Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

RENESAS

$\frac{\mu PD70P3002}{\mu PD70P3002}$

V852™ 32-/16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD70P3002 is a one-time PROM version of the μ PD703002. Because this device can be programmed by users only once, it is suited for applications involving small-scale production of many different products, and rapid development and time-to-market of new products.

The details of functions are described in the following user's manuals. Be sure to read them before designing.

V852 User's Manual Hardware : U10038E V850 Family[™] User's Manual Architecture : U10243E

FEATURES

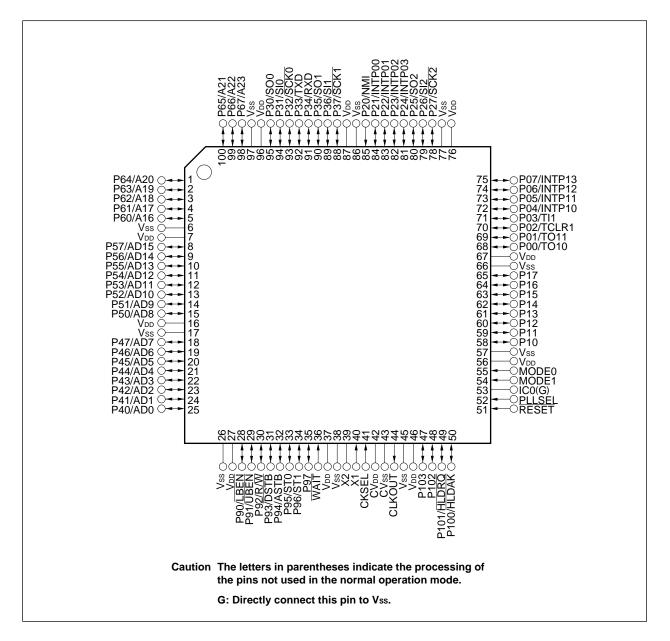
- Compatible with μPD703002
 - Can be replaced with mask ROM version, µPD703002, for mass production of application set
- Internal PROM: 90 Kbytes
 - Can be written only once
- PROM programming characteristics: µPD27C1001A compatible
- QTOP[™] microcontroller compatible

Remark QTOP microcontroller is NEC's microcontroller with one-time PROM, with total support of writing service (from program writing, to marking, screening, and verifying).

ORDERING INFORMATION

Part Number	Package
μPD70P3002GC-25-7EA	100-pin plastic QFP (fine pitch) (14 $ imes$ 14 mm)
µPD70P3002GC-25-×××-7EA	100-pin plastic QFP (fine pitch) (14 $ imes$ 14 mm) (QTOP microcontroller)

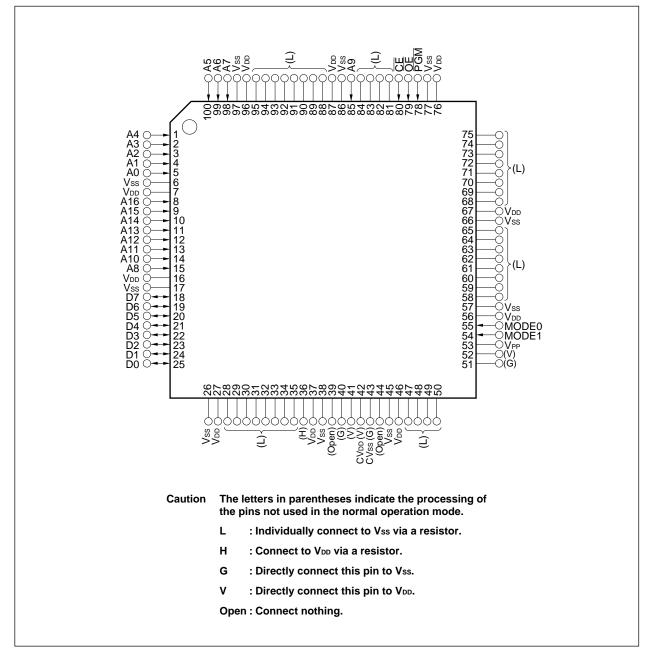
Remark ××× indicates the ROM code suffix.


The one-time PROM version is referred to as "PROM" in this document.

The information in this document is subject to change without notice.

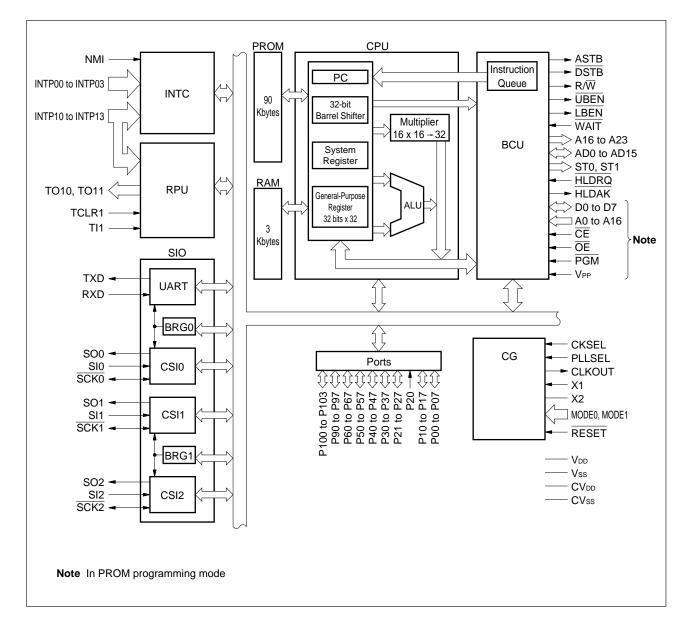
μ**PD70P3002**

PIN CONFIGURATION (Top View)


(1) Normal operation mode

P00 to P07	:	Port0	A16 to A23	:	Address Bus
P10 to P17	:	Port1	LBEN :	:	Lower Byte Enable
P20 to P27	:	Port2	UBEN	:	Upper Byte Enable
P30 to P37	:	Port3	R/W	:	Read/Write Status
P40 to P47	:	Port4	DSTB	:	Data Strobe
P50 to P57	:	Port5	ASTB :	:	Address Strobe
P60 to P67	:	Port6	ST0, ST1	:	Status
P90 to P97	:	Port9	HLDAK	:	Hold Acknowledge
P100 to P103	:	Port10	HLDRQ	:	Hold Request
TO10, TO11	:	Timer Output	CLKOUT	:	Clock Output
TCLR1	:	Timer Clear	CKSEL :	:	Clock Select
TI1	:	Timer Input	PLLSEL :	:	PLL Select
INTP00 to INTP03,			WAIT	:	Wait
INTP10 to INTP13	:	Interrupt Request From Peripherals	MODE0, MODE1:	:	Mode
NMI	:	Non-maskable Interrupt Request	RESET	:	Reset
SO0 to SO2	:	Serial Output	X1, X2	:	Crystal
SI0 to SI2	:	Serial Input	CVDD	:	Clock Generator Power Supply
$\overline{\text{SCK0}}$ to $\overline{\text{SCK2}}$:	Serial Clock	CVss :	:	Clock Generator Ground
TXD	:	Transmit Data	Vdd :	:	Power Supply
RXD	:	Receive Data	Vss	:	Ground
AD0 to AD15	:	Address/Data Bus	IC0 :	:	Internally Connected

μ**PD70P3002**


(2) PROM programming mode

A0 to A16	: Address Bus	MODE0, MODE1:	Programming Mode Set
D0 to D7	: Data Bus	Vdd :	Power Supply
CE	: Chip Enable	Vss :	Ground
OE	: Output Enable	Vpp :	Programming Power Supply
PGM	: Programming Mode		

μ**PD70P3002**

INTERNAL BLOCK DIAGRAM

Phase-out/Discontinued

CONTENTS

1.	DIFFERENCES BETWEEN µPD70P3002 AND µPD703002	7
2.	PIN FUNCTION LIST	8
	2.1 Normal Operation Mode (MODE0 = L, MODE1 = H)	. 8
	2.1.1 Port pins	. 8
	2.1.2 Non-port pins	
	2.2 PROM Programming Mode (MODE0 = H, MODE1 = H)	11
	2.3 Pin I/O Circuits and Recommended Connections of Unused Pins	12
3.	PROM PROGRAMMING	14
	3.1 Operation Mode	14
	3.2 PROM Writing Procedure	16
	3.3 PROM Reading Procedure	20
4.	SCREENING OF ONE-TIME PROM VERSION	21
	SCREENING OF ONE-TIME PROM VERSION NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED	
5.		21
5. 6.	NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED	21 22
5. 6. 7.	NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED	21 22 47
5. 6. 7. 8.	NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED ELECTRICAL SPECIFICATIONS CHARACTERISTICS CURVES (REFERENCE)	21 22 47 48

1. DIFFERENCES BETWEEN μ PD70P3002 AND μ PD703002

The μ PD70P3002 is a PROM version of the μ PD703002. Therefore, these two versions are identical except for differences because of the ROM specifications (for example, specifications concerning writing and verifying). Table 1-1 and 1-2 show the differences between the two.

Phase-out/Discontinued

Note that this document mainly describes the PROM specifications of the μ PD70P3002. For the other functions, refer to the documents on the μ PD703002.

Item Part Number	μPD70P3002	μPD703002	
Internal program memory	One-time PROM	Mask ROM	
(electrical writing)	(can be written only once)		
PROM programming pin	Provided	None	
Setting of MODE0 and	In normal operation mode	In normal operation mode	
MODE1 pins	MODE0, $1 = LH$	MODE0, $1 = LH$	
	In PROM programming mode	 In ROM-less mode 	
	MODE0, 1 = HH	MODE0, $1 = LL$	
Electrical specifications	Refer to Table 1-2 Electrical Specifications Differences between µPD70P3002 and		
	μΡD703002		
Others	Noise immunity and noise radiation differ because circuit scale and mask layout differ.		

Table 1-1. Differences between $\mu \text{PD70P3002}$ and $\mu \text{PD703002}$

Cautions 1. The PROM and mask ROM versions differ from each other in terms of noise immunity and noise emission. When replacing the PROM version with the mask ROM version in the course of switching from experimental production to mass production, perform thorough evaluation with the CS model (not ES model) of the mask ROM version.

- 2. Directly connect the MODE0 and MODE1 pins to VDD or Vss.
- 3. If the PROM version is replaced with the mask ROM version, the same code should be written in the vacant area of internal ROM.
- Remark L : low level
 - H: high level

Table 1-2. Electrical Specifications Differences between μ PD70P3002 and μ PD703002

Item			Symbol
Absolute maximum ratings	Input voltage		V ₁₂
	Operating ambient temperature		TA
DC characteristics	Supply current Operating		IDD1
	In HALT mode In IDLE mode In STOP mode		IDD2
			Іддз
			IDD4
Data retention characteristics	Data hold current		Idddr
AC characteristics	Clock timing Freerunning oscillation frequency		фР
Recommended oscillation circuit			

2. PIN FUNCTION LIST

2.1 Normal Operation Mode (MODE0 = L, MODE1 = H)

2.1.1 Port pins

Pin Name	I/O	Function	Alternate Function
P00	/O	Port 0	TO10
P01		8-bit I/O port	TO11
P02		Input/output can be specified bit-wise.	TCLR1
P03			TI1
P04			INTP10
P05			INTP11
P06			INTP12
P07	-		INTP13
P10 to P17	I/O	Port 1 8-bit I/O port Input/output can be specified bit-wise.	-
P20	Input	Port 2	NMI
P21	I/O	P20 is an input-only port.	INTP00
P22		Operates as an NMI input when a valid edge is input. Shows NMI input status at bit 0 of P2 register.	INTP01
P23		P21 to P27 are 7-bit I/O ports.	INTP02
P24		Input/output can be specified bit-wise.	INTP03
P25			SO2
P26			SI2
P27			SCK2
P30	I/O	Port 3	SO0
P31		8-bit I/O port	SI0
P32		Input/output can be specified bit-wise.	SCK0
P33			TXD
P34			RXD
P35			SO1
P36			SI1
P37			SCK1
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified bit-wise.	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port Input/output can be specified bit-wise.	AD8 to AD15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output can be specified bit-wise.	A16 to A23

μ**PD70P3002**

10/0	١
(///	1
(- / -	1

Pin Name	I/O	Function	Alternate Function
P90	I/O	Port 9	LBEN
P91	_	8-bit I/O port	UBEN
P92		Input/output can be specified bit-wise.	R/W
P93			DSTB
P94			ASTB
P95			ST0
P96			ST1
P97			—
P100	I/O	Port 10	HLDAK
P101		4-bit I/O port	HLDRQ
P102		Input/output can be specified bit-wise.	—
P103			_

2.1.2 Non-port pins

Pin Name	I/O	Function	Alternate Function
TO10	Output	Pulse signal output of timer 1	P00
TO11			P01
TCLR1	Input	External clear signal input of timer 1	P02
TI1	_	External count clock input of timer 1	P03
INTP10	Input	External maskable interrupt request input and external capture trigger	P04
INTP11		input of timer 1	P05
INTP12	_		P06
INTP13	_		P07
NMI	Input	Non-maskable interrupt request input	P20
INTP00	Input	External maskable interrupt request input	P21
INTP01	-		P22
INTP02			P23
INTP03			P24
SO0	Output	Serial transmit data output of CSI0	P30
SI0	Input	Serial receive data input of CSI0	P31
SCK0	I/O	Serial clock I/O of CSI0	P32
SO1	Output	Serial transmit data output of CSI1	P35
SI1	Input	Serial receive data input of CSI1	P36
SCK1	I/O	Serial clock I/O of CSI1	P37
SO2	Output	Serial transmit data output of CSI2	P25
SI2	Input	Serial receive data input of CSI2	P26
SCK2	I/O	Serial clock I/O of CSI2	P27
TXD	Output	Serial transmit data output of UART	P33
RXD	Input	Serial receive data input of UART	P34

(1/2)

Phase-out/Discontinued

μ**PD70P3002**

			(2/2)
Pin Name	I/O	Function	Alternate Function
AD0 to AD7	I/O	16-bit multiplexed address/data bus when external memory is connected	P40 to P47
AD8 to AD15			P50 to P57
A16 to A23	Output	High-order address bus when external memory is connected	P60 to P67
LBEN	Output	Low-order byte enable signal output of external data bus	P90
UBEN		High-order byte enable signal output of external data bus	P91
R/W		External read/write status output	P92
DSTB		External data strobe signal output	P93
ASTB		External address strobe signal output	P94
ST0		External bus cycle status output	P95
ST1			P96
HLDAK	Output	Bus hold acknowledge output	P100
HLDRQ	Input	Bus hold request input	P101
CLKOUT	Output	System clock output	—
CKSEL	Input	Input specifying operation mode of clock generator	_
PLLSEL	Input	Input specifying PLL multiplication coefficient	_
WAIT	Input	Control signal input inserting wait state in bus cycle	—
MODE0, MODE1	Input	Operation mode specification	_
RESET	Input	System reset input	—
X1	Input	System clock oscillator connection	—
X2	_	Input external clock to X1 to supply external clock	_
CVdd	_	Positive power supply for internal clock generator	
CVss	_	Ground potential for internal clock generator	
Vdd	_	Positive power supply	
Vss	_	Ground potential	
IC0	_	Internally connected	

2.2 PROM Programming Mode (MODE0 = H, MODE1 = H)

Pin Name	Function	Function in Normal Mode
A0 to A7	Low-order address (A0 to A7) input	P60/A16 to P67/A23
A8, A9, A10 to A16	High-order address (A8 to A16) input	P50/AD8, P20/NMI, P51/AD9 to P57/AD15
D0 to D7	Data I/O	P40/AD0 to P47/AD7
CE	CE (chip enable) input	P25/SO2
ŌĒ	OE (output enable) input	P26/SI2
PGM	PGM (program) input	P27/SCK2
Vpp	Power for program writing	ICO
MODE0, MODE1	Operation mode specification	MODE0, MODE1

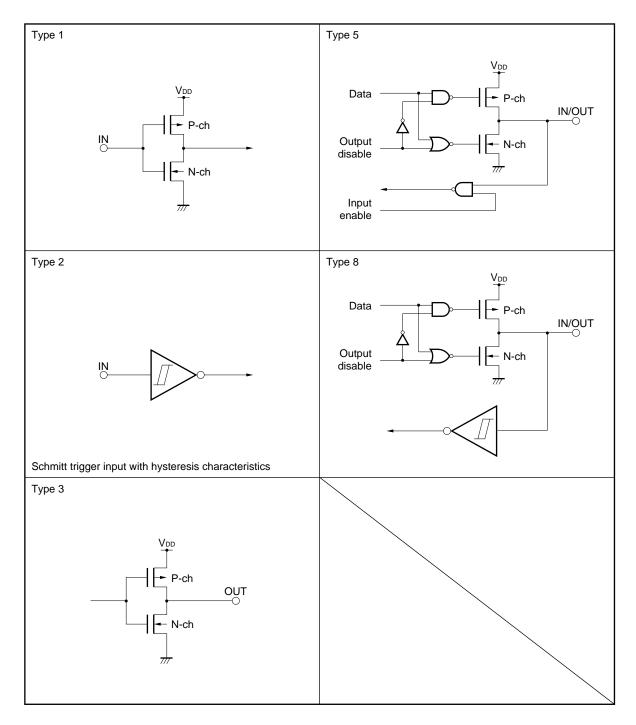
2.3 Pin I/O Circuits and Recommended Connections of Unused Pins

Table 2-1 shows the I/O circuit type of each pin in the normal operation mode, and the recommended connections of the unused pins. Figure 2-1 shows a partially simplified diagram of each circuit.

Phase-out/Discontinued

In the PROM programming mode, connect the unused pins by referring to the diagram in **PIN CONFIGURATION**.

When connecting a pin to V_{DD} or V_{SS} via a resistor, use of a resistor of 3 to 10 $k\Omega$ is recommended.


Table 2-1. Types of Pin I/O Circuits and Recommended Connections of Unused Pins

Pin	I/O Circuit Type	Recommended Connections
P00/TO10, P01/TO11	5	Input : Individually connect to VDD or VSS via resistor.
P02/TCLR1, P03/TI1	8	Output : Open
P04/INTP10 to P07/INTP13		
P10 to P17	5	
P20/NMI	2	Directly connect to Vss.
P21/INTP00 to P24/INTP03	8	Input : Individually connect to VDD or Vss via resistor.
P25/SO2	5	Output : Open
P26/SI2, P27/SCK2	8	
P30/SO0	5	
P31/SI0, P32/SCK0	8	
P33/TXD, P34/RXD, P35/SO1	5	
P36/SI1, P37/SCK1	8	
P40/AD0 to P47/AD7	5	
P50/AD8 to P57/AD15		
P60/A16 to P67/A23		
P90/LBEN		
P91/UBEN		
P92/R/W		
P93/DSTB		
P94/ASTB		
P95/ST0, P96/ST1		
P97		
P100/HLDAK		
P101/HLDRQ		
P102, P103		
CLKOUT	3	Open
CKSEL	2	_
PLLSEL	2	_
WAIT	1	Directly connect to VDD.
MODE0, MODE1	2	_
RESET	1	
ICO	_	Directly connect to Vss.
CVDD	_	Directly connect to VDD.
CVss	—	Directly connect to Vss.

*

μ**ΡD70Ρ3002**

Figure 2-1. Pin I/O Circuits

3. PROM PROGRAMMING

The μ PD70P3002 has a 90 Kbytes × 8 bit PROM that can be electrically written. To program this PROM, set the PROM programming mode by using the V_{PP}, MODE0, and MODE1 pins.

Phase-out/Discontinued

The programming characteristics are compatible with those of the μ PD27C1001A.

Function	Normal Operation Mode	PROM Programming Mode
Address input	P60/A16 to P67/A23, P50/AD8, P20/NMI, P51/AD9 to P57/AD15	A0 to A16
Data I/O	P40/AD0 to P47/AD7	D0 to D7
Program input	P27/SCK2	PGM
Chip enable input	P25/SO2	CE
Output enable input	P26/SI2	ŌĒ
Program voltage	ICO	Vpp
Mode specification	MODE0, MODE1	

Table 3-1. Pin Functions in PROM Programming Mode

3.1 Operation Mode

To set the programming writing/verify mode, set as follows: $V_{PP} = +12.5 \text{ V}$, MODE0 = H, MODE1 = H In this mode, the modes shown in Table 3-2 can be selected by using the \overline{CE} , \overline{OE} , and \overline{PGM} pins. To read the contents of the PROM, set the read mode.

Connect the unused pins by referring to the diagram in **PIN CONFIGURATION**.

Operation Mode	MODE0	MODE1	CE	ŌĒ	PGM	Vpp	Vdd	D0 to D7
Page data latch mode	Н	Н	Н	L	н	+12.5 V	+6.5V	Data input
Page write mode			Н	н	L			High impedance
Byte write mode			L	Н	L			Data input
Program verify mode	-		L	L	н	-		Data output
Program inhibit mode			х	L	L			High impedance ^{Note}
			х	н	н	-		
Read mode	-		L	L	н	+5.0 V	+5.0 V	Data output
Output disable mode	-		L	н	x	-		High impedance ^{Note}
Standby mode			Н	х	х			High impedance ^{Note}

Table 3-2.	Operation	Modes for	PROM	Programming
------------	-----------	-----------	------	-------------

Note L or H can be input (address input is invalid).

Remark x: L or H

(1) Page data latch mode

The page data latch mode can be set by making the \overline{CE} and \overline{PGM} pins high and \overline{OE} pin low at the beginning of the page write mode.

Phase-out/Discontinued

In the page data latch mode, 1 page or 4 bytes of data are latched to the internal address/data latch circuit.

(2) Page write mode

In this mode, page write is executed by applying a program pulse of 0.1 ms to the PGM pin when CE = H and \overline{OE} = H after 1 page or 4 bytes of addresses and data have been latched in the page data latch mode. After that, the program is verified when \overline{CE} = L and \overline{OE} = L.

If the program cannot be written by applying the program pulse once, writing and verification are repeatedly executed X times (X \leq 10).

(3) Byte write mode

Byte write is executed by applying a program pulse (active low) of 0.1 ms to the \overline{PGM} pin when $\overline{CE} = L$ and $\overline{OE} = H$. After that, the program is verified when $\overline{OE} = L$.

If the program cannot be written by applying the program pulse once, writing and verification are repeatedly executed X times (X \leq 10).

(4) Program verify mode

The program verify mode is set when $\overline{CE} = L$, $\overline{OE} = L$, and $\overline{PGM} = H$. Check to see if the program has been correctly written, in this mode.

(5) Program inhibit mode

The program inhibit mode is used to write a program to one of several μ PD70P3002s whose \overline{OE} , V_{PP} and D0 through D7 pins are connected in parallel.

To write a program, either the page write mode or byte write mode above is used. At this time, the program is not written to any device whose \overrightarrow{PGM} pin is made high.

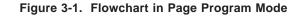
(6) Read mode

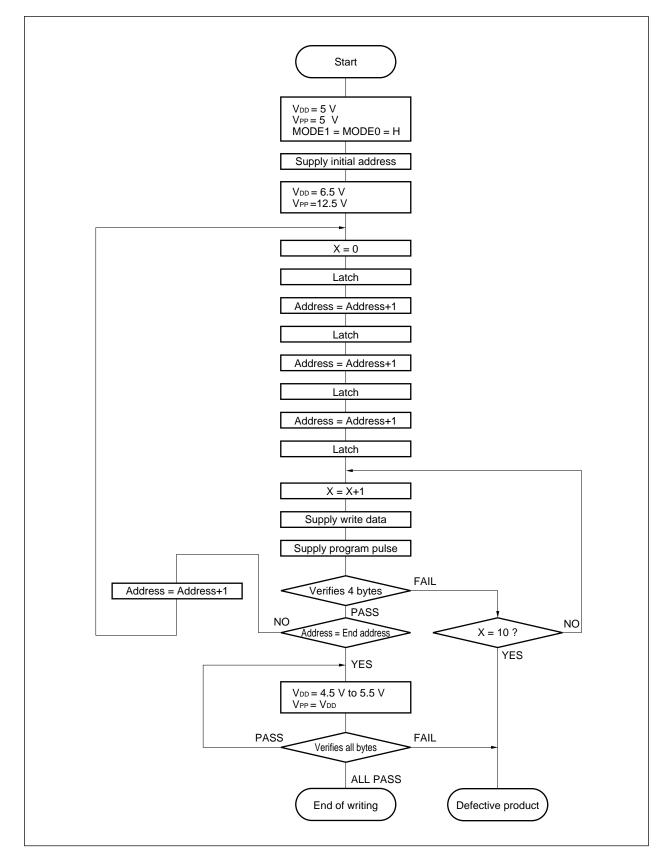
The read mode is set when $\overline{CE} = L$, $\overline{OE} = L$, and $\overline{PGM} = H$.

(7) Output disable mode

The data output goes into a high-impedance state and the output disable mode is set by making \overline{CE} low and \overline{OE} high.

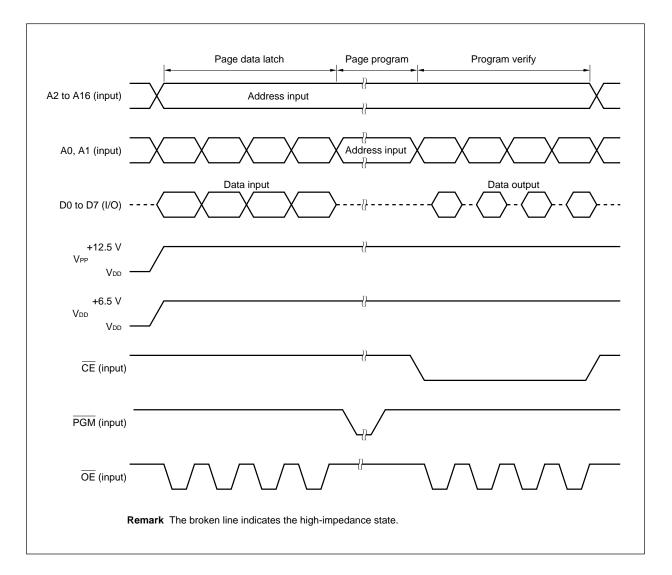
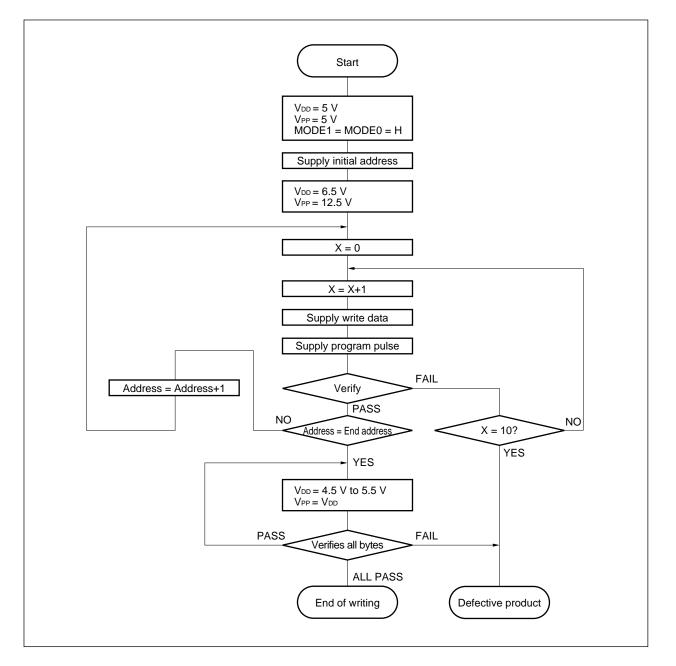
When two or more μ PD70P3002s are connected to the data bus, any one of the devices can be selected and data can be read by controlling the \overline{OE} pin.


(8) Standby mode


The standby mode is set by making CE high.

In this mode, the data output goes into a high-impedance state regardless of the status of \overline{OE} .

3.2 PROM Writing Procedure

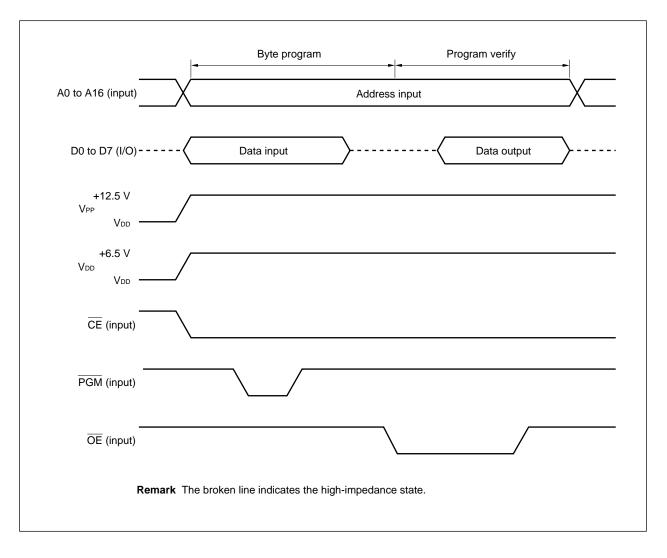
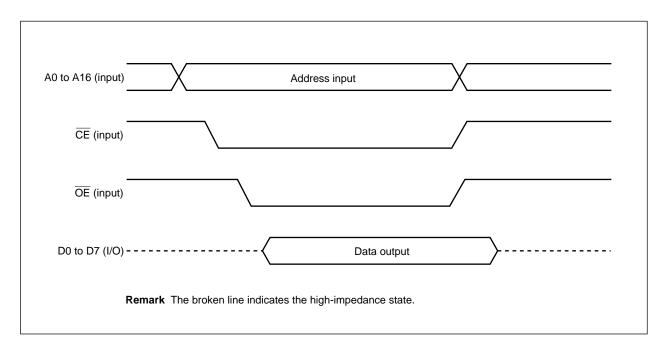


Figure 3-3. Flowchart in Byte Program Mode

3.3 PROM Reading Procedure


The procedure to read the contents of the PROM to the external data bus (D0 to D7) is as follows:

(1) Fix the MODE0 and MODE1 pins to low level. Connect the unused pins by referring to the diagram in **PIN CONFIGURATION (2) PROM Programming mode**.

Phase-out/Discontinued

- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0 to A16 pins.
- (4) Set the read mode ($\overline{CE} = L$, $\overline{OE} = L$).
- (5) Data are output to pins D0 to D7.

Figure 3-5 shows the timing of steps (2) to (5) above.

Figure 3-5. PROM Reading Timing

4. SCREENING OF ONE-TIME PROM VERSION

Because of its structure, the one-time PROM version cannot be completely tested by NEC before shipment. It is recommended to perform screening to verify the PROM, after writing the necessary data to the PROM and storing the device under the following conditions:

Phase-out/Discontinued

Storage Temperature	Storage Time
125°C	24 hours

NEC offers a service, at a charge, called QTOP microcontroller, for writing, marking, screening, and verifying one-time PROMs. For details, consult an NEC representative.

5. NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED

When an external clock is used, the clock is supplied by an external system.

To release the STOP mode (by $\overrightarrow{\text{RESET}}$ or NMI input), therefore, resume clock supply at least 150 μ s before inputting the $\overrightarrow{\text{RESET}}$ or NMI signal to make sure that a sufficiently long time elapses to allow the PROM to stabilize.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	Vdd	V _{DD} pin	-0.5 to +7.0	V
	CVDD	CVDD pin	-0.5 to +7.0	V
	CVss	CVss pin	-0.5 to +0.5	V
Input voltage	VI1	Except X1 pin, V _{DD} = 5.0 V ±10%	-0.5 to VDD + 0.3	V
	V _{I2}	V_{PP} pin in PROM programming mode, $V_{DD} = 5.0 \text{ V} \pm 10\%$	-0.5 to +13.5	V
Clock input voltage	Vx	X1 pin, Vpd = 5.0 V ±10%	-0.5 to VDD + 1.0	V
Output current, low	lol	1 pin	4.0	mA
		Total of all pins	100	mA
Output current, high	Іон	1 pin	-4.0	mA
		Total of all pins	-100	mA
Output voltage	Vo	V _{DD} = 5.0 V ±10%	-0.5 to VDD + 0.3	V
Operating ambient temperature	TA		-10 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Phase-out/Discontinued

Cautions 1. Do not directly connect the output (or I/O) pins of IC products, and do not directly connect them to V_{DD}, V_{CC}, or GND pin. Open-drain pins and open-collector pins may be directly connected to one another however. Moreover, an external circuit that is designed to prevent contention of output can be connected to pins that go into a high-impedance state.

2. Should the absolute maximum rating of even one of the above parameters be exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are, therefore, the values exceeding which the product may be physically damaged. Use the product so that these values are never exceeded.

The normal operating ranges of ratings and conditions in which the quality of the product is guaranteed are specified in the following DC Characteristics and AC Characteristics.

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	С	fc = 1 MHz			15	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V.			15	pF
Output capacitance	Co				15	pF

Capacitance ($T_A = 25^{\circ}C$, $V_{DD} = V_{SS} = 0 V$)

Operating Conditions

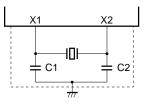
Operation Mode	Internal Operating Clock Frequency (ϕ)	Operating Temperature (TA)	Supply Voltage (VDD)
Direct mode	0 to 25 MHz	−10 to +70°C	5.0 V ±10%
PLL mode	Freerunning oscillation frequency to 25 MHz	-10 to +70°C	5.0 V ±10%

Phase-out/Discontinued

Recommended Oscillation Circuit

- (a) Ceramic resonator connection (T_A = -10 to $+70^{\circ}$ C)
- (i) Manufacturer: Kyocera

X1 X2 Rd Rd C1 C2 T77										
Part Number	Oscillation Frequency		Recommende Circuit Constan		Oscillation V	oltage Range	Oscillation Stabilization Time (MAX.)			
Fait Nulliber	fxx (MHz)	C1 (pF)	C2 (pF)	Rd (Ω)	MIN. (V)	MAX. (V)	Tost (ms)			
KBR-2.0MS	2.0	100	100	820	4.5	5.5	0.80			
KBR-2.7MS	2.7	100	100	820	4.5	5.5	0.60			
KBR-3.2MS	3.2	82	82	0	4.5	5.5	0.32			
KBR-5.0MSB	5.0	33	33	680	4.5	5.5	0.24			
KBR-5.0MKC	5.0	Provided	Provided	680	4.5	5.5	0.24			
KBR-10.0M	10.0	33	33	0	4.5	5.5	0.20			
KBR-13.5MY	13.5	15	15	0	4.5	5.5	0.40			
KBR-16.0MY	16.0	10	10	0	4.5	5.5	0.40			
KBR-24.0MY	24.0	10	10	0	4.5	5.5	0.26			
PBRC5.0A	5.0	33	33	680	4.5	5.5	0.24			
PBRC5.0B	5.0	Provided	Provided	680	4.5	5.5	0.24			


Cautions 1. Connect the oscillation circuit as closely to X1 and X2 pins as possible.

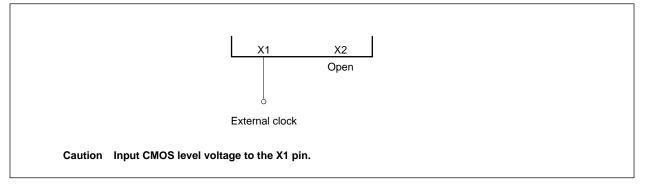
2. Do not route any other signal lines in the range indicated by the broken line in the above figure.

3. Thoroughly evaluate the compatibility of the μ PD70P3002 and resonator.

Phase-out/Discontinued

(ii) Manufacturer: TDK Corp., Murata Mfg.

Manufacturer	Part Number	Oscillation Frequency		mended constants	Oscillation Voltage Range		Oscillation Stabilization Time (MAX.)
		fxx (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	Tost (ms)
TDK	CCR2.0MC33	2.0	Provided	Provided	4.5	5.5	0.52
	CCR3.2MC3	3.2	Provided	Provided	4.5	5.5	0.34
	CCR5.0MC3	5.0	Provided	Provided	4.5	5.5	0.80
	FCR5.0MC5	5.0	Provided	Provided	4.5	5.5	0.48
	CCR10.0MC5	10.0	Provided	Provided	4.5	5.5	0.22
	CCR16.0MC6	16.0	Provided	Provided	4.5	5.5	0.66
	FCR25.0MCG	25.0	Provided	Provided	4.5	5.5	0.48
Murata Mfg.	CST2.00MG040	2.0	Provided	Provided	4.5	5.5	0.61
	CSA2.00MG040	2.0	100	100	4.5	5.5	0.61
	CST2.70MGW040	2.7	Provided	Provided	4.5	5.5	0.47
	CSA2.70MG040	2.7	100	100	4.5	5.5	0.47
	CST3.20MGW040	3.2	Provided	Provided	4.5	5.5	0.5
	CSA3.20MG040	3.2	100	100	4.5	5.5	0.5
	CST5.00MGW040	5.0	Provided	Provided	4.5	5.5	0.5
	CSA5.00MG040	5.0	100	100	4.5	5.5	0.5
	CST10.0MTW	10.0	Provided	Provided	4.5	5.5	0.1
	CSA10.0MTZ	10.0	30	30	4.5	5.5	0.1
	CST13.50MXW040	13.5	Provided	Provided	4.5	5.5	0.41
	CST13.50MXZ040	13.5	30	30	4.5	5.5	0.41
	CST16.00MXW040	16.0	Provided	Provided	4.5	5.5	0.35
	CST16.00MXZ0403	16.0	30	30	4.5	5.5	0.35
	CST25.00MXW040	25.0	Provided	Provided	4.5	5.5	0.24
	CSA25.00MXZ040	25.0	15	15	4.5	5.5	0.24


Cautions 1. Connect the oscillation circuit as closely to X1 and X2 pins as possible.

2. Do not route any other signal lines in the range indicated by the broken line in the above figure.

3. Thoroughly evaluate the compatibility of the $\mu \text{PD70P3002}$ and resonator.

(b) External clock input

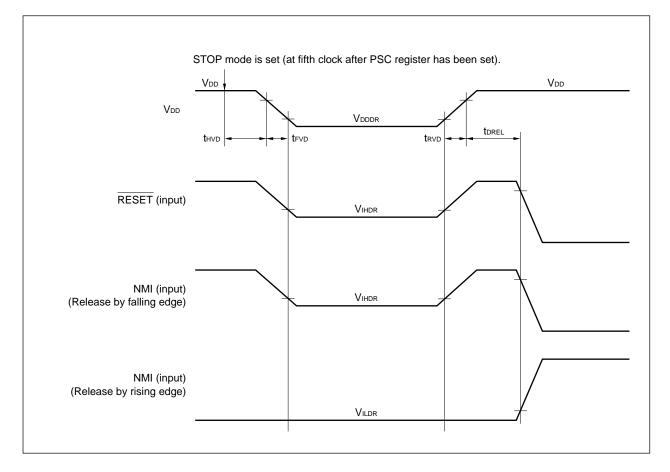
Param	eter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high		Vін	Except X1 and Note	2.2		Vdd	V
		VIL Except X1 and N		0.8Vdd		Vdd	V
Input voltage, low	put voltage, low		Except X1 and Note	0		0.8	V
			Note	0		0.2Vdd	V
X1 clock input voltag	je, high	Vхн	Direct mode	0.8Vdd		Vdd	V
			PLL mode	0.8Vdd		Vdd	V
X1 clock input voltag	je, low	Vxl	Direct mode	0		0.6	V
			PLL mode	0		0.6	V
Schmitt trigger input	threshold voltage	V _T +	Note, rising		3.0		V
		V _T -	Note, falling		2.0		V
Schmitt trigger input	hysteresis width	Vt+- Vt-	Note	0.5			V
Output voltage, high		Vон	Іон = -2.5 mA	0.7Vdd			V
			Іон = -100 µА	Vdd - 0.4			V
Output voltage, low		Vol	loc = 2.5 mA			0.45	V
Input leakage curren	t, high	Іцн	Vi = Vdd			10	μA
Input leakage curren	t, low	Ilil	$V_1 = 0 V$			-10	μA
Output leakage curre	ent, high	Ігон	Vo = Vdd			10	μA
Output leakage curre	ent, low	Ilol	Vo = 0 V			-10	μA
Supply current	Operating	IDD1	Direct mode		$2.0 \times \phi + 14$	$3.0 \times \phi + 15$	mA
			PLL mode		$2.1 \times \phi + 16$	$3.2 \times \phi + 18$	mA
	In HALT mode	Idd2	Direct mode		$0.7 \times \phi + 3$	$0.9 \times \phi + 10$	mA
			PLL mode		$0.8 \times \phi$ + 5	$1.1 \times \phi + 13$	mA
	In IDLE mode	Іддз	Direct mode		$20 \times \phi$ + 300	$28 \times \phi$ + 500	μA
			PLL mode		$0.2 \times \phi + 2$	$0.4 \times \phi + 2$	mA
	In STOP mode	DD4			1	50	μA

DC Characteristics (T_A = -10 to +70°C, V_{DD} = 5.0 V $\pm 10\%$, Vss = 0 V)

Note RESET, P02/TCLR1, P03/TI1, P04/INTP10 to P07/INTP13, P20/NMI, P21/INTP00 to P24/INTP03, P26/ SI2, P27/SCK2, P31/SI0, P32/SCK0, P36/SI1, P37/SCK1, MODE0, MODE1, CKSEL

Remarks 1. TYP. value is a value for your reference at $T_A = 25^{\circ}C$ and $V_{DD} = 5.0$ V.

2. ϕ : Internal operating clock frequency

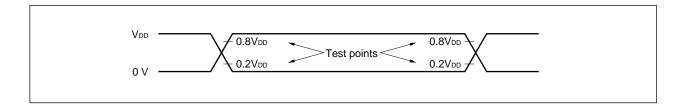

Data Retention Characteristics ($T_A = -10$ to $+70^{\circ}C$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdddr	STOP mode	1.5		5.5	V
Data hold current	Idddr	Vdd = Vdddr		0.2Vdddr	50	μΑ
Supply voltage rise time	t rvd		200			μs
Supply voltage fall time	tfvd		200			μs
Supply voltage hold time (from STOP mode setting)	t hvd		0			ms
STOP mode release signal input time	t drel		0			ns
Data hold input voltage, high	Vihdr	Note	0.9Vdddr		Vdddr	V
Data hold input voltage, low	Vildr	Note	0		0.1Vdddr	V

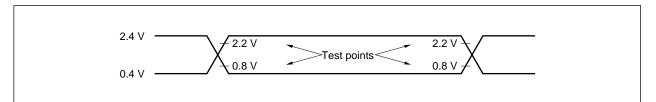
Phase-out/Discontinued

Note RESET, P02/TCLR1, P03/TI1, P04/INTP10 to P07/INTP13, P20/NMI, P21/INTP00 to P24/INT03, P26/SI2, P27/SCK2, P31/SI0, P32/SCK0, P36/SI1, P37/SCK1, MODE0, MODE1, CKSEL, X1

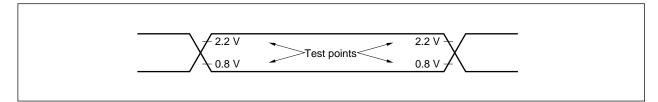
Remark TYP. value is a value for your reference at $T_A = 25^{\circ}C$ and $V_{DD} = 5.0$ V.

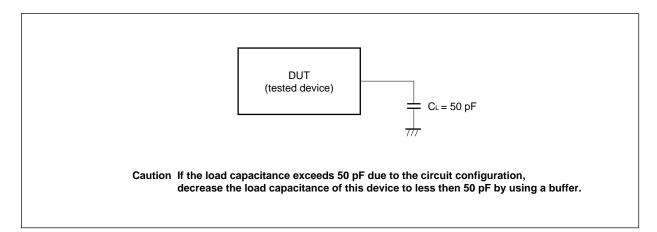


Phase-out/Discontinued


AC Characteristics (T_A = −10 to +70°C, V_{DD} = 5.0 V ±10%, V_{SS} = 0 V, C_L (output pin load capacitance) = 50 pF)

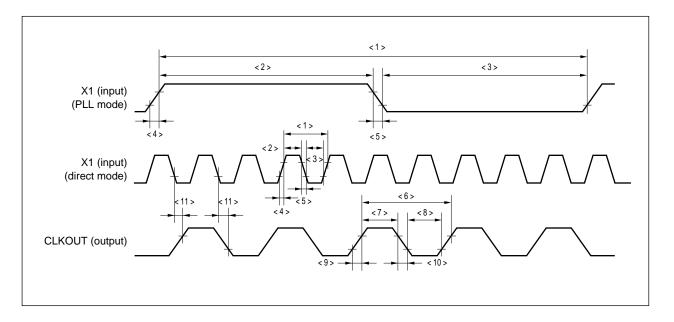
AC test input wave


(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 to P07/INTP13, P20/NMI, P21/INTP00 to P24/INTP03, P26/SI2, P27/SCK2, P31/SI0, P32/SCK0, P36/SI1, P37/SCK1, MODE0, MODE1, CKSEL, X1


(b) Other than (a)

AC test output test point

Load condition

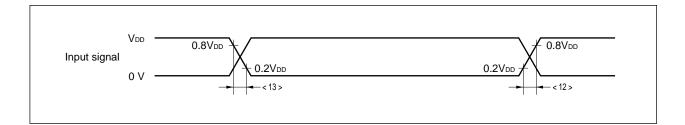

(1) Clock timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode	20	DC	ns
			PLL mode (fxx = $\phi/5$)	200	285	ns
			PLL mode (fxx = ϕ)	40	100	ns
X1 input width, high	<2>	twxн	Direct mode	7		ns
			PLL mode (fxx = $\phi/5$)	80		ns
			PLL mode (fxx = ϕ)	10		ns
X1 input width, low	<3>	twxL	Direct mode	7		ns
			PLL mode (fxx = $\phi/5$)	80		ns
			PLL mode (fxx = ϕ)	10		ns
X1 input rise time	<4>	txr	Direct mode		7	ns
			PLL mode (fxx = $\phi/5$)		15	ns
			PLL mode (fxx = ϕ)		7	ns
X1 input fall time	<5>	txF	Direct mode		7	ns
			PLL mode (fxx = $\phi/5$)		15	ns
			PLL mode (fxx = ϕ)		7	ns
CPU operating frequency	—	φ		0	25	MHz
CLKOUT output cycle	<6>	tсүк		40	DC	ns
CLKOUT width, high	<7>	twкн		0.5T – 10		ns
CLKOUT width, low	<8>	twĸL		0.5T – 10		ns
CLKOUT rise time	<9>	t kr			5	ns
CLKOUT fall time	<10>	tкғ			5	ns
CLKOUT delay time from X1 \downarrow	<11>	tdxк	Direct mode	3	17	ns

Phase-out/Discontinued

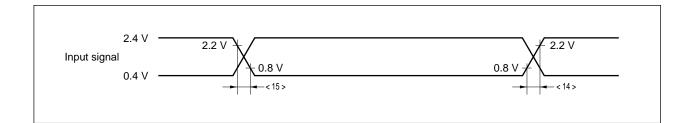
Remark T = tcyk

Parameter	Symbol		Condition	TYP.	Unit
Freerunning oscillation frequency		ϕ_{P}	PLL mode	3.2	MHz



(2) Input wave

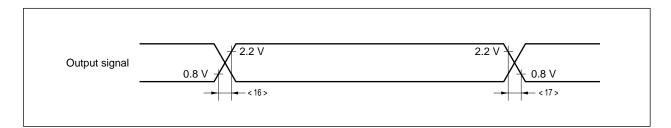
(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 to P07/INTP13, P20/NMI, P21/INTP00 to P24/INTP03, P26/SI2, P27/SCK2, P31/SI0, P32/SCK0, P36/SI1, P37/SCK1, MODE0, MODE1, CKSEL, X1


Phase-out/Discontinued

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
Input rise time	<12>	tir2			20	ns
Input fall time	<13>	tIF2			20	ns

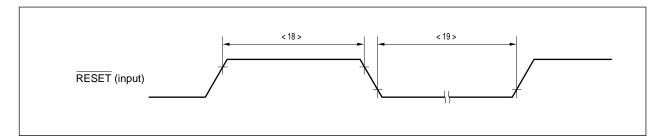
(b) Other than (a)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Input rise time	<14>	tir1			10	ns
Input fall time	<15>	tiF1			10	ns



(3) Output wave (other than CLKOUT)

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
Output rise time	<16>	tor			10	ns
Output fall time	<17>	tor			10	ns


Phase-out/Discontinued

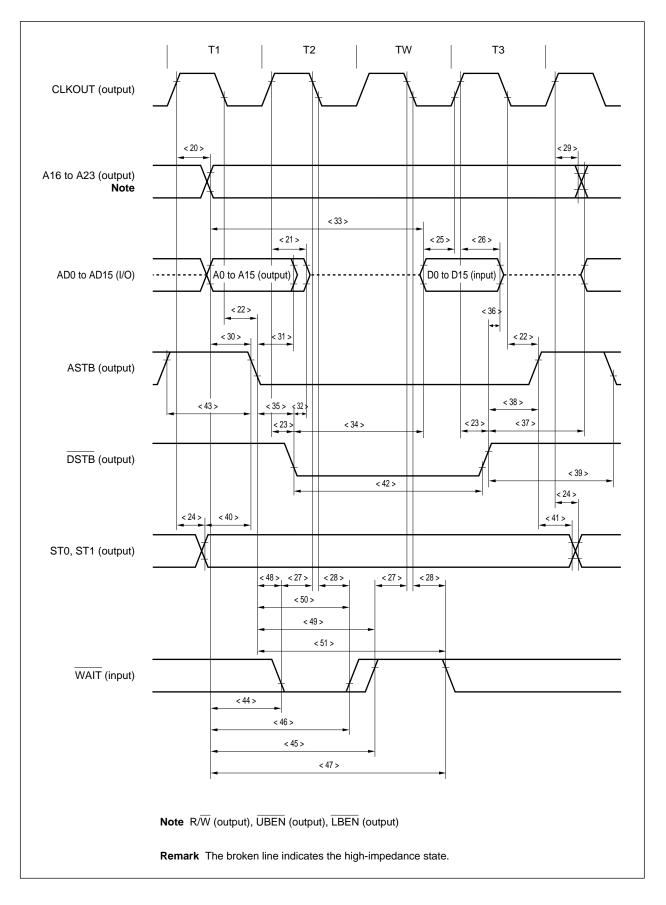
(4) Reset timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
RESET width, high	<18>	twrsh		500		ns
RESET width, low	<19>	twrsl	On power application, or on releasing STOP mode	500 + Tost		ns
			Except on power application, or except on releasing STOP mode	500		ns

Remark Tost: Oscillation stabilization time

(5) Read timing (1/2)

Parameter	Sy	mbol	Condition	MIN.	MAX.	Unit
CLKOUT $\uparrow \rightarrow$ address delay time	<20>	t dka		3	20	ns
CLKOUT $\uparrow \rightarrow$ address float delay time	<21>	tfka		3	15	ns
$CLKOUT \downarrow \rightarrow ASTB \text{ delay time}$	<22>	t DKST		3	15	ns
$CLKOUT \uparrow \rightarrow \overline{DSTB} \text{ delay time}$	<23>	tоко		3	15	ns
CLKOUT $\uparrow \rightarrow$ status delay time	<24>	t DKS		3	15	ns
Data input setting time (to CLKOUT $\uparrow)$	<25>	tsidk		5		ns
Data input hold time (from CLKOUT \uparrow)	<26>	tнкір		5		ns
$\overline{\text{WAIT}}$ setting time (to CLKOUT \downarrow)	<27>	tswтк		5		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<28>	tнкwт		5		ns
Address hold time (from CLKOUT \uparrow)	<29>	tнка		0		ns
Address setting time (to ASTB $\downarrow)$	<30>	t sast		0.5T – 10		ns
Address hold time (from ASTB \downarrow)	<31>	t hsta		0.5T – 10		ns
$\overline{\text{DSTB}} \downarrow \rightarrow \text{address float delay time}$	<32>	t fda			0	ns
Data input setting time (to address)	<33>	t SAID			(2 + n)T – 20	ns
Data input setting time (to $\overline{\text{DSTB}} \downarrow$)	<34>	tsdid			(1 + n)T – 20	ns
$ASTB \downarrow \to \overline{DSTB} \downarrow delay \ time$	<35>	t DSTD		0.5T – 10		ns
Data input hold time (from $\overline{\text{DSTB}}$ \uparrow)	<36>	thdid		0		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{address}$ output delay time	<37>	t dda		(1 + i)T		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{delay time}$	<38>	t ddsth		0.5T – 10		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \downarrow \text{delay time}$	<39>	t ddstl		(1.5 + i)T – 10		ns
Status setting time (to ASTB $\downarrow)$	<40>	tssst		0.5T – 10		ns
Status hold time (from ASTB \uparrow)	<41>	tHSTS		0.5T – 10		ns
DSTB width, low	<42>	twdl		(1 + n)T – 10		ns
ASTB width, high	<43>	twsтн		T – 10		ns
WAIT setting time (to address)	<44>	tsawt1	n ≥ 1		1.5T – 20	ns
	<45>	tsawt2			(1.5 + n)T – 20	ns
WAIT hold time (from address)	<46>	t HAWT1	n ≥ 1	(0.5 + n)T		ns
	<47>	thawt2		(1.5 + n)T		ns
$\overline{\text{WAIT}}$ setting time (to ASTB \downarrow)	<48>	tsstwt1	n ≥ 1		T – 15	ns
	<49>	tsstwt2			(1 + n)T – 15	ns
$\overline{\text{WAIT}}$ hold time (from ASTB \downarrow)	<50>	tHSTWT1	n ≥ 1	nT		ns
	<51>	tHSTWT2		(1 + n)T		ns


Phase-out/Discontinued

Remarks 1. T = tcyk

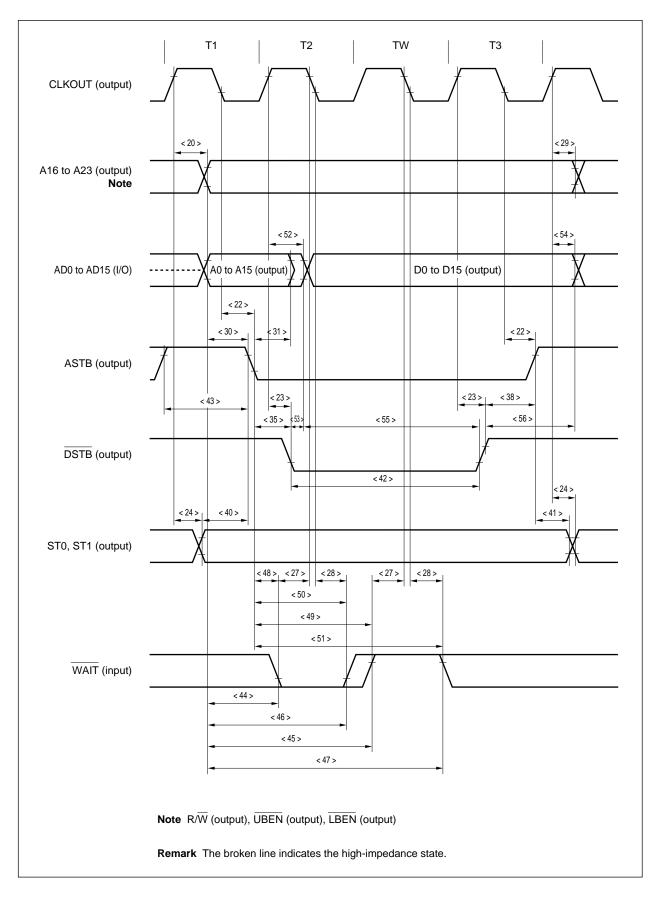
- **2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
- 3. i indicates the number of idle states (0 or 1) to be inserted in the read cycle.
- 4. Be sure to observe at least one of data input hold times thkiD (<26>) and thDiD (<36>).

μ**PD70P3002**

(5) Read Timing (2/2): 1 wait

(6) Write timing (1/2)

Parameter	Sy	mbol	Condition	MIN.	MAX.	Unit
CLKOUT $\uparrow \rightarrow$ address delay time	<20>	t dka		3	20	ns
CLKOUT $\downarrow \rightarrow$ ASTB delay time	<22>	t DKST		3	15	ns
CLKOUT $\uparrow \rightarrow \overline{\text{DSTB}}$ delay time	<23>	t dkd		3	15	ns
CLKOUT $\uparrow \rightarrow$ status delay time	<24>	t DKS		3	15	ns
$\overline{\text{WAIT}}$ setting time (to CLKOUT \downarrow)	<27>	tswтк		5		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<28>	tнкwт		5		ns
Address hold time (from CLKOUT ↑)	<29>	tнка		0		ns
Address setting time (to ASTB \downarrow)	<30>	t sast		0.5T – 10		ns
Address hold time (from ASTB \downarrow)	<31>	t HSTA		0.5T – 10		ns
$ASTB \downarrow \to \overline{DSTB} \downarrow delay time$	<35>	t DSTD		0.5T – 10		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{delay time}$	<38>	t DDSTH		0.5T – 10		ns
Status setting time (to ASTB \downarrow)	<40>	t ssst		0.5T – 10		ns
Status hold time (from ASTB \uparrow)	<41>	t HSTS		0.5T – 10		ns
DSTB width, low	<42>	twdl		(1 + n)T – 10		ns
ASTB width, high	<43>	twsтн		T – 10		ns
WAIT setting time (to address)	<44>	tsawt1	n ≥ 1		1.5T – 20	ns
	<45>	tsawt2			(1.5 + n)T – 20	ns
WAIT hold time (from address)	<46>	t HAWT1	n ≥ 1	(0.5 + n)T		ns
	<47>	thawt2		(1.5 + n)T		ns
$\overline{\text{WAIT}}$ setting time (to ASTB \downarrow)	<48>	tsstwt1	n ≥ 1		T – 15	ns
	<49>	tsstwt2			(1 + n)T – 15	ns
$\overline{\text{WAIT}}$ hold time (from ASTB \downarrow)	<50>	tHSTWT1	n ≥ 1	nT		ns
	<51>	tHSTWT2		(1 + n)T		ns
CLKOUT $\uparrow \rightarrow$ data output delay time	<52>	tокор			20	ns
$\overline{\text{DSTB}}\downarrow \rightarrow$ data output delay time	<53>	tddod			10	ns
Data output hold time (from CLKOUT \uparrow)	<54>	tнкор		0		ns
Data output setting time (to DSTB ↑)	<55>	tsodd		(1 + n)T – 15		ns
Data output hold time (from DSTB ↑)	<56>	tноор		T – 10		ns


Phase-out/Discontinued

Remarks 1. T = tcyk

2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

μ**PD70P3002**

(6) Write timing (2/2): 1 wait

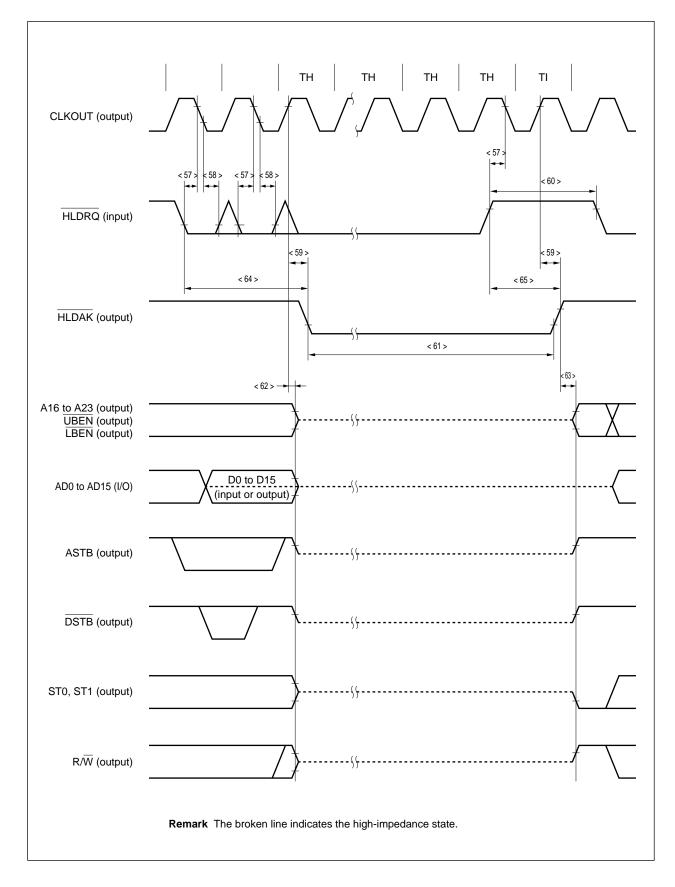
Phase-out/Discontinued

 \star

(7) Bus hold timing (1/2)

Parameter	Sy	mbol	Condition	MIN.	MAX.	Unit
HLDRQ setting time (to CLKOUT \downarrow)	<57>	tsнок		5		ns
HLDRQ hold time (from CLKOUT \downarrow)	<58>	tнкнq		5		ns
CLKOUT $\uparrow \rightarrow \overline{\text{HLDAK}}$ delay time	<59>	t dkha			20	ns
HLDRQ width, high	<60>	twнqн		T + 10		ns
HLDAK width, low	<61>	t WHAL		T – 10		ns
CLKOUT $\uparrow \rightarrow$ bus float delay time	<62>	t dkf			20	ns
$\overline{\text{HLDAK}} \uparrow \rightarrow \text{bus output delay time}$	<63>	t dhac		-3		ns
$\overline{HLDRQ} \downarrow \rightarrow \overline{HLDAK} \downarrow delay time$	<64>	tdhqha1			(2n + 7.5)T + 20	ns
$\overline{HLDRQ} \uparrow \rightarrow \overline{HLDAK} \uparrow delay time$	<65>	tdhqha2		0.5T	1.5T + 20	ns

Phase-out/Discontinued


Remarks 1. T = tcyk

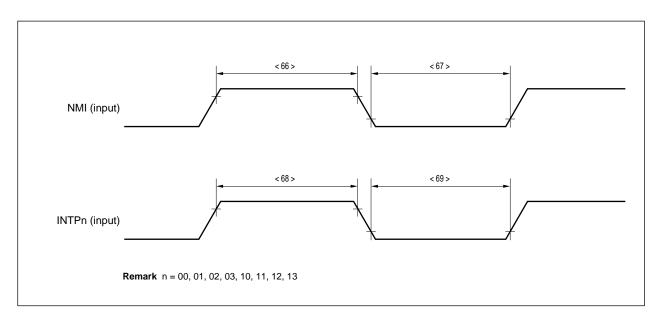
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

*

*

(7) Bus hold timing (2/2)

Phase-out/Discontinued


37

(8) Interrupt timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
NMI width, high	<66>	twniн		500		ns
NMI width, low	<67>	twnil		500		ns
INTPn width, high	<68>	twiтн	n = 00, 01, 02, 03, 10, 11, 12, 13	3T + 10		ns
INTPn width, low	<69>	twi⊤∟	n = 00, 01, 02, 03, 10, 11, 12, 13	3T + 10		ns

Phase-out/Discontinued

Remark T = tcyk

(9) CSI timing

(a) Master mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
SCKn cycle	<70>	tсүзк	Output	250		ns
SCKn width, high	<71>	twsкн	Output	0.5tсүзк – 20		ns
SCKn width, low	<72>	twskl	Output	0.5tсүзк – 25		ns
SIn setting time (to SCKn ↑)	<73>	tssisk		45		ns
SIn hold time (from SCKn ↑)	<74>	tHSKSI		0		ns
SOn output delay time (from $\overline{SCKn} \downarrow$)	<75>	toskso			25	ns
SOn output hold time (from \overline{SCKn} \uparrow)	<76>	tнsкso		0.5tсүзк – 5		ns

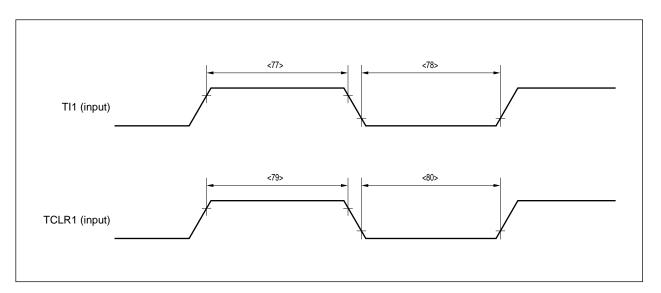

Caution When the internal clock is selected as the serial clock, set ϕ to 8 MHz or lower if specifying $\phi/2$, and set ϕ to 16 MHz or lower if specifying $\phi/4$ (ϕ = internal operation clock frequency). To select a higher operating frequency than those indicated above, select the baud rate generator (BRG) output instead of the internal clock.

(b) Slave mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
SCKn cycle	<70>	tсүзк	Input	250		ns
SCKn width, high	<71>	twsкн	Input	70		ns
SCKn width, low	<72>	twskL	Input	70		ns
SIn setting time (to $\overline{\text{SCKn}}$ \uparrow)	<73>	tssisk		10		ns
SIn hold time (from SCKn ↑)	<74>	tHSKSI		15		ns
SOn output delay time (from $\overline{SCKn} \downarrow$)	<75>	toskso			55	ns
SOn output hold time (from SCKn ↑)	<76>	thskso		twsкн		ns

Phase-out/Discontinued

Caution When the internal clock is selected as the serial clock, set ϕ to 8 MHz or lower if specifying $\phi/2$, and set ϕ to 16 MHz or lower if specifying $\phi/4$ (ϕ = internal operation clock frequency). To select a higher operating frequency than those indicated above, select the baud rate generator (BRG) output instead of the internal clock.



(10) RPU timing

Parameter	Sy	mbol	Condition	MIN.	MAX.	Unit
TI1 width, high	<77>	twтiн		3T + 10		ns
TI1 width, low	<78>	tw⊤i∟		3T + 10		ns
TCLR1 width, high	<79>	twтсн		3T + 10		ns
TCLR1 width, low	<80>	twtcl		3T + 10		ns

Phase-out/Discontinued

Remark T = t_{CYK}

DC Programming Characteristics

PROM write mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih	Viн		0.7Vdd		Vdd	V
Input voltage, low	VIL	VIL		0		0.3Vdd	V
Output voltage, high	Vон	Vон	Iон = -1 mA	Vdd - 1.0			V
Output voltage, low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	Iu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	Ірр	Ірр	PGM = VIL			50	mA
VDD supply current	ldd	Icc				50	mA

Phase-out/Discontinued

Note Symbol of the corresponding μ PD27C1001A

PROM read mode (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

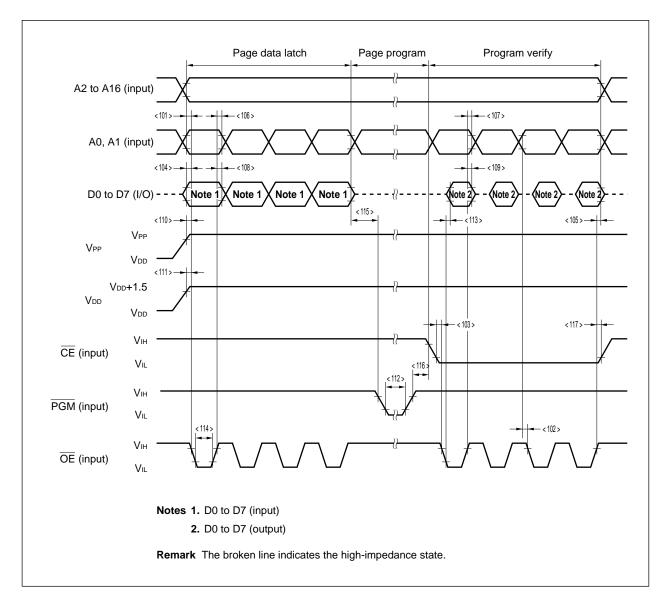
Parameter	Symbol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high	Viн	Vih		0.7Vdd		Vdd	V
Input voltage, low	Vil	VIL		0		0.3Vdd	V
Output voltage, high	Voh1	VOH1	Iон = −1 mA	Vdd - 1.0			V
	Vон2	Voh2	Іон = -100 <i>µ</i> А	Vdd - 0.5			V
Output voltage, low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μA
Output leakage current	Ilo	Ilo	$0 \leq V_{\text{OUT}} \leq V_{\text{DD}},$	-10		+10	μA
			$\overline{OE} = V_{IH}$				
VPP supply voltage	Vpp	Vpp		Vdd - 0.6	Vdd	Vdd + 0.6	V
VDD supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	Ірр	Ірр	Vpp = Vdd			100	μA
VDD supply current	loo	ICCA1	$\overline{\text{CE}}$ = VIL, VIN = VIH			50	mA

Note Symbol of the corresponding µPD27C1001A

AC Programming Characteristics

(1) PROM write mode timing (page program mode)

 $(T_A = 25 \pm 5^{\circ}C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)$ (1/2)

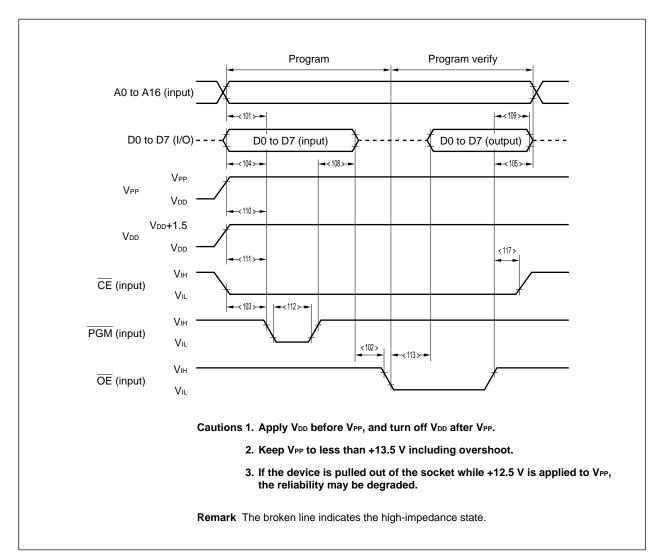

Parameter	Syml	ool	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\text{OE}} \downarrow$)	<101>	tas	tas		2			μs
OE set time	<102>	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE} \downarrow$)	<103>	tces	tces		2			μs
Input data setup time (to $\overline{\text{OE}} \downarrow$)	<104>	t⊳s	tos		2			μs
Address hold time (from \overline{OE} \uparrow)	<105>	tан	tан		2			μs
	<106>	t ahl	tahl		2			μs
	<107>	tahv	tанv		0			μs
Input data hold time (from \overline{OE} \uparrow)	<108>	tон	tон		2			μs
$\overline{\text{OE}} \uparrow \rightarrow$ data output float delay time	<109>	tdf	tor		0		250	ns
VPP setup time (to $\overline{OE} \downarrow$)	<110>	tvps	tvps		1.0			ms
V_DD setup time (to $\overline{OE} \downarrow$)	<111>	tvds	tvcs		1.0			ms
Program pulse width	<112>	tPW	tew		0.095	0.1	0.105	ms
$\overline{\text{OE}} \downarrow \rightarrow$ valid data delay time	<113>	toe	toe				1	μs
OE pulse width in data latch	<114>	t∟w	t∟w		1			μs
PGM set time	<115>	t PGMS	tpgms		2			μs
CE hold time	<116>	tсен	tсен		2			μs
OE hold time	<117>	tоен	tоен		2			μs

Phase-out/Discontinued

Note Symbol of the corresponding μ PD27C1001A

Phase-out/Discontinued

(1) PROM write mode timing (page program mode) (2/2)

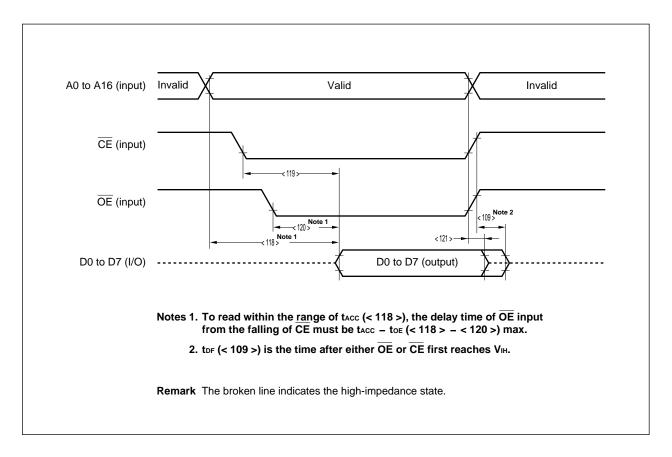

(2) PROM write mode timing (byte program mode)

 $(T_A = 25 \pm 5^{\circ}C, V_{DD} = 6.5 \pm 0.25 \text{ V}, V_{PP} = 12.5 \pm 0.3 \text{ V})$

Parameter	Symb	ool	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM} \downarrow$)	<101>	tas	tas		2			μs
OE set time	<102>	toes	toes		2			μs
$\overline{\text{CE}}$ setup time (to $\overline{\text{PGM}} \downarrow$)	<103>	tces	tces		2			μs
Input data setup time (to $\overline{PGM} \downarrow$)	<104>	tos	tos		2			μs
Address hold time (from \overline{OE} \uparrow)	<105>	tан	tан		2			μs
Input data hold time (from \overline{PGM} \uparrow)	<108>	tон	tон		2			μs
$\overline{\operatorname{OE}} \uparrow \rightarrow$ data output float delay time	<109>	tdf	t DF		0		250	ns
V_{PP} setup time (to $\overline{PGM} \downarrow$)	<110>	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{PGM} \downarrow$)	<111>	tvds	tvds		1.0			ms
Program pulse width	<112>	tPW	tew		0.095	0.1	0.105	ms
$\overline{\operatorname{OE}} \downarrow \rightarrow$ valid data delay time	<113>	toe	toe				1	μs
OE hold time	<117>	tоен	—		2			μs

Phase-out/Discontinued

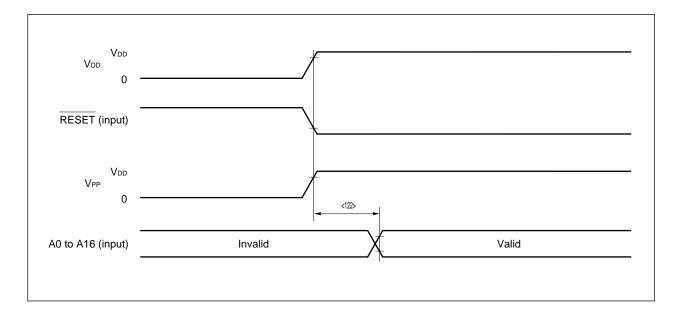
Note Symbol of the corresponding μ PD27C1001A

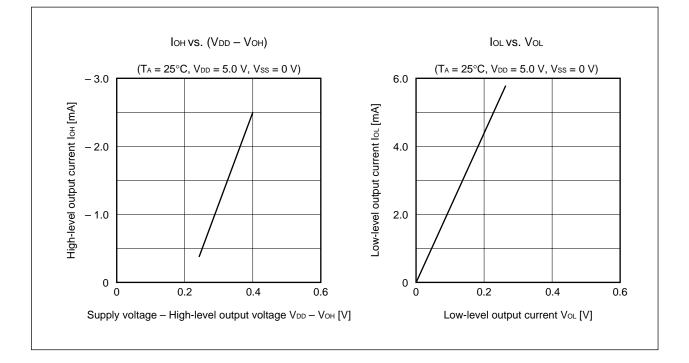

μ**PD70P3002**

(3) PROM read mode timing (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

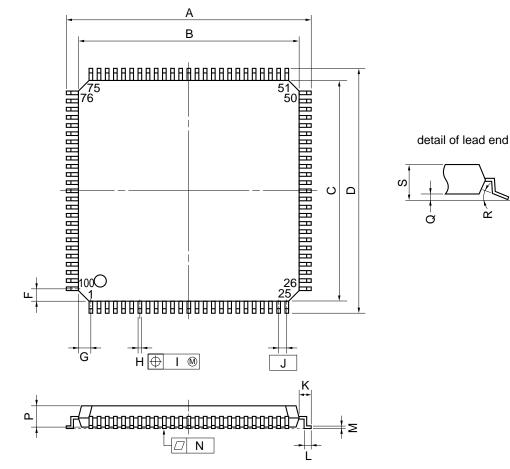
Parameter	Sym	bol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Address \rightarrow data output delay time	<118>	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			1	μs
$\overline{CE} \downarrow \rightarrow data$ output delay time	<119>	tce	tce	OE = VIL			1	μs
$\overline{\text{OE}} \downarrow \rightarrow$ data output delay time	<120>	toe	toe	CE = VIL			1	μs
$\overline{\text{OE}} \uparrow \rightarrow$ data output float delay time	<109>	t DF	tdf	<u>CE</u> = VIL	0		60	ns
Address \rightarrow data hold time	<121>	tон	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Phase-out/Discontinued


Note Symbol of the corresponding μ PD27C1001A


(4) PROM programming mode setting timing (T_A = 25° C, Vss = 0 V)

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	<122>	tsma		10			μs



7. CHARACTERISTICS CURVES (REFERENCE)

8. PACKAGE DRAWING

100 PIN PLASTIC QFP (FINE PITCH) (\Box 14)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.0±0.2	0.630±0.008
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
к	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	$0.17^{+0.03}_{-0.07}$	$0.007^{+0.001}_{-0.003}$
N	0.10	0.004
Р	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
	I	P100GC-50-7EA-2

μ**PD70P3002**

9. RECOMMENDED SOLDERING CONDITIONS

The μ PD70P3002 should be soldered and mounted under the following recommended conditions.

Phase-out/Discontinued

For the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 9-1.	Soldering	Conditions
------------	-----------	------------

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 days ^{№te} (after that, prebaking is necessary at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 days ^{Note} (after that, prebaking is necessary at 125°C for 10 hours)	VP15-107-2
Partial heating Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device)		_

Note Exposure limit after dry-pack is opened. Storage conditions: temperature of 25°C and relative humidity of 65% or less.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX PROM WRITING TOOLS

(1) Hardware tools

	Product	Product Name	Description
	PROM programmer	PG-1500	NEC PROM programmer. The NEC PROM programmer can program PROM-contained single- chip microcontrollers in stand-alone mode or under control of a host machine when connected with an optional PROM programmer adapter. This programmer can also program representative PROMs from 256-Kbit to 4-Mbit models.
	UNISITE		Data I/O Japan Co., Ltd. PROM programmers
		2900	
		3900	
		MODEL1890A	Minato Electronics Inc. PROM programmers
*		AF-9704 Rev.22.50 or later	Ando Electric Co., Ltd. PROM programmers
*		AF-9705 Rev.01.37 or later (Algorithm: Rev.02.40 or later)	
*		AF-9706 Rev.01.60 or later	
	PROM programmer adapter	PA-70P3000GC	PROM programmer adapter to write program to μ PD70P3002 on general-purpose PROM programmer such as PG-1500

Phase-out/Discontinued

(2) Software tools

Product	Host Machine	OS	Supply Medium	Part Number	Description
PG-1500 controller	PC-9800 Series	MS-DOS	3.5" FD	μS5A13PG1500	Controls PG-1500 on host machine
	IBM PC/AT [™] and compatible machines	PC DOS	3.5" FD	μS7B13PG1500	by connecting PG-1500 and host machine with serial or parallel interface.

Remark The operations of the PG-1500 controller are guaranteed only on the above host machine and OS.

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

Phase-out/Discontinued

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Phase-out/Discontinued

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

μ**PD70P3002**

Related documents : µPD703002 Data Sheet (U11826E)

V850 Family Instruction List (U10229J) (Japanese version) V852 Register Application Table (U10513J) (Japanese version)

Phase-out/Discontinued

Reference : Electrical Characteristics for Microcomputer (IEI-601) (Japanese version)

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

V850 Family, V852, and QTOP are trademarks of NEC Corporation. PC/AT is a trademark of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5