Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT μ PD178P018A

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD178P018A^{Note} is a device in which the internal mask ROM of the μ PD178018A is replaced with a one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-lot and multipledevice production, and early development and time-to-market.

The μ PD178P018A is a PROM version corresponding to the μ PD178004A, 178006A, and 178016A.

Note Under development

Caution The μ PD178P018AKK-T does not maintain planned reliability when used in your system's mass-produced products. Please use only experimentally or for evaluation purposes during trial manufacture.

For more information on functions, refer to the following User's Manuals. Be sure to read them when designing.

μPD178018A Subseries User's Manual: To be prepared 78K/0 Series User's Manual Instruction: U12326E

FEATURES

- Pin-compatible with mask ROM version (except for VPP pin)
- Internal PROM: 60 Kbytes
 - μ PD178P018AGC : One-time programmable (ideally suited for small-lot production)
 - μPD178P018AKK-T: Reprogrammable (ideally suited for system evaluation)
- Internal high-speed RAM: 1 024 bytes
- Internal expansion RAM: 2 048 bytes
- · Buffer RAM: 32 bytes
- Can be operated in the same power supply voltage as the mask ROM version (During PLL operation: VDD = 4.5 to 5.5 V)

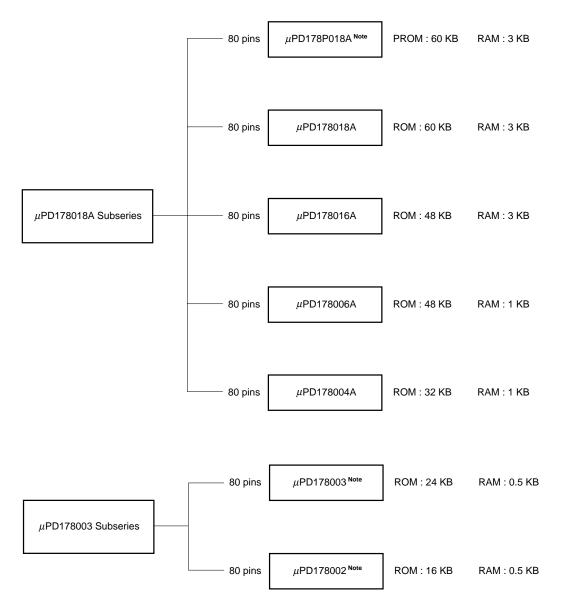
The electrical specifications (power supply current, etc.) and PLL analog specifications of the μ PD178P018A differ from that of mask ROM versions. So, these differences should be considered and verified before application sets are mass-produced.

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

APPLICATIONS

Car stereo, home stereo systems


ORDERING INFORMATION

Part Number	Package	Internal ROM	Quality Grade
μ PD178P018AGC-3B9 Note μ PD178P018AKK-T Note	80-pin plastic QFP (14 \times 14 mm, 0.65-mm pitch) 80-pin ceramic WQFN (14 \times 14 mm, 0.65-mm pitch)	One-Time PROM EPROM	Standard Not applicable

Note Under planning

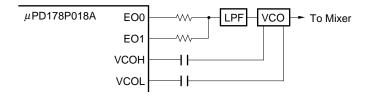
Please refer to the **Quality grade on NEC Semiconductor Devices** (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

μ PD178018A SUBSERIES AND μ PD178003 SUBSERIES EXPANSION

Note Under development

FUNCTION DESCRIPTION

(1/2)


Item		Function			
Internal memory	/	PROM : 60 Kbytes RAM High-speed RAM : 1 024 bytes Expansion RAM : 2 048 bytes Buffer RAM : 32 bytes			
General registe	r	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Instruction cycle)	With variable instruction execution time function 0.44 μs/0.88 μs/1.78 μs/3.56 μs/7.11 μs/14.22 μs (with 4.5-MHz crystal resonator)			
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation) BCD Adjust, etc. 			
I/O port		Total : 62 pins			
A/D converter		8-bit resolution × 6 channels			
Serial interface		3-wire/SBI/2-wire/I ² C bus Note mode selectable : 1 channel 3-wire serial I/O mode (with automatic transmit/receive function of up to 32 bytes): 1 channel			
Timer		Basic timer (timer carry FF (10 Hz)) : 1 channel 8-bit timer/event counter : 2 channels 8-bit timer (D/A converter: PWM output): 1 channel Watchdog timer : 1 channel			
Buzzer (BEEP)	output	1.5 kHz, 3 kHz, 6 kHz			
Vectored	Maskable	Internal: 8, external: 7			
interrupt	Non-maskable	Internal: 1			
source	Software	Internal: 1			
Test input		Internal: 1			

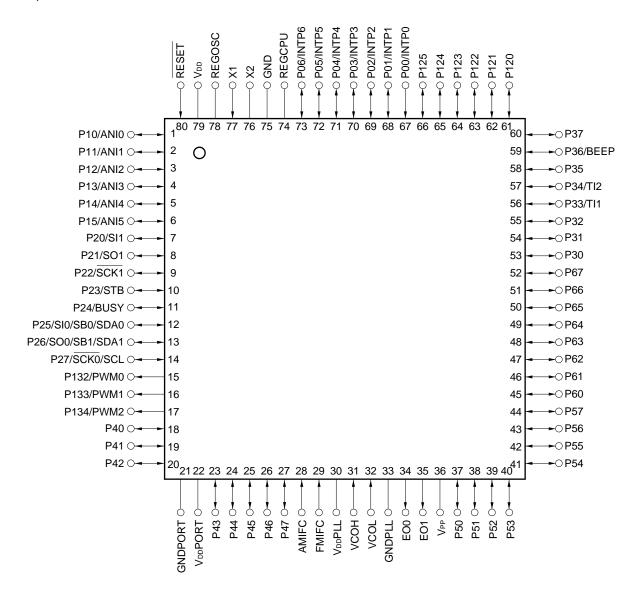
Note When using the I²C bus mode (including when this mode is implemented by program without using the peripheral hardware), consult your local NEC sales representative when you place an order for mask.

(2/2)

	Item	Function		
PLL frequency synthesizer	Division mode	Two types • Direct division mode (VCOL pin) • Pulse swallow mode (VCOH and VCOL pins)		
	Reference frequency	7 types selectable by program (1, 3, 5, 9, 10, 25, 50 kHz)		
	Charge pump	Error out output: 2 (EO0 and EO1 pins Note 1)		
	Phase comparator	Unlock detectable by program		
Frequency coun	ter	 Frequency measurement AMIFC pin: for 450-kHz count FMIFC pin: for 450-kHz/10.7-MHz count 		
D/A converter (F	PWM output)	8-/9-bit resolution × 3 channels (shared by 8-bit timer)		
Standby function	า	HALT mode STOP mode		
Reset		Reset via the RESET pin Internal reset by watchdog timer Reset by power-ON clear circuit (3-value detection) Detection of less than 4.5 V Note 2 (CPU clock: fx) Detection of less than 3.5 V Note 2 (CPU clock: fx/2 or less and on power application) Detection of less than 2.5 V Note 2 (in STOP mode)		
Power supply vo	oltage	 V_{DD} = 4.5 to 5.5 V (with PLL operating) V_{DD} = 3.5 to 5.5 V (with CPU operating, CPU clock: f_x/2 or less) V_{DD} = 4.5 to 5.5 V (with CPU operating, CPU clock: f_x) 		
Package		 80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch) 80-pin ceramic WQFN (14 × 14 mm, 0.65-mm pitch) 		

Notes 1. The EO1 pin can be set to high impedance for the μ PD178P018A. The following figure shows an application example.

LPF: Low path filter


VCO: Voltage controlled oscillator

- To lock to a target frequency at high speed
 Setting the EO0 and EO1 pins to error out output improves the output current potential and LPF voltage control potential.
- Normal state
 Setting only the EO0 pin to error out output maintains the LPF stable.
- 2. These voltage values are maximum values. Reset is actually executed at a voltage lower than these values.

PIN CONFIGURATIONS (TOP VIEW)

- (1) Normal operating mode
 - 80-PIN PLASTIC QFP (14 \times 14 mm, 0.65-mm pitch) μ PD178P018AGC-3B9 Note
 - 80-PIN CERAMIC WQFN (14 \times 14 mm, 0.65-mm pitch) μ PD178P018AKK-T Note

Note Under development

Cautions 1. Connect the VPP pin to GND directly.

- 2. Connect the VDDPORT and VDDPLL pins to VDD.
- 3. Connect the GNDPORT and GNDPLL pins to GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a 0.1- μ F capacitor.

AMIFC : AM Intermediate Frequency Counter Input PWM0 to PWM2 : PWM Output

ANI0 to ANI5 : A/D Converter Input REGCPU : Regulator for CPU Power Supply

BEEP : Buzzer Output REGOSC : Regulator for Oscillator

BUSY : Busy Output RESET : Reset Input

EO0, EO1 : Error Out Output SB0, SB1 : Serial Data Bus Input/Output FMIFC : FM Intermediate Frequency Counter Input SCK0, SCK1 : Serial Clock Input/Output

GND: PLL Ground: SDA0, SDA1: Serial Clock Input/Output

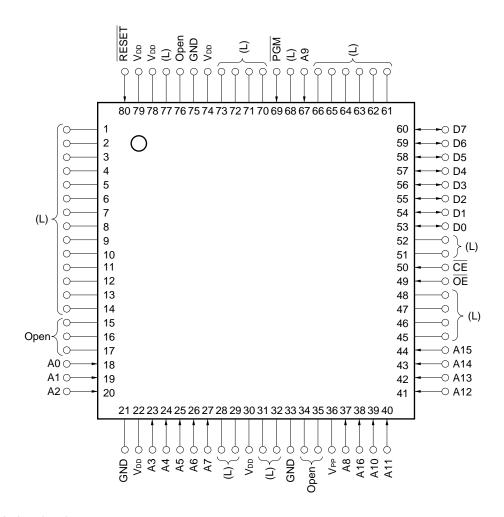
SPAN Thermediate Prequency Counter Input

SCC, SCK1: Serial Clock Input/Output

SPAN SDA0, SDA1: Serial Data Input/Output

GNDPORT : Port Ground SI0, SI1 : Serial Data Input
INTP0 to INTP6 : Interrupt Inputs SO0, SO1 : Serial Data Output
P00 to P06 : Port 0 STB : Strobe Output
P10 to P15 : Port 1 TI1, TI2 : Timer Clock Input

P20 to P27 : Port 2 VCOL, VCOH : Local Oscillation Input P30 to P37 : Port 3 V_{DD} : Power Supply P40 to P47 : Port 4 VDDPLL : PLL Power Supply **VDDPORT** P50 to P57 : Port 5 : Port Power Supply


P132 to P134 : Port 13

(2) PROM programming mode

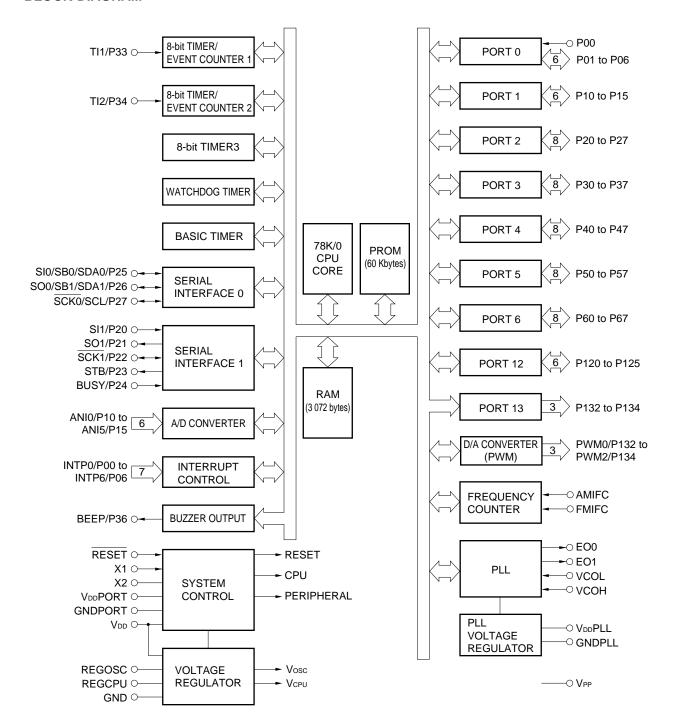
- 80-PIN PLASTIC QFP (14 \times 14 mm) μ PD178P018AGC-3B9 Note
- 80-PIN CERAMIC WQFN

 μ PD178P018AKK-T Note

Note Under planning

Cautions 1. (L) : Individually connect to GND via a pull-down resistor.

2. GND : Connect to GND.
3. RESET : Set to the low level.


4. Open : Leave open.

A0 to A16 : Address Bus GND : Ground RESET : Reset

CE : Chip Enable OE : Output Enable VDD : Power Supply

BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTION LIST	
	1.1 Pins in Normal Operating Mode	
	1.2 Pins in PROM Programming Mode	12
	1.3 Pins Input/Output Circuits and Recommended Connection of Unused Pins	13
2.	PROM PROGRAMMING	16
	2.1 Operating Modes	
	2.2 PROM Write Procedure	18
	2.3 PROM Read Procedure	22
3.	PROGRAM ERASURE (µPD178P018AKK-T ONLY)	23
4.	OPAQUE FILM ON ERASURE WINDOW (μ PD178P018AKK-T ONLY)	23
5.	ONE-TIME PROM VERSION SCREENING	23
6.	ELECTRICAL SPECIFICATIONS (PRELIMINARY)	24
7.	PACKAGE DRAWINGS	46
ΑP	PENDIX A. DIFFERENCES BETWEEN μ PD178018A AND μ PD178018 SUBSERIES	48
ΑP	PENDIX B. DEVELOPMENT TOOLS	49
ΔΡ	PENDIX C. RELATED DOCUMENTS	53

1. PIN FUNCTION LIST

1.1 Pins in Normal Operating Mode

(1) Port pins

Pin Name	I/O	Function			Alternate Function
P00	Input	Port 0.	Input only	Input	INTP0
P01 to P06	I/O	7-bit input/output port.	Input/output mode can be specified bit-wise.	Input	INTP1 to INTP6
P10 to P15	I/O	Port 1. 6-bit input/output port. Input/output mode can be specified	d bit-wise.	Input	ANI0 to ANI5
P20	I/O	Port 2.		Input	SI1
P21		8-bit input/output port. Input/output mode can be specified	d hit wise		SO1
P22		inputoutput mode can be specified	d bit-wise.		SCK1
P23					STB
P24					BUSY
P25					SI0/SB0/SDA0
P26					SO0/SB1/SDA1
P27					SCK0/SCL
P30 to P32	I/O	Port 3.		Input	_
P33		8-bit input/output port.	d b throate a		TI1
P34		Input/output mode can be specified	d bit-wise.		TI2
P35				_	
P36				BEEP	
P37				_	
P40 to P47	I/O	Port 4. 8-bit input/output port. Input/output mode can be specified Test input flag (KRIF) is set to 1 by	Input	_	
P50 to P57	I/O	Port 5. 8-bit input/output port. Input/output mode can be specified bit-wise.			_
P60 to P63	I/O	Port 6. 8-bit input/output port.	Input	_	
P64 to P67		Input/output mode can be specified bit-wise.	_		
P120 to P125	I/O	Port 12. 6-bit input/output port. Input/output mode can be specified bit-wise.			_
P132 to P134	Output	Port 13. 3-bit output port. N-ch open-drain output port.	_	PWM0 to PWM2	

(2) Non-port pins (1 of 2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to	Input	External maskable interrupt inputs with specifiable valid edges (rising edge, falling edge, both rising and falling edges).	Input	P00 to P06
SI0	Input	Serial interface serial data input	Input	P25/SB0/SDA0
SI1				P20
SO0	Output	Serial interface serial data output	Input	P26/SB1/SDA1
SO1				P21
SB0	I/O	Serial interface serial data input/output	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	I/O	Serial interface serial clock input/output	Input	P27/SCL
SCK1				P22
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit busy input	Input	P24
TI1	Input	External count clock input to 8-bit timer (TM1)	Input	P33
TI2		External count clock input to 8-bit timer (TM2)		P34
BEEP	Output	Buzzer output	Input	P36
ANI0 to ANI5	Input	A/D converter analog input	Input	P10 to P15
PWM0 to PWM2	Output	PWM output	_	P132 to P134
EO0, EO1	Output	Error out output from charge pump of the PLL frequency synthesizer	_	_
VCOL	Input	Inputs PLL local band oscillation frequency (In HF, MF mode).	_	_
VCOH	Input	Inputs PLL local band oscillation frequency (In VHF mode).	_	_
AMIFC	Input	Inputs AM intermediate frequency counter.	_	_
FMIFC	Input	Inputs FM intermediate frequency counter.	_	_
RESET	Input	System reset input	_	_
X1	Input	Crystal resonator connection for system clock oscillation	_	_
X2	_		_	_
REGOSC	_	Regulator for oscillator. Connected to GND via a 0.1-μF capacitor.	_	_
REGCPU	_	Regulator for CPU power supply. Connected to GND via a 0.1 - μ F capacitor.	_	_
V _{DD}	_	Positive power supply	_	_
GND	_	Ground	_	_
VDDPORT	_	Positive power supply for port block	_	_
GNDPORT	_	Ground for port block	_	_
V _{DD} PLL Note	_	Positive power supply for PLL	_	_
GNDPLL Note	_	Ground for PLL	_	_

Note Connect a capacitor of approximately 1 000 pF between VDDPLL pin and GNDPLL pin.

(2) Non-port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
V _{PP}	_	High-voltage applied during program write/verification.	_	_
		Connected directly to GND in normal operating mode.		

1.2 Pins in PROM Programming Mode

Pin Name	I/O	Function
RESET	Input	PROM programming mode setting When +5 V or +12.5 V is applied to VPP pin and a low-level signal is applied to the RESET pin, this chip is set in the PROM programming mode.
V _{PP}	Input	PROM programming mode setting and high-voltage applied during program write/verification.
A0 to A16	Input	Address bus
D0 to D7	1/0	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}		Positive power supply
GND	_	Ground potential

1.3 Pins Input/Output Circuits and Recommended Connection of Unused Pins

Table 1-1 shows the input/output circuit types of pins and the recommended conditions for unused pins. Refer to Figure 1-1 for the configuration of the input/output circuit of each type.

Table 1-1. Type of I/O Circuit of Each Pin

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	2	Input	Connected to GND or GNDPORT
P01/INTP1 to P06/INTP6	8	I/O	Set in general-purpose input port mode by software and
P10/ANI0 to P15/ANI5	11-A		individually connected to VDD, VDDPORT, GND, or GNDPORT via a resistor.
P20/SI1	8		via a resistor.
P21/SO1	5		
P22/SCK1	8		
P23/STB	5		
P24/BUSY	8		
P25/SI0/SB0/SDA0 P26/SO0/SB1/SDA1 P27/SCK0/SCL	10		
P30 to P32	5		
P33/TI1, P34/TI2	8		
P35 P36/BEEP P37	5		
P40 to P47	5-G		
P50 to P57	5		
P60 to P63	13-D		
P64 to P67	5		
P120 to P125			
P132/PWM0 to P134/PWM2	19	Output	Set to the low-level output by software and open
EO0	DTS-EO1		Open
EO1	DTS-EO3		
VCOL, VCOH	DTS-AMP	Input	Set to disabled status by software and open
AMIFC, FMIFC	1		
VPP	_	_	Connected to GND or GNDPORT directly

Type 2 Type 8 data O IN/OUT INO output disable Schmitt-Triggered Input with Hysteresis Characteristics Type 5 Type 10 data data O IN/OUT O IN/OUT output open-drain disable output disable input enable Type 11-A Type 5-G data data O IN/OUT output O IN/OUT disable output - N-ch comparator disable ₩ N-ch VREF (Threshold voltage) input enable

Figure 1-1. Types of Pin Input/Output Circuits (1/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

Type 13-D Type DTS-EO3 → IN/OUT data output disable Middle-Voltage Input Buffer Type 19 Type DTS-AMP -○ OUT Type DTS-EO1

Figure 1-1. Types of Pin Input/Output Circuits (2/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

2. PROM PROGRAMMING

The μ PD178P018A has an internal 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the V_{PP} and $\overline{\text{RESET}}$ pins. For the connection of unused pins, refer to "PIN CONFIGURATIONS (TOP VIEW) (2) PROM programming mode."

Caution Programs must be written in addresses 0000H to EFFFH (the last address EFFFH must be specified). They cannot be written by a PROM writer which cannot specify the write address.

2.1 Operating Modes

When +5 V or +12.5 V is applied to the $\overline{\text{NPP}}$ pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 2-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$, and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 2-1. Operating Modes of PROM Programming

	Pin	RESET	V _{PP}	V _{DD}	CE	ŌĒ	PGM	D0 to D7
Operating Mode								
Page data latch		L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write					Н	Н	L	High-impedance
Byte write					L	Н	L	Data input
Program verify					L	L	Н	Data output
Program inhibit					×	Н	Н	High-impedance
					×	L	L	
Read			+5 V	+5 V	L	L	Н	Data output
Output disable					L	Н	×	High-impedance
Standby					Н	×	×	High-impedance

Remark ×: L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$ and $\overline{OE} = L$ are set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the OE pin, if multiple μ PD178P018As are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the $\overline{\text{OE}}$ status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, and $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$ and $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$ and $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$ and $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

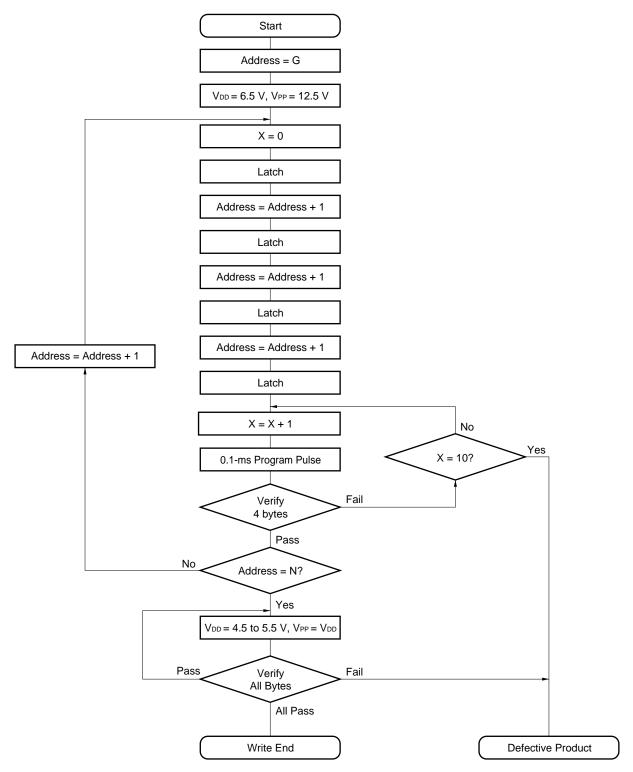
If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, and $\overline{OE} = L$ are set.

In this mode, check if a write operation is performed correctly after the write.

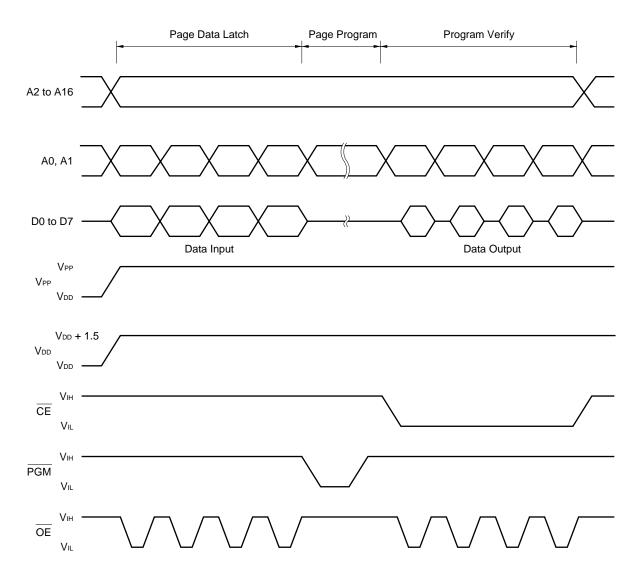
(8) Program inhibit mode


Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0 to D7 pins of multiple μ PD178P018As are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the $\overline{\text{PGM}}$ pin driven high.

2.2 PROM Write Procedure

Figure 2-1. Page Program Mode Flow Chart



Remark G = Start address

N = Program last address

Figure 2-2. Page Program Mode Timing

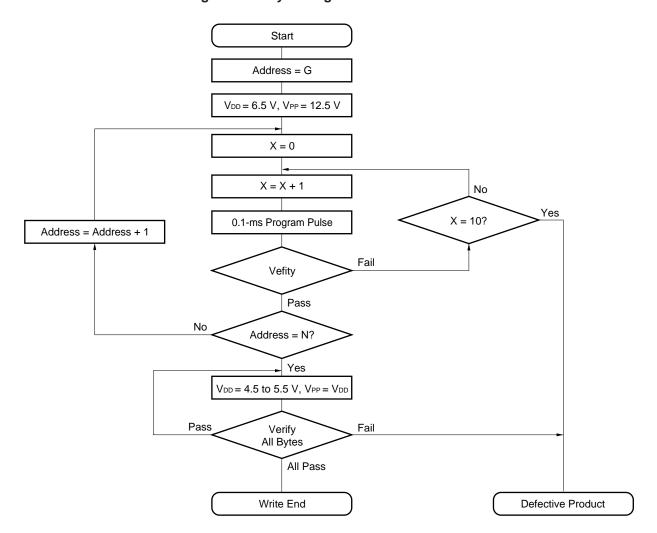


Figure 2-3. Byte Program Mode Flow Chart

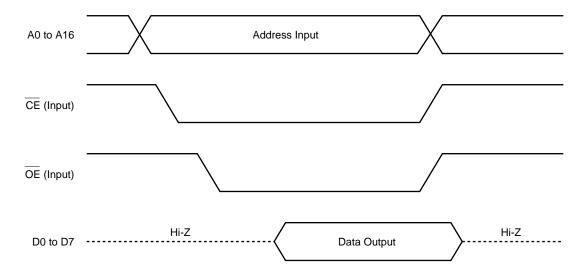
Remark G = Start address

N = Program last address

Program Program Verify A0 to A16 D0 to D7 Data Input Data Output V_{PP} $V_{\text{DD}} \\$ $V_{DD} + 1.5$ V_{DD} V_{DD} V_{IH} $\overline{\mathsf{CE}}$ V_{IL} V_{IH} PGM V_{IL} V_{IH} OE V_{IL}

Figure 2-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP, and removed after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.


2.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (TOP VIEW) (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 2-5.

Figure 2-5. PROM Read Timings

3. PROGRAM ERASURE (µPD178P018AKK-T ONLY)

The μ PD178P018AKK-T is capable of erasing (FFH) the data written in a program memory and rewriting. To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity x erasure time: 30 W•s/cm² or more
- Erasure time: 40 min. or more (When a UV lamp of 12 000 μW/cm² is used. However, a longer time may be
 needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of the data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

4. OPAQUE FILM ON ERASURE WINDOW (μPD178P018AKK-T ONLY)

To protect from an intentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

5. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (μ PD178P018AGC-3B9) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125 °C	24 hours

6. ELECTRICAL SPECIFICATIONS (PRELIMINARY)

Caution The following electrical specifications are preliminary values for this product. When designing, be sure to refer to the data sheet describing the official electrical specifications.

 μ PD178P018A Data Sheet: to be prepared

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

Parameter	Symbol	Test Conditions			Ratings	Unit
Power supply voltage	V _{DD}				-0.3 to +7.0	V
	V _{PP}				-0.3 to +13.5	V
Input voltage	VII	Excluding P60 to	Excluding P60 to P63		-0.3 to V _{DD} + 0.3	V
	V _{I2}	P60 to P63 N-ch open-drain		-0.3 to +16	V	
	Vıз	A9	PROM programming mode		-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Output withstand voltage	V _{BDS}	P132 to P134	N-ch open-drain		16	V
Analog input voltage	Van	P10 to P15	Analog input pin		-0.3 to V _{DD} + 0.3	V
Output current high	Іон	1 pin	1		-10	mA
		P01 to P06, P30 t	to P37, P56, P57, P6 al	60 to P67,	-15	mA
		P10 to P15, P20 t	to P27, P40 to P47,	P50 to P55,	-15	mA
Output current low	I _{OL} Note	1 pin		Peak value	15	mA
				r.m.s. value	7.5	mA
Operating ambient temperature	Та	'		-40 to +85	°C	
Storage temperature	Tstg			-65 to +150	°C	

Note r.m.s. (root mean square) value should be calculated as follows: [r.m.s value] = [Peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of an alternate-function pin and a port pin are the same unless specified otherwise.

RECOMMENDED SUPPLY VOLTAGE RANGES (Ta = -40 to +85 $^{\circ}$ C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	V _{DD1}	During CPU operation and PLL operation.	4.5		5.5	V
	V _{DD2}	While the CPU is operating and the PLL is stopped. Cycle Time: $T_{\text{CY}} \ge 0.89~\mu\text{s}$	3.5		5.5	V
	V _{DD3}	While the CPU is operating and the PLL is stopped. Cycle Time: $T_{CY} = 0.44 \ \mu s$	4.5		5.5	V

Remark Tcy: Cycle Time (Minimum instruction execution time)

DC CHARACTERISTICS (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

(1/3)

Parameter	Symbol	Test Con-	ditions	MIN.	TYP.	MAX.	Unit
Input voltage high	V _{IH1}	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0.7 V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0.85 VDD		V _{DD}	V
	VIH3	P60 to P63 (N-ch open-drain)		0.7 VDD		15	V
Input voltage low	VIL1	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0		0.3 V _{DD}	V
	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0		0.15 VDD	V
	V _{IL3}	P60 to P63	4.5 V ≤ V _{DD} ≤ 5.5 V	0		0.3 V _{DD}	V
		(N-ch open-drain)	3.5 V ≤ V _{DD} < 4.5 V	0		0.2 V _{DD}	V
Output voltage high	V _{OH1}		$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон = -1 mA	V _{DD} - 1.0			V
			$3.5 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V},$ loн = -100 μ A	V _{DD} - 0.5			V
Output voltage low	V _{OL1}	P50 to P57, P60 to P63	V _{DD} = 4.5 to 5.5 V, loн = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P120 to P125, P132 to P134	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL2}	SB0, SB1, SCK0	$V_{DD} = 4.5$ to 5.5 V, N-ch open-drain pulled-up (R = 1 K Ω)			0.2 V _{DD}	V

Remark The characteristics of an alternate-function pin and a port pin are the same unless specified otherwise.

DC CHARACTERISTICS (TA = -40 to +85 °C, V_{DD} = 3.5 to 5.5 V)

(2/3)

Parameter	Symbol	Test Con-	ditions	MIN.	TYP.	MAX.	Unit
Input leakage current high	Ішн1	P00 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125, RESET	Vin = Vdd			3	μΑ
	ILIH2	P60 to P63	Vin = 15 V			80	μΑ
Input leakage current low	ILIL1	P00 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125, RESET	V _{IN} = 0 V			-3	μΑ
	ILIL2	P60 to P63				_3 Note	μΑ
Output leakage current high	Ісон	P132 to P134	Vout = 15 V			3	μΑ
Output leakage current low	ILOL	P132 to P134	Vout = 0 V			-3	μΑ
Output off leak current	ILOF	EO0, EO1	Vout = Vdd, Vout = 0 V			±1	μΑ

Note When an input instruction is executed, the low-level input leakage current for P60 to P63 becomes $-200 \mu A (MAX.)$ only in one clock cycle (at no wait). It remains at $-3 \mu A (MAX.)$ for other than an input instruction.

Remark The characteristics of an alternate-function pin and a port pin are the same unless specified otherwise.

REFERENCE CHARACTERISTICS (TA = 25 $^{\circ}$ C, V_{DD} = 5 V)

(1/2)

Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
Output current high	І он1	EO0		-4		mA	
		EO1 (EOCON0 = 0)		-1.8			mA
Output current low	lo _{L1}	EO0	Vout = 1 V		6		mA
		EO1 (EOCON0 = 0)		3.5			mA

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 3.5 to 5.5 V)

(3/3)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
Power supply current Note 1	I _{DD1}	While the CPU is operating and the PLL is stopped	$T_{CY} = 0.89 \ \mu s^{Note 2}$		2.5	15	mA
	I _{DD2}	fx = 4.5-MHz operation	$T_{CY} = 0.44 \ \mu s^{\text{Note 3}}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$		4.0	27	mA
	I _{DD3}	While the CPU is operating and the PLL is stopped HALT Mode.	$T_{\rm CY} = 0.89 \ \mu \rm s^{\ Note\ 2}$		1	4	mA
	IDD4	Pin X1 sine wave input $V_{IN} = V_{DD}$ fx = 4.5-MHz operation	$T_{CY} = 0.44 \ \mu s^{\text{Note 3}}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$		1.6	6	mA
Data hold	V _{DDR1}	When the crystal is oscillating	$T_{CY} = 0.44 \ \mu s$	4.5		5.5	V
power supply	V _{DDR2}		$T_{CY} = 0.89 \ \mu s$	3.5		5.5	V
voltage	V _{DDR3}	When the crystal oscillation When power off by Power O	• •	2.7		5.5	V
Data hold	IDDR1	While the crystal oscillation	T _A = 25 °C, V _{DD} = 5 V		2	4	μΑ
power supply current	I _{DDR2}	is stopped			2	30	μΑ

Notes 1. The port current is not included.

- 2. When the Processor Clock Control register (PCC) is set at 00H, and the Oscillation Mode Select register (OSMS) is set to 00H.
- 3. When PCC is set to 00H and OSMS is set to 01H.

Remarks 1. Tcy: Cycle Time (Minimum instruction execution time)

2. fx: System clock oscillation frequency.

REFERENCE CHARACTERISTICS (T_A = 25 $^{\circ}$ C, V_{DD} = 5 V)

(2/2)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
Power supply current	IDD5	During CPU operation and PLL operation. VCOH pin sine wave input fin = 130 MHz, Vin = 0.15 V _{P-P}	Tcy = $0.44 \mu s^{Note}$		7		mA

Note When the Processor Clock Control register (PCC) is set to 00H, and the Oscillation Mode Select register (OSMS) is set to 01H.

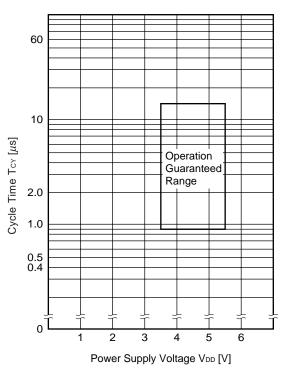
Remark Tcy: Cycle Time (Minimum instruction execution time)

AC CHARACTERISTICS

(1) BASIC OPERATION (TA = -40 to +85 °C, V_{DD} = 3.5 to 5.5 V)

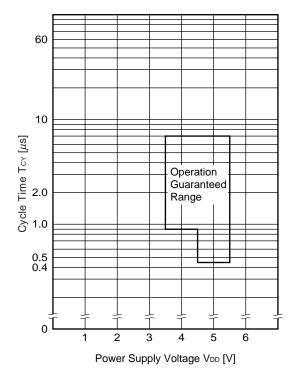
Parameter	Symbol	Test Co	MIN.	TYP.	MAX.	Unit	
Cycle time	Tcy	fxx = fx/2 Note 1, $fx = 4.5$ -MHz	0.89		14.22	μs	
(Minimum instruction		$f_{XX} = f_X^{\text{Note 2}},$	4.5 ≤ V _{DD} ≤ 5.5 V	0.44		7.11	μs
execution time)		$f_X = 4.5$ -MHz operation	3.5 ≤ V _{DD} < 4.5 V	0.89		7.11	μs
TI1, TI2 input	fтı	4.5 ≤ V _{DD} ≤ 5.5 V		0		4.5	MHz
frequency		3.5 V ≤ V DD < 4.5 V	0		275	kHz	
TI1, TI2 input high/	tтıн,	4.5 ≤ V _{DD} ≤ 5.5 V		111			ns
low-level width	t⊤ı∟	3.5 V ≤ V _{DD} < 4.5 V		1.8			μs
Interrupt input high/	TINTH,	INTP0		8/f _{sam} Note 3			μs
low-level width	TINTL	INTP1 to INTP6	10			μs	
RESET low-level	trsl			10			μs
width							

Notes 1. When the Oscillation Mode Selection register (OSMS) is set to 00H.


- 2. When OSMS is set to 01H.
- 3. In combination with bits 0 (SCS0) and 1 (SCS1) of the Sampling Clock Select register (SCS), selection of f_{sam} is possible among $f_{xx/2}$, $f_{xx/32}$, $f_{xx/64}$, and $f_{xx/128}$ (when N = 0 to 4).

Remarks 1. fxx: System clock frequency (fx or fx/2)

2. fx: System clock oscillation frequency


Tcy vs VDD

(when system clock fxx is operating at fx/2)

Tcy vs VDD

(when system clock fxx is operating at fx)

(2) SERIAL INTERFACE (TA = -40 to +85 °C, VDD = 3.5 to 5.5 V)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK0 high-/low-level width	tĸнı,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксү1/2 - 50			ns
	t _{KL1}	3.5 V ≤ V _{DD} < 4.5 V	tkcy1/2 - 100			ns
SI0 setup time (to SCK0↑)	t sıĸı	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI0 hold time (from SCK0↑)	t KSI1		400			ns
SO0 output delay time from SCK0↓	tkso1	C = 100 pF Note			300	ns

Note C is the load capacitance of the SO0 output line.

(ii) 3-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK0 high-/low-level width	tĸH2,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	tĸL2	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from SCK0↑)	t KSI2		400			ns
SO0 output delay time from $\overline{\text{SCK0}} \downarrow$	tkso2	C = 100 pF Note			300	ns
SCK0 rising or falling edge time	tr2, tr2				1 000	ns

Note C is the load capacitance of the SO0 output line.

(iii) SBI mode (SCK0 ... internal clock output)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	4.5 V ≤ V _{DD} ≤	5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V		3 200			ns
SCK0 high-/low-level width	tкнз,	4.5 V ≤ V _{DD} ≤	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
	tкLз	3.5 V ≤ V _{DD} <	4.5 V	tксүз/2 – 150			ns
SB0, SB1 setup time (to SCK0↑)	tsık3	4.5 V ≤ V _{DD} ≤	5.5 V	100			ns
		3.5 V ≤ V _{DD} <	4.5 V	300			ns
SB0, SB1 hold time (from SCK0↑)	t _{KSI3}			tксүз/2			ns
SB0, SB1 output delay time from	tkso3	R = 1 kΩ	4.5 V ≤ V _{DD} ≤ 5.5 V	0		250	ns
SCK0↓		C = 100 pF Note	3.5 V ≤ V _{DD} < 4.5 V	0		1 000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
SCK0↓ from SB0, SB1↓	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			t ксүз			ns
SB0, SB1 low-level width	t sbl			tксүз			ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(iv) SBI mode (SCK0 ... external clock input)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	4.5 V ≤ V _{DD} ≤	5.5 V	800			ns
		3.5 V ≤ V _{DD} <	4.5 V	3 200			ns
SCK0 high-/low-level width	tкн4,	4.5 V ≤ V _{DD} ≤	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
	t _{KL4}	3.5 V ≤ V _{DD} <	4.5 V	1 600			ns
SB0, SB1 setup time (to SCK0↑)	tsık4	4.5 V ≤ V _{DD} ≤	5.5 V	100			ns
		3.5 V ≤ V _{DD} <	4.5 V	300			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tkcy4/2			ns
SB0, SB1 output delay time from	tkso4	R = 1 kΩ	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
SCK0↓		C = 100 pF Note	3.5 V ≤ V _{DD} < 4.5 V	0		1 000	ns
SB0, SB1↓ from SCK0↑	tкsв			tkcy4			ns
SCK0↓ from SB0, SB1↓	tsвк			tkcy4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	t sbl			tkcy4			ns
SCK0 rising or falling edge time	t _{R4} , t _{F4}					1 000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) 2-wire serial I/O mode (SCK0 ... internal clock output)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t KCY5	R = 1 kΩ		1 600			ns
SCK0 high-level width	t _{KH5}	C = 100 pF Note		tkcys/2 – 160			ns
SCK0 low-level width	t _{KL5}		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	tксү5/2 – 50			ns
			$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	tксү5/2 – 100			ns
SB0, SB1 setup time (to SCK0↑)	tsik5		$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	300			ns
			$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	350			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	t KSI5			600			ns
SB0, SB1 output delay time from $\overline{\text{SCK0}} \downarrow$	tkso5			0		300	ns

Note R and C are the load resistance and load capacitance of the SCKO, SBO, and SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t KCY6			1 600			ns
SCK0 high-level width	tĸH6			650			ns
SCK0 low-level width	tĸL6			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from SCK0↑)	t KSI6			tkcy6/2			ns
SB0, SB1 output delay time from	tkso6	R = 1 kΩ	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		300	ns
SCK0↓		C = 100 pF Note	$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		500	ns
SCK0 at rising or falling edge time	tre, tre					1 000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(vii) I²C bus mode (SCL ... internal clock output)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy7	R = 1 kΩ		10			μs
SCL high-level width	tкн7	C = 100 pF Note		tксү7 — 160			ns
SCL low-level width	t _{KL7}			tксү7 — 50			ns
SDA0, SDA1 setup time (to SCL↑)	tsıĸ7			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi7			0			ns
SDA0, SDA1 output delay time	tks07		4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
(from SCL↓)			3.5 V ≤ V _{DD} < 4.5 V	0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.

(viii) I²C bus mode (SCL ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү8			1 000			ns
SCL high-/low-level width	tkH8, tkL8			400			ns
SDA0, SDA1 setup time (to SCL↑)	tsık8			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi8			0			ns
SDA0, SDA1 output delay time	t ks08	R = 1 kΩ	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		300	ns
from SCL↓		C = 100 pF ^{Note}	$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL rising or falling edge time	trs, trs					1 000	ns

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.

(b) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high-/low-level width	t кн9,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксү9/2 — 50			ns
	tĸL9	3.5 V ≤ V _{DD} < 4.5 V	tксу9/2 — 100			ns
SI1 setup time (to SCK1↑)	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI1 hold time (from SCK1↑)	t KSI9		400			ns
SO1 output delay time (from SCK1↓)	tkso9	C = 100 pF Note			300	ns

Note C is the load capacitance of the SO1 output line.

(ii) 3-wire serial I/O mode (SCK1 ... external clock input)

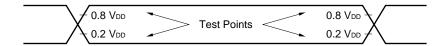
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t KCY10	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high-/low-level width	t кн10,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	t _{KL10}	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from SCK1↑)	tksi10		400			ns
SO1 output delay time (from SCK1↓)	t KSO10	C = 100 pF Note			300	ns
SCK1 rising or falling edge time	t R10, t F10				1 000	ns

Note C is the load capacitance of the SO1 output line.

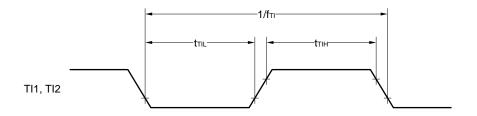
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... internal clock output)

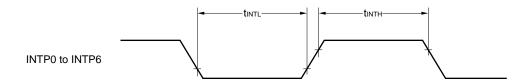
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY11	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1 600			ns
SCK1 high-/low-level width	tкн11,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксү11/2 - 50			ns
	t _{KL11}	3.5 V ≤ V _{DD} < 4.5 V	tkcy11/2 - 100			ns
SI1 setup time (to SCK1↑)	tsik11	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI1 hold time (from SCK1↑)	tksi11		400			ns
SO1 output delay time (from SCK1↓)	tks011	C = 100 pF Note			300	ns
STB↑ from SCK1↑	tsbd		tксү11/2 - 100		tксү11/2 + 100	ns
Strobe signal high-level width	tssw		tксү11 - 30		tксү11 + 30	ns
Busy signal setup time (to busy signal detection timing)	tBYS		100			ns
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal detection timing)		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SCK1↓ from busy inactive	tsps				2tксү11	ns

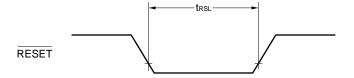
Note C is the load capacitance of the SO1 output line.


(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... external clock input)

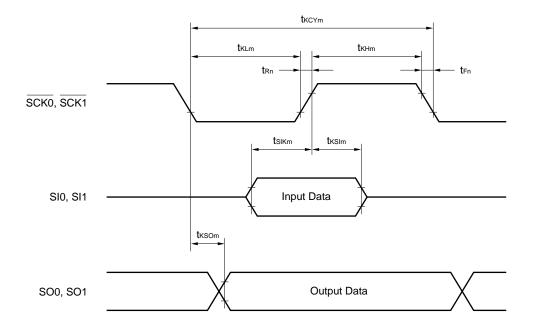
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY12	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ VDD < 4.5 V	1 600			ns
SCK1 high-/low-level width	t KH12,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	t _{KL12}	3.5 V ≤ V _{DD} < 4.5 V	800			ns
SI1 setup time (to SCK1↑)	tsik12		100			ns
SI1 hold time (from SCK1↑)	tksi12		400			ns
SO1 output delay time (from SCK1↓)	t KSO12	C = 100 pF Note			300	ns
SCK1 rising or falling edge time	tR12, tF12				1 000	ns

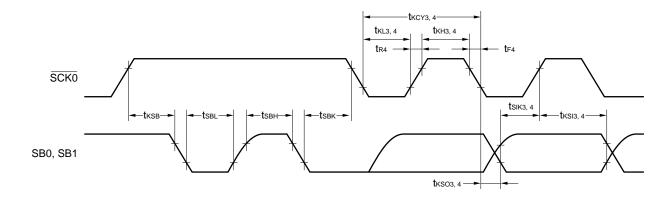

Note C is the load capacitance of the SO1 output line.


AC Timing Test Point (Excluding X1 Input)

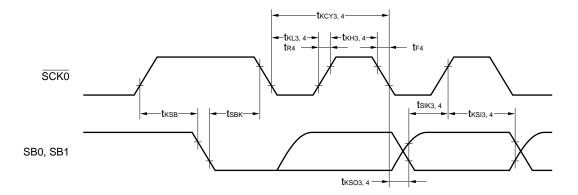

TI Timing

Interrupt Input Timing

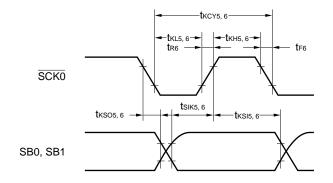

RESET Input Timing

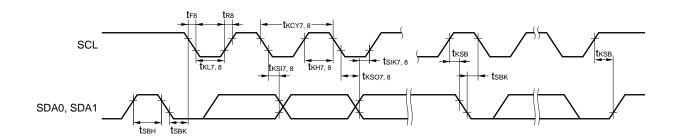

Serial Transfer Timing

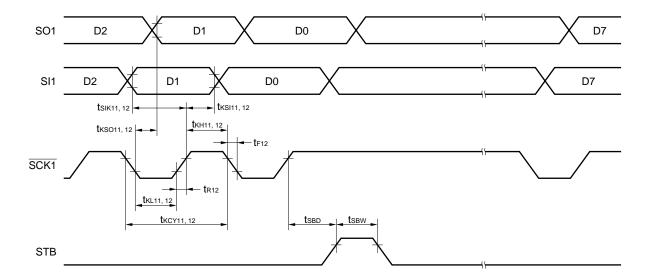
3-Wire Serial I/O Mode:

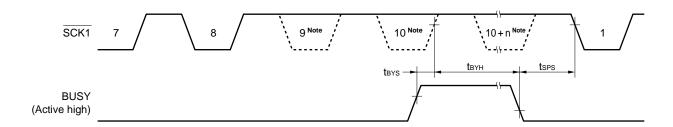


Remark m = 1, 2, 9, 10n = 2, 10


SBI Mode (Bus Release Signal Transfer):


SBI Mode (Command Signal Transfer):


2-Wire Serial I/O Mode:


I²C Bus Mode:

3-Wire Serial I/O Mode with Automatic Transmit/Receive Function:

3-Wire Serial I/O Mode with Automatic Transmit/Receive Function (Busy Processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Conversion total error					±3.0	LSB
Conversion time	tconv		22.2		44.4	μs
Sampling time	t SAMP		15/fxx			μs
Analog input voltage	VIAN		0		Vdd	V

Remarks 1. fxx: System clock frequency (fx/2)

2. fx: System clock oscillation frequency

PLL CHARACTERISTICS ($T_A = -40 \text{ to } +85 \,^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating	f _{IN1}	VCOL Pin MF Mode Sine wave input $V_{IN} = 0.1 V_{p-p}$	0.5		3	MHz
frequency	f _{IN2}	VCOL Pin HF Mode Sine wave input V _{IN} = 0.2 V _{P-P}	9		55	MHz
	fınз	VCOH Pin VHF Mode Sine wave input $V_{\text{IN}} = 0.15 \text{ V}_{\text{p-p}}$	60		160	MHz

IFC CHARACTERISTICS (T_A = -40 to +85 $^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin4	AMIFC Pin AMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P-P}$ Note	0.4		0.5	MHz
	fin5	FMIFC Pin FMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P-P}^{Note}$	10		11	MHz
	fine	FMIFC Pin AMIF Count Mode Sine wave input $V_{IN} = 0.1 \ V_{P^-P}^{Note}$	0.4		0.5	MHz

Note The condition of a sine wave input of $V_{IN} = 0.1 \ V_{p-p}$ is the standard value for operation of this device during stand-alone operation, so in consideration of the effect of noise, it is recommended that operation be at an input amplitude condition of $V_{IN} = 0.15 \ V_{p-p}$.

PROM PROGRAMMING CHARACTERISTICS

DC CHARACTERISTICS

(1) PROM Write Mode (Ta = 25 \pm 5 °C, VdD = 6.5 \pm 0.25 V, VpP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7 Vdd		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	Vон	Vон	Iон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Iц	Li	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	IPP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

(2) PROM Read Mode (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	ViH		0.7 V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 V _{DD}	V
Output voltage, high	V _{OH1}	Vон1	Iон = −1 mA	V _{DD} – 1.0			V
	V _{OH2}	V _{OH2}	Іон = −100 μА	V _{DD} - 0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Iμ	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		VDD - 0.6	V _{DD}	VDD + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	V _{PP} = V _{DD}			100	μΑ
VDD supply current	IDD	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Corresponding $\mu PD27C1001A$ symbol.

AC CHARACTERISTICS

(1) PROM Write Mode

(a) Page program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

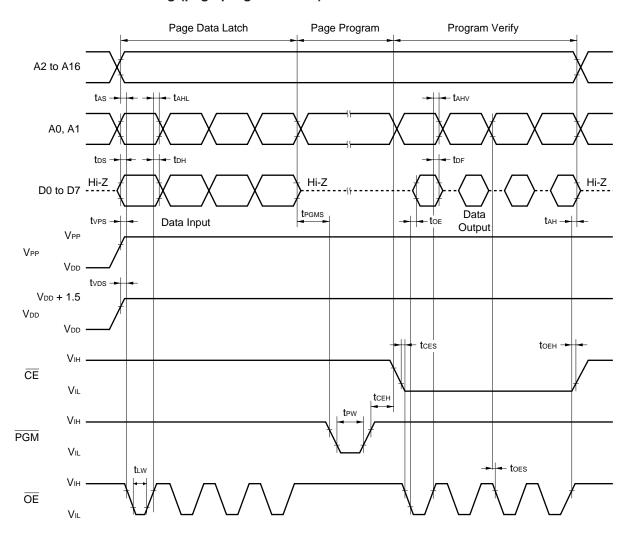
Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to OE ↓)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\sf OE}\ \downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE} \uparrow$)	tан	tан		2			μs
	tahl	tahl		2			μs
	t ahv	t ahv		0			μs
Input data hold time (from OE ↑)	tон	tон		2			μs
Data output float delay time	tor	tor		0		250	ns
from OE ↑							
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE} \downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from $\overline{OE}\ \downarrow$	toe	toe				1	μs
OE pulse width during data	tLW	tLW		1			μs
latching							
PGM setup time	tрдмs	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM} \downarrow$)	tas	tas		2			μs
OE set time	toes	toes		2			μs
CE setup time (to PGM ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\text{PGM}} \downarrow$)	tos	tos		2			μs
Address hold time (from OE ↑)	tан	tан		2			μs
Input data hold time	tон	tон		2			μs
(from PGM ↑)							
Data output float delay time	tor	t DF		0		250	ns
from OE ↑							
V_{PP} setup time (to $\overline{PGM} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}}$ ↓)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from OE ↓	toe	toe				1	μs
OE hold time	tоен	_		2			μs

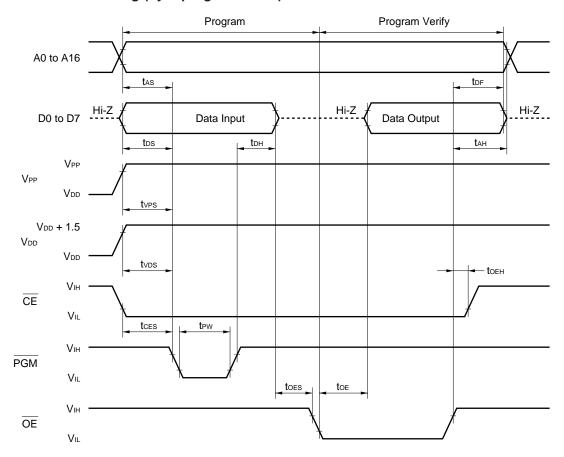
Note Corresponding μ PD27C1001A symbol.

(2) PROM Read Mode (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

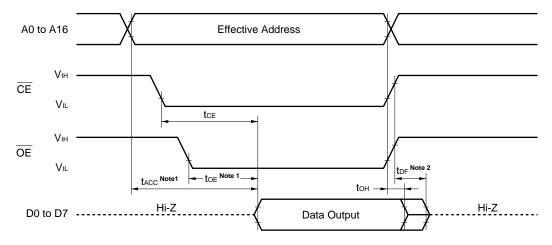

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from	tacc	t ACC	CE = OE = VIL			800	ns
address							
Data output delay time CE ↓	tce	tce	OE = VIL			800	ns
Data output delay time OE ↓	toe	toe	CE = VIL			200	ns
Data output float delay time	tof	tor	CE = VIL	0		60	ns
from OE ↑							
Data hold time to address	tон	tон	CE = OE = VIL	0			ns

Note Corresponding μ PD27C1001A symbol.

(3) PROM Programming Mode Setting (TA = 25 $^{\circ}$ C, Vss = 0 V)

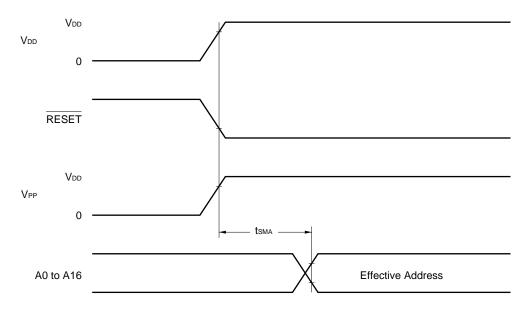

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode	tsma		10			μs
setup time						

PROM Write Mode Timing (page program mode)

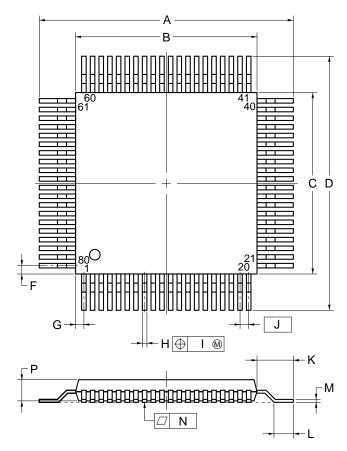

PROM Write Mode Timing (byte program mode)

Cautions 1.

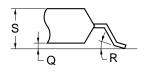
- 1. VDD should be applied before VPP, and removed after VPP.
- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.


PROM Read Mode Timing

Notes 1. If you want to read within the range of tacc, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc – toe.


2. toF is the time from when either \overline{OE} or \overline{CE} first reaches ViH.

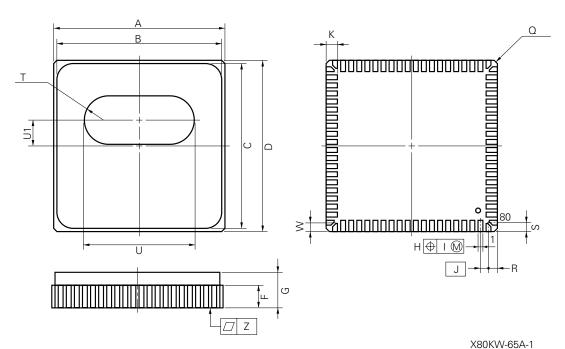
PROM Programming Mode Setting Timing



7. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S80GC-65-3B9-4

80 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		700KVV-03A-1
ITEM	MILLIMETERS	INCHES
А	14.0±0.2	0.551±0.008
В	13.6	0.535
С	13.6	0.535
D	14.0±0.2	0.551±0.008
F	1.84	0.072
G	3.6 MAX.	0.142 MAX.
Н	0.45±0.10	0.018+0.004
I	0.06	0.003
J	0.65 (T.P.)	0.024 (T.P.)
K	1.0±0.15	0.039+0.007
Q	C 0.3	C 0.012
R	0.825	0.032
S	0.825	0.032
Т	R 2.0	R 0.079
U	9.0	0.354
U1	2.1	0.083
W	0.75±0.15	0.030+0.006
Z	0.10	0.004

APPENDIX A. DIFFERENCES BETWEEN μ PD178018A AND μ PD178018 SUBSERIES

	Product Name	μ	ιPD178018	A Subseries	6	μPD178018 Subseries				
Item		μPD178004A	μPD178006A	μPD178016A	μPD178018A μPD178P018A ^{Note}	μPD178004	μPD178006	μPD178016	μPD178018 μPD178P018	
PLL frequency	Reference frequency	, ,	electable by , 10, 25, 50	. 0		١ ٠.	selectable b 5, 3, 5, 6.25	, , ,	25, 50 kHz)	
synthe- sizer	EO0 pin output format	Buffer type	Buffer type							
	EO1 pin output format	Buffer type	Э			Constant-current power supply type				
	EO1 pin high- impedance function	Not supported Supported Not supported								

Note Under development

Remark The mask ROM of mask versions (μ PD178018A and μ PD178018) is replaced with one-time PROM or EPROM in the one-time PROM versions (μ PD178P018A and μ PD178P018).

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD178P018A Subseries.

Language Processing Software

RA78K/0 Notes 1, 2, 3, 4	78K/0 Series common assembler package	
CC78K/0 Notes 1, 2, 3, 4	78K/0 Series common C compiler package	
DF178018 Notes 1, 2, 3, 4, 8	μ PD178018A Subseries common device file	
CC78K/0-L Notes 1, 2, 3, 4	78K/0 Series common C compiler library source file	

PROM Writing Tools

PG-1500	PROM writer
PG-178P018GC	Program writer adapters connected to a PG-1500
PA-178P018KK-T	
PG-1500 controller Notes 1, 2	PG-1500 control program

Debugging Tools

IE-78000-R	In-circuit emulator common to 78K/0 Series
IE-78000-R-A	In-circuit emulator common to 78K/0 Series (for the integrated debugger)
IE-78000-R-BK	Break board common to 78K/0 Series
IE-178018-R-EM	Emulation board common to μ PD178018A Subseries
IE-78000-R-SV3	Interface adapter and cable when using EWS as a host machine (for IE-78000-R-A)
IE-70000-98-IF-B	Interface adapter when using the PC-9800 Series (except notebooks) as a host machine (for IE-78000-R-A)
IE-70000-98N-IF	Interface adapter and cable when using the PC-9800 Series notebook as a host machine (for IE-78000-R-A)
IE-70000-PC-IF-B	Interface adapter when using IBM PC/AT™ as a host machine (for IE-78000-R-A)
EP-78230GC-R	Emulation probe common to μPD78234 Subseries
EV-9200GC-80	Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type)
EV-9900	Jig used when removing the μ PD178P018AKK-T from the EV-9200GC-80.
SM78K0 Notes 5, 6, 7	78K/0 series common system simulator
ID78K0 Notes 4, 5, 6, 7	Integrated debugger for IE-78000-R-A
SD78K/0 Notes 1, 2	IE-78000-R screen debugger
DF178018 Notes 1, 2, 4, 5, 6, 7, 8	μPD178018A Subseries device file

Real-Time OS

RX78K/0 Notes 1, 2, 3, 4	78K/0 Series real-time OS
MX78K0 Notes 1, 2, 3, 4	78K/0 Series OS

Notes 1. PC-9800 Series (MS-DOS™) based

- 2. IBM PC/AT and compatibles (PC DOSTM/IBM DOSTM/MS-DOS) based
- 3. HP9000 Series 300[™] (HP-UX[™]) based
- **4.** HP9000 Series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™]) based, EWS4800 Series (EWS-UX/V) based
- 5. PC-9800 Series (MS-DOS + Windows™) based
- 6. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. $NEWS^{TM}$ (NEWS-OSTM) based
- 8. Under development

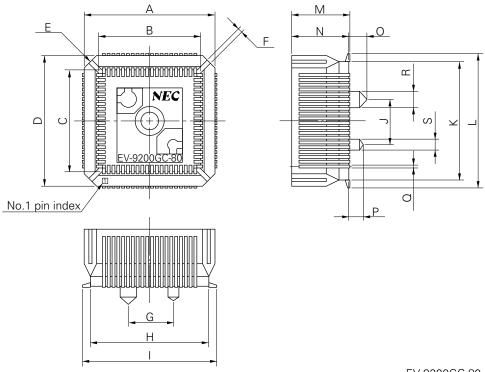
Fuzzy Inference Development Support System

FE9000 Note 1/FE9200 Note 2	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 3	Translator
FI78K0 Notes 1, 3	Fuzzy inference module
FD78K0 Notes 1, 3	Fuzzy inference debugger

Notes 1. PC-9800 Series (MS-DOS) based

- 2. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- 3. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS) based

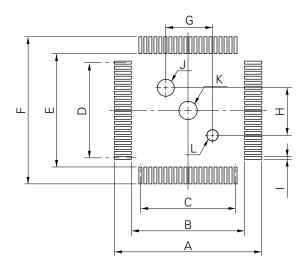
Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.


2. The RA78K/0, CC78K/0, SD78K/0, ID78K/0, SM78K/0, and RX78K/0 are used in combination with the DF178018.

CONVERSION SOCKET DRAWING AND RECOMMENDED FOOTPRINT

Figure B-1. Drawing of EV-9200GC-80 (for Reference only)

Based on EV-9200GC-80 (1) Package drawing (in mm)


EV-9200GC-80-G1E

	EV-9200GC-80-G1		
ITEM	MILLIMETERS	INCHES	
А	18.0	0.709	
В	14.4	0.567	
С	14.4	0.567	
D	18.0	0.709	
Е	4-C 2.0	4-C 0.079	
F	0.8	0.031	
G	6.0	0.236	
I	16.0	0.63	
I	18.7	0.736	
J	6.0	0.236	
K	16.0	0.63	
L	18.7	0.736	
М	8.2	0.323	
Ν	8.0	0.315	
0	2.5	0.098	
Р	2.0	0.079	
Q	0.35	0.014	
R	ø2.3	ø0.091	
S	ø 1.5	φ0.059	

Figure B-2. Recommended Footprint of EV-9200GC-80 (for Reference only)

Based on EV-9200GC-80 (2) Pad drawing (in mm)

EV-9200GC-80-P1E

ITEM	MILLIMETERS	INCHES	
А	19.7	0.776	
В	15.0	0.591	
С	$0.65\pm0.02 \times 19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$	
D	$0.65\pm0.02 \times 19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$	
Е	15.0	0.591	
F	19.7	0.776	
G	6.0±0.05	$0.236^{+0.003}_{-0.002}$	
Н	6.0±0.05	$0.236^{+0.003}_{-0.002}$	
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$	
J	φ2.36±0.03	ϕ 0.093 $^{+0.001}_{-0.002}$	
K	φ2.3	φ0.091	
L	φ1.57±0.03	φ0.062 ^{+0.001} _{-0.002}	

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

APPENDIX C. RELATED DOCUMENTS

Device Documents

Title		Document No. (Japanese)	Document No. (English)
μPD178018A Subseries User's Manual		To be prepared	To be prepared
78K/0 Series User's Manual—Instruction		U12326J	U12326E
78K/0 Series Instruction Set		U10904J	_
78K/0 Series Instruction Table		U10903J	_
μ PD178018A Subseries Special Function Register Table		To be prepared	_
78K/0 Series Application Note	Basics (II)	U10121J	U10121E

Development Tool Documents (User's Manual)

Title		Document No. (Japanese)	Document No. (English)
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Notes	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	_
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-178018-R-EM		U10668J	U10668E
EP-78230		EEU-985	EEU-1515
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Parts User open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	U11151E
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger PC-9800 Series (MS-DOS) Based	Introduction	EEU-852	U10539E
Reference		U10952J	_
SD78K/0 Screen Debugger IBM PC/AT (PC DOS) Based	Introduction	EEU-5024	EEU-1414
	Reference	U11279J	U11279E

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

Related Documents for Embedded Software (User's Manual)

Title		Document No. (Japanese)	Document No. (English)
78K/0 Series Realtime OS	Basics	U11537J	_
	Installation	U11536J	_
78K/0 Series OS MX78K0	Basics	U12257J	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series		EEU-862	EEU-1444
Fuzzy Inference Development Support System—Translator			
78K/0 Series Fuzzy Inference Development Support System—Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System		EEU-921	EEU-1458
—Fuzzy Inference Debugger			

Other Documents

Title	Document No. (Japanese)	Document No. (English)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Guides on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Device Quality Assurance Guide	C11893J	MEI-1202
Microcomputer-related Product Guide (Products by other Manufacturers)	U11416J	_

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

NEC μ PD178P018A

[MEMO]

NEC μ PD178P018A

[MEMO]

NEC μ PD178P018A

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed : μ PD178P018AKK-T The customer must judge the need for license : μ PD178P018AGC-3B9

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic

equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster

systems, anti-crime systems, safety equipment and medical equipment (not specifically designed

for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life

support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5