Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY DATA SHEET

se-out/Discontinued

MOS INTEGRATED CIRCUIT μ PD70F3008

V854™

32-/16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD70F3008 has a flash memory instead of the internal mask ROM of the μ PD703008. Because this device can be programmed by users while mounted on a board, it is ideally suited for applications involving the evaluation of systems in the development stage, small-scale production of many different products, and rapid development and time-to-market of new products.

Functions are described in detail in the following user's manuals. Be sure to read these manuals during system design.

V854 User's Manual Hardware : U11969E V850 Family™ User's Manual Architecture : U10243E

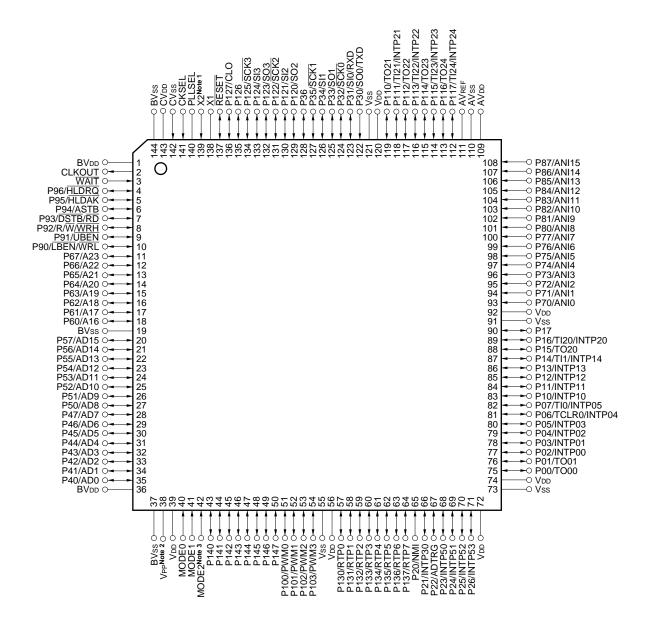
FEATURES

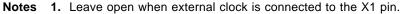
- Compatible with µPD703008
 - Can be replaced with mask ROM version μ PD703008 for mass production of application set
- Internal flash memory: 128 Kbytes

ORDERING INFORMATION

Part Number

Package

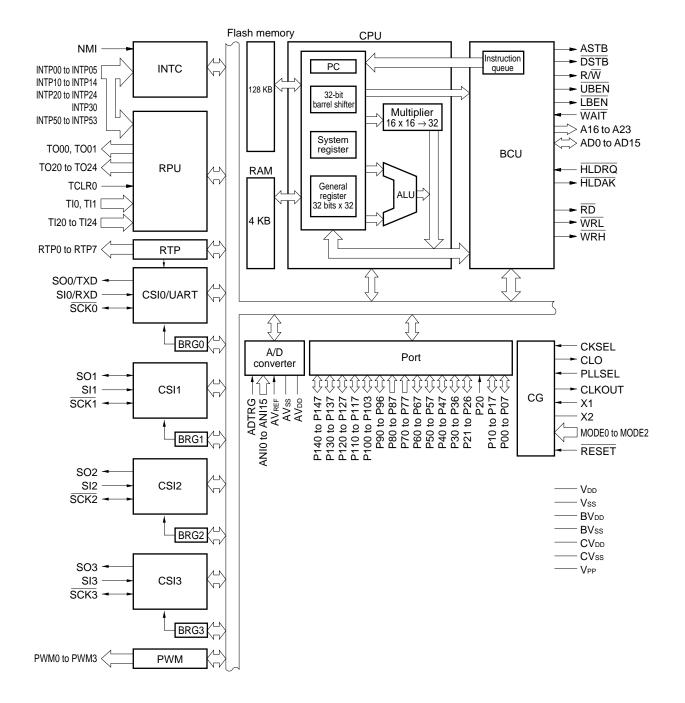

 μ PD70F3008GJ-33-8EU 144-pin plastic LQFP (fine pitch) (20 × 20 mm)


The information in this document is subject to change without notice.

NEC

Phase-out/Discontinued

PIN CONFIGURATION (Top View)


2. Connect to Vss via a resistor (RVPP) during normal operation mode.

3. Connect directly to Vss in normal operation mode.

PIN IDENTIFICATION

A16 to A23	: Address Bus	P40 to P47	: Port4
AD0 to AD15	: Address/Data Bus	P50 to P57	: Port5
ADTRG	: AD Trigger Input	P60 to P63	: Port6
ANI0 to ANI15	: Analog Input	P70 to P77	: Port7
ASTB	: Address Strobe	P80 to P87	: Port8
AVdd	: Analog Vdd	P90 to P96	: Port9
AVREF	: Analog Reference Voltage	P100 to P103	: Port10
AVss	: Analog Vss	P110 to P117	: Port11
BVdd	: Power Supply for Bus Interface	P120 to P127	: Port12
BVss	: Ground for Bus Interface	P130 to P137	: Port13
CKSEL	: Clock Select	P140 to P147	: Port14
CLKOUT	: Clock Output	PLLSEL	: PLL Select
CLO	: Clock Output (Divided)	PWM0 to PWM3	: Pulse Width Modulation
CVDD	: Power Supply for Clock Generator	RD	: Read
CVss	: Ground for Clock Generator	RESET	: Reset
DSTB	: Data Strobe	RTP0 to RTP7	: Real-time Port
HLDAK	: Hold Acknowledge	R/W	: Read/Write Status
HLDRQ	: Hold Request	RXD	: Receive Data
INTP00 to	: Interrupt Request from Peripherals	SCK0 to SCK3	: Serial Clock
INTP05,		SI0 to SI3	: Serial Input
INTP10 to		SO0 to SO3	: Serial Output
INTP14,		TCLR0	: Timer Clear
INTP20 to		TIO, TI1,	: Timer Input
INTP24,		TI20 to TI24	
INTP30,		TO00, TO01,	: Timer Output
INTP50 to		TO20 to TO24	
INTP53		TXD	: Transmit Data
LBEN	: Lower Byte Enable	UBEN	: Upper Byte Enable
MODE0 to	: Mode	Vdd	: Power Supply
MODE2		Vpp	: Programming Power Supply
NMI	: Non-maskable Interrupt Request	Vss	: Ground
P00 to P07	: Port0	WAIT	: Wait
P10 to P17	: Port1	WRH	: Write Strobe High Level Data
P20 to P26	: Port2	WRL	: Write Strobe Low Level Data
P30 to P36	: Port3	X1, X2	: Crystal
1 00 10 1 00		,	,

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN µPD703008 AND µPD70F3008 ·····	6
2.	PIN FUNCTIONS	
	2.1 Port Pins	7
	2.2 Non-port Pins	9
	2.3 I/O Circuit of Pins and Recommended Connections of Unused Pins	12
3.	FLASH MEMORY PROGRAMMING	15
	3.1 Selecting Communication Mode	15
	3.2 Flash Memory Programming Function	16
	3.3 Connecting Dedicated Flash Programmer	16
4.	ELECTRICAL SPECIFICATIONS	17
	4.1 Normal Operating Mode	17
	4.2 Flash Memory Programming Mode	37
5.	PACKAGE DRAWING	39
6.	RECOMMENDED SOLDERING CONDITIONS	40

1. DIFFERENCES BETWEEN μ PD703008 AND μ PD70F3008

Part Number	μPD703008	μPD70F3008	
Parameter			
Internal ROM	Mask ROM	Flash memory	
Flash memory programming pin	None	Provided (VPP)	
Flash memory programming mode	None	Provided ($V_{PP} = 7.5 V$,	
		Mode0 to Mode2 = High-level)	
Electrical specifications	Current consumption, etc. differ. (Refer to each product data sheet.)		
Others	Nose immunity and noise radiation are different because products differ in circuit size and mask layout.		

- Cautions 1. There are differences in noise immunity and noise radiation between the PROM version and mask ROM version. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask ROM version.
 - 2. When replacing a flash memory version with a mask ROM version, be sure to write the same code into the internal ROM's reserved area.

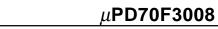
2. PIN FUNCTIONS

2.1 Port Pins

(1/2)

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0.	TO00
P01	1	8-bit I/O port.	TO01
P02		Input/output can be specified in 1-bit units.	INTP00
P03	1		INTP01
P04			INTP02
P05			INTP03
P06	1		TCLR0/INTP04
P07	1		TI0/INTP05
P10	I/O	Port 1.	INTP10
P11	1	8-bit I/O port.	INTP11
P12	1	Input/output can be specified in 1-bit units.	INTP12
P13	1		INTP13
P14	1		TI1/INTP14
P15	1		TO20
P16			TI20/INTP20
P17	1		-
P20	Input	Port 2.	NMI
P21	I/O	P20 is an input-only port.	INTP30
P22	1	• P20 functions as an NMI input after a valid edge is input.	ADTRG
P23	1	• Bit 0 of P2 register indicates the NMI input status.	INTP50
P24	1	P21 to P26 are a 6-bit I/O port.	INTP51
P25	1	Input/output can be specified in 1-bit units.	INTP52
P26	1		INTP53
P30	I/O	Port 3.	SO0/TXD
P31	1	7-bit I/O port.	SI0/RXD
P32	1	Input/output can be specified in 1-bit units.	SCK0
P33			SO1
P34	1		SI1
P35			SCK1
P36			-
P40 to P47	I/O	Port 4.	AD0 to AD7
		8-bit I/O port.	
		Input/output can be specified in 1-bit units.	
P50 to P57	I/O	Port 5.	AD8 to AD15
		8-bit I/O port.	
		Input/output can be specified in 1-bit units.	

Pin Name	I/O	Function	Alternate Function
P60 to P67	I/O	Port 6.	A16 to A23
		8-bit I/O port.	
		Input/output can be specified in 1-bit units.	
P70 to P77	Input	Port 7.	ANI0 to ANI7
		8-bit input-only port.	
P80 to P87	Input	Port 8.	ANI8 to ANI15
		8-bit input-only port.	
P90	I/O	Port 9.	LBEN/WRL
P91		7-bit I/O port.	UBEN
P92		Input/output can be specified in 1-bit units.	R/W/WRH
P93			DSTB/RD
P94			ASTB
P95			HLDAK
P96	-		HLDRQ
P100 to P103	I/O	Port 10.	PWM0 to PMW3
		4-bit I/O port.	
		Input/output can be specified in 1-bit units.	
P110	I/O	Port 11.	TO21
P111		8-bit I/O port.	TI21/INTP21
P112	1	Input/output can be specified in 1-bit units.	TO22
P113	1		TI22/INTP22
P114			TO23
P115			TI23/INTP23
P116			TO24
P117			TI24/INTP24
P120	I/O	Port 12.	SO2
P121		8-bit I/O port.	SI2
P122		Input/output can be specified in 1-bit units.	SCK2
P123			SO3
P124			SI3
P125			SCK3
P126			_
P127			CLO
P130 to P137	I/O	Port 13.	RTP0 to RTP7
		8-bit I/O port.	
		Input/output can be specified in 1-bit units.	
P140 to P147	I/O	Port 14.	-
		8-bit I/O port.	
		Input/output can be specified in 1-bit units.	


μ**PD70F3008**

2.2 Non-port Pins

Pin Name	I/O	Function	Alternate Function
ТО00	Output	Pulse signal output from timers 0 and 2.	P00
TO01			P01
TO20			P15
TO21			P110
TO22			P112
TO23			P114
TO24			P116
TCLR0	Input	External clear signal input to timer 0.	P06/INTP04
TIO	Input	External count clock input to timers 0, 1, and 2.	P07/INTP05
TI1			P14/INTP14
TI20			P16/INTP20
TI21			P111/INTP21
TI22			P113/INTP22
TI23			P115/INTP23
TI24			P117/INTP24
INTP00 to INTP03	Input	External capture trigger input to timer 0.	P02 to P05
		Also used to input external maskable interrupt request.	
INTP04	Input	External maskable interrupt request input.	P06/TCLR0
INTP05			P07/TI0
INTP10 to INTP13	Input	External capture trigger input to timer 1.	P10 to P13
		Also used to input external maskable interrupt request.	
INTP14	Input	External maskable interrupt request input.	P14/TI1
INTP20	Input	External maskable interrupt request input.	P16/TI20
INTP21			P111/TI21
INTP22			P113/TI22
INTP23			P115/TI23
INTP24			P117/TI24
INTP30	Input	External capture trigger input to timer 3.	P21
		Also used to input external maskable interrupt request.	
INTP50 to INTP53	Input	External maskable interrupt request input.	P23 to P26
NMI	Input	Non-maskable interrupt request input.	P20
AD0 to AD7	I/O	16-bit multiplexed address/data bus when external memory is used.	P40 to P47
AD8 to AD15			P50 to P57
A16 to A23	Output	Higher address bus when external memory is used.	P60 to P67
LBEN	Output	Lower byte enable signal output of external data bus.	P90/WRL
UBEN		Higher byte enable signal output of external data bus.	P91
R/W		External read/write status output.	P92/WRH
DSTB		External data strobe signal output.	P93/RD
ASTB		External address strobe signal output.	P94

Pin Name	I/O	Function	Alternate Function
HLDAK	Output	Bus hold acknowledge output.	P95
HLDRQ	Input	Bus hold request input.	P96
SO0	Input	Serial transmit data output from CSI0 to CSI3 (3-wire).	P30/TXD
SO1			P33
SO2			P120
SO3			P123
SI0	Input	Serial receive data input to CSI0 to CSI3 (3-wire).	P31/RXD
SI1			P34
SI2			P121
SI3			P124
SCK0	I/O	Serial clock I/O from/to CSI0 to CSI3 (3-wire).	P32
SCK1			P35
SCK2			P122
SCK3			P125
TXD	Output	Serial transmit data output from UART.	P30/SO0
RXD	Input	Serial receive data input to UART.	P31/SI0
PWM0 to PWM3	Output	Pulse signal output from PWM.	P100 to P103
WRL	Output	Lower byte of external data bus write strobe signal output.	P90/LBEN
WRH		Higher byte of external data bus write strobe signal output.	P92/R/W
RD	Output	External data bus read strobe signal output.	P93/DSTB
ANI0 to ANI7	Input	Analog input to A/D converter.	P70 to P77
ANI8 to ANI15			P80 to P87
RTP0 to RTP7	Output	Real time output port.	P130 to P137
CLO	Output	System clock output (with frequency division function).	P127
CKSEL	Input	Input to specify clock generator operation mode.	-
PLLSEL	Input	Input to specify the number of PLL multiplication.	-
CLKOUT	Output	System clock output.	-
WAIT	Input	Control signal input inserting wait state to bus cycle.	-
MODE0 to MODE2	Input	Specifies operation mode.	-
RESET	Input	System reset input.	-
X1	Input	System clock oscillator connecting pins. Supply external clock to X1.	-
X2	_		-

(3/3)

			(3/3)
Pin Name	I/O	Function	Alternate Function
ADTRG	Input	A/D converter external trigger input.	P22
AVref	Input	Reference voltage input for A/D converter.	-
AVDD	-	Positive power supply for A/D converter.	-
AVss	-	Ground for A/D converter.	-
BVDD	-	Positive power supply for bus interface.	-
BVss	-	Ground for bus interface.	-
CVDD	-	Positive power supply for clock generator.	-
CVss	-	Ground for clock generator.	-
Vdd	-	Positive power supply.	-
Vss	-	Ground.	-
Vpp	-	High-voltage pin for program write/verify.	-

Phase-out/Discontinued

2.3 I/O Circuit of Pins and Recommended Connections of Unused Pins

Table 2-1 shows the I/O circuit type for each pin and the recommended connections for all unused pins. Figure 2-1 shows partially simplified pin I/O circuits.

When connecting a pin to V_DD or V_SS via a resistor, use of a resistor of 1 to 10 k Ω is recommended.

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connections of Unused Pins (1/2)

Pin	I/O Circuit Type	Recommended Connections	
P00/TO00, P01/TO01	5	Individually connect to VDD or VSS via resistor.	
P02/INTP00 to P05/INTP03, 5-K P06/TCLR0/INTP04, P07/TI0/INTP05			
P10/INTP10 to P13/INTP13, P14/TI1/INTP14, P16/TI20/INTP20			
P15/TO20, P17	5		
P20/NMI	2	Connect directly to Vss.	
P21/INTP30, P22/ADTRG, P23/INTP50 to P26/INTP53	5-K	Individually connect to VDD or VSS via resistor.	
P30/TXD/SO0	5		
P31/RXD/SI0, P32/SCK0, P34/SI1	5-K		
P33/SO1, P35/SCK1	13-G		
P36	5		
P40/AD0 to P47/AD7	5 ^{Note}	Individually connect to BVDD or BVSS via resistor.	
P50/AD8 to P57/AD15			
P60/A16 to P67/A23			
P70/ANI0 to P77/ANI7	9	Connect directly to Vss.	
P80/ANI8 to P87/ANI15			
P90/LBEN/WRL, P91/UBEN, P92/R/W/WRH, P93/DSTB/RD, P94/ASTB, P95/HLDAK, P96/HLDRQ	5 ^{Note}	Individually connect to BVDD or BVSS via resistor.	
P100/PWM0 to P103/PWM3	5	Individually connect to VDD or Vss via resistor.	
P110/TO21, P112/TO22, P114/TO23, P116/TO24			
P111/TI21/INTP21, P113/TI22/INTP22, P115/TI23/INTP23, P117/TI24/INTP24	5-K		
P120/SO2	5	1	
P121/SI2, P122/SCK2	5-K	1	
P123/SO3	5	1	
P124/SI3, P125/SCK3	5-K	1	
P126, P127/CLO	5	1	
P130/RTP0 to P137/RTP7	1		
P140 to P147	1		

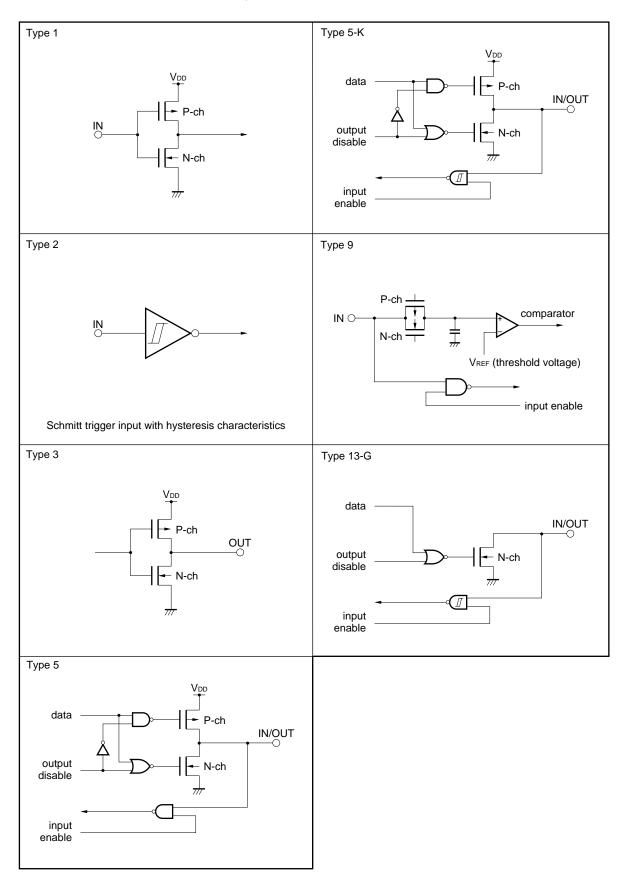

Remark Open input is possible for I/O circuit types 5, 5-K. and 13-G pins.

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connections of Unused Pins (2/2)

Pin	I/O Circuit Type	Recommended Connections
WAIT	1 ^{Note}	Connect directly to BVDD.
CLKOUT	3 ^{Note}	Open.
MODE0 to MODE2	2	Individually connect to VDD or Vss via resistor.
RESET		-
AVREF, AVSS, CVSS	-	Connect directly to Vss.
AVDD, CVDD	-	Connect directly to VDD.
PLLSEL	1	Connect directly to VDD or Vss.
CKSEL	1	
Vpp	-	Individually connect to Vss via resistor (RVPP).

Note Read VDD as BVDD when referring to the I/O circuit diagram.

Figure 2-1. Pin I/O Circuits

3. FLASH MEMORY PROGRAMMING

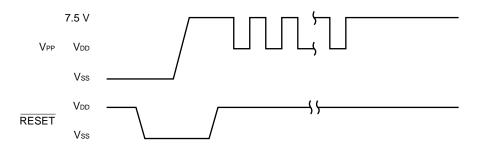
There are the following two methods for writing a program to the flash memory.

(1) On-board programming

Write a program to the flash memory using a dedicated flash programmer after the μ PD70F3008 has been mounted on the target board. Also mount a connector, etc. on the target board to communicate with the dedicated flash programmer.

(2) Off-board programming

Write a program using a dedicated adapter before the μ PD70F3008 has been mounted on the target board.


3.1 Selecting Communication Mode

To write the flash memory, use a dedicated flash programmer and serial communication. Select a serial communication mode from those listed in Table 3-1 in the format shown in Figure 3-1. Each communication mode is selected by the number of VPP pulses shown in Table 3-1.

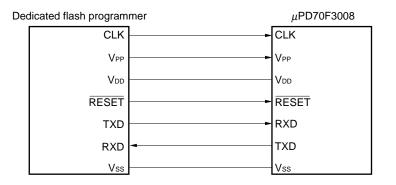
Communication Mode	Pins Used	Number of VPP Pulses
CSIO	SCK0(serial clock input)SO0(serial data output)SI0(serial data input)	0
CSI2	SCK2 (serial clock input)SO2 (serial data output)SI2 (serial data input)	2
UART	TXD (serial data output) RXD (serial data input)	8

Table 3-1. Communication Modes

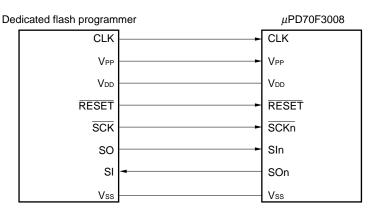
Figure 3-1. Communication Mode Selecting Format

3.2 Flash Memory Programming Function

The flash memory is written by transmitting or receiving commands and data in a selected communication mode. The major functions of flush memory programming are listed in Table 3-2.


Table 3-2.	Major Functions	of Flash Memory	Programming
------------	------------------------	-----------------	-------------

Function	Description
Batch erasure	Erases all contents of memory.
Block erasure	Erases contents of memory in 4 Kbytes.
Batch blank check	Checks erased status of entire memory.
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).
Batch verify	Compares all contents of memory with input data.


3.3 Connecting Dedicated Flash Programmer

The dedicated flash programmer and μ PD70F3008 are connected differently depending on the selected communication mode. Figures 3-2 and 3-3 show the connections in the respective communication modes.

Figure 3-2. Connection of Dedicated Flash Programmer in UART Mode

Figure 3-3. Connection of Dedicated Flash Programmer in CSI Mode

Remark n = 0, 2

4. ELECTRICAL SPECIFICATIONS

4.1 Normal Operating Mode

Absolute Maximum Ratings (T_A = 25° C)

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	Vdd	Vod pin	-0.5 to +4.6	V
	AVdd	AV₀₀ pin	-0.5 to +4.6	V
	BVDD	BV₀₀ pin	-0.5 to +4.6	V
	CVDD	CV₀₀ pin	-0.5 to +4.6	V
	Vss	Vss pin	-0.5 to +0.5	V
	AVss	AVss pin	-0.5 to +0.5	V
	BVss	BVss pin	-0.5 to +0.5	V
	CVss	CVss pin	-0.5 to +0.5	V
Input voltage	VI1	Except for X1 pin, VDD = 2.7 to 3.6 V	-0.5 to VDD + 0.5	V
	Vı2	VPP pin in flash memory programming mode	-0.5 to +10.0	V
Clock input voltage	Vк	X1 pin, VDD = 2.7 to 3.6 V	-0.5 to Vpp + 1.0	V
Output current, low	lo∟	1 pin	4.0	mA
		Total of all pins	100	mA
Output current, high	Іон	1 pin	-4.0	mA
		Total of all pins	-100	mA
Output voltage	Vo	V _{DD} = 2.7 to 3.6 V	-0.5 to V _{DD} + 0.5	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

- Cautions 1. Do not directly connect the output (or I/O) pins of two or more IC products, and do not directly connect them to VDD, VCC, or GND pin. Open-drain pins and open-collector pins may be directly connected to one another however. Moreover, an external circuit that is designed to prevent contention of output can be connected to pins that go into a high-impedance state.
 - 2. Should the absolute maximum rating of even one of the above parameters be exceeded even momentarily, the quality of the program may be degraded. The absolute maximum ratings are, therefore, the values exceeding which the product may be physically damaged. Use the product so that these values are never exceeded.

The normal operating ranges of ratings and conditions in which the quality of the product is guaranteed are specified in the following DC Characteristics and AC Characteristics.

Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	С	fc = 1 MHz			15	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V.			15	pF
Output capacitance	Co				15	pF

Operating Conditions

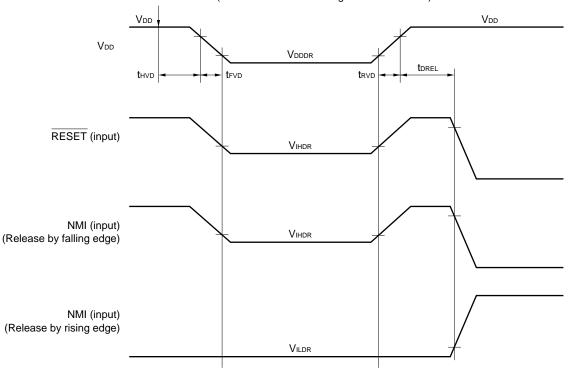
Operation Mode	Internal Operating Clock Frequency (ϕ)	Operating Ambient Temperature (TA)	Supply Voltage (VDD)
Direct mode	0 to 33 MHz	–40 to +85°C	2.7 to 3.6 V
PLL mode	Free-running oscillation frequency to 33 MHz	–40 to +85°C	2.7 to 3.6 V

Parame	ter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high		Vін		0.7Vdd		VDD + 0.3	V
Input voltage, low		VIL		-0.3		0.2Vdd	V
Clock input voltage, h	igh	Vкн	X1	0.8Vdd		VDD + 0.3	V
Clock input voltage, lo	ow.	Vkl	X1	-0.3		0.15Vdd	V
Schmitt trigger input t	hreshold voltage	V _T +	Note 2, rising		Note 3		V
		V _T -	Note 2, falling		Note 3		V
Schmitt trigger input h	nysteresis width	Vt+ - Vt-	Note 2	Note 3			V
Output voltage, high		Vон	Іон = −2.5 mA	0.8Vdd			V
Output voltage, low		Vol	lo∟ = 2.5 mA			0.15Vdd	V
Input leakage current	, high	Іцн	Vi = Vdd			5	μA
Input leakage current	, low	Ilie	$V_I = 0 V$			-5	μA
Output leakage currer	nt, high	Ігон	Vo = Vdd			5	μA
Output leakage currer	nt, Iow	Ilol	Vo = 0 V			-5	μA
Supply current	Operating	lod			Note 3	Note 3	mA
	In HALT mode				Note 3	Note 3	mA
	In IDLE mode				Note 3	Note 3	μA
	In STOP mode				Note 3	Note 3	μA

DC Characteristics Note 1 (TA = -40 to +85°C, VDD = CVDD = 2.7 to 3.6 V, Vss = AVss = BVss = CVss = 0 V)

- Notes 1. For the following pins, the parameter Vbb in the above table should be read and referred to as BVbb (on condition of 2.0 V ≤ BVbb ≤ Vbb). P40/AD0 to P47/AD7, P50/AD8 to P57/AD15, P60/A16 to P67/A23. P90/LBE/WRL, P91/UBE, P92/
 - R/W/WRH, P93/DSTB/RD, P94/ASTB, P95/HLDAK, P96/HLDRQ, CLKOUT, WAIT
 P02/INTP00 to P05/INTP03, P06/TCLR0/INTP04, P07/TI0/INTP05, P10/INTP10, P11/INTP11, P12/ INTP12, P13/INTP13, P14/TI1/INTP14, P16/TI20/INTP20, P111/TI21/INTP21, P113/TI22/INTP22,
 - P115/TI23/INTP23, P117/TI24/INTP24, P21/INTP30, P22/ADTRG, P23/INTP50, P24/INTP51, P25/ INTP52, P26/INTP53, P31/RXD/SI0, P32/SCK0, P33/SO1, P34/SI1, P35/SCK1, P121/SI2, P122/ SCK2, P124/SI3, P125/SCK3, MODE0 to MODE2, RESET, P20/NMI
 - 3. Under evaluation

Remarks 1. TYP. value is a value for your reference at $T_A = 25^{\circ}C$ and $V_{DD} = 3.0 V$.

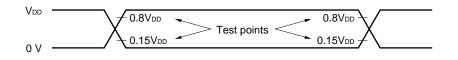

2. ϕ : Internal operating clock frequency

Data Retention Characteristics (T_A = -40 to $+85^{\circ}$ C)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdddr	STOP mode	1.5		3.6	V
Data hold current	IDDDR	Vdd = Vdddr		Note 1	Note 1	μΑ
Supply voltage rise time	t rvd		200			μs
Supply voltage fall time	t FVD		200			μs
Supply voltage hold time (from STOP mode setting)	thvd		0			ms
STOP mode release signal input time	t DREL		0			ns
Data hold input high-level voltage	Vihdr	Note 2	0.9Vdddr		Vdddr	V
Data hold input low-level voltage	Vildr	Note 2	0		0.1Vdddr	V

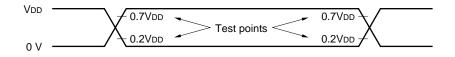
Notes 1. Under evaluation

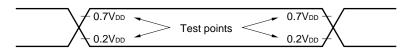
- P02/INTP00 to P05/INTP03, P06/TCLR0/INTP04, P07/TI0/INTP05, P10/INTP10, P11/INTP11, P12/ INTP12, P13/INTP13, P14/TI1/INTP14, P16/TI20/INTP20, P111/TI21/INTP21, P113/TI22/INTP22, P115/TI23/INTP23, P117/TI24/INTP24, P21/INTP30, P22/ADTRG, P23/INTP50, P24/INTP51, P25/ INTP52, P26/INTP53, P31/RXD/SI0, P32/SCK0, P33/SO1, P34/SI1, P35/SCK1, P121/SI2, P122/ SCK2, P124/SI3, P125/SCK3, MODE0 to MODE2, RESET, P20/NMI
- **Remark** TYP. value is a value for your reference at $T_A = 25^{\circ}C$.

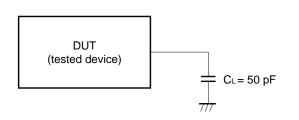

STOP mode is set (at fifth clock after PSC register has been set).

AC Characteristics (T_A = -40 to +85°C, V_{DD} = AV_{DD} = BV_{DD} = CV_{DD} = 2.7 to 3.6V, V_{SS} = AV_{SS} = BV_{SS} = CV_{SS} = 0 V)

AC test input wave


(a) P02/INTP00 to P05/INTP03, P06/TCLR0/INTP04, P07/TI0/INTP05, P10/INTP10, P11/INTP11, P12/INTP12, P13/INTP13, P14/TI1/INTP14, P16/TI20/INTP20, P111/TI21/INTP21, P113/TI22/INTP22, P115/TI23/INTP23, P117/TI24/INTP24, P21/INTP30, P22/ADTRG, P23/INTP50, P24/INTP51, P25/INTP52, P26/INTP53, P31/RXD/SI0, P32/SCK0, P33/SO1, P34/SI1, P35/SCK1, P121/SI2, P122/SCK2, P124/SI3, P125/SCK3, MODE0 to MODE2, RESET, P20/NMI


(b) P40/AD0 to P47/AD7, P50/AD8 to P57/AD15, P60/A16 to P67/A23, P90/LBE/WRL, P91/UBE, P92/R/W/ WRH, P93/DSTB/RD, P94/ASTB, P95/HLDAK, P96/HLDRQ, CLKOUT, WAIT


(c) Other than (a) and (b)

AC test output test point

Load condition

Caution If the loaded capacitance exceeds 50 pF due to the circuit configuration, decrease the load capacitance of this device to less than 50 pF by using a buffer.

Phase-out/Discontinued

(1) Clock timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode	15	DC	ns
			PLL mode (fxx = $\phi/5$)	150	Note	ns
			PLL mode (fxx = ϕ)	30	Note	ns
X1 input high-level width	<2>	twxн	Direct mode	4		ns
			PLL mode (fxx = $\phi/5$)	50		ns
			PLL mode (fxx = ϕ)	10		ns
X1 input low-level width	<3>	twx∟	Direct mode	4		ns
			PLL mode (fxx = $\phi/5$)	50		ns
			PLL mode (fxx = ϕ)	10		ns
X1 input rise time	<4>	txr	Direct mode		5	ns
			PLL mode (fxx = $\phi/5$)		15	ns
			PLL mode (fxx = ϕ)		5	ns
X1 input fall time	<5>	txF	Direct mode		5	ns
			PLL mode (fxx = $\phi/5$)		15	ns
			PLL mode (fxx = ϕ)		5	ns
CPU operating frequency	_	φ		0	33	MHz
CLKOUT output cycle	<6>	tсүк		30	DC	ns
CLKOUT high-level width	<7>	twкн		0.5T – 5		ns
CLKOUT low-level width	<8>	twĸ∟		0.5T – 5		ns
CLKOUT rise time	<9>	tкr			5	ns
CLKOUT fall time	<10>	tкғ			5	ns
CLKOUT delay time from X1 \downarrow	<11>	tdxk	Direct mode	3	17	ns

Note Under evaluation

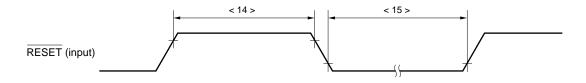
Remark T = tcyk

Paramete	er	Syı	mbol	Condition	TYP.	Unit
Free-running oscillati	on frequency	_	фР	PLL mode	Under evaluation	MHz
X1 (input)		/		<1> <2> <3> <4> <5>		
CLKOUT (output)	< <u></u>	- - -	<1			

< 9 >

< 10 >

(2) Output wave (other than X1, CLKOUT)


Parameter	Sy	rmbol	Condition	MIN.	MAX.	Unit
Output rise time	<12>	tor			10	ns
Output fall time	<13>	tor			10	ns

(3) Reset timing

Parameter	Sy	mbol	Condition	MIN.	MAX.	Unit
RESET high-level width	<14>	twrsh		500		ns
RESET low-level width	<15>	twrsl	On power application, or on releasing	500 + Tos		ns
			STOP mode			
			Except on power application or except	500		ns
			on releasing STOP mode			

Remark Tos: oscillation stabilization time

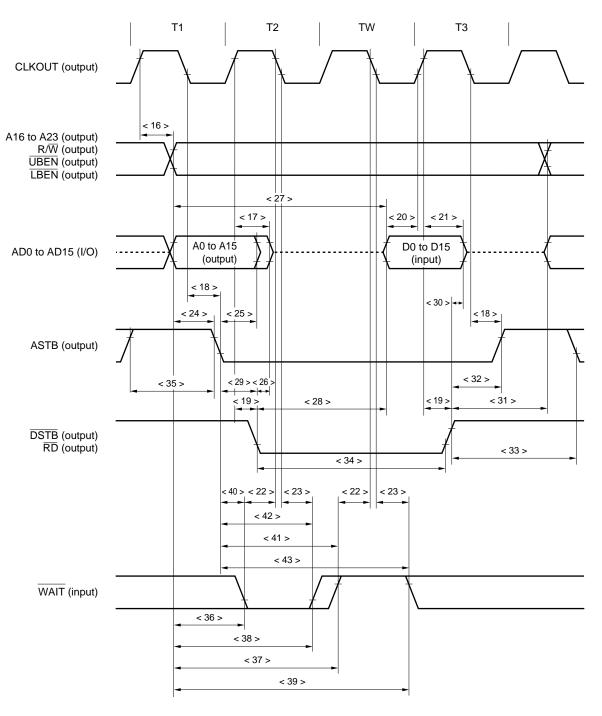
[MEMO]

(4) Read timing (1/2)

Parameter	S	ymbol	Condition	MIN.	MAX.	Unit
CLKOUT $\uparrow \rightarrow$ address delay time	<16>	t dka		3	14	ns
$CLKOUT \uparrow \rightarrow address \text{ float delay time}$	<17>	t fka		tdka	17	ns
$CLKOUT \downarrow \rightarrow ASTB \text{ delay time}$	<18>	t DKST		3	14	ns
$CLKOUT \downarrow \rightarrow \overline{DSTB} \text{ delay time}$	<19>	tokd		3	14	ns
Data input setup time (to CLKOUT ↑)	<20>	tsidk		5		ns
Data input hold time (from CLKOUT ↑)	<21>	tнкір		5		ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	<22>	tswтк		5		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<23>	tнкwт		5		ns
Address setup time (to ASTB \downarrow)	<24>	t sast		0.5T – 10		ns
Address hold time (from ASTB \downarrow)	<25>	t HSTA		0.5T – 10		ns
$\overline{\text{DSTB}} \downarrow \rightarrow \text{address float delay time}$	<26>	t FDA			0	ns
Data input setup time (to address)	<27>	t SAID			(2 + n)T – 17	ns
Data input setup time (from $\overline{\text{DSTB}}\downarrow$)	<28>	tsdid			(1 + n)T – 17	ns
ASTB $\downarrow \rightarrow \overline{\text{DSTB}} \downarrow \text{delay time}$	<29>	t DSTD		0.5T – 10		ns
Data input hold time (from DSTB ↑)	<30>	thdid		0		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{address output delay time}$	<31>	t dda		(1 + i)T		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{delay time}$	<32>	tddst1		0.5T – 10		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \downarrow \text{delay time}$	<33>	tddst2		(1.5 + i)T – 10		ns
DSTB low-level width	<34>	twdl		(1 + n)T – 10		ns
ASTB high-level width	<35>	twsтн		T – 10		ns
WAIT setup time (to address)	<36>	tsawt1	n ≥ 1		1.5T – 15	ns
	<37>	tsawt2			(1.5 + n)T – 15	ns
WAIT hold time (from address)	<38>	thawt1	n ≥ 1	(0.5 + n)T		ns
	<39>	thawt2		(1.5 + n)T		ns
$\overline{\text{WAIT}}$ setup time (to ASTB \downarrow)	<40>	tsstwt1	n ≥ 1		T – 15	ns
	<41>	tsstwt2			(1 + n)T – 15	ns
$\overline{\text{WAIT}}$ hold time (from ASTB \downarrow)	<42>	tHSTWT1	n ≥ 1	nT		ns
	<43>	tHSTWT2		(1 + n)T		ns

Phase-out/Discontinued

Remarks 1. T = tcyk


- **2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
- **3.** i indicates the number of idle states (0 or 1) to be inserted in the read cycle.
- 4. Be sure to observe at least one of data input hold times thkiD (<21>) and thDiD (<30>).

NEC

Phase-out/Discontinued

μ**PD70F3008**

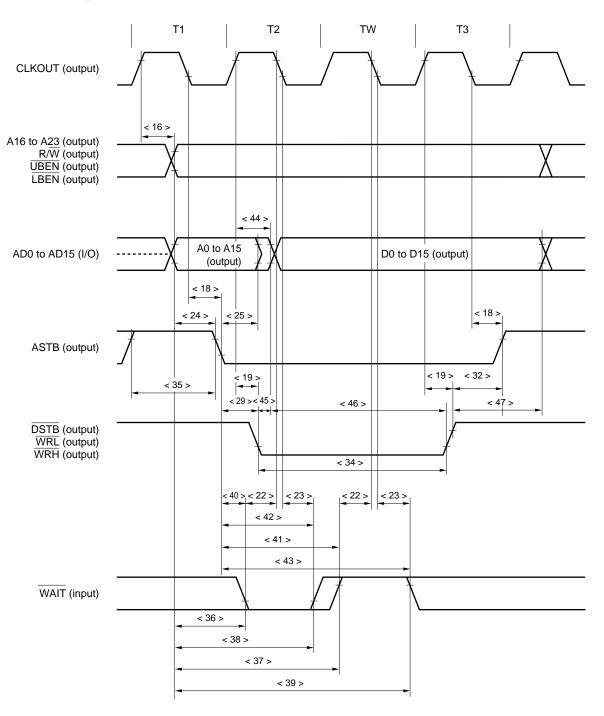
(4) Read Timing (2/2): 1 wait

Remarks 1. WRL, WRH: High-level output
2. The broken line indicates the high-impedance state.

(5) Write timing (1/2)

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
$CLKOUT \uparrow \rightarrow address \ delay \ time$	<16>	t dka		3	14	ns
$CLKOUT \downarrow \rightarrow ASTB \text{ delay time}$	<18>	t DKST		3	14	ns
$CLKOUT \uparrow \rightarrow \overline{DSTB} \text{ delay time}$	<19>	t DKD		3	14	ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	<22>	t swtk		5		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<23>	tнкwт		5		ns
Address setup time (to ASTB $\downarrow)$	<24>	t sast		0.5T – 10		ns
Address hold time (from ASTB $\downarrow)$	<25>	t HSTA		0.5T – 10		ns
$ASTB \downarrow \to \overline{DSTB} \downarrow delay \ time$	<29>	t DSTD		0.5T – 10		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{delay time}$	<32>	tDDST1		0.5T – 10		ns
DSTB low-level width	<34>	twol		(1 + n)T – 10		ns
ASTB high-level width	<35>	twsтн		T – 10		ns
WAIT setup time (to address)	<36>	tsawt1			1.5T – 15	ns
	<37>	tsawt2	n ≥ 1		(1.5 + n)T – 15	ns
WAIT hold time (from address)	<38>	t HAWT1		(0.5 + n)T		ns
	<39>	thawt2	n ≥ 1	(1.5 + n)T		ns
$\overline{\text{WAIT}}$ setup time (to ASTB \downarrow)	<40>	tsstwt1			T – 15	ns
	<41>	tsstwt2	n ≥ 1		(1 + n)T – 15	ns
$\overline{\text{WAIT}}$ hold time (from ASTB \downarrow)	<42>	tHSTWT1		nT		ns
	<43>	tHSTWT2	n ≥ 1	(1 + n)T		ns
$CLKOUT \uparrow \to data \text{ output delay time}$	<44>	t dkod			14	ns
$\overline{\text{DSTB}} \downarrow \rightarrow$ data output delay time	<45>	tddod			5	ns
Data output setup time (to $\overline{\text{DSTB}}$ \uparrow)	<46>	tsodd		(1 + n)T – 15		ns
Data output hold time (from $\overline{\text{DSTB}}\uparrow)$	<47>	tноор		T – 10		ns

Phase-out/Discontinued


Remarks 1. T = tcyk

2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

NEC

Phase-out/Discontinued

(5) Write timing (2/2): 1 wait

Remarks 1. RD: High-level output

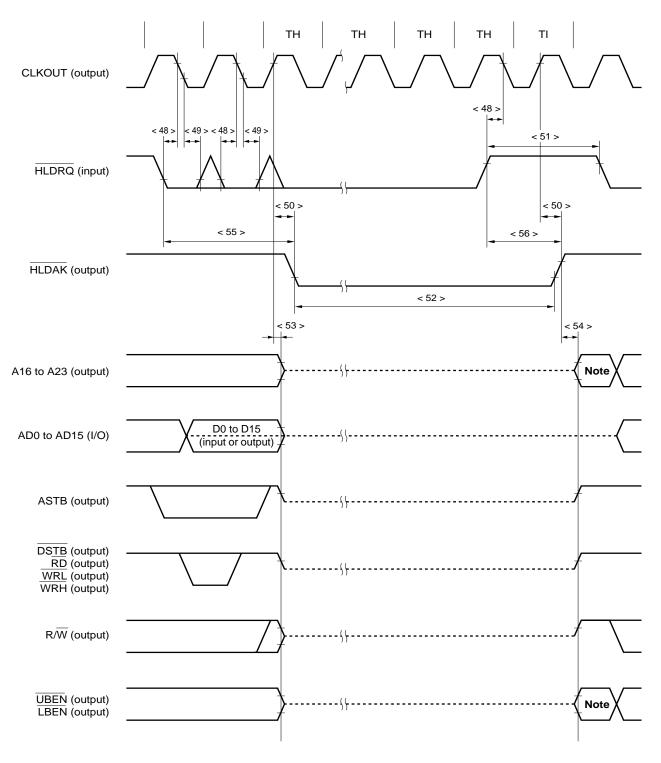
2. The broken line indicates the high-impedance state.

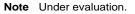
(6) Bus hold timing (1/2)

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
$\overline{\text{HLDRQ}}$ setup time (to CLKOUT \downarrow)	<48>	tsнок		5		ns
$\overline{\text{HLDRQ}}$ hold time (from CLKOUT \downarrow)	<49>	tнкнq		5		ns
$CLKOUT \uparrow \rightarrow \overline{HLDAK} \text{ delay time}$	<50>	t dkha			14	ns
HLDRQ high-level width	<51>	twнqн		T + 10		ns
HLDAK low-level width	<52>	t WHAL		T – 10		ns
$CLKOUT^\uparrow \to bus$ float delay time	<53>	t dkf			Note	ns
$\overrightarrow{HLDAK} \uparrow \rightarrow bus \text{ output delay time}$	<54>	t DHAC		0		ns
$\overline{HLDRQ} \downarrow \rightarrow \overline{HLDAK} \downarrow delay time$	<55>	t DHQHA1		1.5T	(2 n + 7.5)T + 20	ns
$\overline{HLDRQ} \uparrow \rightarrow \overline{HLDAK} \uparrow delay time$	<56>	tdhqha2		0.5T	1.5T + 20	ns

Phase-out/Discontinued

Note Under evaluation

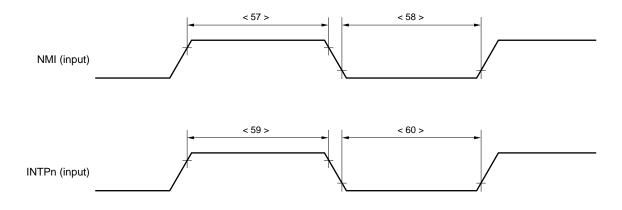

Remarks 1. T = tcyk


2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

NEC

Phase-out/Discontinued

(6) Bus hold timing (2/2)

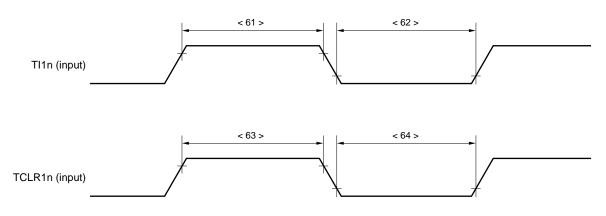


Remark The broken line indicates the high-impedance state.

(7) Interrupt timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
NMI high-level width	<57>	twniн		500		ns
NMI low-level width	<58>	twnil		500		ns
INTPn high-level width	<59>	twiтн	n = 00 to 05, 10 to 14, 20 to 24, 30, 50 to 53	3T + 10		ns
INTPn low-level width	<60>	twi⊤∟	n = 00 to 05, 10 to 14, 20 to 24, 30, 50 to 53	3T + 10		ns

Remark T = tcyk


Remark n = 00 to 05, 10 to 14, 20 to 24, 30, 50 to 53

(8) RPU timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
TIn high-level width	<61>	twтiн	n = 0, 1, 20 to 24	3T + 10		ns
TIn low-level width	<62>	tw⊤i∟	n = 0, 1, 20 to 24	3T + 10		ns
TCLR0 high-level width	<63>	twтсн		3T + 10		ns
TCLR0 low-level width	<34>	t wtcl		3T + 10		ns

Phase-out/Discontinued

Remark T = t_{CYK}

Remark n = 0, 1, 20 to 24

(9) CSI timing (1/2)

(a) Master mode

(i) CSI0, CSI2, CSI3 timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
SCKn cycle	<65>	tсүзк	Output	160		ns
SCKn high-level width	<66>	twsкн	Output	0.5tсүsк – 20		ns
SCKn low-level width	<67>	twskl	Output	0.5tсүзк – 20		ns
SIn setup time (to SCKn ↑)	<68>	tssisk		30		ns
SIn hold time (from SCKn ↑)	<69>	thsksi		0		ns
SOn output delay time (from $\overline{\text{SCKn}} \downarrow$)	<70>	t DSKSO			18	ns
SOn output hold time (from $\overline{\text{SCKn}}$ \uparrow)	<71>	t HSKSO		0.5tсүsк – 5		ns

Phase-out/Discontinued

Remark n = 0, 2, 3

(ii) CSI1 timing

Parameter	Sy	ymbol Condition		MIN.	MAX.	Unit	
SCK1 cycle	<65>	tсүзк	Output	R∟ = 1 kΩ	500		ns
SCK1 high-level width	<66>	twsкн	Output	C∟ = 50 pF	0.5tсүзк – 70		ns
SCK1 low-level width	<67>	twsĸ∟	Output		0.5tсүзк – 70		ns
SI1 setup time (to SCK1 ↑)	<68>	tssisk			100		ns
SI1 hold time (from $\overline{\text{SCK1}}$ \uparrow)	<69>	thsksi			50		ns
SO1 output delay time (from $\overline{\text{SCK1}} \downarrow$)	<70>	t DSKSO	R∟ = 1 KΩ, C∟ = 50 pF			150	ns
SO1 output hold time (from $\overline{\text{SCK1}}$ \uparrow)	<71>	thskso			0.5tсүзк – 5		ns

Remark RL and CL are the load resistance and load capacitance respectively of the SCK1 and SO1 output lines.

(b) Slave mode

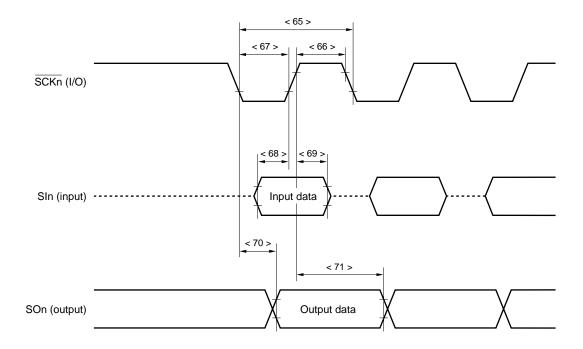
(i) CSI0, CSI2, CSI3 timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
SCKn cycle	<65>	t cysk	Input	160		ns
SCKn high-level width	<66>	twsкн	Input	50		ns
SCKn low-level width	<67>	t wsĸL	Input	50		ns
SIn setup time (to SCKn ↑)	<68>	tssisk		10		ns
SIn hold time (from SCKn ↑)	<69>	thsksi		10		ns
SOn output delay time (from $\overline{\text{SCKn}} \downarrow$)	<70>	tdskso			30	ns
SOn output hold time (from $\overline{\text{SCKn}}$ \uparrow)	<71>	thskso		twsкн		ns

Remark n = 0, 2, 3

(9) CSI timing (2/2)

(ii) CSI1 timing


Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
SCK1 cycle	<65>	t cysk	Input	500		ns
SCK1 high-level width	<66>	twsкн	Input	180		ns
SCK1 low-level width	<67>	t wsĸL	Input	180		ns
SI1 setup time (to SCK1 ↑)	<68>	tssisk		100		ns
SI1 hold time (from SCK1 ↑)	<69>	thsksi		50		ns
SO1 output delay time (from $\overline{\text{SCK1}}\downarrow$)	<70>	toskso	R∟ = 1 kΩ, C∟ = 50 pF		150	ns
SO1 output hold time (from $\overline{\text{SCK1}}$ \uparrow)	<71>	thskso		twsкн		ns

Remark RL and CL are the load resistance and load capacitance respectively of the SCK1 and SO1 output lines.

(c) SCKn cycle when V854 Series products are connected to each other

Parameter	Symbol		Condition (operating mode	MIN.	MAX.	Unit
			of master V854)			
SCKn cycle	<65>	tсүзк	Transmission	160		ns
			Reception	160		ns
			Transmission/reception	160		ns

Remark n = 0 to 3

Remarks 1. The broken line indicates the high-impedance state. **2.** n = 0 to 3

A/D Converter Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = AV_{DD} = BV_{DD} = CV_{DD} = 2.7 \text{ to } 3.6V, V_{SS} = AV_{SS} = BV_{SS} = CV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX	Unit
Resolution	_		8			bit
Total error	_				Note	%
Quantization error	_				Note	LSB
Conversion time	tconv		2		Note	μs
Sampling time	t SAMP		Note		Note	μs
Zero-scale error					±2	LSB
Full-scale error	_				±2	LSB
Linearity error					±2	LSB
Analog input voltage	VIAN		-0.3		AVREF + 0.3	V
Analog input resistance	RAN			Note		MΩ
				Note		MΩ
AVREF input voltage	AVREF		Note		Vdd	V
AVREF input current	AIREF				Note	mA
					Note	μA
AVDD current	Aldd				Note	μA
ADTRG high-level width	Twadh		3T + 10			ns
ADTRG low-level width	TWADL		3T + 10			ns

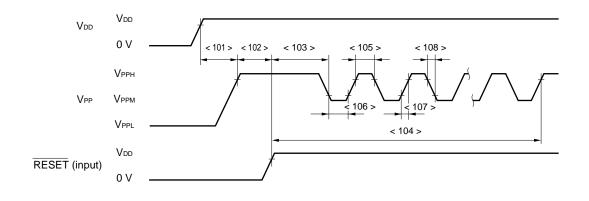
Phase-out/Discontinued

Note Under evaluation

4.2 Flash Memory Programming Mode

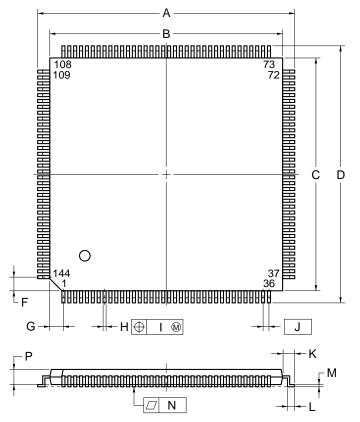
Basic Characteristics (under evaluation)

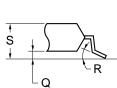
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx				33	MHz
Supply voltage	Vdd		2.7		3.6	V
	Vppl	VPP low level detection	-0.3		0.2Vdd	V
	Vppm	VDD level of VPP detection	0.8Vdd		1.2Vdd	V
	Vpph	VPP high voltage detection	7.2		7.8	V
VDD supply current	IDO				Note	mA
VPP supply current	Ірр	Vpp = 7.5 V			Note	mA
Number of rewrite	CWRT				100	times
Number of write	twrt			50		μs
Erasure time	terase				Note	S


Note Under evaluation

Serial Write Operation Characteristics

Parameter	Sy	rmbol	Conditions	MIN.	TYP.	MAX.	Unit
$V_{DD} \uparrow \to \overline{RESET} \uparrow setup time$	<101>	t drpsr		Note			μs
$V_{PP} \uparrow \to \overline{RESET} \uparrow setup time$	<102>	t PSRRF		Note			μs
$\overline{RESET} \uparrow \rightarrow V_{PP} \text{ count start time}$	<103>	t RFCF		Note			μs
Count execution time	<104>	t COUNT		Note		Note	ms
VPP counter high-level width	<105>	tсн		Note			μs
VPP counter low-level width	<106>	tc∟		Note			μs
VPP counter rise time	<107>	tr				Note	μs
VPP counter fall time	<108>	t⊧				Note	μs


Note Under evaluation


Remark T = tcyk

5. PACKAGE DRAWING

144 PIN PLASTIC LQFP (FINE PITCH) (20×20)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	22.0±0.2	0.866±0.008
В	20.0±0.2	$0.787^{+0.009}_{-0.008}$
С	20.0±0.2	$0.787^{+0.009}_{-0.008}$
D	22.0±0.2	0.866±0.008
F	1.25	0.049
G	1.25	0.049
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
к	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	$0.145^{+0.055}_{-0.045}$	0.006±0.002
Ν	0.10	0.004
Р	1.4±0.1	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.7 MAX.	0.067 MAX.
		S144GJ-50-8EU-2

6. RECOMMENDED SOLDERING CONDITIONS

Undefined

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Phase-out/Discontinued

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Related document

: µPD70F3008Y Data Sheet (U12755E) V850 Family Instruction Application Table (U10229J) (Japanese version)

Reference document: Electrical Characteristics for Microcomputer (IEI-601) (Japanese version)

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

V850 Family and V854 are trademarks of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster Special: systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.