Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT μ**PD178F124**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The µPD178F124 is a flash memory model of the µPD178023 and 178024, and is provided with a flash memory to/from which data can be written/erased with the microcontroller mounted on a printed circuit board.

For the detailed functional description, refer to the following User's Manuals: µPD178024, 178124 Subseries User's Manual: U13915E

78K/0 Series User's Manual - Instruction : U12326E

FEATURES

- Serial interface (I²C bus and UART mode)
- · Hardware for PLL frequency synthesizer
- Pin-compatible with mask ROM models (except VPP pin)
- Flash memory: 32K bytes^{Note}
- Internal high-speed RAM: 1024 bytes
- Operable at same supply voltage as mask ROM models: VDD = 4.5 to 5.5 V (during CPU and PLL operations)

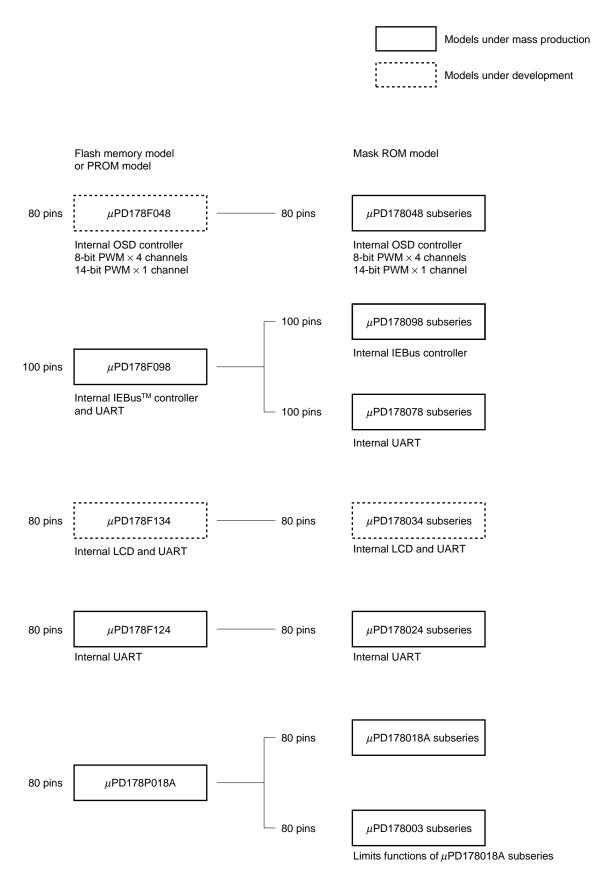
: VDD = 3.5 to 5.5 V (during CPU operation)

Note The capacities of the flash memory can be changed using the memory size select register (IMS).

Remark For the differences between the flash memory model and mask ROM models, refer to 1. DIFFERENCES BETWEEN µPD178F124 AND MASK ROM MODELS.

The electrical specifications (such as supply current) in the μ PD178F124 differ from those of the mask ROM models. Confirm these differences before mass-producing any application set.

APPLICATION FIELD


Car stereos

ORDERING INFORMATION

Part Number	Package
μPD178124GF-3B9	80-pin plastic QFP (14 $ imes$ 20)
μPD178124GC-8BT	80-pin plastic QFP (14 $ imes$ 14)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

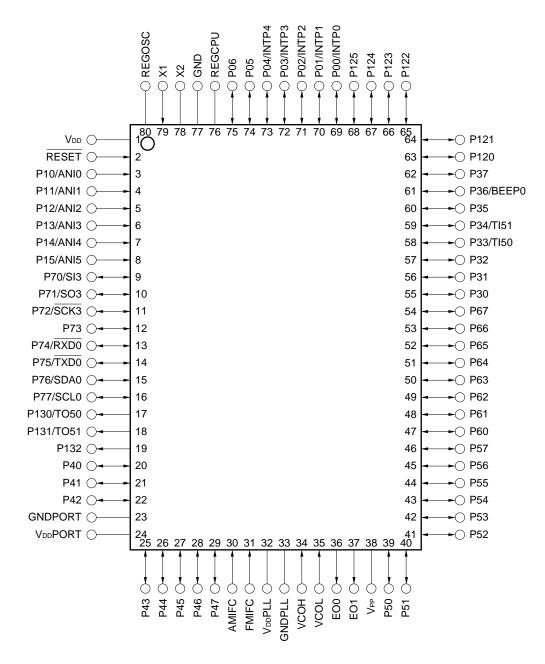
DEVELOPMENT OF 8-BIT DTS SERIES

FUNCTIONAL OUTLINE

(1/2)

Item		μPD178F124				
Internal	Flash memory	32 Kbytes				
	High-speed RAM	1024 bytes				
General-pur	pose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)				
Minimum ins	struction execution time	0.45 μ s/0.89 μ s/1.78 μ s/3.56 μ s/7.11 μ s (with crystal resonator of fx = 4.5 MHz)				
Instruction s	et	 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjustment, etc. 				
I/O port		Total : 62 pins • CMOS I/O : 53 pins • CMOS input : 6 pins • N-ch open-drain output : 3 pins				
A/D converte	er	8-bit resolution \times 6 channels (VDD = 3.5 to 5.5 V)				
Serial interface		 I²C bus mode^{Note}: 1 channel 3-wire mode : 1 channel UART mode : 1 channel 				
Timer		 Basic timer (timer carry FF (10 Hz)): 1 channel 8-bit timer/event counter : 2 channels Watchdog timer : 1 channel 				
Buzzer outp	ut	1 channel (1 kHz, 1.5 kHz, 3 kHz, 4 kHz)				
Vectored interrupt	Maskable	Internal : 11 External: 5				
source	Non-maskable	Internal: 1				
	Software	1				
PLL frequency synthesizer	Division mode	2 types • Direct division mode (VCOL pin) • Pulse swallow mode (VCOL and VCOH pins)				
	Reference frequency	Seven types selectable in software (1, 3, 9, 10, 12.5, 25, 50 kHz)				
	Charge pump	Error out output: 2 pins				
	Phase comparator	Unlock detectable in software				

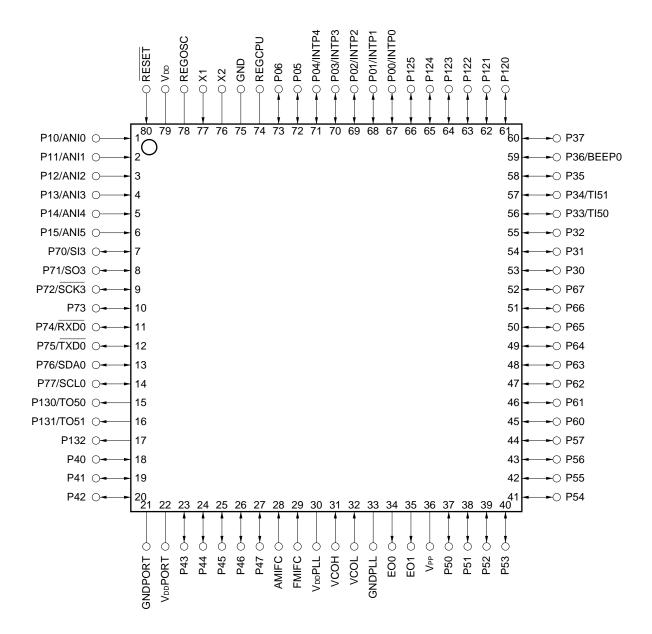
Note When the I²C bus mode is used (including when the mode is implemented in software without using the peripheral hardware), consult NEC when ordering a mask.


(2/2)

Item	μPD178F124
Frequency counter	Frequency measurement • AMIFC pin: For 450-kHz counting • FMIFC pin: For 450-kHz/10.7-MHz counting
Reset	 Reset by RESET pin Internal reset by watchdog timer Reset by power-ON clear circuit Detection of less than 4.5 V^{Note} (Reset does not occur, however.) Detection of less than 3.5 V^{Note} (during CPU operation) Detection of less than 2.3 V^{Note} (in STOP mode)
Supply voltage	 V_{DD} = 4.5 to 5.5 V (during CPU, PLL operation) V_{DD} = 3.5 to 5.5 V (during CPU operation)
Package	 80-pin plastic QFP (14 × 20) 80-pin plastic QFP (14 × 14)

Note These voltages are the maximum values. In practice, the chip may be reset at voltages lower than these.

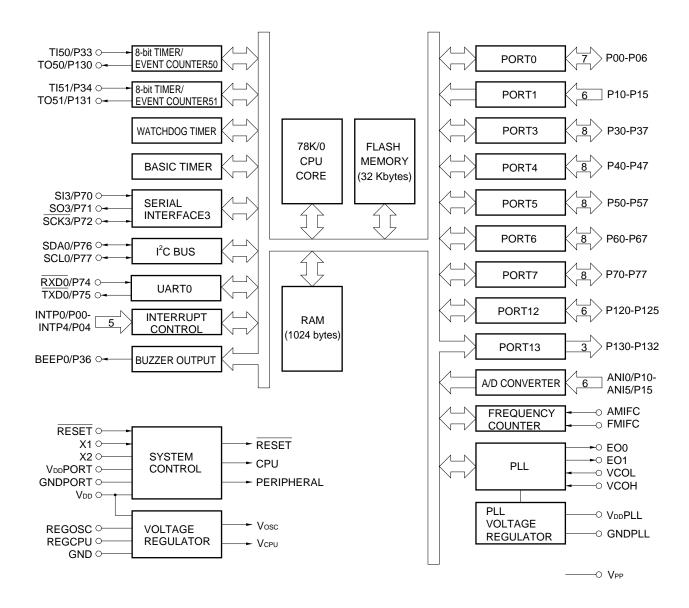
PIN CONFIGURATION (Top View)


 80-pin plastic QFP (14 × 20) μPD178F124GF-3B9

Cautions 1. Directly connect the VPP to GND in normal operating mode.

- 2. Keep the voltage at VDDPORT and VDDPLL at the same voltage as VDD.
- 3. Keep the voltage at GNDPORT and GNDPLL at the same voltage as GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via 0.1- μ F capacitor.

• 80-pin plastic QFP (14 \times 14) $\mu \text{PD178F124GC-8BT}$


Cautions 1. Directly connect the VPP to GND in normal operating mode.

- 2. Keep the voltage at VDDPORT and VDDPLL at the same voltage as VDD.
- 3. Keep the voltage at GNDPORT and GNDPLL at the same voltage as GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via 0.1- μ F capacitor.

PIN NAME

AMIFC	: AM intermediate frequency counter input	REGCPU	: Regulator for CPU power supply
ANIO-ANI5	: A/D converter input	REGOSC	: Regulator for oscillator
BEEP0	: Buzzer output	RESET	: Reset input
EO0, EO1	: Error out output	RXD0	: Serial (UART0) data input
FMIFC	: FM intermediate frequency counter input	SCK3	: Serial (SIO3) clock input/output
GND	: Ground	SCL0	: Serial (IIC0) clock input/output
GNDPLL	: PLL ground	SDA0	: Serial (IIC0) data input/output
GNDPORT	: Port ground	SI3	: Serial (SIO3) data input
INTP0-INT	P4 : Interrupt input	SO3	: Serial (SIO3) data output
P00-P06	: Port 0	TI50, TI51	: 8-bit timer clock input
P10-P15	: Port 1	TO50, TO51	I: 8-bit timer output
P30-P37	: Port 3	TXD0	: Serial (UART0) data output
P40-P47	: Port 4	VCOL, VCC	H: Local oscillation input
P50-P57	: Port 5	Vdd	: Power supply
P60-P67	: Port 6	VddPLL	: PLL power supply
P70-P77	: Port 7	VDDPORT	: Port power supply
P120-P128	5 : Port 12	Vpp	: Programming power supply
P130-P132	2 : Port 13	X1, X2	: Crystal resonator

BLOCK DIAGRAM

NEC

CONTENTS

1.	DIFFERENCES BETWEEN μ PD178F124 AND MASK ROM MODELS	10
2.	PIN FUNCTION LIST	
	2.1 Port Pins	
	2.2 Pins Other Than Port Pins	12
	2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins	13
3.	MEMORY SPACE	
	3.1 Memory Size Select Register (IMS)	17
	3.2 Internal Extension RAM Size Select Register (IXS)	18
4.	INTERRUPT FUNCTION	19
5.	FLASH MEMORY PROGRAMMING	22
	5.1 Selecting Communication Mode	22
	5.2 Flash Memory Programming Function	23
	5.3 Connecting Flashpro III	
6.	ELECTRICAL SPECIFICATIONS	25
7.	PACKAGE DRAWING	36
8.	RECOMMENDED SOLDERING CONDITIONS	38
AF	PENDIX A. DEVELOPMENT TOOLS	39
AF	PENDIX B. RELATED DOCUMENTS	41

1. DIFFERENCES BETWEEN $\mu\text{PD178F124}$ and Mask rom models

The μ PD178F124 is provided with a flash memory to/from which data can be rewritten/erased with the device mounted on a printed circuit board. The differences between the flash memory model (μ PD178F124) and mask ROM models (μ PD178023 and 178024) are shown in Table 1-1.

Item		μPD178F124	μPD178023, 178024
Internal memory ROM structure ROM capacity		Flash memory	Mask ROM
		32K bytes	μPD178023 : 24K bytes μPD178024 : 32K bytes
Internal ROM capacity selected by memory size select register (IMS)		Equivalent to mask ROM model	μPD178023:C6H μPD178024:C8H
IC pin		Not provided	Provided
VPP pin		Provided	Not provided
Electrical specifications, recommended soldering conditions		See the relevant data sheet.	

2. PIN FUNCTION LIST

2.1 Port Pins

Pin Name	I/O	Function	At Reset	Shared by:
P00-P04	I/O	Port 0.	Input	INTP0-INTP4
P05, P06		7-bit I/O port. Can be set in input or output mode in 1-bit units.		_
P10-P15	Input	Port 1. 6-bit input port.	Input	ANIO-ANI5
P30-P32	I/O	Port 3.	Input	_
P33		8-bit I/O port. Can be set in input or output mode in 1-bit units.		TI50
P34		Can be set in input of output mode in 1-bit units.		TI51
P35	_			
P36	_			BEEP0
P37	-			_
P40-47	I/O	Port 4. 8-bit I/O port. Can be set in input or output mode in 1-bit units. Internal pull-up resistors can be specified in software. Interrupt function by key input is provided.	Input	-
P50-P57	I/O	Port 5. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	-
P60-P67	I/O	Port 6. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	-
P70	I/O	Port 7.	Input	SI3
P71	_	8-bit I/O port.		SO3
P72	_	Can be set in input or output mode in 1-bit units.		SCK3
P73	_			
P74	_			RXD0
P75	-			TXD0
P76	1			SDA0
P77	1			SCL0
P120-P125	I/O	Port 12. 6-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P130	Output	Port 13.	Low-level	TO50
P131	1	3-bit output port.	output	TO51
P132	-	N-ch open-drain output port (12 V withstand)		_

2.2 Pins Other Than Port Pins

Pin Name	I/O	Function	At Reset	Shared by:		
INTP0-INTP4	Input	External maskable interrupt input whose v (rising edge, falling edge, or both rising an can be specified.	Input	P00-P04		
SI3	Input	Serial data input to serial interface.		Input	P70	
SO3	Output	Serial data output from serial interface.		Input	P71	
SDA0	I/O	Serial data input/output to/from N- serial interface.	-ch open drain I/O	Input	P76	
SCK3	I/O	Serial clock input/output to/from serial inte	erface.	Input	P72	
SCL0		N-	ch open drain I/O		P77	
RXD0	Input	Serial data input to asynchronous serial ir	nterface (UART0).	Input	P74	
TXD0	Output	Serial data output from asynchronous seria	al interface (UART0).		P75	
TI50	Input	External count clock input to 8-bit timer (1	ГМ50).	Input	P33	
TI51		External count clock input to 8-bit timer (7	ΓM51).		P34	
TO50	Output	8-bit timer (TM50) output.		Low-level	P130	
TO51		8-bit timer (TM51) output.		output	P131	
BEEP0	Output	Buzzer output.	Input	P36		
ANI0-ANI5	Input	Analog input to A/D converter.	Input	P10-P15		
EO0, EO1	Output	Error out output from charge pump of PLL synthesizer.	-	_		
VCOL	Input	Inputs local oscillation frequency of PLL (in	HF and MF modes).	-	-	
VCOH		Inputs local oscillation frequency of PLL (in VHF mode).			
AMIFC	Input	Input to AM intermediate frequency count	er.	Input	-	
FMIFC		Input to FM or AM intermediate frequency				
RESET	Input	System reset input.	_	-		
X1	Input	Connection of crystal resonator for system	_	-		
X2	_		_	-		
REGOSC	_	Regulator for oscillator. Connect this pin capacitor.	to GND via 0.1-μF	-	-	
REGCPU	_	Regulator for CPU power supply. Connect via 0.1-µF capacitor.	ct this pin to GND	-	-	
Vdd	_	Positive power supply.		_	-	
GND	-	Ground.		_	-	
VDDPORT	_	Port power supply.		-	-	
GNDPORT	_	Port ground.		-	-	
	_	PLL positive power supply.		_	-	
	_	PLL ground.		_	-	
Vpp	_	Setting flash memory programming mode. Applying high voltage for program write/ver Connect directly to GND or GNDPORT in no	-	_		

Note Connect a capacitor of about 1000 pF between the VDDPLL and GNDPLL pins.

2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins

Table 2-1 shows the types of the I/O circuits of the respective pins and the recommended connections of the pins when they are not used. For the configuration of the I/O circuit of each pin, refer to Figure 2-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin			
P00/INTP0-P04/INTP4	8	I/O	Set these pins in general-purpose input mode in software, and connect			
P05, P06			each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.			
P10/ANI0-P15/ANI5	25	Input	Connect each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.			
P30-P32	5	I/O	Set these pins in general-purpose input mode in software, and output			
P33/TI50	5-K		low-level signal. Leave unconnected.			
P34/TI51						
P35	5					
P36/BEEP0						
P37						
P40-P47	5-A		Set these pins in general-purpose input mode in software, and connect each of them to GND or GNDPORT via resistor.			
P50-P57	5		Set these pins in general-purpose input mode in software, and connect each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.			
P60-P67	5		Set these pins in general-purpose input mode in software, and output low-level signal. Leave unconnected.			
P70/SI3	5-K		Set these pins in general-purpose input mode in software, and connect each			
P71/SO3	5		of them to VDD, VDDPORT, GND, or GNDPORT via resistor.			
P72/SCK3	5-K					
P73	5					
P74/RXD0	5-K					
P75/TXD0	5					
P76/SDA0	13-R					
P77/SCL0						
P120-P125	5					
P130/TO50	19	Output	Set these pins to low-level output in software and leave unconnected.			
P131/TO51						
P132						
EO0, EO1	DTS-EO1	Output	Leave unconnected.			
VCOL, VCOH	DTS-AMP	Input	Disable PLL in software and select pull-down.			
AMIFC, FMIFC			Set these pins in general-purpose input port mode in software and connect each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.			
REGOSC, REGCPU	-	-	Connect these pins to GND via $0.1-\mu F$ capacitor.			
RESET	2	Input	_			
VDDPLL	-	_	Connect this pin to VDD.			
GNDPLL			Directly connect these pins to GND or GNDPORT.			
Vpp						

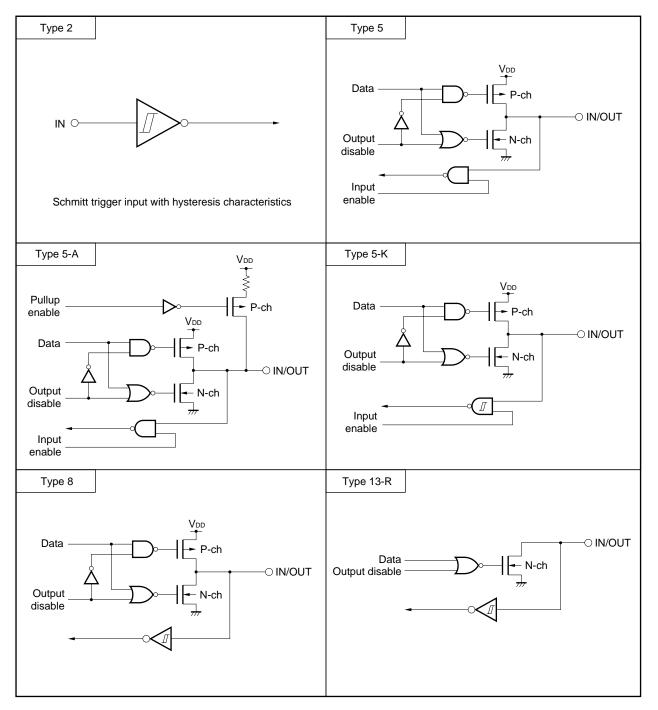
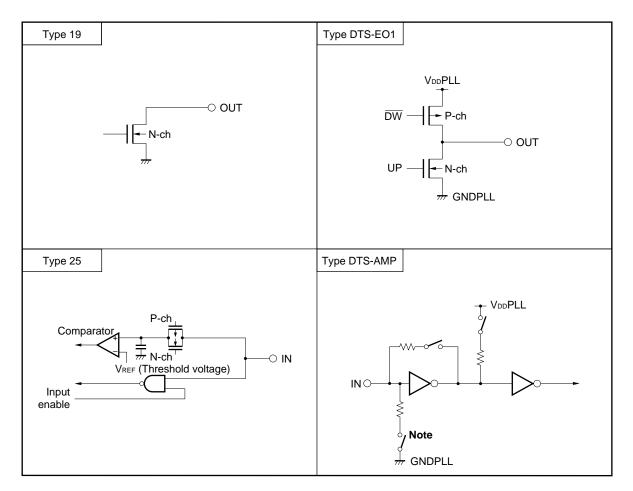
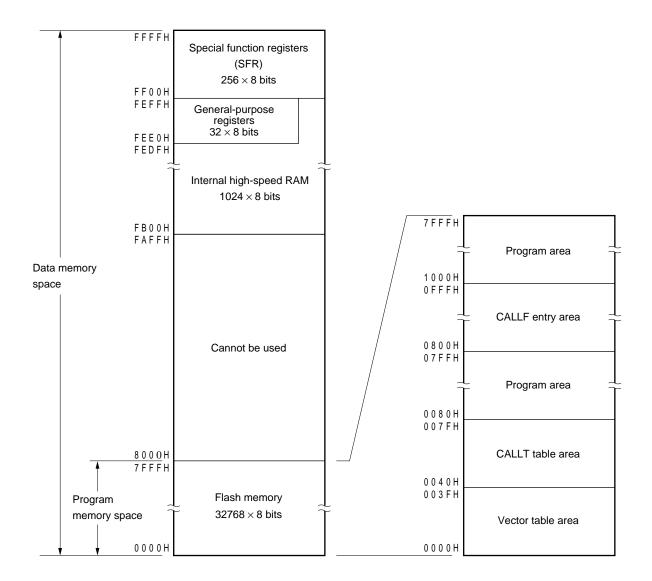


Figure 2-1. I/O Circuits of Respective Pins (1/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.




Figure 2-1. I/O Circuits of Respective Pins (2/2)

Note This switch is selectable in software only for the VCOL and VCOH pins.

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

3. MEMORY SPACE

Figure 3-1 shows the memory map of the μ PD178F124.

Figure 3-1. Memory Map

3.1 Memory Size Select Register (IMS)

The memory size select register (IMS) sets the internal memory capacity. When the target mask ROM model is the μ PD178023, μ PD178024, set this register to C6H, C8H respectively. Use an 8-bit memory manipulation instruction to set the IMS. This register is set to CFH at reset.

Caution Be sure to set the IMS to C6H or C8H as the program initial setting. The IMS set value changes to CFH when reset. Therefore, set C6H or C8H again after reset.

Figure 3-2. Format of Memory Size Select Register (IMS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0	Selects Internal High-speed RAM Capacity
1	1	0	1024 bytes
Others	Others		Setting prohibited

RAM3	RAM2	RAM1	RAM0	Selects Flash Memory Capacity
0	1	1	0	24K bytes
1	0	0	0	32K bytes
Others				Setting prohibited

Table 3-1 indicates the setting of IMS to perform the same memory mapping as that of a mask ROM model.

Table 3-1. Set Value of Memory Size Select Register (IMS)

Targeted Model	Set Value of IMS
μPD178023	C6H
μPD178024	C8H

3.2 Internal Extension RAM Size Select Register (IXS)

The internal extension RAM size select register (IXS) sets the internal extension RAM capacity. When the target mask ROM model is the μ PD178023, μ PD178024, use this register with the initial value (0CH). Use an 8-bit memory manipulation instruction to set the IXS. This register is set to 0CH at reset.

Caution Do not assign a value other than that the initial value.

Figure 3-3. Format of Internal Extension RAM Size Select Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selects Internal Extension RAM Capacity
0	1	1	0	0	0 byte
Others					Setting prohibited

Table 3-2 indicates the setting of IXS to perform the same memory mapping as that of a mask ROM model.

Table 3-2. Set Value of Internal Extension RAM Size Select Register

Targeted Model	Set Value of IXS
μPD178023, 178024	0CH

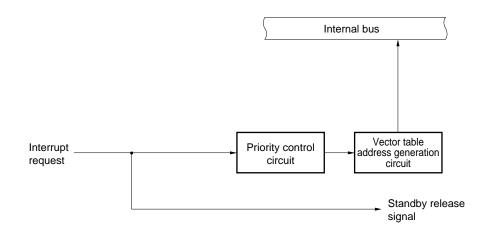
4. INTERRUPT FUNCTION

The μ PD178F124 has the following three types and 17 sources of interrupts:

- Non-maskable : 1Note
- Maskable : 16^{Note}
- Software : 1

	Default		Interrupt Source	Internal/	Vector Table	Basic
Interrupt Type	Priority ^{Note 1}	Name	ne Trigger		Address	Configuration Type ^{Note 2}
Non-maskable	-	INTWDT	NTWDT Overflow of watchdog timer (when watchdog timer mode 1 is selected)		0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTKY	Detection of key input of port 4	Internal	0010H	(B)
	7	INTIIC0	End of transfer by serial interface IIC0		0012H	
	8	INTBTM0	Generation of basic timer match signal		0014H	
	9	INTAD3	End of conversion by A/D converter		0016H	
	10	-	_	-	0018H ^{Note 3}	-
	11	INTCSI3	End of transfer by serial interface SIO3	Internal	001AH	(B)
	12 13	INTTM50	Generation of coincidence signal of 8-bit timer/event counter 50		001CH	
		INTTM51	Generation of coincidence signal of 8-bit timer/event counter 51		001EH	
	14	INTSER0	Reception error of serial interface UART0]	0020H	
	15	INTSR0	End of reception by serial interface UART0]	0022H	
	16	INTST0	End of transmission by serial interface UART0		0024H	
Software	_	BRK	Execution of BRK instruction	-	003EH	(D)

Table 4-1. Interrupt Sources


Notes 1. If two or more maskable interrupts occur at the same time, they are acknowledged or kept pending according to their default priorities. The default priority 0 is the highest, while 16 is the lowest.

- 2. (A) to (D) under the heading Basic Configuration Type corresponds to (A) to (D) in Figure 4-1.
- 3. There are no interrupt sources corresponding to vector addresses 0018H.

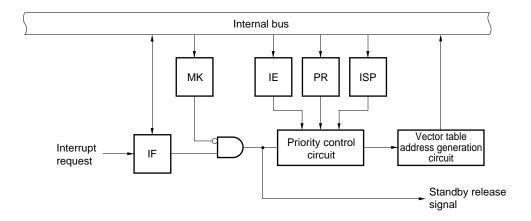

Note Two types of watchdog interrupt sources (INTWDT), non-maskable and maskable, are available, and either of them can be selected.

Figure 4-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

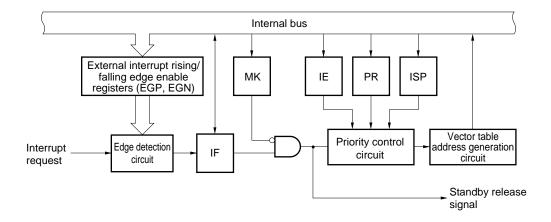
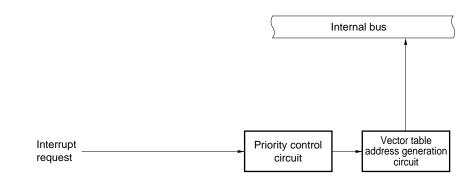



Figure 4-1. Basic Configuration of Interrupt Function (2/2)

(D) Software interrupt

- Remark IF : Interrupt request flag
 - IE : Interrupt enable flag
 - ISP: In-service priority flag
 - MK : Interrupt mask flag
 - PR : Priority specification flag

5. FLASH MEMORY PROGRAMMING

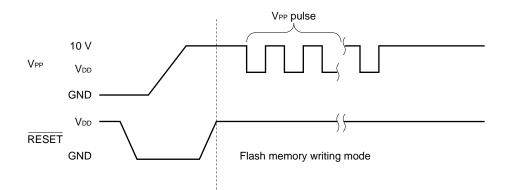
The program memory provided in the μ PD178F124 is flash memory.

The flash memory can be written on-board, i.e., with the μ PD178F124 mounted on the target system.

To do so, connect a dedicated flash writer (Flashpro III (Part number FL-PR3, PG-FP3)) to the host machine and target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

5.1 Selecting Communication Mode

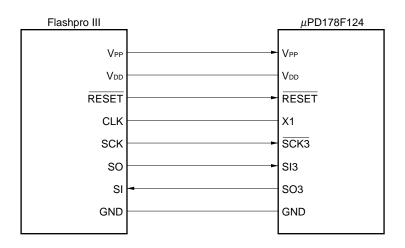

The flash memory is written by using Flashpro III and by means of serial communication. Select a communication mode from those listed in Table 5-1. To select a communication mode, the format shown in Figure 5-1 is used. Each communication mode is selected depending on the number of VPP pulses shown in Table 5-1.

Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O (SIO3)	1	SI3/P70	0
		SO3/P71	
		SCK3/P72	
UART0	1	RXD0/P74	8
		TXD0/P75	

Table 5-1. Communication Modes

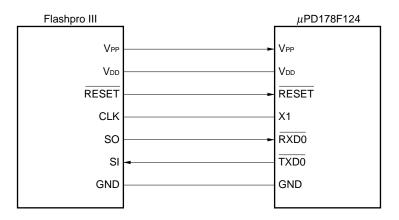
Caution Be sure to select a communication mode by the number of VPP pulses shown in Table 6-1.

Figure 5-1. Communication Mode Selection Format


5.2 Flash Memory Programming Function

An operation such as writing the flash memory is performed when a command or data is transmitted/received in the selected communication mode. The major flash memory programming functions are listed in Table 5-2.

Function	Description
Batch erase	Erases all memory contents.
Batch blank check	Checks erased status of entire memory.
Data write	Writes data to flash memory starting from write start address and based on number of data (bytes) to be written).
Batch verify	Compares all contents of memory with input data.


5.3 Connecting Flashpro III

Connection with Flashpro III differs depending on the communication mode (3-wire serial I/O or UART0). Figures 5-2 and 5-3 show the connection in the respective modes.

Figure 5-2. Connection of Flashpro III in 3-Wire Serial I/O Mode

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25° C)

Parameter	Symbol	Conditions			Rating	Unit
Supply voltage	Vdd				-0.3 to +6.0	V
					-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	VDDPLL				-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	Vpp				-0.3 to +10.5	V
Input voltage	Vi				-0.3 to VDD + 0.3	V
Output voltage	Vo	Excluding P130	to P132		-0.3 to VDD + 0.3	V
Output breakdown voltage	VBDS	P130-P132	N-ch open drain		16	V
Analog input voltage	Van	P10-P15	Analog input pin		-0.3 to VDD + 0.3	V
High-level output	Іон	1 pin		-8	mA	
current		Total of P00-P0 and P120-P125	6, P30-P37, P54-P57, I	-15	mA	
		Total of P40-P4	7, P50-P53, and P70-P	-15	mA	
Low-level output	IOL ^{Note 2}	1 pin		Peak value	16	mA
current				r.m.s	8	mA
		Total of P00-P0	6, P30-P37, P40-P47,	Peak value	30	mA
P50-P57, P60-P67, P70-P77 P120-P125, and P130-P132		, ,	r.m.s	15	mA	
Operating temperature	TA	During normal operation			-40 to +85	°C
		During flash me	mory programming	10 to 40	°C	
Storage temperature	Tstg				-55 to +125	°C

Notes 1. Keep the voltage at VDDPORT and VDDPLL same as that at the VDD pin.

2. Calculate the r.m.s as follows: $[r.m.s] = [Peak value] x \sqrt{Duty}$

- Caution If the rated value of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings, therefore, are the values exceeding which the product may be physically damaged. Be sure to use the product with these ratings never being exceeded.
- **Remark** Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd1	When CPU and PLL are operating	4.5	5.0	5.5	V
	Vdd2	When CPU is operating and PLL is stopped	3.5	5.0	5.5	V
Data retention voltage	Vddr	When crystal oscillation stops	2.3		5.5	V
Output breakdown voltage	VBDS	P130-P132 (N-ch open drain)			15	V

Recommended Supply Voltage Ranges ($T_A = -40$ to $+85^{\circ}C$)

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V) (1/2)

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH1	P10-P15, P30-P32, P35-P3 P60-P67, P71, P73, P120-F		0.7 Vdd		Vdd	V
	Vih2	P00-P06, P33, P34, P70, P	72, P74-P75, RESET	0.8 Vdd		Vdd	V
	Vінз	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.7 Vdd		Vdd	V
Low-level input voltage	VIL1		P10-P15, P30-P32, P35-P37, P40-P47, P50-P57, P60-P67, P71, P73, P120-P125				V
	VIL2	P00-P06, P33, P34, P70, P	72, P74-P75, RESET	0		0.2 Vdd	V
	VIL3	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3 Vdd	V
High-level output voltage	Vон1	P00-P06, P30-P37, P40-P47, P50-P57,	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh = -1 mA	Vdd - 1.0			V
		P60-P67, P70-P77, P120-P125	3.5 V ≤ Vdd < 4.5 V, Іон = −100 µА	Vdd - 0.5			V
	Vон2	EO0, EO1	Vdd = 4.5 to 5.5 V, Іон = -3 mA	Vdd - 1.0			V
Low-level output voltage	Vol1		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol} = 1 \text{ mA}$			1.0	V
		P70-P75, P120-P125	$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V},$ Iol = 100 μ A			0.5	V
	Vol2	EO0, EO1	VDD = 4.5 to 5.5 V, IOL = 3 mA			1.0	
	Vol3	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Iol = 3 mA			0.4	V
			$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Iol = 6 mA			0.6	V
High-level input leakage current	ILн	P00-P06, P10-P15, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P120-P125, RESET	Vin = Vdd			3	μΑ

Remark Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
Low-level input leakage current	ILIL.	P00-P06, P10-P15, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P120-P125, RESET	Vin = 0 V			-3	μΑ
Output off	ILOH1	P130-P132	Vout = 15 V			-3	μA
leakage current	ILOL1	P130-P132	Vout = 0 V			3	μA
	Iloh2	P76, P77 (at N-ch open drain I/O)	Vout = Vdd			-3	μA
	ILOL2	P76, P77 (at N-ch open drain I/O)	Vout = 0 V			3	μA
	Ігонз	EO0, EO1	Vout = Vdd			-3	μA
	ILOL3	EO0, EO1	Vout = 0 V			3	μA
Supply current ^{Note}	Idd1	When CPU is operating and Sine wave input to X1 pin At $fx = 4.5 \text{ MHz}$ VIN = VDD		5.0	18	mA	
	Idd2	In HALT mode with PLL stopped. Sine wave input to X1 pin At fx = 4.5 MHz VIN = VDD			0.3	0.8	mA
Data retention	VDDR1	When crystal resonator is o	scillating	3.5		5.5	V
voltage	Vddr2	When crystal oscillation is stopped	Power-failure detection function	2.2			V
	Vddr3		Data memory retained	2.0			V
Data retention current	IDDR1	When crystal oscillation is stopped	$T_{A} = 25^{\circ}C,$ $V_{DD} = 5 V$		2.0	4.0	μA
	IDDR2				2.0	20	μA

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V) (2/2)

Note Excluding AVDD current and VDDPLL current.

Remarks 1. fx: System clock oscillation frequency

2. Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Reference Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	Idd3	When CPU and PLL are operating. Sine wave input to VCOH pin At $f_{IN} = 160 \text{ MHz}$ $V_{IN} = 0.15 \text{ V}_{P-P}$		5		mA

AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	fx = 4.5 MHz	0.44		7.11	μs
TI50, TI51 input frequency	fti5				2	MHz
TI50, TI51 input high-/low-level widths	t⊤iн5 t⊤i∟5		200			ns
Interrupt input high-/low-level widths	tinth tintl	INTP0-INTP4	1			μs
RESET pin low-level width	trsl		10			μs

(2) Serial interface (TA = -40 to $+85^{\circ}$ C, VDD = 3.5 to 5.5 V)

(a) Serial interface (IIC0)

I²C bus mode

	Parameter	Symbol	Standar	rd Mode	High-spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock	frequency	fськ	0	100	0	400	kHz
Bus free time (between stop and start conditions)		tвuғ	4.7	_	1.3	_	μs
Hold time ^{No}	ote 1	thd : STA	4.0	_	0.6	_	μs
SCL0 clock	low-level width	tLOW	4.7	_	1.3	-	μs
SCL0 clock	SCL0 clock high-level width		4.0	-	0.6	-	μs
Start/restar	t condition setup time	tsu : sta	4.7	-	0.6	-	μs
Data hold	CBUS compatible master	t hd : dat	5.0	-	-	-	μs
time	l ² C bus		O ^{Note 2}	-	ONote 2	0.9 ^{Note 3}	μs
Data setup	time	tsu : dat	250	_	100 ^{Note 4}	_	ns
SDA0 and	SCL0 signal rise time	tR	-	1000	20+0.1Cb ^{Note 5}	300	ns
SDA0 and	SCL0 signal fall time	t⊧	_	300	20+0.1Cb ^{Note 5}	300	ns
Stop condit	ion setup time	tsu : sto	4.0	_	0.6	_	μs
Pulse width	of spike restrained by input filter	tsp	-	_	0	50	ns
Each bus li	ne capacitative load	Cb	-	400	-	400	pF

Notes 1. The first clock pulse is generated at the start condition after this period.

- 2. The device needs to internally supply a hold time of at least 300 ns for the SDA0 signal to fill the undefined area at the falling edge of the SCL0 (VIHmin. of the SCL0 signal).
- 3. Unless the device extends the low hold time (tLow) of the SCL0 signal, it is necessary to fill only the maximum data hold time (tHD : DAT).
- 4. The high-speed mode I²C bus can be used in the standard mode I²C bus system. In this case, satisfy the following conditions:
 - When the device does not extend the low hold time of the SCL0 signal tsu : $\mbox{DAT} \geq 250 \mbox{ ns}$
 - When the device extends the low hold time of the SCL0 signal Send the next data bit to the SDA line before releasing the SCL0 line (t_{Rmax}. + t_{SU:DAT} = 1000 + 250 = 1250 ns : in the standard mode I²C bus specification)
- 5. Cb: Total capacitance of one bus line (unit: pF)

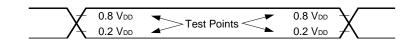
(b) Serial interface (SIO3)

(i) 3-wire serial I/O mode (SCK3 ... internal clock output)

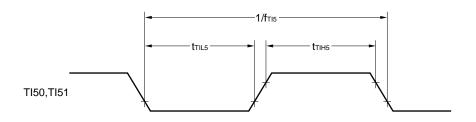
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tkcy1		800			ns
SCK3 high/low-level width	tкнı,		tксү1/2 — 50			ns
	tĸ∟1					
SI3 setup time (to SCK3↑)	tsik1		100			ns
SI3 hold time (from SCK3↑)	tksi1		400			ns
$\overline{\text{SCK3}}{\downarrow}{\rightarrow}$ SO3 output delay time	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of $\overline{SCK3}$ and SO3 output line.

(ii) 3-wire serial I/O mode (SCK3 ... external clock input)

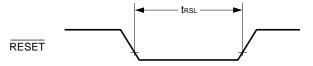

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tксү2		800			ns
SCK3 high/low-level width	tкн2,		400			ns
	tĸ∟2					
SI3 setup time (to SCK3↑)	tsik2		100			ns
SI3 hold time (from SCK3 [↑])	tksi2		400			ns
$\overline{\text{SCK3}}{\downarrow}{\rightarrow}$ SO3 output delay time	tkso2	C = 100 pF ^{Note}			300	ns
SCK3 at rising or falling edge time	tr2, tr2				1000	ns

Note C is the load capacitance of SO3 output line.

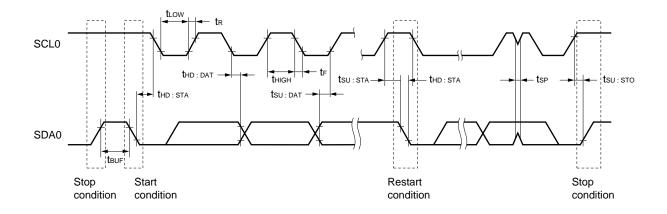

(d) Serial interface (UART0: Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38400	bps

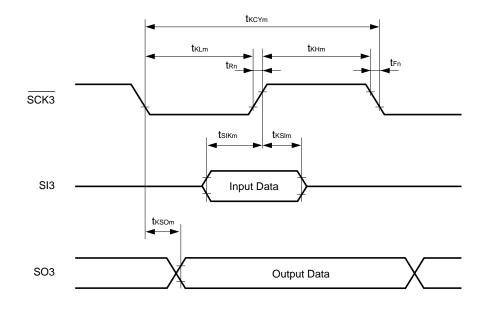
AC Timing Test Point (Excluding X1 Input)


TI Timing

Interrupt Input Timing



RESET Input Timing



Serial Transfer Timing

I²C bus mode:

3-wire serial I/O mode:

Remark m = 1, 2 n = 2

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total conversion		V _{DD} = 4.5 ~ 5.5 V			±1.0	%
error ^{Note}					±1.4	%
Conversion time	tCONV		21.3		64.0	μs
Analog input voltage	Vian		0		Vdd	V

A/D Converter Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)

Note Excluding quantization error (±1/2LSB)

PLL Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin1	VCOL pin, MF mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.5		3.0	MHz
	fin2	VCOL pin, HF mode, sine wave input, VIN = 0.15 VP-P	10		40	MHz
	finз	VCOH pin, VHF mode, sine wave input, VIN = 0.15 VP-P	60		130	MHz
	fin4	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.3 $V_{\text{P-P}}$	40		160	MHz

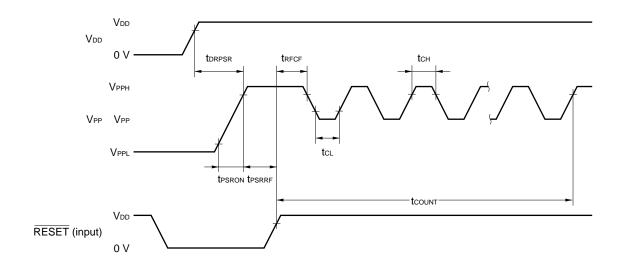
IFC Characteristics (TA = -40 to +85°C, VDD = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin5	AMIFC pin, AMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	0.4		0.5	MHz
	fin6	FMIFC pin, FMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	10		11	MHz
	fin7	FMIFC pin, AMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	0.4		0.5	MHz

Flash Memory Programming Characteristics (V_{DD} = 3.5 to 5.5 V, T_A = 10 to 40°C)

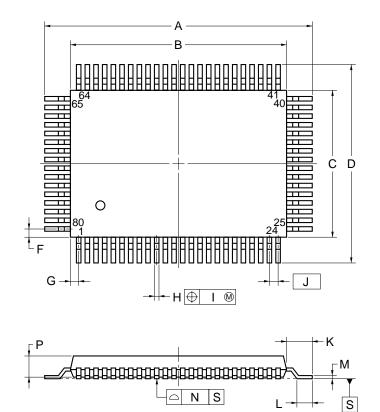
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Write current (V _{DD} pin) ^{Note}	todw	When $V_{PP} = V_{PP1}$, fx = 4.5 MHz			20	mA
Write current (VPP pin) ^{Note}	IPPW	When $V_{PP} = V_{PP1}$, fx = 4.5 MHz			20	mA
Delete current (VDD pin)Note	Idde	When $V_{PP} = V_{PP1}$, fx = 4.5 MHz			20	mA
Delete current (VPP pin)Note	IPPE	When VPP = VPP1			100	mA
Unit delete time	ter		0.5	1	1	S
Total delete time	tera				20	s
Number of overwrite	CWRT	Delete and write are counted as one cycle			20	times
VPP power supply voltage	Vpp0	In normal mode	0		0.2 Vdd	V
	Vpp1	At flash memory programming	9.7	10.0	10.3	V

(1) Write/delete characteristics

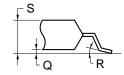

Note AVDD current and Port current (current flowing to internal pull-up resistor) are not included.

Remark fx: System clock oscillation frequency

(2) Serial write operation characteristics


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP setup time	t PSRON	VPP high voltage	1.0			μs
V _{PP} ↑ setup time from V _{DD} ↑	t drpsr	VPP high voltage	1.0			μs
$\overline{RESET} \uparrow \text{ setup time from } V_{PP} \uparrow$	t PSRRF	VPP high voltage	1.0			μs
VPP count start time from RESET	t rfcf		1.0			μs
Count execution time	t COUNT				2.0	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	tc∟		8.0			μs
VPP counter noise elimination width	tNFW			40		ns

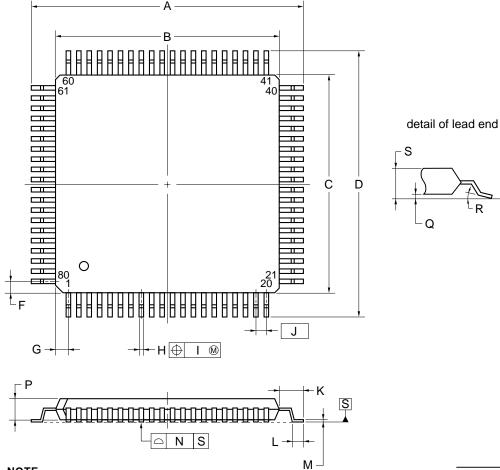
Flash Write Mode Setting Timing



7. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x20)

detail of lead end


NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	0.8
н	$0.37\substack{+0.08\\-0.07}$
I	0.15
J	0.8 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.17\substack{+0.08\\-0.07}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
	P80GF-80-3B9-5

R

80-PIN PLASTIC QFP (14x14)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

8. RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For details of the recommended soldering conditions, refer to information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, consult NEC.

Table 8-1. Soldering Conditions for Surface-Mount Type

 μ PD178F124GF-3B9: 80-pin plastic QFP (14 \times 20)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (210°C min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec max. (200°C min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Number of times: 1, Preheating temperature: 120°C max., (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max (per device side)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

μ PD178F124GC-8BT: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (210°C min.), Number of times: 2 max.	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 sec max. (200°C min.), Number of times: 2 max.	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Number of times: 1, Preheating temperature: 120°C max., (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max (per device side)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD178F124.

(1) Language processor software

RA78K0 ^{Notes 1, 2, 3}	Assembler package common to 78K/0 series
CC78K0 ^{Notes 1, 2, 3}	C compiler package common to 78K/0 series
DF178124 ^{Notes 1, 2, 3}	Device file for μ PD178024 subseries
CC78K0-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0 series

(2) Flash memory writing tools

Fashpro III (Part number: FL-PR3 ^{Note 4} , PG-FP3)	Dedicated flash writer
FA-80GF ^{Note 4}	Flash memory writing adapter
FA-80GC-8BT ^{Note 4}	

(3) Debugging tools

• When in-circuit emulator IE-78K0-NS is used

In-circuit emulator common to 78K/0 series
Power supply unit for IE-78K0-NS
Performance board for enhancing and expanding the IE-78K0-NS function
Interface adapter necessary when a PC-9800 series (except notebook-type PC) is used as host machine (C bus supported)
PC card and interface cable necessary when a notebook-type PC is used as host machine (PCMCIA socket supported)
Interface adapter when a IBM PC/AT TM compatible machine is used (ISA bus supported)
Interface adapter necessary when a PC with a PCI bus is used as host machine
Emulation board for emulating the μ PD178024 subseries
Emulation probe for 80-pin plastic QFP (GF-3B9 type)
Socket to be mounted on the board of the target system for 80-pin plastic QFP (GF-3B9 type)
Emulation probe for 80-pin plastic QFP (GC-8BT type)
Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-8BT type)
System simulator common to 78K/0 series
Integrated debugger common to 78K/0 series
Device file for μ PD178024 subseries

Notes 1. PC-9800 series (Japanese Windows[™]) based

- 2. IBM PC/AT compatible machine (Japanese/English Windows) based
- HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™], Solaris[™]) based, NEWS[™] (NEW-OS[™]) based
- 4. Products of Naito Densei Machida Mfg. Co., Ltd. (Tel: 044-822-3813).

Remark Use the RA78K0, CC78K0, and SM78K0 in combination with the DF178124.

• When in-circuit emulator IE-78001-R-A is used

IE-78001-R-A	In-circuit emulator common to 78K/0 series
IE-70000-98-IF-C	Interface adapter necessary when a PC-9800 series (except notebook-type PC) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when a IBM PC/AT compatible machine is used (ISA bus supported)
IE-70000-PCI-IF	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when an EWS is used as host machine
IE-178134-NS-EM1	Emulation board for emulating the μ PD178024 subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-178134-NS-EM1 on IE-78001-R-A.
EP-78130GF-R	Emulation probe for 80-pin plastic QFP (GF-3B9 type)
EV-9200G-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GF-3B9 type)
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-8BT type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 series
ID78K0 ^{Notes 1, 2}	Integrated debugger common to 78K/0 series
DF178124 ^{Notes 1, 2, 3}	Device file for μ PD178024 subseries

Real-time OS

RX78K0 ^{Notes 1, 2, 3}	Real-time OS for 78K/0 series
MX78K0 ^{Notes 1, 2, 3}	OS for 78K/0 series

Notes 1. PC-9800 series (Japanese Windows) based

- 2. IBM PC/AT compatible machine (Japanese/English windows) based
- 3. HP9000 series 700 (HP-UX) based, SPARCstation (SunOS, Solaris) based, NEWS (NEW-OS) based

Remark Use SM78K0 in combination with the DF178124.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Documents

Title		Document No.	
		Japanese	English
μPD178023, 178024 Data Sheet		U14126J	U14126E
μPD178F124 Data Sheet		U14933J	This document
μPD178024, 178124 Subseries User's Manual		U13915J	U13915E
78K/0 Series User's Manual—Instruction		U12326J	U12326E
78K/0 Series Application Note Basics (I)		U12704J	U12704E
78K/0, 78K/0S Series Flash Memory Write Application Note		U14458J	U14458E

Development Tool Documents (User's Manual)

Title		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
PG-FP3 Flash Memory Programmer		U13502J	U13502E
IE-78001-R-A In-circuit Emulator		U14142J	To be prepared
IE-78K0-NS In-circuit Emulator		U13731J	U13731E
IE-178134-NS-EM1 Emulation Board		To be prepared	To be prepared
EP-78230 Emulation Probe		EEU-985	EEU-1515
EP-78130 Emulation Probe		_	EEU-1470
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
ID78K0-NS Integrated Debugger Windows Based	Operation	U14379J	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 Windows Based	Operation	U14910J	To be prepared

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

Related Documents for Embedded Software (User's Manual)

Title		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Fundamental	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257J	U12257E

Other Documents

Title	Document No.	
	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Guides on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality/Reliability Handbook	C12769J	—
Microcomputer Product Series Guide	U11416J	—

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

[MEMO]

[MEMO]

[MEMO]

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)	NEC Electronics (Germany) GmbH	NEC Electronics Hong Kong Ltd.
Santa Clara, California	Benelux Office	Hong Kong
Tel: 408-588-6000	Eindhoven, The Netherlands	Tel: 2886-9318
800-366-9782	Tel: 040-2445845	Fax: 2886-9022/9044
Fax: 408-588-6130	Fax: 040-2444580	
800-729-9288		NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-30-67 58 00	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-30-67 58 99	Fax: 02-528-4411
Fax: 0211-65 03 490		
	NEC Electronics (France) S.A.	NEC Electronics Singapore Pte. Ltd.
NEC Electronics (UK) Ltd.	Madrid Office	United Square, Singapore
Milton Keynes, UK	Madrid, Spain	Tel: 65-253-8311
Tel: 01908-691-133	Tel: 91-504-2787	Fax: 65-250-3583
Fax: 01908-670-290	Fax: 91-504-2860	
	T ax. 91-304-2000	NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l.	NEC Electronics (Cormony) CmbH	Taipei, Taiwan
	NEC Electronics (Germany) GmbH	Tel: 02-2719-2377
Milano, Italy Tel: 02-66 75 41	Scandinavia Office	Fax: 02-2719-5951
	Taeby, Sweden	T dx. 02-27 13-3331
Fax: 02-66 75 42 99	Tel: 08-63 80 820	NEC do Brasil S.A.
	Fax: 08-63 80 388	
		Electron Devices Division
		Guarulhos-SP Brasil
		Tel: 55-11-6462-6810

J00.7

Fax: 55-11-6462-6829

- The information in this document is current as of August, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).