Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY DATA SHEET

rudse-out/Discontinued

MOS INTEGRATED CIRCUIT μ PD720120

USB2.0 PHY (TRANSCEIVER WITH SIE)

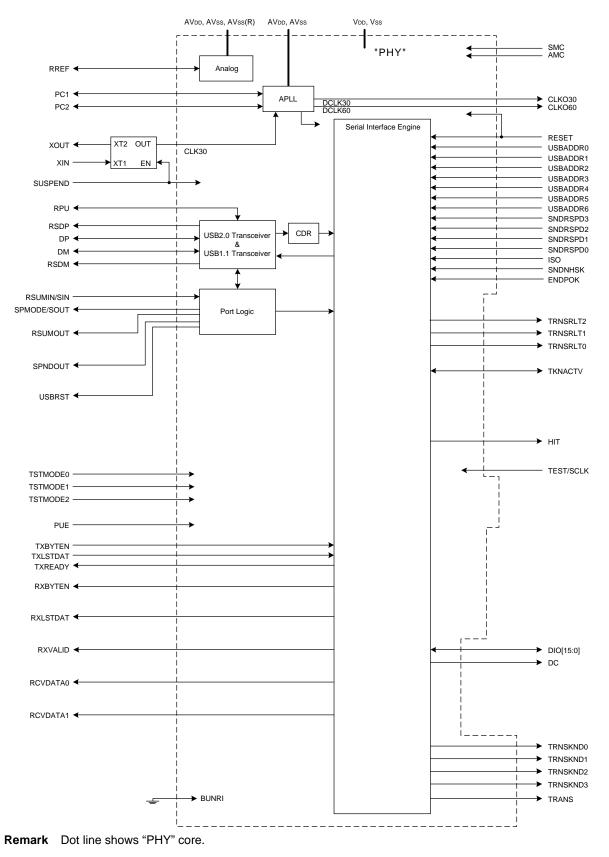
The μ PD720120 complies with the Universal Serial Bus Specification Revision 2.0 and works up to 480 Mbps. The μ PD720120 integrates serial interface engine and USB2.0 transceiver into a single chip.

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing. μ PD720120 User's Manual: S15347E

FEATURES

- Compliant with Universal Serial Bus Specification Revision 2.0 (Data Rate 12/480 Mbps)
- 16 bits backend Interface to SIE
- (Micro) SOF detection for High-/Full-speed operation
- · One high-speed transceiver / receiver with full-speed transceiver / receiver
- · High-speed or Full-speed packet protocol sequencer
- Start / End of packet detection
- NRZI encoding / decoding
- Stuffed bit insertion / recognition and stripping
- CRC checker and generation (5 bits CRC for Token packet and 16bits CRC for Data packet)
- Serial to 16 bits parallel conversion for data reception and 16 bits parallel to serial conversion for data transmission
- · Automatic chirp assertion and full-/high-speed mode change
- USB Reset, Suspend and Resume signaling detection
- · Supports remote wakeup functionality
- Supports set feature (TEST_MODE) functionality
- System Clock is generated by 30 MHz X'tal
- Several Clock Outputs (30 MHz, 60 MHz) are provided for backend interface.
- 3.3 V power supply

ORDERING INFORMATION

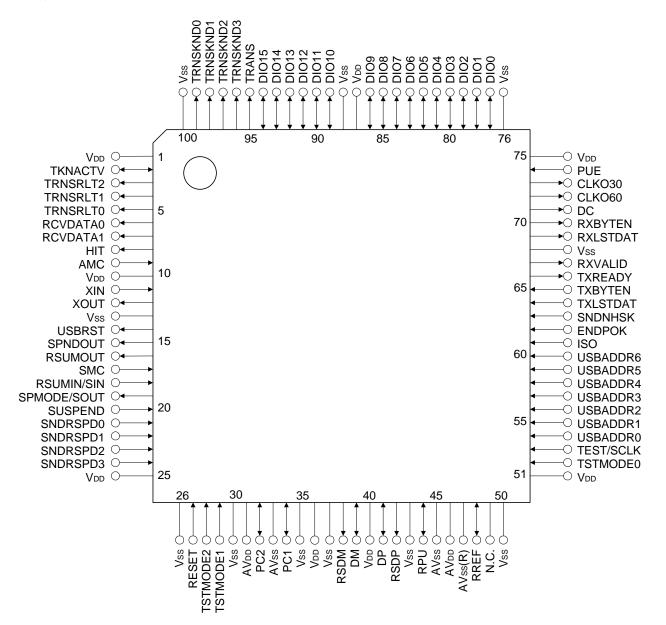

Part Number

Package

 μ PD720120GC-9EU 100-pin plastic TQFP (Fine pitch) (14 × 14)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

BLOCK DIAGRAM



Analog	:generates constant voltage and current sources for APLL, USB2.0 transceiver /
	receiver and etc.
APLL	:generates all clocks of PHY.
CDR	:Data & clock recovery circuit
USB 2.0 Transceiver	contains all of the transceiver functionality required for high-speed operation. Default
	data speed is set at 480 Mbps.
USB 1.1 Transceiver	contains all of the transceiver functionality required for high-speed operation and full-
	speed operation.
Serial Interface Engine	:controls USB2.0 and 1.1 protocol sequencing.
Port Logic	:Port logic contains USBReset/Suspend/Resume/chirp detection, Resume signal/chirp
	assertion and speed mode controller, etc.

PIN CONFIGURATION (TOP VIEW)

• 100-pin plastic TQFP (Fine pitch) (14 × 14)

μPD720120GC-9EU

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	Vdd	26	Vss	51	Vdd	76	Vss
2	TKNACTV	27	RESET	52	TSTMODE0	77	DIO0
3	TRNSRLT2	28	TSTMODE2	53	TEST/SCLK	78	DIO1
4	TRNSRLT1	29	TSTMODE1	54	USBADDR0	79	DIO2
5	TRNSRLT0	30	Vss	55	USBADDR1	80	DIO3
6	RCVDATA0	31	AVdd	56	USBADDR2	81	DIO4
7	RCVDATA1	32	PC2	57	USBADDR3	82	DIO5
8	НІТ	33	AVss	58	USBADDR4	83	DIO6
9	AMC	34	PC1	59	USBADDR5	84	DIO7
10	Vdd	35	Vss	60	USBADDR6	85	DIO8
11	XIN	36	Vdd	61	ISO	86	DIO9
12	XOUT	37	Vss	62	ENDPOK	87	Vdd
13	Vss	38	RSDM	63	SNDNHSK	88	Vss
14	USBRST	39	DM	64	TXLSTDAT	89	DIO10
15	SPNDOUT	40	Vdd	65	TXBYTEN	90	DIO11
16	RSUMOUT	41	DP	66	TXREADY	91	DIO12
17	SMC	42	RSDP	67	RXVALID	92	DIO13
18	RSUMIN/SIN	43	Vss	68	Vss	93	DIO14
19	SPMODE/ SOUT	44	RPU	69	RXLSTDAT	94	DIO15
20	SUSPEND	45	AVss	70	RXBYTEN	95	TRANS
21	SNDRSPD0	46	AVdd	71	DC	96	TRNSKND3
22	SNDRSPD1	47	AVss(R)	72	CLKO60	97	TRNSKND2
23	SNDRSPD2	48	RREF	73	CLKO30	98	TRNSKND1
24	SNDRSPD3	49	N.C.	74	PUE	99	TRNSKND0
25	Vdd	50	Vss	75	Vdd	100	Vss

Remark AVss (R) should be used to connect RREF through 1 % precision reference resistor of 9.1 k Ω .

1. PIN INFORMATION

Pin Name	I/O	Buffer Type	Active Level	Function
XIN	I			30 MHz oscillator-in for X'tal
XOUT	0			30 MHz oscillator-out for X'tal
RESET	I	5 V tolerant schmitt input	High	Asynchronous chip reset
CLKO30	0	3.3 V output (12 mA)		30 MHz clock output
CLKO60	0	3.3 V output (12 mA)		60 MHz clock output
USBADDR[6:0]	I	5 V tolerant input		USB address input
RPU	А	Analog		External 1.5 k Ω pull-up resistor terminal
DP	В	USB high-speed D+		High-speed data D+
DM	В	USB high-speed D-		High-speed data D-
RSDP	0	USB full-speed D+		Full-speed data D+ and Rs resistor terminal
RSDM	0	USB full-speed D-		Full-speed data D- and Rs resistor terminal
PUE	I	5 V tolerant input		External 1.5 k Ω pull-up resistor control
RREF	А	Analog		Reference resistor
PC1	А	Analog		Capacitor for PLL
PC2	А	Analog		Capacitor for PLL
DIO[15:0]	В	5 V tolerant I/O (6 mA)		16 bits transmitted / received data bus
TXBYTEN	I	5 V tolerant input	High	Transmit data byte/word alignment enable
TXLSTDAT	I	5 V tolerant input	High	Last transmit data indication
TXREADY	0	5 V tolerant output (6 mA)	High	Ready to read from transmit data bus
RXBYTEN	0	5 V tolerant output (6 mA)	High	Receive data byte/word alignment enable
RXLSTDAT	0	5 V tolerant output (6 mA)	High	Last receive data indication
RXVALID	0	5 V tolerant output (6 mA)	High	Receive data valid
DC	0	5 V tolerant output (6 mA)		Data I/O indication
TRANS	0	5 V tolerant output (6 mA)	High	Transaction progression
TKNACTV	В	5 V tolerant I/O (6 mA)		Token PID receive indication or USB resume detection input control
TRNSKND[3:0]	0	5 V tolerant output (6 mA)		Receive token PID type
RCVDATA[1:0]	0	5 V tolerant output (6 mA)		Receive data PID type
TRNSRLT[2:0]	0	5 V tolerant output (6 mA)		Transaction result code
HIT	0	5 V tolerant output (6 mA)	High	Device targeted indication
ENDPOK	Ι	5 V tolerant input	High	Endpoint supported indication
ISO	Ι	5 V tolerant input	High	Isochronous supported indication
SNDRSPD[3:0]	Ι	5 V tolerant input		Transmit data or handshake PID type
SNDNHSK	I	5 V tolerant input	High	No handshake control
USBRST	0	5 V tolerant output (6 mA)	High	USB Reset detection
SPMODE/SOUT	0	5 V tolerant output (6 mA)		Full-/High-speed mode indication or SCAN output

				(2/2)
Pin Name	I/O	Buffer Type	Active Level	Function
SPNDOUT	0	5 V tolerant output (6 mA)	High	USB Suspend detection
RSUMOUT	0	5 V tolerant output (6 mA)	High	USB Resume detection
SUSPEND	I	5 V tolerant input	High	Suspend request. This also disables PLL, OSC, Current source
RSUMIN/SIN	I	5 V tolerant input	High	Remote wakeup enable or SCAN input
AMC	I	5 V tolerant input with 50 k Ω pull-down R	High	SCAN mode control
SMC	I	5 V tolerant input with 50 k Ω pull-down R	High	SCAN mode control
TEST/SCLK	I	5 V tolerant input with 50 k Ω pull-down R	High	Test mode control SCAN clock-input
TSTMODE[2:0]	I	5 V tolerant input		Set Feature (TEST_MODE) control or test control
Vdd				VDD
AVdd				VDD for analog circuit
Vss				Vss
AVss				Vss for analog circuit
AVss(R)				Vss for analog circuit (Feedback resistor connection)
N.C.				Not connected

Remark I: Input, O: Output, B: Bi-direction, A: Analog

2. ELECTRICAL SPECIFICATIONS

2.1 Buffer List

- 5 V schmitt buffer
 - RESET
- 3.3 V Oscillator block XIN, XOUT
- 3.3 V Io∟ = 12 mA output buffer CLKO30, CLKO60
- 5 V input buffer USBADDR[6:0], PUE, TXBYTEN, TXLSTDAT, ENDPOK, ISO, SNDRSPD[3:0], SNDNHSK, SUSPEND, RSUMIN/SIN, TSTMODE[2:0]
- 5 V IoL = 6 mA output buffer TXREADY, RXBYTEN, RXLSTDAT, RXVALID, DC, TRANS, TRNSKND[3:0], RCVDATA[1:0], TRNSRLT[2:0], HIT, USBRST, SPMODE/SOUT, SPNDOUT, RSUMOUT
- 5 V IoL = 6 mA I/O buffer DIO[15:0], TKNACTV
- 5 V input buffer with 50 kΩ pull-down resistor TEST/SCLK, SMC, AMC
- USB2.0 interface
 RPU, DP, DM, RSDP, RSDM, RREF, PC1, PC2

Above, "5 V" refers to a 3-V buffer that is 5-V tolerant (has 5-V maximum voltage). Therefore, it is possible to have a 5-V connection for an external bus, but the output level will be only up to 3 V, which is the VDD voltage.

2.2 Terminology

Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates voltage range within which damage or reduced reliability will not result when power is applied to a V_{DD} pin.
Input voltage	Vı	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Output current	lo	Indicates absolute tolerance values for DC current to prevent damage or reduced reliability when a current flow out of or into an output pin.
Operating temperature	TA	Indicates the ambient temperature range for normal logic operations.
Storage temperature	Tstg	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current are applied to the device.

Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates the voltage range for normal logic operations occur when V_{SS} = 0 V.
High-level input voltage	Vін	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer.
		* If a voltage that is equal to or greater than the "MIN." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage	Vil	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer.
		* If a voltage that is equal to or lesser than the "MAX." value is applied, the input voltage is guaranteed as low level voltage.
Hysteresis voltage	Vн	Indicates the differential between the positive trigger voltage and the negative trigger voltage.

Terms Used in DC Characteristics

Parameter	Symbol	Meaning
Off-state output leakage current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.
Output short circuit current	los	Indicates the current that flows when the output pin is shorted (to GND pins) when output is at high-level.
Low-level output current	lo∟	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.
High-level output current	Іон	Indicates the current that flows from the output pins when the rated high- level output voltage is being applied.

2.3 Electrical Specifications

Absolute Maximum Ratings

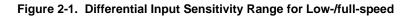
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	Vdd		-0.5 to +4.6	V
Input voltage	Vı			
3.3 V input voltage		$V_{\text{I}} < V_{\text{DD}} + 0.5 \text{ V}$	-0.5 to +4.6	V
5.0 V input voltage		$V_{\text{I}} < V_{\text{DD}} + 3.0 \text{ V}$	-0.5 to +6.6	V
Output voltage	Vo			
3.3 V output voltage		$V_O < V_{DD} + 0.5 V$	-0.5 to +4.6	V
5.0 V output voltage		$V_{O} < V_{DD} + 3.0 V$	-0.5 to +6.6	V
Operating temperature	TA		0 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Recommended Operating Ranges

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vdd		3.0	3.3	3.6	V
High-level input voltage	Vін					
3.3 V High-level input voltage			2.0		Vdd	V
5.0 V High-level input voltage			2.0		5.5	V
Low-level input voltage	VIL					
3.3 V Low-level input voltage			0		0.8	V
5.0 V Low-level input voltage			0		0.8	V
Hysteresis voltage	Vн		0.3		1.5	V


DC Characteristics

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Off-state output leakage current	loz	Vo = VDD or GND		±10	μA
Output short circuit current	los ^{Note}			-250	mA
Low-level output current	lo∟				
3.3 V Low-level output current		Vol = 0.4 V	12		mA
5.0 V Low-level output current		Vol = 0.4 V	6		mA
High-level output current	Іон				
3.3 V High-level output current		Vон = 2.4 V	-12		mA
5.0 V High-level output current		Vон = 2.4 V	-2		mA

Note The output short circuit time is one second or less and is only for one pin on the LSI.

USB Interface Block

Parameter	Symbol	Conditions	MIN	MAX	Unit
Serial Resistor between DP (DM) and RSDP (RSDM).	Rs		35.64	36.36	Ω
Output pin impedance	Zhsdrv	Includes Rs resistor	40.5	49.5	Ω
Bus pull-up resistor on upstream facing port	Rpu		1.425	1.575	kΩ
Termination voltage for upstream facing port pullup (full-speed)	Vterm		3.0	3.6	V
Input Levels for Low-/full-speed:					
High-level input voltage (drive)	Vін		2.0		V
High-level input voltage (floating)	Vihz		2.7	3.6	
Low-level input voltage	VIL			0.8	V
Differential input sensitivity	Vdi	(D+) – (D-)	0.2		V
Differential common mode range	Vсм	Includes Voi range	0.8	2.5	V
Output Levels for Low-/full-speed:		·	•		
High-level output voltage	Vон	R∟ of 14.25 kΩ to GND	2.8	3.6	V
Low-level output voltage	Vol	R∟ of 1.425 kΩ to 3.6 V	0.0	0.3	V
SE1	Vose1		0.8		V
Output signal crossover point voltage	Vcrs		1.3	2.0	V
Input Levels for High-speed:					
High-speed squelch detection threshold (differential signal)	Vhssq		100	150	mV
High-speed disconnect detection threshold (differential signal)	VHSDSC		525	625	mV
High-speed data signaling common mode voltage range	VHSCM		-50	+500	mV
High-speed differential input signaling level	See Figur	e 2-4.		·	
Output Levels for High-speed:					
High-speed idle state	VHSOI		-10.0	+10	mV
High-speed data signaling high	Vнsoн		360	440	mV
High-speed data signaling low	VHSOL		-10.0	+10	mV
Chirp J level (different signal)	VCHIRPJ		700	1100	mV
Chirp K level (different signal)	VCHIRPK		-900	-500	mV

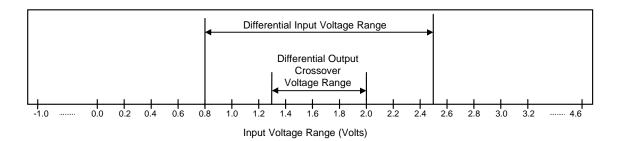


Figure 2-2. Full-speed Buffer VoH/IoH Characteristics for High-speed Capable Transceiver

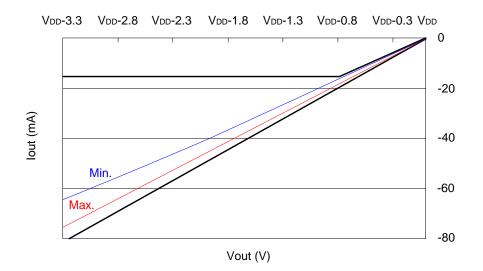
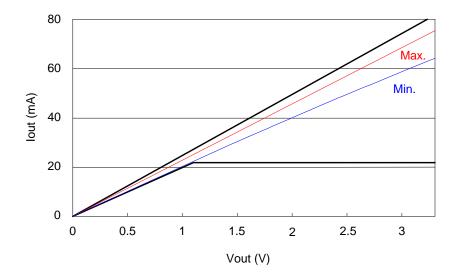



Figure 2-3. Full-speed Buffer VoL/IoL Characteristics for High-speed Capable Transceiver

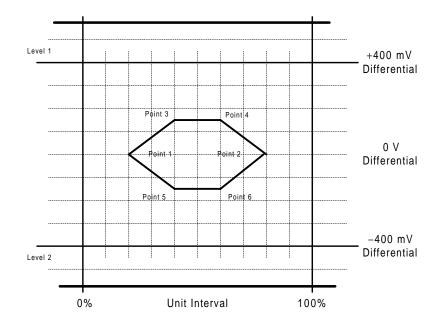
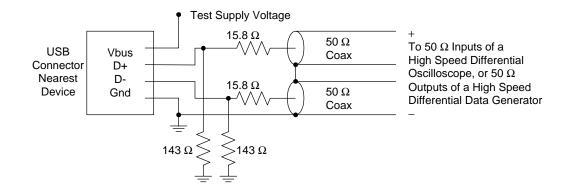



Figure 2-4. Receiver Sensitivity for Transceiver at DP/DM

Pin Capacitance

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN		3		5	pF
Output/Bi-directional capacitance	Соит		9		11	pF

Remark These are just estimated value.

Power Consumption

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Power consumption		Normal mode			300	mA
		Suspend mode			200	μA

Remarks 1. These are just estimated value.

2. Input pins except for TEST, SMC, and AMC must be supplied low or high-level signal. On the other hand, TEST, SMC, and AMC must be opened on board.

System Clock Specification

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock frequency	fськ		-500	30	+500	MHz
			ppm		ppm	
Duty cycle	t duty		40		60	%

Remarks Recommended accuracy of clock frequency is ± 100 ppm.

AC Characteristics (VDD = 3.0 to 3.6 V, TA = 0 to +70°C)

Clock

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CLKO30 cycle time	tсзс			33.33		ns
CLKO60 cycle time	tc6c			16.67		ns
CLKO30 high level width	tсзн		15.9		17.5	ns
CLKO30 low level width	tc₃∟		15.9		17.5	ns
CLKO60 high level width	tс6н		7.95		8.75	ns
CLKO60 low level width	tc6∟		7.95		8.75	ns
CLKO60 phase time (CLKO30)	t P60		-1.0		+1.0	ns
CLK30/CLKO60 jitter	tjitter		-0.5		+0.5	ns
Reset time	treset		2			μs
CLKO30 restart time from reset	trestart		150			μs

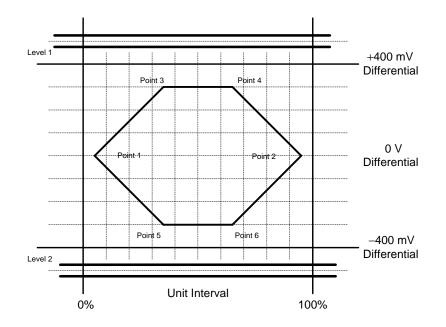
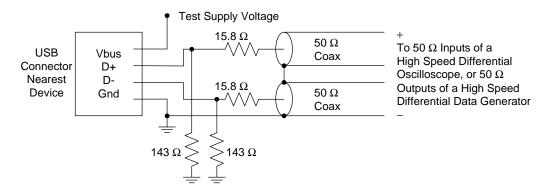
USB Interface Block

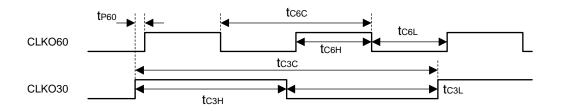
					(1/2)
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Full-speed Source Electrical Characteris	stics				
Rise time (10% - 90%)	tfr	CL = 50 pF, Rs = 36 Ω	4	20	ns
Fall time (90% - 10%)	tff	CL = 50 pF, Rs = 36 Ω	4	20	ns
Differential rise and fall time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed data rate	t FDRATHS	Average bit rate	11.9940	12.0060	Mbps
Frame interval	t FRAME		0.9995	1.0005	ms
Consecutive frame interval jitter	t RFI	No clock adjustment		42	ns
Source jitter total (Including frequency tolerance):					
To next transition For paired transitions	toji toji		-3.5 -4.0	+3.5 +4.0	ns ns
Source jitter for differential transition to SE0 transition	t FDEOP		-2	+5	ns
Receiver jitter: To next transition For paired transitions	tjr1 tjr2		-18.5 -9	+18.5 +9	ns ns
Source SE0 interval of EOP	t feopt		160	175	ns
Receiver SE0 interval of EOP	t feopr		82		ns
Width of SE0 interval during differential transition	t⊧st			14	ns

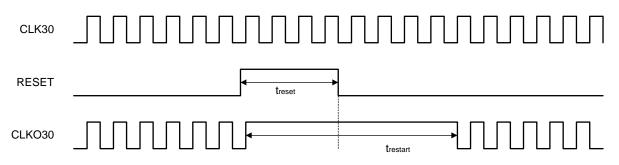
	1			1	(2/2
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
High-speed Source Electrical Characterist	tics				
Rise time (10% - 90%)	thsr		500		ps
Fall time (90% - 10%)	thsf		500		ps
Driver waveform	See Figure	2-6.			
High-speed data rate	t hsdrat		479.760	480.240	Mbps
Microframe interval	t HSFRAM		124.9375	125.0625	μs
Consecutive microframe interval difference	t HSRFI			4 high- speed	Bit times
Data source jitter	See Figure	2-6.			
Receiver jitter tolerance	See Figure	2-4.			
Device Event Timings					
Time from internal power good to device pulling D+ beyond VIHz	t sigatt			100	ms
Debounce interval provided by USB system software after attach	t attdb			100	ms
Inter-packet delay for full-speed	tipd		2		Bit times
Inter-packet delay for device response for full-speed	trspipd1			6.5	Bit times
High-speed detection start time from suspend	tsca		2.5		μs
Sample time for suspend vs reset	tcsr		100	875	μs
Power down under suspend	tsus			10	ms
Suspend/reset detection time	tspd		3.0	3.125	ms
SUSPEND set time (SPNDOUT)	tssp		0	-	
SUSPEND clear time (RSUMOUT)	tcsp		0	-	
Reversion time from suspend to high- speed	trнs			1.333	μs
SUSPEND setup time (RSUMIN)	tsrw		0	-	
RSUMIN active pulse width	t RWP		1	15	ms
Drive Chirp K width	tско		1		ms
Finish Chirp K Assertion	t FCA			7	ms
Start sequencing Chirp K-J-K-J-K-J	tssc			100	μs
Finish sequencing Chirp K-J	trsc		-500	-100	μs
Detect sequencing Chirp K-J width	tcsi		2.5		μs
Sample time for sequencing Chirp	tscs		1.0	2.5	ms
Reversion time to high-speed	trна			500	μs
High-speed detection start time	tHDS		2.5	3000	μs
Reset completed time	tors		10		ms

AC Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RXVALID out time	t rvo	C∟ = 15 pF			10.0	ns
RXVALID hold time	trvн	C∟ = 15 pF			10.0	ns
RX_DOUT[15:0] out time	t rdo	C∟ = 15 pF			10.0	ns
RX_DOUT[15:0] hold time	t RDH	C∟ = 15 pF			10.0	ns
RXBYTEN out time	trbo	C∟ = 15 pF			10.0	ns
RXBYTEN hold time	trвн	C∟ = 15 pF			10.0	ns
RXLSTDAT out time	trlo	C∟ = 15 pF			10.0	ns
RXLSTDAT hold time	trlh	C∟ = 15 pF			10.0	ns
ENDPOK setup time	teps		14.0			ns
ENDPOK hold time	tерн		0			ns
ISO setup time	tiss		10.0			ns
ISO hold time	tısн		0			ns
HIT out time for OUT/SETUP	tноо	C∟ = 15 pF			10.0	ns
HIT out time for IN/PING	tню	C∟ = 15 pF			76.7	ns
HIT hold time	tнтн	C∟ = 15 pF			10.0	ns
RCVDATA[1:0] out time	t rpo	C∟ = 15 pF			10.0	ns
SNDRSPD[3:0] setup time for OUT/SETUP	tsнs		11.5			ns
SNDRSPD[3:0] setup time for IN/PING	tsps		11.5			ns
SNDNHSK setup time	tsns		8.00			ns
SNDNHSK hold time	tsnн		0			ns
TRANS out time	tтко	C∟ = 15 pF			10.0	ns
TRANS hold time	tткн	C∟ = 15 pF			10.0	ns
TRNSRLT[2:0] out time	tтто	C∟ = 15 pF			10.0	ns
TRNSKND[3:0] out time	ttdo	C∟ = 15 pF			10.0	ns
TX_DIN[15:0] setup time	t _{TDS}		9.00			ns
TX_DIN[15:0] hold time	tтрн		0			ns
TXBYTEN setup time	tтвs		8.50			ns
TXBYTEN hold time	tтвн		0			ns
TXLSTDAT setup time	t⊤∟s		9.50			ns
TXLSTDAT hold time	tтıн		0			ns
TXLSTDAT setup time for NULL	t _{TNS}		26.2			ns
DC out time	toco	C∟ = 15 pF			10.00	ns
DC hold time	tрсн	C∟ = 15 pF			10.00	ns

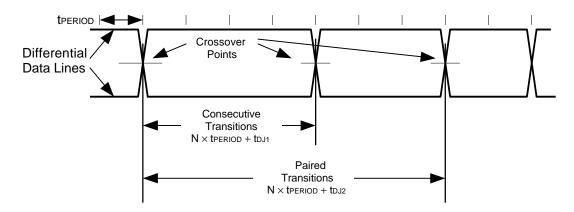




Figure 2-6. Transmit Waveform for Transceiver at DP/DM

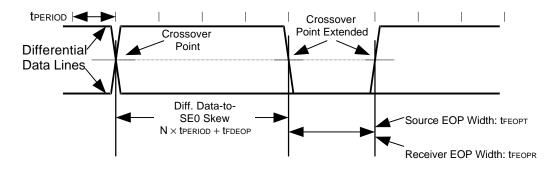


Timing Diagram

Clock Output

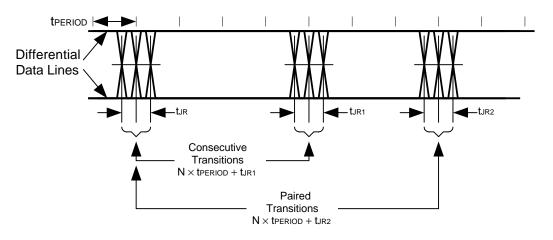


Reset vs Clock Output

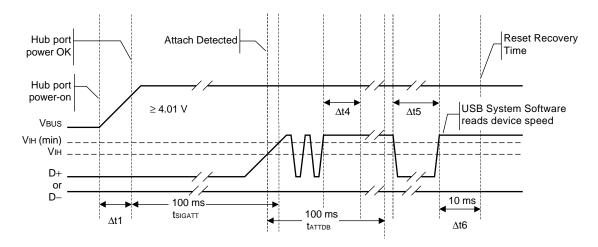


USB Signals

USB Differential Data Jitter for Full-speed

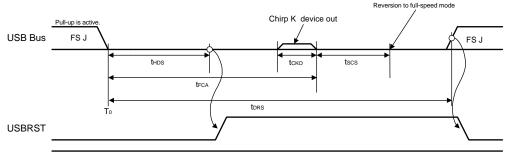


USB Differential-to-EOP Transition Skew and EOP Width for Full-speed



USB Receiver Jitter Tolerance for Full-speed

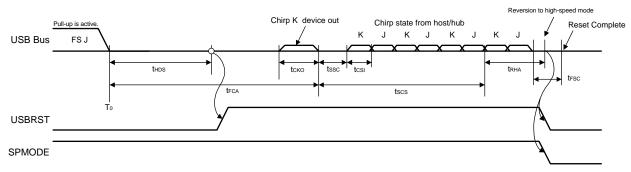
NEC



Power-on and Connection Events

High-speed Connect Detection

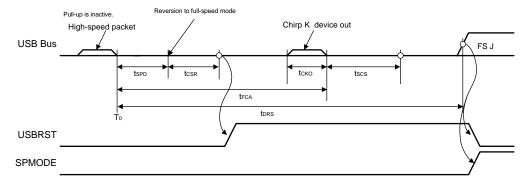
USB Connection Sequencing on USB1.1 Bus



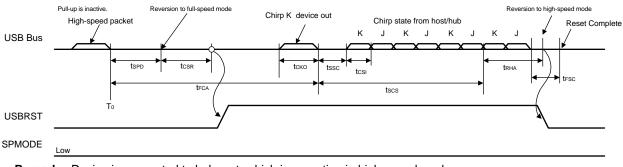
SPMODE High

Remark Device is connected to hub port, which is operating in full-speed mode.

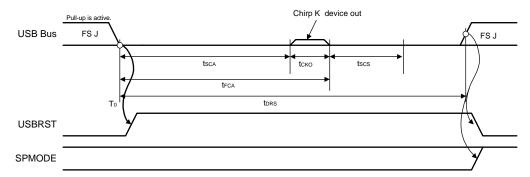
Hub includes root hub in host controller. This sequencing is the same as reset from USB 1.x host or hub.


USB Connection Sequencing on USB2.0 Bus

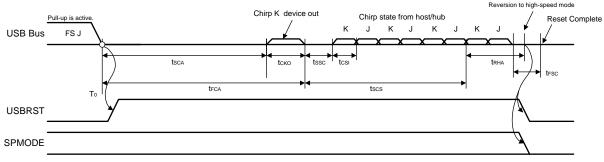
RemarkDevice is connected to hub port, which is operating in high-speed mode.Hub includes root hub in host controller. This sequencing is the same as reset for high-speed capable
device which is operating in full-speed mode.


USB Reset

USB Reset on USB2.0 Bus (1)

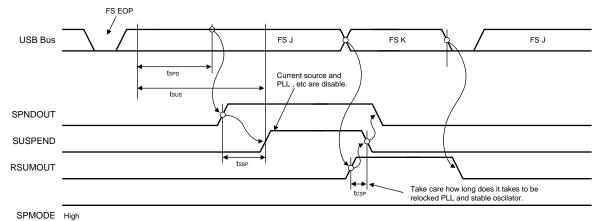

Remark Device is connected to hub port, which is operating in high-speed mode. Hub includes root hub in host controller. Hub can not find chirp from device.

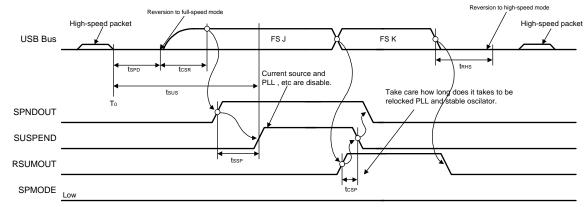
USB Reset on USB2.0 Bus (2)


Remark Device is connected to hub port, which is operating in high-speed mode. Hub includes root hub in host controller.

USB Reset from Suspended State (1)

Remark Device is connected to hub port, which is in suspended state. Hub includes root hub in host controller. Hub can not find chirp from device.

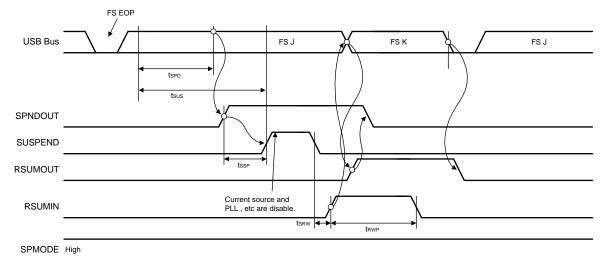

USB Reset from Suspended State (2)


Remark Device is connected to hub port, which is in suspended state. Hub includes root hub in host controller.

USB Suspend/resume

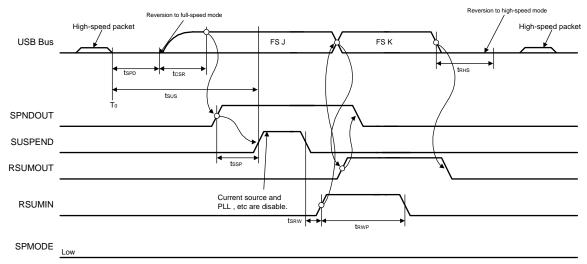
USB Suspend / resume on USB1.1 Bus

Remark Device is connected to hub port, which is operating in full-speed mode. Hub includes root hub in host controller.



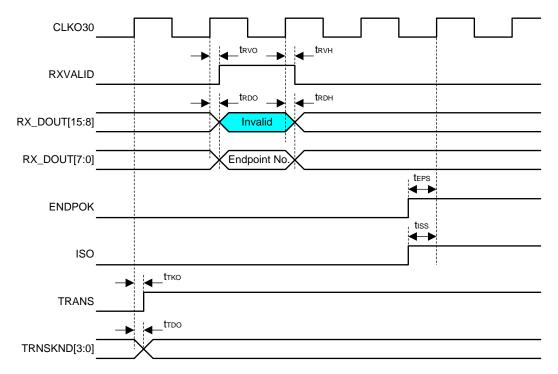
USB Suspend / resume on USB2.0 Bus

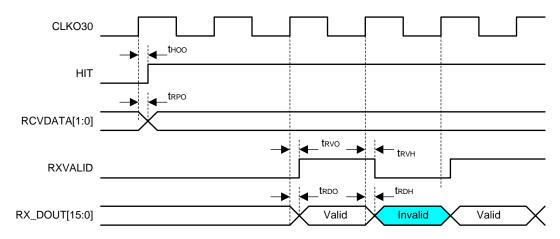
Remark Device is connected to hub port, which is operating in high-speed mode. Hub includes root hub in host controller.


USB Remote Wakeup

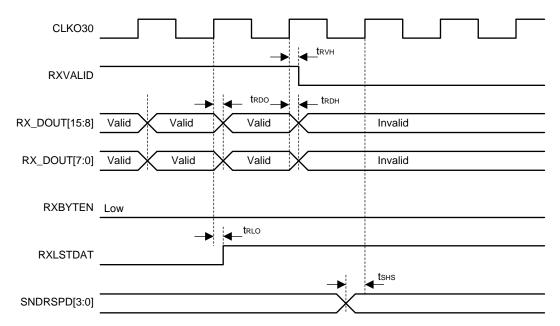
USB Remote Wakeup on USB1.1 Bus

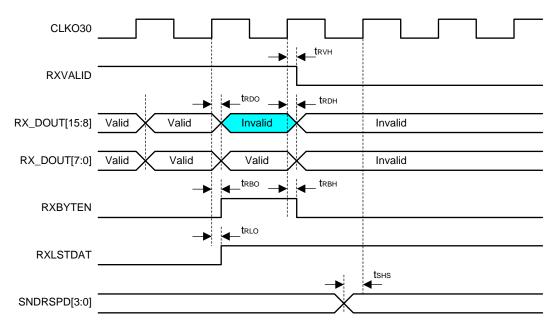
Remark Device is connected to hub port, which is operating in full-speed mode. Hub includes root hub in host controller.

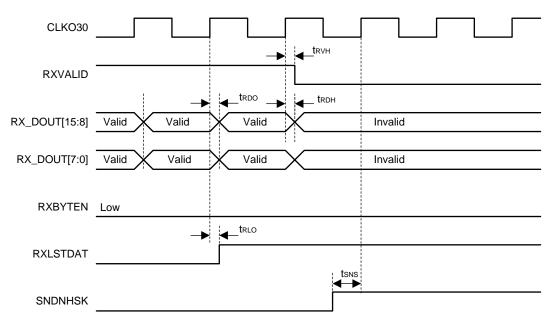

USB Remote Wakeup on USB2.0 Bus

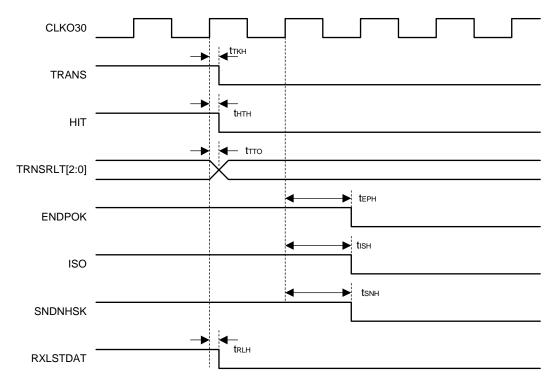

Remark Device is connected to hub port, which is operating in high-speed mode. Hub includes root hub in host controller.

USB OUT/SETUP Transaction

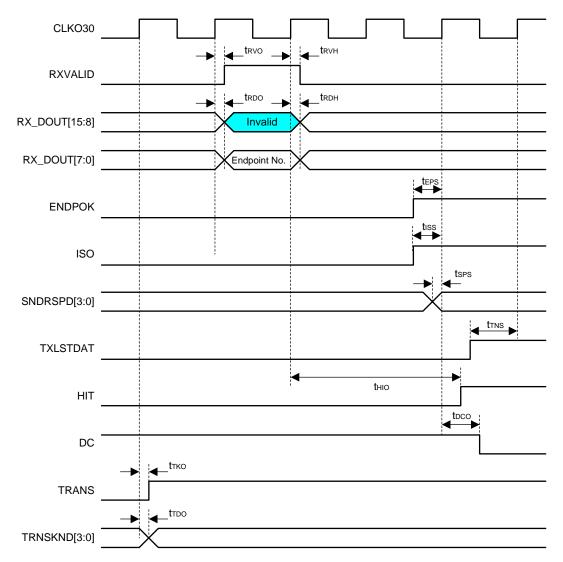

USB OUT/SETUP Token Phase


USB OUT/SETUP Start of Data Phase


USB OUT/SETUP End of Data Phase (Word Boundary)

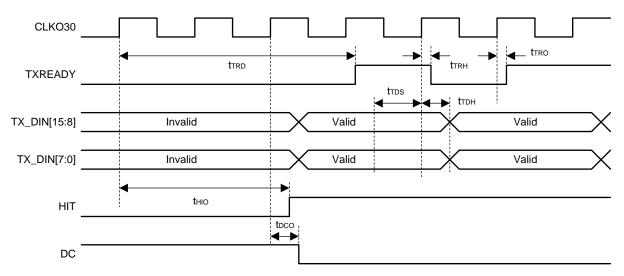

USB OUT/SETUP End of Data Phase (Byte Boundary)

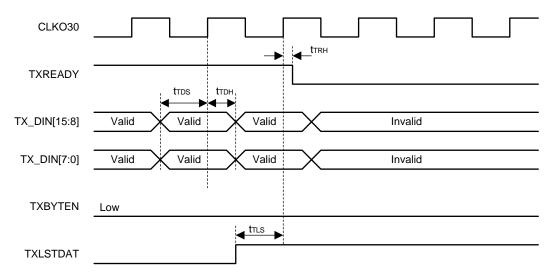
USB OUT/SETUP No Respond for Host Issued Packet



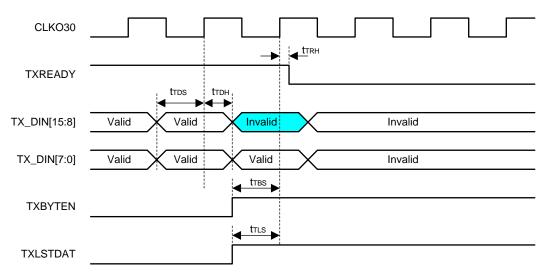
USB OUT/SETUP End of Handshake Phase

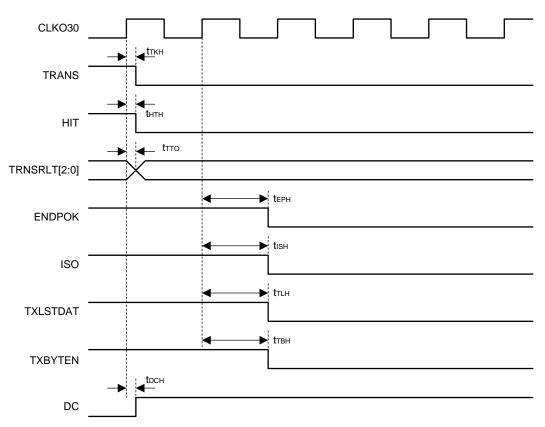
USB IN/PING Transaction


USB IN/PING Token Phase (Null Data Transfer)

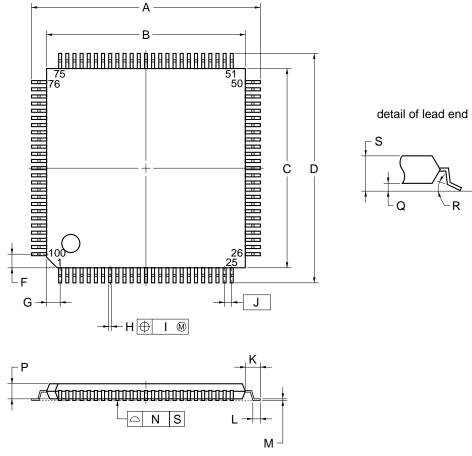

NEC

Phase-out/Discontinued


USB IN Start of Data Phase


USB IN End of Data Phase (Word Boundary)

USB IN End of Data Phase (Byte Boundary)



USB IN End of Handshake Phase

3. PACKAGE DRAWING

100-PIN PLASTIC TQFP (FINE PITCH) (14x14)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	16.0±0.2
В	14.0±0.2
С	14.0±0.2
D	16.0±0.2
F	1.0
G	1.0
Н	$0.22^{+0.05}_{-0.04}$
I	0.10
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.145\substack{+0.055\\-0.045}$
Ν	0.10
Р	1.0±0.1
Q	0.1±0.05
R	$3^{\circ}^{+7^{\circ}}_{-3^{\circ}}$
S	1.27 MAX.

S100GC-50-9EU-2

4. RECOMMENDED SOLDERING CONDITIONS

The μ PD720120 should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

μ PD720120GC-9EU: 100-pin plastic TQFP (Fine pitch) (14 × 14)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),	IR35-103-3
	Count: Three times or less	
	Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The information in this document is current as of March, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).