0	0		
Timer/e	event	Counter (T0)	0	0		
counter		Modulo register (TMOD0)	FFH	FFH		
		Mode register (TM0)	0	0		
		TOE0, TOUT F/F	0, 0	0, 0		
Clock ti	mer	Mode register (WM)	0	0		

Note Data of address 0F8H to 0FDH of the data memory becomes undefined when the RESET signal is input.
	Hardware	RESET input in standby mode	RESET input during operation
Serial	Shift register (SIO)	Retained	Undefined
interface	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Retained	Undefined
Clock genera- tor, Clock	Processor clock control register (PCC)	0	0
output circuit	System clock control register (SCC)	0	0
	Clock output mode register (CLOM)	0	0
Interrupt	Interrupt enable flag (IE×××)	0	0
function	Interrupt master enable flag (IME)	0	0
	INT0, 1, 2, mode register (IM0, 1, 2)	0, 0, 0	0, 0, 0
Digital port	Output buffer	Off	Off
	Output latch	Clear (0)	Clear (0)
	Input/output mode register (PMGA, B, C)	0	0
	Pull-up resistor specification register (POGA, POGB)	0	0
	Pull-down resistor specification register (PDGB)	0	0
Multi-function	Counter (MFTL)	FFH	FFH
timer	Counter (MFTH)	0	0
	Mode register (MFTM)	0	0
	Control register (MFTC)	0	0
A/D converter	Mode register (ADM)	04H	04H
	SA register (SA)	Undefined	Undefined
Bit sequential b	ouffer (BSB0-3)	Retained	Undefined

Table 8-1 Status of All Hardware after Reset (2/2)

9. INSTRUCTION SET

(1) Operand identifier and its descriptive method

The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions. (For details, refer to the **"RA75X Assembler Package User's Manual, Language" (EEU-xxx)**.) For descriptions in which alternatives exist, one element should be selected. Uppercase alphabetic characters and plus and minus signs are keywords; therefore, they should be described as they are.

Phase-out/Discontinued

For immediate data, the appropriate numerical values or labels should be described.

Symbols of various registers and flags can be described as labels instead of mem, fmem, pmem, and bit (For details, see "**µPD75028 User's Manual (IEU-xxxx)**.").

Identifier	Description
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rpa	HL, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem ^{Note}	8-bit immediate data or label
bit	2-bit immediate data or label
fmem	FB0H - FBFH, FF0H - FFFH immediate data or label
pmem	FC0H - FFFH immediate data or label
addr	0000H - 1F7FH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H - 7FH immediate data (however, bit 0 = 0) or label
PORTn	PORT0 - PORT11
IE×××	IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW, IEMFT
MBn	MB0, MB1, MB15

There are restrictions to labels that can be described instead of fmem and pmem.

Note Only even address can be specified for mem when processing 8-bit data.

(2) Symbol definitions in operation description

- A : A register; 4-bit accumulator
- B : B register
- C : C register
- D : D register
- E : E register
- H : H register
- L : L register
- X : X register
- XA : Pair register (XA); 8-bit accumulator
- BC : Pair register (BC)

- DE : Pair register (DE) ΗL : Pair register (HL) PC : Program counter SP : Stack pointer CY : Carry flag; Bit accumulator PSW : Program status word : Memory bank enable flag MBE PORTn : Port n (n = 0 to 11) IME : Interrupt master enable flag IE××× : Interrupt enable flag MBS : Memory bank selection register PCC : Processor clock control register : Address, bit delimiter . : Contents addressed by $\times \times$ $(\times \times)$
- ××H : Hexadecimal data

(3) Symbols used for the addressing area column

*1	MB = MBE · MBS (MBS = 0, 1, 15)	
*2	MB = 0	
*3	MBE = 0: MB = 0 (00H - 7FH) MB = 15 (80H - FFH) MBE = 1: MB = MBS (MBS = 0, 1, 15)	Data memory addressing
*4	MB = 15, fmem = FB0H - FBFH, FF0H - FFFH	
*5	MB = 15, pmem = FC0H - FFFH] ↓
*6	addr = 0000H - 1F7FH	
*7	addr = (Current PC) – 15 to (Current PC) – 1 (Current PC) + 2 to (Current PC) + 16	
*8	caddr = 0000H - 0FFFH (PC ₁₂ = 0) or 1000H - 1F7FH (PC ₁₂ = 1)	addressing
*9	faddr = 0000H - 07FFH	
*10	taddr = 0020H - 007FH]

 $\ensuremath{\textit{Remarks 1}}$. MB indicates the memory bank that can be accessed.

- 2. For *2, MB = 0 regardless of MBE and MBS settings.
- 3. For *4 and *5, MB = 15 regardless of MBE and MBS.
- 4. For *6 to *10, each addressable area is indicated.

(4) Description of machine cycle column

S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows:

- When no skip is performed \cdots S = 0

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle (= tcy) is equivalent to one CPU clock Φ cycle. Therefore, the length of the machine cycle can be selected from three different lengths by the PCC setting.

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip conditior
Transfer	MOV	A, #n4	1	1	A ← n4		String A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		String A
		HL, #n8	2	2	HL ← n8		String B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	$XA \gets (HL)$	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \gets XA$	*1	
		A, mem	2	2	A ← (mem)	*3	
		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg	2	2	A ← reg		
		XA, rp	2	2	$XA \gets rp$		
		reg1, A	2	2	reg1 ← A		
		rp1, XA	2	2	rp1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A\leftrightarrowreg1$		
		XA, rp	2	2	$XA \leftrightarrow rp$		
	MOVT	XA, @PCDE	1	3	$XA \leftarrow (PC_{12-8} + DE)_{ROM}$		
		XA, @PCXA	1	3	$XA \leftarrow (PC_{12-8} + XA)_{ROM}$		
Arithme-	ADDS	A, #n4	1	1 + S	$A \leftarrow A + n4$		carry
tic		A, @HL	1	1 + S	$A \leftarrow A + (HL)$	*1	carry
	ADDC	A, @HL	1	1	$A, CY \gets A + (HL) + CY$	*1	
	SUBS	A, @HL	1	1 + S	$A \leftarrow A - (HL)$	*1	borrow
	SUBC	A, @HL	1	1	A, CY \leftarrow A – (HL) – CY	*1	
AN	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
	XOR	A, #n4	2	2	$A \leftarrow A \forall n4$		
		A, @HL	1	1	$A \leftarrow A \not \forall (HL)$	*1	

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Accumulator	RORC	А	1	1	$CY \gets A_0, A_3 \gets CY, A_{n-1} \gets A_n$		
manipulation	NOT	А	2	2	$A \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1 + S	reg ← reg + 1		reg = 0
decrement		@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg – 1		reg = FH
Compari-	SKE	reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
son		@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		A, reg	2	2 + S	Skip if A = reg		A = reg
Carry	SET1	СҮ	1	1	CY ← 1		
flag	CLR1	СҮ	1	1	$CY \leftarrow 0$		
manipu- lation	SKT	СҮ	1	1 + S	Skip if CY = 1		CY = 1
lation	NOT1	СҮ	1	1	$CY \leftarrow \overline{CY}$		
Memory	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
bit manipu- lation		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 1	*5	
		@H+mem.bit	2	2	(H + mem₃-₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) ← 0	*3	
		fmem.bit	2	2	(fmem.bit) ← 0	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 0	*5	
		@H+mem.bit	2	2	(H + mem₃-₀.bit) ← 0	*1	
	SKT	mem.bit	2	2 + S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem3-0.bit) = 1	*1	(@H + mem.bit) = 1
	SKF	mem.bit	2	2 + S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H+mem.bit	2	2 + S	Skip if (H + mem3-0.bit) = 0	*1	(@H + mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem3-0.bit) = 1 and clear	*1	(@H + mem.bit) = 1
	AND1	CY, fmem.bit	2	2	$CY \gets CY \land (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \gets CY \land (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \leftarrow CY \land (H + mem_{3-0}.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \gets CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \gets CY \lor (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \leftarrow CY \lor (H + mem_{3-0}.bit)$	*1	

				Marchin			
Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Memory	XOR1	CY, fmem.bit	2	2	CY ← CY ∀ (fmem.bit)	*4	
bit manipu-		CY, pmem.@L	2	2	CY ← CY ∀ (pmem7-2 + L3-2.bit(L1-0))	*5	
lation		CY, @H+mem.bit	2	2	CY ← CY ∀ (H + mem₃₀.bit)	*1	
Branch	BR	addr	-	-	PC ₁₂₋₀ ← addr	*6	
					(Appropriate instructions are selected from BR !addr, BRCB !caddr, and BR \$addr by the assembler.)		
		!addr	3	3	PC ₁₂₋₀ ← addr	*6	
		\$addr	1	2	PC₁₂₋₀ ← addr	*7	
	BRCB	!caddr	2	2	$PC_{12-0} \leftarrow PC_{12} + caddr_{11-0}$	*8	
Subrou- tine stack	CALL	!addr	3	3	$\begin{array}{l} (SP-4)(SP-1)(SP-2) \leftarrow PC_{11\text{-}0} \\ (SP-3) \leftarrow MBE, 0, 0, PC_{12} \\ PC_{12\text{-}0} \leftarrow addr, SP \leftarrow SP-4 \end{array}$	*6	
control	CALLF	!faddr	2	2	$(SP - 4)(SP - 1)(SP - 2) \leftarrow PC_{11-0}$ $(SP-3) \leftarrow MBE, 0, 0, PC_{12}$ $PC_{12-0} \leftarrow 00, faddr, SP \leftarrow SP - 4$	*9	
	RET		1	3	$\begin{array}{l} MBE, \times, \times, PC_{12} \leftarrow (SP + 1) \\ PC_{11\text{-}0} \leftarrow (SP)(SP + 3)(SP + 2) \\ SP \leftarrow SP + 4 \end{array}$		
	RETS		1	3 + S	$\begin{array}{l} MBE, \times, \times, PC_{12} \leftarrow (SP+1) \\ PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2) \\ SP \leftarrow SP+4, \text{ then skip unconditionally} \end{array}$		Uncondi- tional
	RETI		1	3	$\begin{array}{l} MBE, \times, \times, PC_{12} \leftarrow (SP+1) \\ PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2) \\ PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6 \end{array}$		
	PUSH	rp	1	1	$(SP - 1)(SP - 2) \leftarrow rp, SP \leftarrow SP - 2$		
		BS	2	2	$(SP-1) \gets MBS,(SP-2) \gets 0,SP \gets SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP + 1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$MBS \leftarrow (SP+1), SP \leftarrow SP+2$		
Interrupt	EI		2	2	$IME \leftarrow 1$		
control		IE×××	2	2	$IE \times \times \leftarrow 1$		
	DI		2	2	$IME \leftarrow 0$		
		IE×××	2	2	$IExxx \leftarrow 0$		
Input/	IN	A, PORTn	2	2	$A \leftarrow PORTn$ (n = 0 - 11)		
output		XA, PORTn	2	2	$XA \leftarrow PORTn+1, PORTn (n = 4, 6)$		
	Ουτ	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 2 - 10)		
		PORTn, XA	2	2	PORTn+1,PORTn \leftarrow XA (n = 4, 6)		
CPU	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
control	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		

Caution When executing the IN/OUT instruction, MBE must be set to 0 or MBE and MBS must be set to 1 and 15, respectively.

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Special	SEL	MBn	2	2	MBS ← n (n = 0, 1, 15)		
	GETI	taddr	1	3	• For the TBR instruction $PC_{12-0} \leftarrow (taddr)_{4-0} + (taddr + 1)$	*10	
					• For the TCALL instruction $(SP - 4)(SP - 1)(SP - 2) \leftarrow PC_{11-0}$ $(SP - 3) \leftarrow MBE, 0, 0, PC_{12}$ $PC_{12-0} \leftarrow (taddr)_{4-0} + (taddr + 1)$ $SP \leftarrow SP - 4$		
					 SP ← SP − 4 For other than the TBR and TCALL instruction (taddr) (taddr + 1) is executed. 		Depends on the reference instruction

10. ELECTRICAL SPECIFICATIONS

Absolute maximum ratings (T_a = 25 $^{\circ}$ C)

Parameter	Symbol		Test conditions	6	Ratings	Unit		
Power supply voltage	Vdd				-0.3 to +7.0	V		
Input voltage	VI1	Except for po	rt 4, 5, 10	-0.3 to VDD +0.3	V			
	Vı2	Port 4, 5, 10 Pull-up resistor is contained		-0.3 to VDD +0.3	V			
			Open drain		–0.3 to +11	V		
Output voltage	Vo				-0.3 to VDD +0.3	V		
Output high current	Іон	Each output p	oin	-10	mA			
		Total		-30	mA			
Output low current	I _{OL} Note	Port 0, 3, 4, 5	ort 0, 3, 4, 5 Peak va		ort 0, 3, 4, 5 Peak value 30		30	mA
		Each output nin		rms value	15	mA		
		Except for po	rt 0, 3, 4, 5	Peak value	20	mA		
		Each output p	bin	rms value	5	mA		
		Port 0, 3 to 9,	ort 0, 3 to 9, 11 total Peak v		170	mA		
				rms value	120	mA		
		Port 0, 2, 10 to	otal	Peak value	30	mA		
			rms value		20	mA		
Operation temperature	Topt				-40 to +70	°C		
Storage temperature	Tstg				-65 to +150	°C		

Note To obtain the rms value, calculate

[rms value] = [peak value] $\times \sqrt{\text{duty}}$

Caution If any of the ratings described above should exceed the specified absolute maximum rating even for a moment, the quality of the product would be impaired. An absolute maximum rating is a critical value that can physically damage the product. Be sure to use the product under conditions within the absolute maximum ratings.

Capacitance $(T_a = 25 \ ^{\circ}C, \ V \ DD = 0 \ V)$

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1MHz			15	pF
Output capacitance	Co	Unmeasured pins returned to 0 V			15	pF
Input/Output capacitance	Сю				15	pF

Resonator	Recommended constants	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation Note 1 frequency (fx)	V _{DD} = oscillator operating voltage range	2.0		5.0 Note 3	MHz
		Oscillation Note 2 stabilization time	After V _{DD} reaches the minimum oscillator operating voltage range			4	ms
Crystal resonator	, , , , , , , , , , , , , , , , , , ,	Oscillation Note 1 frequency (fx)		2.0	4.19	5.0 Note 3	MHz
		Oscillation Note 2 stabilization time	V _{DD} = 4.5 to 6.0 V			10 30	ms ms
External clock		X1 input Note 1 frequency (fx)		2.0		5.0 Note 3	MHz
	μPD74HCU04	X1 input high- and low-level width (tхн, tx∟)		100		250	ns

- Note 1. Indicates only the characteristics of the oscillator. For instruction execution time, see "AC Characteristics."
 - 2. Time required for stabilization of oscillation after application of VDD or after cancellation of STOP mode.
- 3. If the oscillation frequency is 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as instruction execution time. If it is selected, one machine cycle would become shorter than 0.95 μ s, and the minimum limit of 0.95 μ s could not be secured.

★ Caution In use of the main system clock oscillator, follow the following guidlines for wiring on the portion indicated by "_____" in the figure to avoid influence due to line capacitance:

- Route as short as possible.
- Do not let the wiring cross another signal line.
- Do not place the wiring near a line in which a variable high current flows.
- Be sure that the potential on the connection point for the oscillator capacitor is always equal to VDD. Do not connect the wire in question to a power supply pattern in which a high current flows.
- Do not take off signal from the oscillator.

Subsystem clock oscillator characteristics (Ta = -40 to +70 $^{\circ}$ C, V DD = 2.7 to 6.0 V)

Resonator	Recommended constants	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation Note 1 frequency (fxt)		32	32.768	35	kHz
		Oscillation Note 2	V _{DD} = 4.5 to 6.0 V		1.0	2	S
	VDD	stabilization time				10	s
External clock		XT1 input Note 1 frequency (f _{XT})		32		100	kHz
	$\overset{\downarrow}{\overset{\downarrow}{}}$	XT1 input high- and low-level width (txтн, txть)		5		15	μs

- **Note 1.** Indicates only the characteristics of the oscillator. For instruction execution time, see "AC Characteristics."
 - 2. Time required for stabilization of oscillation after application of VDD.
- Caution In use of the subsystem clock oscillator, follow the following guidlines for wiring on the portion ***** indicated by "_____" in the figure to avoid influence due to line capacitance:
 - Route as short as possible wire.
 - Do not let the wiring cross another signal line.
 - Do not place the wiring near a line in which a variable high current flows.
 - Be sure that the potential on the connection point for the oscillator capacitor is always equal to VDD. Do not connect the wire in question to a power supply pattern in which a high current flows.
 - Do not take off signal from the oscillator.

For reduction of current consumption, the subsystem clock oscillator has a low amplification factor. It is more likely to have a malfunction due to noise than the main system clock oscillator. When the subsystem clock is to be used, pay special attention in selecting the method of wiring.

★ Recommended oscillator constants

Main system clock: Ceramic (T_a = -40 to +85 $^{\circ}$ C)

Manufacturer	Draduat		Recommended	circuit constant	Oscillation v	oltage range	
Wanulacturer	Product	Frequency (MHz)	C1 (pF)	C2 (PF)	MIN. (V)	MAX. (V)	
Murata	CSA X.XXMG Note	2 00 to 2 14	30	30	2.0		
	CST X.XXMG Note	2.00 to 2.44	_	_	3.0		
	CSA X.XXMG ^{Note}	2 45 to 4 40	30	30	3.5	6.0	
	CST X.XXMGW ^{Note}	2.45 to 4.49	_	_	3.5		
	CSA X.XXMG Note	4 50 4 5 00	30	30	4.0		
	CST X.XXMGW ^{Note}	4.50 to 5.00	_	_	4.0		
Kyocera	KBR-1000H	1.00	100	100			
	KBR-2.0MS	2.00	47	47	0.7	6.0	
	KBR-4.0MSA	4.00	33 33		2.7	0.0	
	KBR-5.0MSA	5.00	33	33			

Note X.XX indicates a frequency.

Subsystem clock: Crystal ($T_a = -15$ to +60 °C)

NA	Due du et	Frequency (kHz)	Recomme	ended circuit	Oscillation voltage range		
Manufacturer	Product		C3 (pF)	C4 (pF)	R (kΩ)	MIN. (V)	MAX. (V)
Kyocera	KF-38G	32.768	18	33	150	2.7	6.0

DC characteristics (T_a = -40 to +70 $^\circ\text{C},$ V $_\text{DD}$ = 2.7 to 6.0 V)

Parameter	Symbol	Те	Test conditions		TYP.	MAX.	Unit
Input high voltage	VIH1	Port 2, 3, 8, 9, 1	1	0.7 Vdd		Vdd	V
	VIH2	Port 0, 1, 6, 7, F	RESET	0.8 Vdd		Vdd	V
	Vінз	Port 4, 5, 10	Pull-up resistor is contained	0.7 Vdd		Vdd	V
			Open drain	0.7 Vdd		10	V
	VIH4	X1, X2, XT1, X1	2	Vdd - 0.5		Vdd	V
Input low voltage	VIL1	Port 2 to 5, 8 to	11	0		0.3 VDD	V
	VIL2	Port 0, 1, 6, 7, F	RESET	0		0.2 VDD	V
	VIL3	X1, X2, XT1, X1	2	0		0.4	V
Output high voltage	Vон	V _{DD} = 4.5 to 6.0	V, Іон = -1 mA	Vdd - 1.0			V
		I _{OH} = -100 μA		Vdd - 0.5			V
Output low voltage	Vol	Port 3, 4, 5	V _{DD} = 4.5 to 6.0 V, I _{OL} = 15 mA		0.4	2.0	V
		V _{DD} = 4.5 to 6.0 V, I _{OL} = 1.6 mA I _{OL} = 400 μA				0.4	V
						0.5	V
		SB0, 1	Open drain Pull-up resistor $\ge 1 \ k\Omega$			0.2 V _{DD}	V
Input high leakage	Ілні	VI = VDD	Except for below			3	μA
current	ILIH2		X1, X2, XT1			20	μA
	Іцінз	Vi = 9 V	Port 4, 5, 10 (when open drain is selected)			20	μA
Input low leakage		$V_I = 0 V$	Except for below			-3	μA
current	ILIL2		X1, X2, XT1			-20	μA
Output high leakage	ILOH1	Vo = Vdd	Except for below			3	μA
current	Iloh2	Vo = 9 V	Port 4, 5, 10 (when open drain is selected)			20	μA
Output low leakage current	ILOL	Vo = 0 V				-3	μA
Internal pull-up resistor	Ru1	Port 0, 1, 2,	$V_{DD} = 5.0 \text{ V} \pm 10 \%$	15	40	80	kΩ
		3, 6, 7, 8 (except P00) Vi = 0 V	$V_{DD} = 3.0 \text{ V} \pm 10 \%$	30		300	kΩ
	R _{U2}	Port 4, 5, 10	$V_{DD} = 5.0 \text{ V} \pm 10 \%$	15	40	70	kΩ
		$V_0 = V_{DD} - 2.0 V$	VDD = 3.0 V ±10 %	10		60	kΩ
Internal pull-down	R⊳	Port 9	VDD = 5.0 V ±10 %	10	40	70	kΩ
resistor		Vin = Vdd	VDD = 3.0 V ±10 %	10		60	kΩ

Parameter	r	Symbol	Tes	Test conditions		MIN.	TYP.	MAX.	Unit
Power supply	Note 1	IDD1	Note 2 4.19 MHz	VDD = 5.0	V ±10 % Note 3		2.5	8	mA
current			crystal oscilla-	VDD = 3 V	± 10 % Note 4		0.35	1.2	mA
		IDD2	tion C1 = C2 =	HALT	$V_{\text{DD}}=5~V~\pm10~\%$		500	1500	μA
			22 pF	mode	$V_{\text{DD}}=3~V~\pm10~\%$		150	450	μA
		Idd3	Note 5 32.768		$V_{DD} = 3 V \pm 10 \%$		30	90	μA
		IDD4	kHz crystal oscillation	HALT mode	V_{DD} = 3 V ±10 %		5	15	μΑ
		IDD5	XT1 = 0 V		VDD = 5 V ±10 %		0.5	20	μA
			STOP mode	VDD = 3 V			0.1	10	μA
				±10 %	Ta = 25 °C		0.1	5	μA

- Note 1. Current flowing into internal pull-up resistor is not contained.
 - 2. Case where subsystem clock is oscillated is also contained.
 - 3. When the processor clock control register (PCC) is set to 0011 and the μ PD75028 is operated in high speed mode.
 - 4. When PCC is set to 0000 and the μ PD75028 is operated in low speed mode.
 - 5. When the system clock control register (SCC) is set to 1001, main system clock oscillation is stopped and the μ PD75028 is operated with subsystem clock.

AC characteristics (T_a = -40 to +70 °C, V DD = 2.7 to 6.0 V)

Parameter	Symbol	Test cond	Test conditions		TYP.	MAX.	Unit
Note 1 CPU clock cycle	tcy	Operation with main	V _{DD} = 4.5 to 6.0 V	0.95		32	μs
time (minimum instruc-		system clock		3.8		32	μs
tion execution time = 1 machine cycle)		Operation with subsystem clock		114	122	125	μs
TI0 input frequency	fтı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0 input high, low level	tтıн,	VDD = 4.5 to 6.0 V		0.48			μs
width	t⊤ı∟			1.8			μs
Interrupt input high, low	tinth,	INTO		Note 2			μs
level width	t INTL	INT1, 2, 4		10			μs
		KR0 to 7		10			μs
RESET low level width	trsl			10			μs

Note 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC).

The right chart shows the cycle time tcv characteristics for power supply voltage VDD during main system clock operation.

2. 2tcy or 128/fx depending on how the interrupt mode register (IM0) is set.

Serial transfer operation

2-wire, 3-wire serial I/O mode (SCK - internal clock output)

Parameter	Symbol	Test cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	V _{DD} = 4.5 to 6.0 V		1600			ns
			3800			ns	
SCK high, low level	tKL1	V _{DD} = 4.5 to 6.0 V		tксү1/2–50			ns
width	tкнı			tксү1/2–150			ns
SI setup time (to SCK ↑)	tsik1			150			ns
SI hold time (from \overline{SCK} \uparrow)	tksi1			400			ns
$\overline{SCK} \downarrow \rightarrow SO \text{ output}$	tkso1	$R_L = 1 \ k\Omega$, Note	V _{DD} = 4.5 to 6.0 V	0		250	ns
delay time		C∟ = 100 pF		0		1000	ns

2-wire, 3-wire serial I/O mode (SCK - external clock input)

Parameter	Symbol	Test cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t ксү2	V _{DD} = 4.5 to 6.0 V		800			ns
			3200			ns	
SCK high, low level	tkl2	V _{DD} = 4.5 to 6.0 V		400			ns
width	t кн2			1600			ns
SI setup time (to SCK ↑)	tsik2			100			ns
SI hold time (from \overline{SCK} \uparrow)	tksi2			400			ns
$\overline{SCK} \downarrow \rightarrow SO \text{ output}$	tĸso2	$R_L = 1 k\Omega$, Note	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time		C∟ = 100 pF		0		1000	ns

Note R_L and C_L are output line load resistance and load capacitance, respectively.

SBI mode (SCK - internal clock output (master))

Parameter	Symbol	Te	est cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	V _{DD} = 4.5 to 6.0	V		1600			ns
					3800			ns
SCK high, low level	tкьз	V _{DD} = 4.5 to 6.0	V		tксүз/2–50			ns
width	tкнз				tксүз/2–150			ns
$\frac{\text{SB0, SB1 setup time (to}}{\text{SCK }\uparrow})$	tsікз				150			ns
SB0, SB1 hold time (from SCK ↑)	tкsıз				tксүз/2			ns
$\overline{SCK} \downarrow \rightarrow SB0, SB1$	tкsoз	$R_L = 1 k\Omega$,	Note	V _{DD} = 4.5 to 6.0 V	0		250	ns
output delay time		C∟ = 100 pF			0		1000	ns
$\overline{SCK} \uparrow \rightarrow SB0, 1 \downarrow$	tкsв				tксүз			ns
SB0, $1 \downarrow \rightarrow \overline{\text{SCK}}$	tsвк				tксүз			ns
SB0, SB1 low level width	tsbl				tксүз			ns
SB0, SB1 high level width	tsвн				tксүз			ns

SBI mode (SCK - external clock input (slave))

Parameter	Symbol	Te	est cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t ксү4	V _{DD} = 4.5 to 6.0	V		800			ns
					3200			ns
SCK high, low level	tĸL₄	V _{DD} = 4.5 to 6.0	V		400			ns
width	t кн4				1600			ns
SB0, SB1 setup time (to SCK ↑)	tsik4				100			ns
SB0, SB1 hold time (from SCK ↑)	tksi4				tксү4/2			ns
$\overline{SCK} \downarrow \rightarrow SB0, SB1$	tkso4	$R_L = 1 k\Omega$,	Note	V _{DD} = 4.5 to 6.0 V	0		300	ns
output delay time		C _L = 100 pF			0		1000	ns
$\overline{SCK} \uparrow \rightarrow SB0, 1 \downarrow$	tкsв				tkcy4			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк				tkcy4			ns
SB0, SB1 low level width	tsbl				t ксү4			ns
SB0, SB1 high level width	tsвн				tĸcy₄			ns

Note RL and CL are SB0, SB1 output line load resistance and load capacitance, respectively.

A/D converter (Ta = -40 to +70 °C, V dd = 2.7 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Test cond	itions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute accuracy Note 1		$2.5 \text{ V} \leq AV_{\text{REF}+} \leq AV_{\text{DD}}$	$-10 \le T_a \le +70$ °C			±1.5	LSB
			$-40 \le T_a < -10 \ ^{\circ}C$			±2.0	
Conversion time Note 2	t CONV					168/fx	μs
Sampling time Note 3	t samp					44/f×	μs
Analog input voltage	VIAN			AV _{REF-}		AV _{REF+}	V
Analog supply voltage	AVDD			2.5		VDD	V
Reference input voltage ^{Note 4}	AV _{REF+}	$2.5 \text{ V} \leq (\text{AV}_{\text{REF}+}) - (\text{AV}_{\text{REF}+})$	F-)	2.5		AVDD	V
Reference input voltage ^{Note 4}	AV _{REF-}	$2.5 \text{ V} \leq (\text{AV}_{\text{REF}+}) - (\text{AV}_{\text{REF}+})$	F_)	0		1.0	V
Analog input impedance	Ran				1000		MΩ
AVREF current	IREF				0.25	2.0	mA

Note 1. Absolute accuracy from which quantization error ($\pm 1/2$ LSB) is removed.

- **2.** Time until conversion end (EOC = 1) after conversion start instruction execution (40.1 μ s: During fx = 4.19 MHz operation).
- **3.** Time until sampling end after conversion start instruction execution (10.5 μ s: During fx = 4.19 MHz operation).
- 4. $(AV_{REF+}) (AV_{REF-})$ must be more than 2.5 V.

AC timing test points (Except X1, XT1)

Clock timing

TI0 timing

NEC

Serial transfer timing

Serial I/O mode (2-wire)

Serial transfer timing

SBI mode bus release signal transfer timing

SBI mode command signal transfer timing

Interrupt input timing

RESET input timing

Data memory STOP mode low voltage data retention characteristics (T_a = -40 to +70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vdddr		2.0		6.0	V
Data retention Note 1 current	Idddr	$V_{DDDR} = 2.0 V$		0.1	10	μA
Release signal SET time	t SREL		0			μs
Oscillation Note 2	t WAIT	Release by RESET input		2 ¹⁷ /fx		ms
stabilization time		Release by interrupt request		Note 3		ms

Note 1. On-chip pull-up resistor current is not included in this table.

- **2.** The oscillation stabilization WAIT time is the time during which the CPU operation is stopped to prevent unstable operation when oscillation is started.
- **3.** The WAIT time depends on the setting of the basic interval timer mode register (BTM) according to the following table.

BTM3	BTM2	BTM1	BTM0	WAIT time ($f_X = 4.19$ MHz)
-	0	0	0	2 ²⁰ /fx (approx. 250 ms)
-	0	1	1	2 ¹⁷ /fx (approx. 31.3 ms)
-	1	0	1	2 ¹⁵ /fx (approx. 7.82 ms)
-	1	1	1	2 ¹³ /fx (approx. 1.95 ms)

Data retention timing (STOP mode is released by RESET input)

Data retention timing (Standby release signal: STOP mode is released by interrupt signal)

 μ PD75028

★

11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

IDD vs. VDD (Main system clock: 4.19 MHz, crystal resonator)

NEC

IDD vs. VDD (Main system clock: 2.0 MHz, crystal resonator)

Supply voltage: VDD [V]

IDD vs. VDD (Main system clock: 4.19 MHz, ceramic resonator)

Supply voltage: VDD [V]

 $(Ta=25^{\circ}C)$ 5.0 X1 X2 XT1 XT2 Ceramic Crystal resonator: resonator: ≥330 kW 3.0 2.0 MHz 32.768 kHz PCC=0011 30 pF 30 pF 18 pF 18 pF PCC=0010 ÷ PCC=0000 VDD VDD 1.0 Main system clock: HALT mode+ 32-kHz oscillation 0.5 Supply current IDD [mA] Subsystem clock: Operation mode 0.1 0.05 Main system clock: STOP mode+ 32-kHz oscillation, or Subsystem clock: HALT mode 0.01 0.005 0.001 2 0 4 6 8

IDD vs. VDD (Main system clock: 2.0 MHz, ceramic resonator)

Supply voltage: VDD [V]

fx [MHz]

IOL vs. VOL (Port 2, 6 through 10)

(Ta=25°C) 40 VDD=6 V 30 VDD=5 V VDD=4 V [Ym] ^TOI 20 VDD=3 V VDD=2.7 V 10 0 3 1 2 4 0 5 VOL [V]

IOL VS. VOL (Port 3)

Іон vs. Vон

12. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
Ι	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Ν	0.17	0.007
R	0~15°	0~15°
		P64C-70-750A,C-1

64 PIN PLASTIC QFP (□14)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P64GC-80-AB8-2
ITEM	MILLIMETERS	INCHES
А	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014\substack{+0.004 \\ -0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	0.006+0.004 -0.003
Ν	0.15	0.006
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

NEC

13. RECOMMENDED SOLDERING CONDITIONS

The following conditions (See table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Table 13-1 Type of Surface Mount Device

μ PD75028GC-×××-AB8: 64-pin plastic QFP (\Box 14 mm)

Soldering Process	Soldering Conditions	Symbol
Wave Soldering	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less, Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards) Temperature of pre-heat: 120 °C or lower (Package surface temperature) Number of flow process: 1	WS60-107-1
Infrared Ray Reflow	Peak temperature of package surface: 230 °C or lower Reflow time: 30 seconds or less (210 °C or higher), Number or reflow process: 1 Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	IR30-107-1
VPS	Peak temperature of package surface: 215 °C or lower Reflow time: 40 seconds or less (200 °C or higher), Number of reflow process: 1 Exposure limit ^{Note} : 7 days (10 hours pre-baking is required at 125 °C afterwards)	VP15-107-1
Partial Heating Method	Pin temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package)	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

Table 13-2 Type of Through Hole Device

μ PD75028CW- \times × \times : 64-pin plastic shrink DIP (750 mil)

Soldering Process	Soldering Conditions	
Wave Soldering	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less	
Partial HeatingPin temperature: 260 °C or lower,MethodTime: 10 seconds or less		

Caution Do not jet molten solder on the surface of package.

-PRODUCT NEWS-

A product whose recommended soldering conditions have been improved is available. (Improvements: Expansion of infrared ray reflow soldering peak temperature (235 °C), two sessions of soldering, extended term of storage, etc.) For details, contact our sales staff.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the μ PD75028.

Hardware	IE-75000-R ^{Note 1} IE-75001-R		In-circuit emulator for 75X series	
	IE-75000-R-EM Note 2		Emulation board for IE-75000-R and IE-75001-R	
	EP-75028CW-R		Emulation probe for μ PD75028CW	
	EP-75028GC-R			
		EV-9200GC-64	Emulation probe for μ PD75028GC with the 64-pin conversion socket EV-9200GC-64	
	PG-1500		PROM programmer	
	PA-75P036CW		PROM programmer adapter for μ PD75P036CW. Connected to PG-1500.	
	PA-75P036GC		PROM programmer adapter for μ PD75P036GC. Connected to PG-1500.	
	IE control program			
Software	PG-1500 controller		Host machine • PC-9800 series (MS-DOS [™] Ver. 3.30 to Ver. 5.00A ^{№ te 3}) • IBM PC/AT [™] (PC DOS [™] Ver. 3.1)	
	RA75X relocatable assembler			

- **Note 1.** Available for maintenance purpose only.
 - 2. Not included with IE-75001-R.
 - **3.** Ver. 5.00/5.00A has a task swap function. However, it cannot be used for these software programs.
- Remark For development tools available from third parties, please refer to "75X Series Selection Guide (IFxxx)."

★

APPENDIX B. RELATED DOCUMENTS

List of documents related to devices

Document	Document No.
User's Manual	IEU-694
Instruction Table	IEM-5511
Application Note	IEA-689
75X Series Selection Guide	IF-151

List of documents related to development tools

Document			Document No.
Hardware	re IE-75000-R/IE-75001-R User's Manual		EEU-846
	IE-75000-R-EM User's Manual		
	EP-75028CW-R User's Manual		EEU-697
	EP-75028GC-R User's Manual		EEU-692
	PG-1500 User's Manual		EEU-651
Software	RA75X Assembler Package User's Manual	Operation	EEU-731
		Language	EEU-730
	PG-1500 Controller User's Manual		EEU-704

Other documents

Document	Document No.	
Package Manual	IEI-635	
Semiconductor Device Mounting Technology Manual	IEI-616	
NEC Semiconductor Device Quality Grades	IEI-620	
NEC Semiconductor Device Reliability and Quality Control	IEM-5068	
About Electrostatic Discharge (ESD) Test	MEM-539	
Semiconductor Device Quality Assurance Guide	MEI-603	
Microcomputer-Related Product Guide: Third Parties' Products	MEI-604	

Remark The document numbers are those of Japanese-version documents.

Caution The above documents are subject to change without notice. Be sure to use the latest documents for design or for any other similar purpose.

[MEMO]

- NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.