Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT

 μ PD72862

IEEE1394 OHCI HOST CONTROLLER

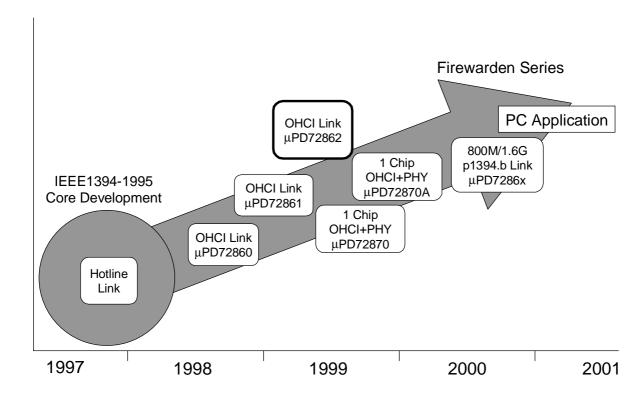
The μ PD72862 is IEEE1394 OHCI-Link controller. The μ PD72862 complies with the P1394a draft 2.0 specifications and works up to 400 Mbps.

It supports both of the Cardbus interface and the PCI bus interface.

FEATURES

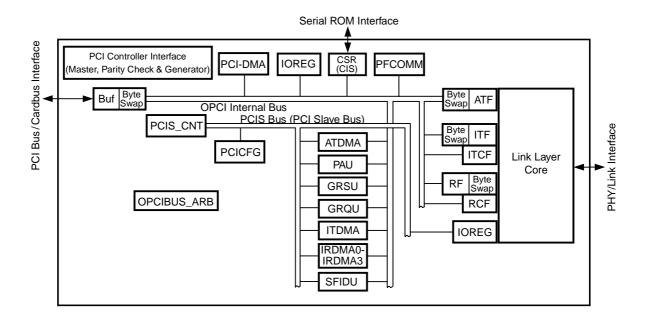
- Compliant with Link Layer Services as defined in 1394 Open Host Controller Interface specification release 1.0
- Compliant with protocol enhancement as defined in P1394a draft 2.0
- Modular 32-bit host interface compliant to PCI Specification release 2.1
- Supports PCI-Bus Power Management Interface Specification release 1.0
- Supports Cardbus
- Equipped CIS register
- Cycle Master and Isochronous Resource Manager capable
- Compatible to PHY Layer implementation of 100/200/400 Mbps via 2/4/8-bit data interface
- Built-in FIFOs for isochronous transmit (1024 bytes), asynchronous transmit (1024 bytes), and receive (2048 bytes)
- 32-bit CRC generation and checking for receive/transmit packets
- · 4-isochronous transmit DMAs and 4-isochronous receive DMAs supported
- Support both IEEE1394-1995 compliant PHY and P1394a compliant PHY
- · Internal control and operational registers direct-mapped to PCI configuration space
- 2-wire Serial EEPROM™ interface supported

ORDERING INFORMATION


Part number	Package
μPD72862GC-9EU	100-pin plastic TQFP (Fine pitch) (14 x 14)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



Firewarden™ ROADMAP

BLOCK DIAGRAM

ATDMA : Asynchronous Transmit DMA ATF : Asynchronous Transmit FIFO

CIS : CIS Register

CSR : Control and Status Registers

IOREG : IO Registers

IRDMA : Isochronous Receive DMA

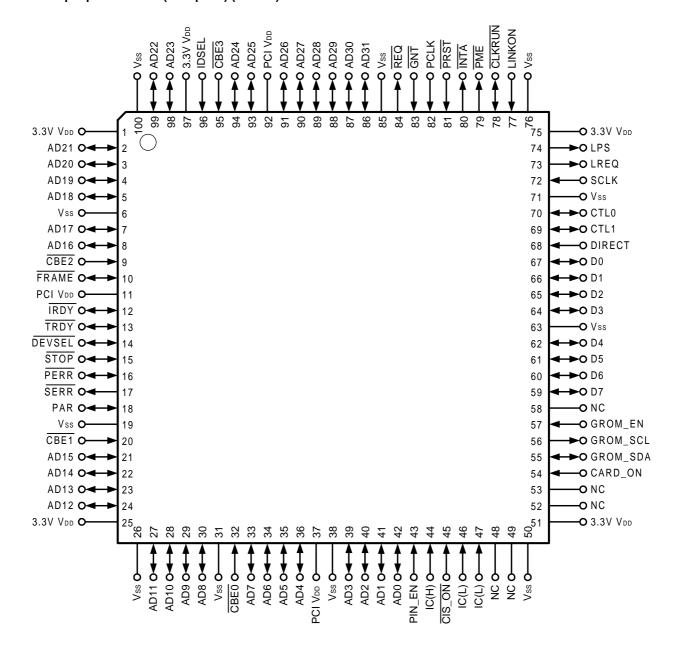
ITCF : Isochronous Transmit Control FIFO

ITDMA : Isochronous Transmit DMA
ITF : Isochronous Transmit FIFO
OPCIBUS ARB : OPCI Internal Bus Arbitration

PAU : Physical Response and Request Unit

PCICFG : PCI Configuration Registers
PCIS_CNT : PHY Control Isochronous Control

PFCOMM : Pre Fetch Command FIFO RCF : Receive Control FIFO


RF : Receive FIFO SFIDU : Self-ID DMA

PIN CONFIGURATION (Top View)

Though the current implementation of the μ PD72862 includes signal pins for debugging and testing purpose, the package remains a cost efficient 100-pin TQFP package.

• 100-pin plastic TQFP (Fine pitch) (14 x 14)

PIN NAME

AD0-AD31 : PCI Multiplexed Address and Data

CARD_ON : PCI/Card Select

CBE0-CBE3 : Command/Byte Enables

 CIS_ON
 : CIS Register ON

 CLKRUN
 : PCICLK Running

CTL0, CTL1 : PHY/Link Bi-directional Control

DEVSEL : Device Select

DIRECT : Auxiliary PHY/Link Signal
D0-D7 : PHY/Link Bi-directional Data

FRAME : Cycle Frame

GNT : Bus_master Grant

GROM_EN : Serial EEPROM Enable

GROM_SCL : Serial EEPROM Clock Output

GROM_SDA : Serial EEPROM Data Input / Output

IC (H) : Internally Connected (High Clamped)

IC (L) : Internally Connected (Low Clamped)

IDSEL : ID Select

INTA : Interrupt

IRDY : Initiator Ready

LINKON : Link-On Request

LPS : Link Power Status

LREQ : PHY/Link Request

NC : Non-Connection

PAR : Parity
PCLK : PCI Clock
PERR : Parity Error
PIN_EN : Pin Enable Input
PME : PME Output

PRST : Reset

REQ : Bus_master Request

SCLK: PHY ClockSERR: System ErrorSTOP: PCI StopTRDY: Target ReadyVDD: Supply Voltage

Vss : Ground

CONTENTS

1.	PIN FUNCTIONS	
	1.1 PCI Bus Interface Signals: (52 pins)	8
	1.2 PCI/Cardbus Select Signals: (2 pins)	9
	1.3 PHY/Link Interface Signals: (15 pins)	10
	1.4 Serial ROM Interface Signals: (3 pins)	10
	1.5 Miscellaneous Signal: (1 pin)	10
	1.6 IC: (3 pins)	10
	1.7 NC: (5 pins)	10
	1.8 Vdd: (8 pins)	10
	1.9 Vss: (11 pins)	10
2.	REGISTER DESCRIPTIONS	11
	2.1 PCI Bus Mode Configuration Register (CARD_ON=Low)	11
	2.1.1 Offset_00 VendorID Register	12
	2.1.2 Offset_02 DeviceID Register	12
	2.1.3 Offset_04 Command Register	12
	2.1.4 Offset_06 Status Register	13
	2.1.5 Offset_08 Revision ID Register	14
	2.1.6 Offset_09 Class Code Register	14
	2.1.7 Offset_0C Cache Line Size Register	14
	2.1.8 Offset_0D Latency Timer Register	14
	2.1.9 Offset_0E Header Type Register	14
	2.1.10 Offset_0F BIST Register	14
	2.1.11 Offset_10 Base Address 0 Register	15
	2.1.12 Offset_2C Subsystem Vendor ID Register	15
	2.1.13 Offset_2E Subsystem ID Register	15
	2.1.14 Offset_30 Expansion Rom Base Address Register	15
	2.1.15 Offset_34 Cap_Ptr Register	15
	2.1.16 Offset_3C Interrupt Line Register	16
	2.1.17 Offset_3D Interrupt Pin Register	16
	2.1.18 Offset_3E Min_Grant Register	16
	2.1.19 Offset_3F Max Lat Register	16
	2.1.20 Offset_40 PCI_OHCI_Control Register	16
	2.1.21 Offset_60 Cap_ID & Next_Item_Ptr Register	17
	2.1.22 Offset_62 Power Management Capabilities Register	17
	2.1.23 Offset_64 Power Management Control/Status Register	
	2.2 CardBus Mode Configuration Register (CARD_ON=High)	18
	2.2.1 Offset_14/18 Base_Address_1/2 Register (CardBus Status Registers)	19
	2.2.2 Offset_28 Cardbus CIS Pointer	20
	2.2.3 Offset_80 CIS Area	20
3.	SERIAL ROM INTERFACE	21
	3.1 Serial EEPROM Register	21
	3.2 Serial EEPROM Register Description	21
	3.3 Load Control	
	3.4 Programming Sequence Example	25

4.	ELECTRICAL SPECIFICATIONS	. 27
5.	APPLICATION CIRCUIT EXAMPLE	30
6.	PACKAGE DRAWING	31
7.	RECOMMENDED SOLDERING CONDITIONS	. 32

1. PIN FUNCTIONS

1.1 PCI Bus Interface Signals: (52 pins)

(1/2)

Name	I/O	Pin No.	loL	Volts(V)	Function
PAR	I/O	18	PCI/Cardbus	5/3.3	Parity is even parity across AD0-AD31 and CBE0-CBE3. It is an
					input when AD0-AD31 is an input; it is an output when AD0-AD31 is
					an output.
AD0-AD31	I/O	2-5, 7, 8,	PCI/Cardbus	5/3.3	PCI Multiplexed Address and Data
		21-24,			
		27-30,			
		33-36,			
		39-42,			
		86-91,			
		93, 94,			
		98, 99			
CBE0-CBE3	I	9, 20,	-	5/3.3	Command/Byte Enables are multiplexed Bus Commands & Byte
		32, 95			enables.
FRAME	I/O	10	PCI/Cardbus	5/3.3	Cycle Frame is asserted by the initiator to indicate the cycle
					beginning and is kept asserted during the burst cycle.
					If Cardbus mode (CARD_ON = 1), this pin is should be pulled up to
					V _{DD} .
TRDY	I/O	13	PCI/Cardbus	5/3.3	Target Ready indicates that the current data phase of the
					transaction is ready to be completed.
IRDY	I/O	12	PCI/Cardbus	5/3.3	Initiator Ready indicates that the current bus master is ready to
					complete the current data phase. During a write, its assertion
					indicates that the initiator is driving valid data onto the data bus.
					During a read, its assertion indicates that the initiator is ready to
					accept data from the currently-addressed target.
REQ	0	84	PCI/Cardbus	5/3.3	Bus_master Request indicates to the bus arbiter that this device
					wants to become a bus master.
GNT	I	83	-	5/3.3	Bus_master Grant indicates to this device that access to the bus
					has been granted.
IDSEL	I	96	-	5/3.3	ID Select when actively driven, indicates that the IUHC is chip-
					selected for configuration read/write transaction during the phase of
					device initialization.
					If Cardbus mode (CARD_ON = 1), this pin is should be pulled up to
					V _{DD} .
DEVSEL	I/O	14	PCI/Cardbus	5/3.3	Device Select when actively driven, indicates that the driving device
					has decoded its address as the target of the current access.
STOP	I/O	15	PCI/Cardbus	5/3.3	PCI Stop when actively driven, indicates that the target is
					requesting the current bus master to stop the transaction.

8

(2/2)

Name	I/O	Pin No.	Іоь	Volts(V)	Function
PME	0	79	PCI/Cardbus	5/3.3	PME Output for power management enable.
					Caution The PME pin is not an N-channel open drain structure pin. Therefore, when using S3, S4, S5 state in ACPI, a circuit that can separate between the power supply and the PME pin externally is needed. ACPI: Advanced Configuration and Power Interface.
					Please refer to ACPI Specification.
CLKRUN	I/O	78	PCI/Cardbus	5/3.3	PCICLK Running as input, to determine the status of PCLK; as
					output, to request starting or speeding up clock.
ĪNTA	0	80	PCI/Cardbus	5/3.3	Interrupt the PCI interrupt request A.
PERR	I/O	16	PCI/Cardbus	5/3.3	Parity Error is used for reporting data parity errors during all PCI transactions, except a Special Cycle. It is an output when AD0-
					AD31 and PAR are both inputs. It is an input when AD0-AD31 and
					PAR are both outputs.
SERR	0	17	PCI/Cardbus	5/3.3	System Error is used for reporting address parity errors, data parity
					errors during the Special Cycle, or any other system error where the
					effect can be catastrophic. When reporting address parity errors, it
					is an output.
PRST	I	81	-	5/3.3	Reset PCI reset
PCLK	I	82	-	5/3.3	PCI Clock 33 MHz system bus clock.

1.2 PCI/Cardbus Select Signals: (2 pins)

Name	I/O	Pin No.	Іоь	Volts(V)			Functio	n
CARD_ON	I	54	-	3.3	PCI/Card Select	(1:Cardbus,	0:PCI b	us)
CIS_ON	I	45	-	3.3	CIS Register ON			
					_ CARD_ON	CIS_ON	CIS	PME
					0	1	off	PME
					0	0	on	CSTSCHG
ı					1	Χ	on	CSTSCHG

1.3 PHY/Link Interface Signals: (15 pins)

Name	I/O	Pin No.	Іоь	Volts(V)	Function
D0-D7	I/O	59-62,	9mA	3.3	PHY/Link Bi-directional Data (ISO-barrier supported)
		64-67			
CTL0,CTL1	I/O	69, 70	9mA	3.3	PHY/Link Bi-directional Control (ISO-barrier supported)
LREQ	0	73	9mA	3.3	PHY/Link Request (ISO-barrier supported)
LINKON	Ι	77	-	3.3	Link-On Request (ISO-barrier supported)
LPS	0	74	9mA	3.3	Link Power Status (ISO-barrier supported)
SCLK	I	72	-	3.3	PHY Clock 49.152 MHz (ISO-barrier supported)
DIRECT		68	-	3.3	Auxiliary PHY/Link Signal is used to determine whether the
					interconnection between Link and PHY has isolation ('low': ISO-
					barrier; 'high': no ISO-barrier).

1.4 Serial ROM Interface Signals: (3 pins)

Name	I/O	Pin No.	Іоь	Volts(V)	Function
GROM_SDA	I/O	55	6mA	3.3	Serial EEPROM Data Input / Output
GROM_SCL	0	56	6mA	3.3	Serial EEPROM Clock Output
GROM_EN	ı	57	-	3.3	Serial EEPROM Enable ('high': GUID Load enabled; 'low': GUID
					Load disabled)

1.5 Miscellaneous Signal: (1 pin)

Name	I/O	Pin No.	lol	Volts(V)	Function
PIN_EN	I	43	-	5/3.3	Pin Enable Input (High clamped)

1.6 IC: (3 pins)

Name	I/O	Pin No.	loL	Volts(V)	Function
IC(H)	I	44	-	3.3	Internally Connected (High clamped)
IC(L)	I	46, 47	-	3.3	Internally Connected (Low clamped)

1.7 NC: (5 pins)

Name	I/O	Pin No.	lol	Volts(V)	Function
NC	-	48, 49,	-	-	Non- Connection (Open)
		52, 53,			Leave them unconnected.
		58			

1.8 V_{DD}: (8 pins)

 V_{DD} (5 V PCI or 3.3 V PCI) for PCI I/Os: 11, 37, 92 V_{DD} 3 V for digital core & PHY/Link I/Os: 1, 25, 51, 75, 97

1.9 Vss: (11 pins)

Vss: 6, 19, 26, 31, 38, 50, 63, 71, 76, 85, 100

2. REGISTER DESCRIPTIONS

2.1 PCI Bus Mode Configuration Register (CARD_ON=Low)

31 24	23 16	15 08	07	00					
Dev	viceID	VendorID							
St	atus	Com	mand						
	Class Code	Revision ID							
BIST	Header Type	Latency Timer	Cache Line Size						
	Base Address 0	(OHCI Registers)							
Base Address 1									
	Base Ad	ddress 2							
	Base Ad	ddress 3							
	Base Ad	ddress 4							
	Base Ad	ddress 5							
	CardBus C	CIS Pointer							
Subsy	rstem ID	<u> </u>	Nendor ID						
	Expansion Rom Bas	se Address Register	ı						
	H000000		Cap_Ptr						
	00000	0000H							
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line						
	PCI_OHO	CI_Control							
	00000								
	00000								
	00000								
	Diagnostic	c register0							
	Diagnostic	c register1							
		c register2							
		c register3		_					
	ment Capabilities	Next_Item_Ptr	Cap_ID	4					
Data	PMCSR_BSE		ent Control/Status	_					
		0000H							
		0000H							
	·	ERAL_RegisterA)		_					
		ERAL_RegisterB)		4					
		ERAL_RegisterC)							
		ERAL_RegisterD)							
	00000	0000H							

2.1.1 Offset_00 VendorID Register

This register identifies the manufacturer of the μ PD72862. The ID is assigned by the PCI_SIG committee.

Bits	R/W	Description
15-0	R	Constant value of 1033H.

2.1.2 Offset_02 DeviceID Register

This register identifies the type of the device for the μ PD72862. The ID is assigned by NEC Corporation.

Bits	R/W	Description
15-0	R	Constant value of 0063H.

2.1.3 Offset_04 Command Register

The register provides control over the device's ability to generate and respond to PCI cycles.

Bits	R/W	Description
0	R	I/O enable Constant value of 0. The μ PD72862 does not respond to PCI I/O accesses.
1	R/W	Memory enable Default value of 1. It defines if the μ PD72862 responds to PCI memory
		accesses. This bit should be set to one upon power-up reset.
		0: The μ PD72862 does not respond to PCI memory cycles
		1: The μPD72862 responds to PCI memory cycles
2	R/W	Master enable Default value of 1. It enables the μ PD72862 as bus-master on the PCI-bus.
		0: The μPD72862 cannot generate PCI accesses by being a bus-master
		1: The μ PD72862 is capable of acting as a bus-master
3	R	Special cycle monitor enable Constant value of 0. The special cycle monitor is always
		disabled.
4	R/W	Memory write and invalidate enable Default value of 0. It enables Memory Write and Invalid
		Command generation.
		0: Memory write must be used
		1: The μ PD72862, when acts as PCI master, can generate the command
5	R	VGA color palette invalidate enable Constant value of 0. VGA color palette invalidate is
		always disabled.
6	R/W	Parity error response Default value of 0. It defines if the μ PD72862 responds to $\overline{\text{PERR}}$.
		0: Ignore parity error
		1: Respond to parity error
7	R	Stepping enable Constant value of 0. Stepping is always disabled.
8	R/W	System error enable Default value of 0. It defines if the μ PD72862 responds to SERR.
		0: Disable system error checking
		1: Enable system error checking
9	R	Fast back-to-back enable Constant value of 0. Fast back-to-back transactions are only
		allowed to the same agent.
15-10	R	Reserved Constant value of 000000.

2.1.4 Offset_06 Status Register

This register tracks the status information of PCI-bus related events which are relevant to the μ PD72862. "Read" and "Write" are handled somewhat differently.

Bits	R/W	Description
3-0	R	Reserved Constant value of 0000.
4	R	New capabilities Constant value of 1. It indicates the existence of the Capabilities List.
6,5	R	Reserved Constant value of 00.
7	R	Fast back-to-back capable Constant value of 1. It indicates that the μ PD72862, as a target,
		cannot accept fast back-to-back transactions when the transactions are not to the same agent.
8	R/W	Signaled parity error Default value of 0. It indicates the occurrence of any "Data Parity".
		0: No parity detected (default)
		1: Parity detected
10,9	R	DEVSEL timing Constant value of 01. These bits define the decode timing for DEVSEL.
		0: Fast (1 cycles)
		1: Medium (2 cycles)
		2: Slow (3 cycles)
		3: undefined
11	R/W	Signaled target abort Default value of 0. This bit is set by a target device whenever it
		terminates a transaction with "Target Abort".
		0: The μ PD72862 did not terminate a transaction with Target Abort
		1: The μ PD72862 has terminated a transaction with Target Abort
12	R/W	Received target abort Default value of 0. This bit is set by a master device whenever its
		transaction is terminated with a "Target Abort".
		0: The μ PD72862 has not received a Target Abort
		1: The μ PD72862 has received a Target Abort from a bus-master
13	R/W	Received master abort Default value of 0. This bit is set by a master device whenever its
		transaction is terminated with "Master Abort". The μ PD72862 asserts "Master Abort" when a
		transaction response exceeds the time allocated in the latency timer field.
		0: Transaction was not terminated with a Master Abort
		1: Transaction has been terminated with a Master Abort
14	R/W	Signaled system error Default value of 0. It indicates that the assertion of SERR by the
		μPD72862.
		0: System error was not signaled
		1: System error was signaled
15	R/W	Received parity error Default value of 0. It indicates the occurrence of any PERR.
		0: No parity error was detected
		1: Parity error was detected

2.1.5 Offset_08 Revision ID Register

This register specifies a revision number assigned by NEC Corporation for the μ PD72862.

Bits	R/W	Description
7-0	R	Default value of 02H. It specifies the silicon revision. It will be incremented for subsequent
		silicon revisions.

2.1.6 Offset_09 Class Code Register

This register identifies the class code, sub-class code, and programming interface of the μ PD72862.

Bits	R/W	Description
7-0	R	Constant value of 10H. It specifies an IEEE1394 OpenHCI-compliant Host Controller.
15-8	R	Constant value of 00H. It specifies an "IEEE1394" type.
23-16	R	Constant value of 0CH. It specifies a "Serial Bus Controller".

2.1.7 Offset_0C Cache Line Size Register

This register specifies the system cache line size, which is PC-host system dependent, in units of 32-bit words. The following cache line sizes are supported: 2, 4, 8, 16, 32, 64, and 128. All other values will be recognized as 0, i.e. cache disabled.

Bits	R/W	Description
7-0	R/W	Default value of 00H.

2.1.8 Offset_0D Latency Timer Register

This register defines the maximum amount of time that the μ PD72862 is permitted to retain ownership of the bus after it has acquired bus ownership and initiated a subsequent transaction.

Bits	R/W	Description
7-0	R/W	Default value of 00H. It specifies the number of PCI-bus clocks that the μ PD72862 may hold
		the PCI bus as a bus-master.

2.1.9 Offset_0E Header Type Register

Bits	R/W	Description
7-0	R	Constant value of 00H. It specifies a single function device.

2.1.10 Offset_0F BIST Register

Bits	R/W	Description
7-0	R	Constant value of 00H. It specifies whether the device is capable of Built-in Self Test.

2.1.11 Offset_10 Base Address 0 Register

This register specifies the base memory address for accessing all the "Operation registers" (i.e. control, configuration, and status registers) of the μ PD72862, while the BIOS is expected to set this value during power-up reset.

Bits	R/W	Description
11-0	R	Constant value of 000H. These bits are "read-only".
31-12	R/W	-

2.1.12 Offset_2C Subsystem Vendor ID Register

This register identifies the subsystem that contains the NEC's μ PD72862 function. While the ID is assigned by the PCI_SIG committee, the value should be loaded into the register from the external serial EEPROM after power-up reset. Access to this register through PCI-bus is prohibited.

Bits	R/W	Description
15-0	R	Default value of 1033H.

2.1.13 Offset_2E Subsystem ID Register

This register identifies the type of the subsystem that contains the NEC's μ PD72862 function. While the ID is assigned by the manufacturer, the value should be loaded into the register from the external serial EEPROM after power-up reset. Access to this register through PCI-bus is prohibited.

Bits	R/W	Description
15-0	R	Default value of 0063H.

2.1.14 Offset_30 Expansion Rom Base Address Register

This register is not supported by the current implementation of the μ PD72862.

Bits	R/W	Description
31-0	R	Reserved Constant value of 0.

2.1.15 Offset_34 Cap_Ptr Register

This register points to a linked list of additional capabilities specific to the μ PD72862, the NEC's implementation of the 1394 OpenHCI specification.

Bits	R/W	Description	
7-0	R	Constant value of 60H. The value represents an offset into the μ PD72862's PCI Configuration	
		Space for the location of the first item in the New Capabilities Linked List.	

2.1.16 Offset_3C Interrupt Line Register

This register provides the interrupt line routing information specific to the μ PD72862, the NEC's implementation of the 1394 OpenHCI specification.

Bits	R/W	Description	
7-0	R/W	Default value of 00H. It specifies which input of the host system interrupt controller the	
		nterrupt pin of the μ PD72862 is connected to.	

2.1.17 Offset_3D Interrupt Pin Register

This register provides the interrupt line routing information specific to the μ PD72862, the NEC's implementation of the 1394 OpenHCI specification.

Bits	R/W	Description	
7-0	R	Constant value of 01H. It specifies PCI INTA is used for interrupting the host system.	

2.1.18 Offset_3E Min_Grant Register

This register specifies how long of a burst period the μ PD72862 needs, assuming a clock rate of 33MHz. Resolution is in units of $\frac{1}{4}$ μ s. The value should be loaded into the register from the external serial EEPROM upon power-up reset, and access to this register through PCI-bus is prohibited.

Bits	R/W	Description	
7-0	R	Default value of 00H. Its value contributes to the desired setting for Latency Timer value.	

2.1.19 Offset_3F Max Lat Register

This register specifies how often the μ PD72862 needs to gain access to the PCI-bus, assuming a clock rate of 33MHz. Resolution is in units of $\frac{1}{4}$ μ s. The value should be loaded into the register from the external serial EEPROM after hardware reset, and access to this register through PCI-bus is prohibited.

Bits	R/W	Description	
7-0	R	Default value of 00H. Its value contributes to the desired setting for Latency Timer value.	

2.1.20 Offset_40 PCI_OHCI_Control Register

This register specifies the control bits that are IEEE1394 OpenHCl specific. Vendor options are not allowed in this register. It is reserved for OpenHCl use only.

Bits	R/W	Description
0	R/W	PCI global SWAP Default value of 0. When this bit is 1, all quadrates read from and written to
	the PCI Interface are byte swapped, thus a "PCI Global Swap". PCI addresses for expansion ROM and PCI Configuration registers, are, however, unaffected by this bit. This bit is not	
		ROM and PCI Configuration registers, are, however, unaffected by this bit. This bit is not
		required for motherboard implementations.
31-1	R	Reserved Constant value of all 0.

2.1.21 Offset_60 Cap_ID & Next_Item_Ptr Register

The Cap_ID signals that this item in the Linked List is the registers defined for PCI Power Management, while the Next_Item_Ptr describes the location of the next item in the μ PD72862's Capability List.

Bits	R/W	Description	
		Cap_ID Constant value of 01H. The default value identified the Link List item as being the PCI	
		Power Management registers, while the ID value is assigned by the PCI SIG.	
15-8	R	Next_Item_Ptr Constant value of 00H. It indicated that there are no more items in the Link	
		List.	

2.1.22 Offset_62 Power Management Capabilities Register

This is a 16-bit read-only register that provides information on the power management capabilities of the μ PD72862.

Bits	R/W	Description	
2-0	R	version Constant value of 001. The power management registers are implemented as defined	
		in revision 1.0 of PCI Bus Power Management Interface Specification.	
3	R	PME clock Constant value of 0.	
4	R	Auxiliary power source Constant value of 0. The alternative power source is not supported.	
5	R	DIS Constant value of 0.	
8,6	R	Reserved Constant value of 000.	
9	R	D1_support Constant value of 0. The μPD72862 does not support the D1 Power	
		Management state.	
10	R	D2_support Constant value of 1. The μPD72862 supports the D2 Power Management state.	
15-11	R	PME_support Constant value of 01100.	

2.1.23 Offset_64 Power Management Control/Status Register

This is a 16-bit read-only register that provides control status information of the μ PD72862.

Bits	R/W	Description	
1,0	R/W	PowerState Default value is undefined. This field is used both to determine the current power	
		state of the μ PD72862 and to set the μ PD72862 into a new power state. As D1 is not	
		supported in the current implementation of the μ PD72862, writing of '01' will be ignored.	
		00: D0 (DMA contexts: ON, Link Layer: ON)	
		01: Reserved (D1 state not supported)	
		10: D2 (DMA contexts: OFF, Link Layer: OFF, LPS: OFF, PME will be asserted upon	
		LinkON being active)	
		11: D3 (DMA contexts: OFF, Link Layer: OFF, LPS: OFF, PME will be asserted upon	
		LinkON being active, Power can be removed)	
7-2	R	Reserved Constant value of 000000.	
8	R/W PME_En Default value of 0. This field is used to enable the specific power managemen		
		features of the μ PD72862.	
12-9	R	Data_Select Constant value of 0000.	
14,13	R	Data_Scale Constant value of 00.	
15 R/W PME_Status Default value is undefined. A write of '1' clears this bit, while		PME_Status Default value is undefined. A write of '1' clears this bit, while a write of '0' is	
		ignored.	

2.2 CardBus Mode Configuration Register (CARD_ON=High)

1 24	23 16	15 08	07 0	
De	viceID	Ven	dorlD	
S	tatus	Command		
	Class Code		Revision ID	
BIST	Header Type	Latency Timer	Cache Line Size	
	Base Address 0	(OHCI Registers)		
	Base Address 1 (Care	dBus Status Reg) Note		
	Base Address 2 (Card	dBus Status Reg) Note		
	Base Ad	ddress 3		
	Base Ad	ddress 4		
	Base Ad	ddress 5		
	CardBus CIS	S Pointer Note		
Subs	ystem ID	Subsystem	n Vendor ID	
	Expansion Rom Bas	se Address Register	,	
000000H Ca				
	00000	0000H	,	
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	
	PCI_OHO	CI_Control		
	00000	0000H		
	00000	0000H		
	00000	0000H		
	Diagnostic	c register0		
	Diagnostic	c register1		
	Diagnostic	c register2		
	Diagnostic	c register3	T	
Power Manage	ement Capabilities	Next_Item_Ptr	Cap_ID	
Data	PMCSR_BSE	Power Managem	ent Control/Status	
	00000	0000H		
	00000	0000H		
User Area (GENERAL_RegisterA)				
User Area (GENERAL_RegisterB)				
	User Area (GENE	ERAL_RegisterC)		
	User Area (GEN	ERAL_RegisterD)		
	CIS Ar	ea Note		

Note Different from PCI Bus Mode Configuration Register.

2.2.1 Offset_14/18 Base_Address_1/2 Register (CardBus Status Registers)

Bits	R/W	Description				
7-0	R	Constant value of 00.				
31-8	R/W	-				

(1) Function Event Register (FER) (Base Address 1 (2)+ 0H)

Bits	R/W	Description			
0	R	Write Protect (No Use).			
		Read only as '0'			
1	R	Ready Status (No Use).			
		Read only as '0'			
2	R	Battery Voltage Detect 2 (No Use).			
		Read only as '0'			
3	R	Battery Voltage Detect 1 (No Use).			
		Read only as '0'			
4	R/W	General Wakeup			
14-5	R	Reserved. Read only as '0'			
15	R/W	nterrupt			
31-16	R	Reserved. Read only as '0'			

(2) Function Event Mask Register (FEMR) (Base Address 1 (2)+ 4H)

Bits	R/W	Description		
0	R	Write Protect (No Use).		
		Read only as '0'		
1	R	Ready Status (No Use).		
		Read only as '0'		
2	R	Battery Voltage Detect 2 (No Use).		
		Read only as '0'		
3	R	Battery Voltage Detect 1 (No Use).		
		Read only as '0'		
4	R/W	General Wakeup Mask		
5	R	BAM. Read only as '0'		
6	R	PWM. Read only as '0'		
13-7	R	Reserved. Read only as '0'		
14	R/W	Vakeup Mask		
15	R/W	Interrupt		
31-16	R	Reserved. Read only as '0'		

(3) Function Reset Status Register (FRSR) (Base Address 1 (2)+8H)

Bits	R/W	Description			
0	R	Write Protect (No Use).			
		Read only as '0'			
1	R	Ready Status (No Use).			
		Read only as '0'			
2	R	Battery Voltage Detect 2 (No Use).			
		Read only as '0'			
3	R	Battery Voltage Detect 1 (No Use).			
		Read only as '0'			
4	R/W	General Wakeup Mask			
14-5	R	Reserved. Read only as '0'			
15	R/W	nterrupt			
31-16	R	Reserved. Read only as '0'			

(4) Function Force Event Register (FFER) (Base Address 1 (2)+ CH)

Bits	R/W	Description			
0	R	Write Protect (No Use).			
		Read only as '0'			
1	R	Ready Status (No Use).			
		Read only as '0'			
2	R	Battery Voltage Detect 2 (No Use).			
		Read only as '0'			
3	R	Battery Voltage Detect 1 (No Use).			
		Read only as '0'			
4	R/W	General Wakeup Mask			
14-5	-	No Use			
15	R/W	Interrupt			
31-16	R	Reserved. Read only as '0'			

2.2.2 Offset 28 Cardbus CIS Pointer

This register specifies start memory address of the Cardbus CIS Area.

Bits	R/W	Description			
31-0	R	Starting Pointer of CIS Area.			
		Constant value of 00000080H.			

2.2.3 Offset_80 CIS Area

The $\mu\text{PD72862}$ supports external Serial ROM(AT24C02 compatible) interface.

CIS Area Register can be loaded from external Serial ROM in the CIS area when CARD_ON are HIGH.

CARD_ON	CIS_ON	Bus	CIS	FUNCTION
0	1	PCI	OFF	PME
0	0	PCI	ON	CSTSCHG
1	X	Cardbus	ON	CSTSCHG

3. SERIAL ROM INTERFACE

The μ PD72862 provides a serial ROM interface to initialize the 1394 Global Unique ID Register and the PCI/Cardbus Mode Configuration registers from a serial EEPROM.

3.1 Serial EEPROM Register

Register Address	Register Name	R/W
Base address + 0x930	SUBID register	R/W
Base address + 0x934	LATVAL register	R/W
Base address + 0x938	W_GUIDHi register	R/W
Base address + 0x93C	W_GUIDLo register	R/W
Base address + 0x940	Parameters Write register	R/W
Base address + 0x95C	W_GENERAL register	R/W
Base address + 0x960	W_PHYS register	R/W
Base address + 0x984	W_CIS register	R/W

Remark Base address: Base Address 0 in Configuration register

3.2 Serial EEPROM Register Description

(1) SUBID register (Base address + 0x930)

31 16	3 15 0
W_SUBSYSID	W_SUBVNDID

Field	Bits	R/W	Default value	Description
W_SUBSYSID	31-16	R/W	0063H	Subsystem ID value. The value is loaded into Subsystem ID register in
				Configuration register (offset+2CH bit 31-16).
W_SUBVNDID	15-0	R/W	1033H	Subsystem Vendor ID value. The value is loaded into Subsystem Vendor ID
				register in Configuration register (Offset+2CH bit 15-0).

(2) LATVAL register (Base address + 0x934)

31 24	23 16	15 12	11	10 4	3 0
W_MAXLAT	W_MINGNT	- 0 -	1	- 0 -	W_MAX_REC

Field	Bits	R/W	Default value	Description
W_MAXLAT	31-24	R/W	00H	Max Latency value. The value is loaded into Max Latency register in
				Configuration register (Offset+3CH bit 31-24).
W_MINGNT	23-16	R/W	00H	Min Grant value. The value is loaded into Min Grant register in Configuration
				register (Offset+3CH bit 23-16).
-	15-12	1	-	Reserved. Write 0 to these bits.
	11	-	-	Reserved. Write 1 to this bit.
	10-4	-	-	Reserved. Write 0 to these bits.
W_MAX_REC	3-0	R/W	9H	MAXREC value. The value is loaded into the max_rec field of OHCI
				BusOption register in OHCI register (Offset+020H bit 15-12).

(3) W_GUIDHi register (Base address + 0x938)

31		0
	W_GUIDHi	

Field	Bits	R/W	Default value	Description	
W_GUIDHi	31-0	R/W	Undefined	GlobalUniqueIDHi value. The value is loaded into OHCI GlobalUniqueIDHi	
				register in OHCI register (Offset+024H bit 31-0).	
				Please refer to the 1394 Open Host Controller Interface Specification/Release	
				1.0 [5.5.5].	

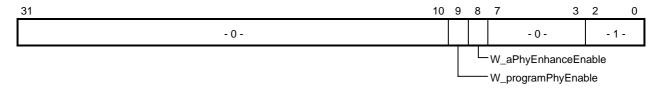
(4) W_GUIDLo register (Base address + 0x93C)

Field	Bits	R/W	Default value	Description	
W_GUIDLo	31-0	R/W	Undefined	GlobalUniqueIDLo value. The value is loaded into GlobalUniqueIDLo register	
				in OHCI register (Offset+028H bit 31-0).	
				Please refer to the 1394 Open Host Controller Interface Specification/Release	
				1.0 [5.5.5].	

(5) Parameters Write register (Base address + 0x940)

31	7	6 4	3	1	0
- 0 -		PAGE_S		- 0 -	PAR _W

Field	Bits	R/W	Default value	Description	
-	31-7	-	-	Reserved. Write 0 to these bits.	
PAGE_S	6-4	R/W	000	Write register select page. The bit field returns zero when read.	
				000: Select SUBID register and LATVAL register.	
				001: Select W_GUIDHi register and W_GUIDLo register.	
				010: Select W_GENERAL register (W_GENERAL_0 and W_GENERAL_1).	
				011: Select W_GENERAL register (W_GENERAL_2 and W_GENERAL_3).	
				100: Select W_PHYS register (W_ programPhyEnable,	
				W_aPhyEnhanceEnable).	
				101: Select W_CIS register (W_CIS_EVEN - W_CIS_ODD).	
-	3-1	-	-	Reserved. Write 0 to these bits.	
PAR_W	0	R/W	0	Write control signal. The bit field returns zeros when read.	
				Write the value of select page defined PAGE_S. One write transaction is	
				the units of 8 byte.	
				0: Ignored.	



(6) W_GENERAL register (Base address + 0x950 - 0x95C)

31		0
	W_GENERAL_0 (Base address + 0x950) - W_GENERAL_3 (Base address + 0x95C)	

Field	Bits	R/W	Default value	Description		
W_GENERAL_0 -	NERAL_0 - 31-0 R/W Undefined		Undefined	User define value. The value is loaded into GENERAL_registerA - D in		
W_GENERAL_3				Configuration register (Offset+70H - 7BH).		

(7) W_PHYS register (Base address + 0x960)

Field	Bits	R/W	Default value	Description
-	31-10	1	-	Reserved. Write 0 to these bits.
W_programPhyEnable	9	R/W	1	programPhyEnable bit. The bit is loaded into HCControl registers in OHCI register ((Offset+50H bit 23) and (54H bit 23)). Please refer to the 1394 Open Host Controller Interface Specification/Release
				1.0 [5.7].1: P1394a enhancement is supported.0. P1394a enhancement is not supported.
W_aPhyEnhanceEnable	8	R/W	0	aPhyEnhanceEnable bit. The bit is loaded into HCControl registers in OHCI register ((Offset+50H bit 23) and (54H bit 23)).
-	7-3	1	-	Reserved. Write 0 to these bits.
	2-0	-	-	Reserved. Write 1 to these bits.

(8) W_CIS register (Base address + 0x980 - 0x984)

Field	Bits	R/W	Default value	Description	
W_CIS_EVEN -	31-0	R/W	Undefined	CIS Area value. The value is loaded into CIS Area in Configuration register	
W_CIS_ODD				(Offset+80H - FCH).	

Table 3-1. Serial EEPROM Memory Map

Byte				В	it				
address	7	6	5	4	3	2	1	0	
0	W_SUBSYSID(31 : 24)								
1	W_SUBSYSID(23 : 16)								
2	W_SUBVNDID(15: 8)								
3				W_SUBVN	DID(7: 0)				
4				W_MAXLA	T(31 : 24)				
5				W_MINGN	IT(23 : 16)				
6	0	0	0	0	1	0	0	0	
7	0	0	0	0		W_MAX_F	REC(3:0)	_	
8				W_GUIDI	Hi(31 : 24)				
9				W_GUIDI	Hi(23 : 16)				
Α				W_GUIDI	Hi(15: 8)				
В				W_GUID	Hi(7: 0)				
С				W_GUIDL	.o(31 : 24)				
D				W_GUIDL					
Е				W_GUIDI	_o(15 : 8)				
F				W_GUID	_o(7: 0)				
10	W_GENERAL_0(31 : 24)								
11				W_GENERA	L_0(23 : 16)				
12				W_GENERA	AL_0(15: 8)				
13				W_GENER					
:									
:									
1C				W_GENERA	L_3(31 : 24)				
1D				W_GENERA	L_3(23 : 16)				
1E				W_GENERA	AL_3(15: 8)				
1F				W_GENER	AL_3(7:0)				
20	0	0	0	0	0	0	0	0	
21	0	0	0	0	0	0	0	0	
22	0	0	0	0	0	0	WPE	WPEE	
23	0	0	0	0	0	1	1	1	
:							•	•	
:									
28				W_CIS_0)(31 : 24)				
29	W_CIS_0(23 : 16)								
2A	W_CIS_0(15: 8)								
2B				W_CIS_	0(7:0)				
:					1				
:	:								
A4	W_CIS_31(31 : 24)								
A5				W_CIS_3	1(23 : 16)				
A6				W_CIS_3					
A7					31(7:0)				

 $WPE: W_programPhyEnable, \ WPEE: W_aPhyEnhanceEnable$

3.3 Load Control

GROM_EN	CARD_ON	CIS_ON	Description
0	Х	Х	No loading.
1	0	1	W_SUBSYSID, W_SUBVNDID, W_MAXLAT, W_MINGNT, W_MAX_REC, W_GUIDHi/Lo,
			W_GENERAL_0 - W_GENERAL_3, W_programPhyEnable, W_aPhyEnhanceEnable are
			loaded.
1	0	0	All parameters (W_SUBSYSID, W_SUBVNDID, W_MAXLAT, W_MINGNT, W_MAX_REC,
1	1	Х	W_GUIDHi/Lo, W_GENERAL_0 - W_GENERAL_3, W_programPhyEnable,
			W_aPhyEnhanceEnable, W_CIS_EVEN - W_CIS_ODD) are loaded.

3.4 Programming Sequence Example

The example of programming sequence to the serial EEPROM is shown below.

- (1) Write SUBID register. Note1
- (2) Write LATVAL register. Note1
- (3) Write PAGE_S = 000 and PAR_W = 1 on Parameters Write register. Note1
- (4) Wait over 13 ms for serial EEPROM access time. Note1
- (5) Write W_GUIDHi register. Note2
- (6) Write W_GUIDLo register. Note2
- (7) Write PAGE_S = 001 and PAR_W = 1 on Parameters Write register. Note2
- (8) Wait over 13 ms for serial EEPROM access time. Note2
- (9) Write W_GENERAL register (W_GENERAL_0, W_GENERAL_1). Note3
- (10) Write PAGE_S = 010 and PAR_W = 1 on Parameters Write register. Note3
- (11) Wait over 13 ms for serial EEPROM access time. Note3
- (12) Write W_GENERAL register (W_GENERAL_2, W_GENERAL_3). Note4
- (13) Write PAGE_S = 011 and PAR_W = 1 on Parameters Write register. Note4
- (14) Wait over 13 ms for serial EEPROM access time. Note4
- (15) Write W_PHYS register (W_programPhyEnable, W_aPhyEnhanceEnable). Note5
- (16) Write PAGE_S = 100 and PAR_W = 1 on Parameters Write register. Note5
- (17) Wait over 13 ms for serial EEPROM access time. Note5
- (18) Write W_CIS register (W_CIS_EVEN, W_CIS_ODD). Note6
- (19) Write PAGE_S = 101 and PAR_W = 1 on Parameters Write register. Note6
- (20) Wait over 13 ms for serial EEPROM access time. Note6
- (21) Repeat (18)-(20) 15 times.
- (22) Complete to write parameters into Serial EEPROM.
- (23) Parameters are loaded from serial EEPROM after PCI reset.
- **Notes 1.** If none of W_SUBSYSID, W_SUBVNDID, W_MAXLAT, W_MINGNT, W_MAX_REC in serial EEPROM are changed, (1)-(4) transactions don't need.
 - 2. If none of W_GUIDHi, W_GUIDLo in serial EEPROM are changed, (5)-(8) transactions don't need.
 - **3.** If none of W_GENERAL_0, W_GENERAL_1 in serial EEPROM are changed, (9)-(11) transactions don't need.
 - **4.** If none of W_GENERAL_2, W_GENERAL_3 in serial EEPROM are changed, (12)-(14) transactions don't need.

- **Notes 5.** If none of W_programPhyEnable, W_aPhyEnhanceEnable in serial EEPROM are changed, (15)-(17) transactions don't need.
 - **6.** If none of W_CIS_0 W_CIS_31 in serial EEPROM are changed, (18)-(21) transactions don't need.

4. ELECTRICAL SPECIFICATIONS

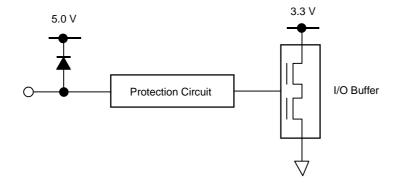
Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD}		-0.5 to +4.6	V
Input voltage	Vı	LVTTL @ (VI < 0.5 V + VDD)	-0.5 to +4.6	V
		PCI @ (Vı < 3.0 V + VDD)	-0.5 to +6.6	V
Output voltage	Vo	LVTTL @ (Vo < 0.5 V + VDD)	-0.5 to +4.6	V
		PCI @ (Vo < 3.0 V + VDD)	-0.5 to +6.6	V
Operating ambient temperature	TA		0 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Ranges

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD}	Used to clamp reflection on PCI bus.	4.5 to 5.5	V
			3.0 to 3.6	V
Operating ambient temperature	TA		0 to +70	°C



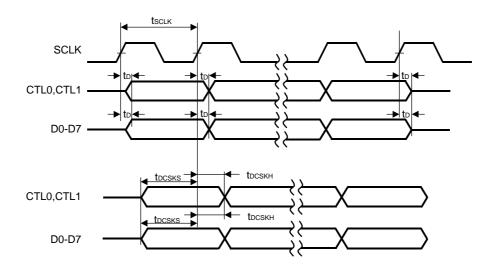
DC Characteristics (V_{DD} = 3.3 V \pm 0.3 V, V_{SS} = 0 V, T_A= 0°C to +70°C)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
High-level input voltage	ViH			2.0		V _{DD} +0.5	V
Low-level input voltage	VıL			-0.5		+0.8	V
High-level output current	Іон	Vон	Pin No.48,49,52,53,58	-3			mA
		=2.4 V	Pin No.55,56	-6			mA
			Pin No.74	-9			mA
Low-level output current	Іоь	VoL	Pin No.48,49,52,53,58	3			mA
		=0.4 V	Pin No.55,56	6			mA
			Pin No.74	9			mA
Input leakage current	l _L	VIN = \	/DD or GND			±10.0	μΑ
Supply current	loo	VDD = 3.3 V			145		mA
		D0 (Power State: 00)					
		LPS = H					
PCI interface							
High-level input voltage	Vih			2.0		5.5	V
Low-level input voltage	VıL			-0.5		+0.8	V
High-level output current	Іон	Vон =	2.4 V	-2			mA
Low-level output current	Іоь	Vol =	0.4 V	9			mA
Input leakage current	lL	V _{IN} = V _{DD} or GND				±10.0	μΑ
PHY/Link interface							
Positive trigger voltage	VP			1.7		3.1	V
Negative trigger voltage	Vn			0.2		1.6	V
High-level output current	Іон	Vон =	2.4 V	-9			mA
Low-level output current	lou	Vol =	0.4 V	9			mA

Remarks 1. Digital core runs at 3.3 V.

- 2. PCI Interface can run at 5 or 3.3 V, depending on the choice of 5 V-PCI or 3.3 V-PCI.
- 3. All other I/Os are 3.3 V driving, and 5 V tolerant.
- 4. 5 V are used only for 5 V-PCI clamping diode.

AC Characteristics

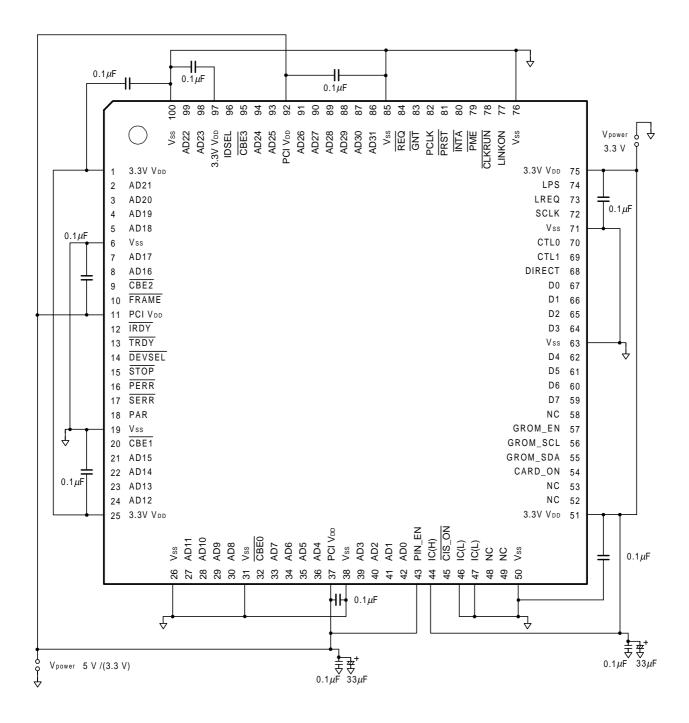

PCI Interface

See PCI local bus specification Revision 2.1.

PHY/Link Interface

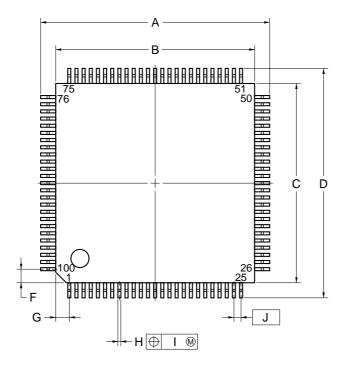
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
D,CTL setup time to SCLK rise	tocsks		6			ns
D,CTL hold time to SCLK rise	tocskh		0			ns
SCLK rise to D,CTL,LREQ out	t□	C _L = 10 pF	1		10	ns
SCLK cycle time	tsclk		20.345			ns

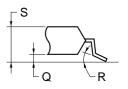
PHY/Link Interface Timing

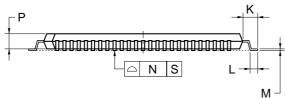


Serial ROM Interface

See AT24C01A/02/04/08/16 Spec. Sheet.


5. APPLICATION CIRCUIT EXAMPLE




6. PACKAGE DRAWING

100-PIN PLASTIC TQFP (FINE PITCH) (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	16.0±0.2
В	14.0±0.2
С	14.0±0.2
D	16.0±0.2
F	1.0
G	1.0
Н	$0.22^{+0.05}_{-0.04}$
I	0.10
J	0.5 (T.P.)
K	1.0±0.2
L	0.5±0.2
М	$0.145^{+0.055}_{-0.045}$
N	0.10
Р	1.0±0.1
Q	0.1±0.05
R	3°+7°
S	1.27 MAX.

S100GC-50-9EU-2

★ 7. RECOMMENDED SOLDERING CONDITIONS

The μ PD72850A should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 7-1. Surface Mounting Type Soldering Conditions

 μ PD72862GC-9EU : 100-pin plastic TQFP (Fine pitch) (14 x 14)

Soldering	Soldering Conditions	Recommended
Method		Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher).	IR35-103-3
	Count: three times or less	
	Exposure limit: 3 days ^{Note} (after that prebake at 125°C for 10 hours)	
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher).	VP15-103-3
	Count: three times or less	
	Exposure limit: 3 days ^{Note} (after that prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM and Firewarden are trademarks of NEC Corporation.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
 the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
 property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
 measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.