Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD178F048

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD178F048 is a flash memory version of the μ PD178046 and 178048, and is provided with a flash memory to/from which data can be written/erased with the microcontroller mounted on a printed circuit board. Therefore, it is suitable for test production when developing systems and systems for which frequent upgrading is expected.

The functions are described in detail in the following User's Manuals. Be sure to read them before starting design.

 μ PD178048 Subseries User's Manual : To be prepared 78K/0 Series User's Manual - Instructions : U12326E

FEATURES

- · OSD (On Screen Display) controller and PWM (Pulse Width Modulation) output
- Pin-compatible with mask ROM versions (except VPP pin)
- Flash memory: 60 Kbytes^{Note}
- Character ROM (CROM): 6912 bytes (256 character types)
- Internal high-speed RAM: 512 bytes
- Internal extension RAM: 512 bytes
- Video RAM: 432 bytes (12 × 24 characters Max.)
- Operable at the same supply voltage as mask ROM versions (VDD = 4.5 to 5.5 V)

Note The capacity of the flash memory can be changed by using the internal memory size switching register (IMS).

Remark For the differences between the flash memory version and mask ROM versions, refer to **1. DIFFERENCES BETWEEN** μ**PD178F048 AND MASK ROM VERSIONS**.

The electrical specifications (such as supply current) in the μ PD178F048 differ from those of the mask ROM versions. Confirm these differences before mass-producing any application set.

APPLICATION FIELD

TVs

ORDERING INFORMATION

Part Number

Package

μPD178F048CW

64-pin plastic shrink DIP (750 mils)

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

μ PD178048 SUBSERIES LINEUP

FUNCTION OUTLINE

		(1/2)				
	Item	Functions				
Internal Flash memory		60 Kbytes				
memory	Character ROM (CROM)	6912 bytes (256 character types)				
	High-speed RAM	512 bytes				
	Extension RAM	512 bytes				
	Video RAM (VRAM)	432 bytes (12 × 24 characters Max.)				
General-pu	urpose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)				
Minimum i time	nstruction execution	0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s (with 5.0-MHz crystal resonator)				
Instruction	set	 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test Boolean operation) BCD adjust, etc. 				
I/O port		Total: 46 pins• CMOS input: 4 pins• CMOS I/O: 37 pins• N-ch open-drain output : 5 pins				
A/D converter		8-bit resolution \times 4 channels				
Serial interface		 I²C bus mode^{Note} : 2 channels (shift register: 1 channel) 3-wire serial I/O mode : 1 channel 				
Timer		 Basic timer (timer carry (10 Hz)) 8-bit timer/event counter 1 channel 8-bit timer 1 channel 8-bit event counter 1 channel 8-bit remote control timer 1 channel Watchdog timer 1 channel 				
PWM outp	ut	8-bit resolution × 4 channels 14-bit resolution × 1 channel				
OSD controller	Number of characters displayed	Maximum 288 characters per screen (12 lines × 24 columns)				
	Number of character types	256 (contained in CROM)				
	Character format	12 (width) \times 18 (height) dots				
	Character size	Selectable from 1 \times 1, 2 \times 2, 3 \times 3, and 4 \times 4				
	Character color	8				
	Character frame	Selectable from with/without frame per screen				
Background		Selectable from without background, knockout, and solid. Background color specifiable (8 colors).				
	Half blanking	Specifiable per character				
Vectored	Maskable	Internal: 11, External: 5				
interrupt	Non-maskable	Internal: 1				
source	Software	1				

Note If the I²C bus mode is used (including when the mode is implemented in software without using peripheral hardware), consult NEC when ordering a mask.

(2/2)

Item	Functions
Standby function	• HALT mode
	• STOP mode
Reset	Reset by RESET pin
	Internal reset by watchdog timer
	Reset by power-ON clear circuit
	 Detection of less than 4.5 V^{Note} (during CPU operation and when turning on the power supply voltage
	• Detection of less than 2.5 V ^{Note} (in STOP mode)
Supply voltage	VDD = 4.5 to 5.5 V
Package	64-pin plastic shrink DIP (750 mils)

Note These are maximum values. In practice, reset occurs at lower voltages than those indicated here.

PIN CONFIGURATION (Top View)

 64-pin plastic shrink DIP (750 mils) μPD178F048CW

- Cautions 1. Directly connect the V_{PP} pin to GND0 or GND1 in normal operating mode.
 - 2. Keep the voltage at VDDPORT same as that at the VDD pin.
 - 3. Keep the voltage at GNDPORT same as that at GND0 or GND1.

NEC

Pin Identification

ANI0 to ANI3	: A/D converter input	P130 to P134	: Port 13
В	: Character signal output	PWM00 to PWM03	: 8-bit PWM output
BLANK	: Blanking signal output	PWM1	: 14-bit PWM output
G	: Character signal output	R	: Character signal output
GND0, GND1	: Ground	RESET	: Reset input
GNDPORT	: Ground port	SCK3	: Serial clock input/output
HSYNC	: Horizontal sync signal input	SCL0, SCL1	: Serial clock input/output
I	: Character signal output	SDA0, SDA1	: Serial data input/output
INTP0 to INTP3	: Interrupt input	SI3	: Serial data input
OSC1, OSC2	: Connection of LC for OSD dot clock	SO3	: Serial data output
	oscillation	TI5, TI9, TI21	: 8-bit timer clock input
OSCMON	: OSD clock output	TO5	: 8-bit timer output
P00 to P03	: Port 0	Vdd	: Power supply
P10 to P13	: Port 1	VDDPORT	: Port power supply
P20 to P23	: Port 2	Vpp	: Programming power supply
P40 to P47	: Port 4	VSYNC	: Vertical sync signal input
P50 to P54	: Port 5	X1, X2	: Connection of crystal resonator for
P60 to P67	: Port 6		system clock oscillation
P70 to P77	: Port 7		

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD178F048 AND MASK ROM VERSIONS
2.	PIN FUNCTION LIST102.1 Port Pins102.2 Non-Port Pins112.3 I/O Circuits of Pins and Recommended Connection of Unused Pins12
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)
5.	FLASH MEMORY PROGRAMMING175.1 Selecting Communication Mode175.2 Flash Memory Programming Function185.3 Connecting Flashpro II19
6.	PACKAGE DRAWING
AP	PENDIX A. DEVELOPMENT TOOLS
AP	PENDIX B. RELATED DOCUMENTS

1. DIFFERENCES BETWEEN $\mu\text{PD178F048}$ and Mask rom versions

The μ PD178F048 is provided with a flash memory to/from which data can be written/erased with the device mounted on a printed circuit board. The differences between the flash memory version (μ PD178F048) and mask ROM versions (μ PD178046 and 178048) are shown in Table 1-1.

Item		μPD178F048	μPD178046, 178048	
Internal memory ROM type		Flash memory	Mask ROM	
	ROM capacity	60 Kbytes	μPD178046: 48 Kbytes μPD178048: 60 Kbytes	
ROM correction		Not provided	Provided	
Internal ROM capacity setting by means of internal memory size switching register (IMS)		Equivalent to mask ROM version	μΡD178046: 4CH μΡD178048: 4FH	
IC pin		Not provided	Provided	
V _{PP} pin		Provided Not provided		
Electrical specificat recommended sold	tions and ering conditions	Some characteristics and soldering conditions of the flash memory version differ from those of the mask ROM versions.		

Table 1-1. Differences Between $\mu \text{PD178F048}$ and Mask ROM Versions

2. PIN FUNCTION LIST

2.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0 4-bit I/O port Can be set in input or output mode in 1-bit units.	Input	INTP0 to INTP3
P10 to P13	Input	Port 1 4-bit input port	Input	ANI0 to ANI3
P20, P21	I/O	Port 2 4-bit I/O port	Input	SCL0, SCL1
P22, P23		Can be set in input or output mode in 1-bit units.		SDA0, SDA1
P40 to P47	I/O	Port 4 8-bit I/O port Can be set in input or output mode in 1-bit units.	Input	_
P50 to P54	I/O	Port 5 5-bit I/O port Can be set in input or output mode in 1-bit units.	Input	_
P60 to P67	I/O	Port 6 8-bit I/O port Can be set in input or output mode in 1-bit units.	Input	_
P70	I/O	Port 7	Input	SI3
P71		8-bit I/O port		SO3
P72		Can be set in input or output mode in 1-bit units.		SCK3
P73				TI21
P74				OSCMON
P75				TI5
P76				TO5
P77				TI9
P130 to P133	Output	Port 13 5-bit output port N-ch open-drain output port (5-V withstand)	_	PWM00 to PWM03
P134				PVVIVII

2.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function	
INTP0 to INTP3	Input	External maskable interrupt input (rising edge, falling edge, or both can be specified.	whose valid edge rising and falling edges)	Input	P00 to P03
SI3	Input	Serial data input to serial interface	9	Input	P70
SO3	Output	Serial data output from serial inter	face	Input	P71
SDA0, SDA1	I/O	Serial data input/output to/from serial interface	N-ch open-drain I/O	Input	P22, P23
SCK3	I/O	Serial clock input/output to/from se	erial interface.	Input	P72
SCL0, SCL1	I/O		N-ch open-drain I/O	Input	P20, P21
TI5	Input	External count clock input to 8-bit	timer/event counter (TM5)	Input	P75
Т19		External count clock input to 8-bit	remote control timer (TM9)	-	P77
TI21		External count clock input to 8-bit	event counter (TM21)		P73
TO5	Output	8-bit timer/event counter (TM5) ou	tput	Input	P76
ANI0 to ANI3	Input	Analog input to A/D converter		Input	P10 to P13
PWM00 to PWM03	Output	8-bit PWM output	8-bit PWM output N-ch open-drain I/O		P130 to P133
PWM1		14-bit PWM output			P134
OSCMON	Output	OSD clock output	Input	P74	
VSYNC	Input	OSD vertical sync signal input	Input	_	
HSYNC		OSD horizontal sync signal input		_	
R	Output	RED output for OSD character and	Low-level	_	
G		GREEN output for OSD character	output	_	
В		BLUE output for OSD character an	nd background		
1		Character background output for C background in knockout mode			
BLANK		OSD blanking signal output			_
RESET	Input	System reset input		_	—
X1	Input	Connection of crystal resonator fo	r system clock oscillation	_	—
X2	_			_	—
OSC1	Input	Connection of LC for OSD dot close	_	_	
OSC2	Output		_	_	
Vdd	_	Positive power supply		—	
GND0, GND1	_	Ground		_	_
VDDPORT	_	Port power supply		_	_
GNDPORT	_	Port ground		_	—
Vpp	_	Pin to apply high voltage at progra Directly connect this pin to GND0 operating mode.	_		

2.3 I/O Circuits of Pins and Recommended Connection of Unused Pins

Table 2-1 shows the types of the I/O circuits of the respective pins and the recommended connections of the pins when they are not used.

For the configuration of the I/O circuit of each pin, refer to Figure 2-1.

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P00/INTP0 to P03/INTP3	8	I/O	Set these pins in general-purpose input port by software, and connect each of them to GND0, GND1, or GNDPORT via a resistor.
P10/ANI0 to P13/ANI3	25	Input	Connect independently these pins to VDD, VDDPORT, GND0, GND1, or GNDPORT via a resistor.
P20/SCL0, P21/SCL1	10-D	I/O	Set these pins in general-purpose input port by software,
P22/SDA0, P23/SDA1			and connect each of them to VDD, VDDPORT, GND0, GND1, or GNDPORT via a resistor.
P40 to P47	5		
P50 to P54			
P60 to P67			
P70/SI3	5-K		
P71/SO3	5		
P72/SCK3	5-K		
P73/TI21			
P74/OSCMON	5		
P75/TI5	5-K		
P76/TO5	5		
P77/TI9	5-K		
P130/PWM00 to P133/PWM03	19	Output	Set these pins to low-level output by software and leave them open.
P134/PWM1			
VSYNC	2	Input	Connect independently these pins to GND0 or GND1 via
HSYNC			a resistor.
R	3	Output	Set OSD display to off by software, and leave open.
G			
В			
I			
BLANK			
RESET	2	Input	—
OSC1	28	Input	Set LC oscillation to off by software, and leave open.
OSC2		Output	Leave open.
Vpp	_	_	Connect directly to GND0 or GND1.

Figure 2-1. Pin I/O Circuits (1/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT, respectively.

Figure 2-1. Pin I/O Circuits (2/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT, respectively.

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

The internal memory capacity of the μ PD178F048 can be changed using the internal memory size switching register (IMS). By using this register, the memory of the μ PD178F048 can be mapped in the same manner as a mask ROM version with a different internal memory capacity.

Use an 8-bit memory manipulation instruction to set IMS.

This register is set to CFH after reset.

Figure 3-1. Format of Internal Memory Size Switching Register (IMS)

Symbol	7	6	5	4	3	2	1	0	A	ddress	After reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	F	FF0H	CFH	R/W

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
0	1	0	512 bytes
Others			Setting prohibited

RAM3	RAM2	RAM1	RAM0	Internal ROM capacity selection
1	1	0	0	48 Kbytes
1	1	1	1	60 Kbytes
Others				Setting prohibited

Table 3-1 shows the setting of IMS to perform the same memory mapping as that of a mask ROM version.

Table 3-1. Setting of Internal Memory Size Switching Register

Product	Setting of IMS
μPD178046	4CH
μPD178048	4FH

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

The internal expansion RAM capacity of the μ PD178F048 can be changed using the internal expansion RAM size switching register (IXS). By using this register, the memory of the μ PD178F048 can be mapped in the same manner as a mask ROM version with a different internal expansion RAM capacity.

Use an 8-bit memory manipulation instruction to set IXS.

This register is set to 0CH after reset.

Figure 4-1. Format of Internal Expansion RAM Size Switching Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Internal extension RAM capacity selection
0	1	0	1	1	512 bytes
Others					Setting prohibited

Table 4-1 shows the setting of IXS to perform the same memory mapping as that of a mask ROM version.

Table 4-1. Setting of Internal Expansion RAM Size Switching Register

Product	Setting of IXS	
μPD178046, 178048	0BH	

5. FLASH MEMORY PROGRAMMING

The flash memory can be written on-board, i.e., with the μ PD178F048 mounted on the target system.

To do so, connect a dedicated flash programmer (Flashpro II (part number FL-PR2)) to the host machine and target system.

The flash memory can also be written on a flash memory writing adapter connected to Flashpro II.

Remark Flashpro II is a product of Naito Densei Machidaseisakusho Co., Ltd.

5.1 Selecting Communication Mode

The flash memory is written by using Flashpro II and by means of serial communication. Select a communication mode from those listed in Table 5-1. To select a communication mode, the format shown in Figure 5-1 is used. Each communication mode is selected depending on the number of VPP pulses shown in Table 5-1.

Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O (IIC1)	1	SI3/P70	0
		SO3/P71	
		SCK3/P72	
Pseudo 3-wire serial I/O ^{Note}	1	P50 (serial clock input)	12
		P51 (serial data output)	
		P52 (serial data input)	

Table 5-1. Communication Modes

Note Performs serial transfer by controlling a port by software.

Caution Be sure to select a communication mode by the number of VPP pulses shown in Table 5-1.

5.2 Flash Memory Programming Function

An operation such as writing the flash memory is performed when a command or data is transmitted/received in the selected communication mode. The major flash memory programming functions are listed in Table 5-2.

Table 5-2.	Major Flash	Memory	Programming	Functions
------------	-------------	--------	-------------	-----------

Function	Description
Reset	Used to stop writing or detect communication synchronization.
Batch verify	Compares all contents of memory with input data.
Batch erase	Erases all memory contents.
Batch blank check	Checks erased status of entire memory.
High-speed write	Writes data to flash memory starting from write start address and based on number of data (bytes) to be written.
Successive write	Successively writes data to flash memory based on information input for high-speed write.
Status	Used to check current operation mode and end of current operation.
Oscillation frequency setting	Inputs frequency information of resonator.
Erase time setting	Inputs erase time of memory.
Silicon signature read	Outputs device name, memory capacity, and block information of device.

5.3 Connecting Flashpro II

Connection with Flashpro II differs depending on the communication mode (3-wire serial I/O or pseudo 3-wire serial I/O). Figures 5-2 and 5-3 show the connection in the respective modes.

Figure 5-2. Connection of Flashpro II in 3-wire Serial I/O Mode

6. PACKAGE DRAWING

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTES

- 1. Controlling dimension— millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	$58.0^{+0.68}_{-0.20}$	$2.283^{+0.028}_{-0.008}$
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	$4.05^{+0.26}_{-0.20}$	$0.159^{+0.011}_{-0.008}$
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	$0.669^{+0.009}_{-0.008}$
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0 to 15°	0 to 15°
		P64C-70-750A,C-3

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD178F048. Also refer to **(5) Notes on using development tools**.

(1) Language processor software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF178048 ^{Note}	Device file for μ PD178048 Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

(2) Flash memory writing tools

Fashpro II	Dedicated flash memory programmer
Product name	Flash writing adapter
undecided ^{Note}	

(3) Debugging tools

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-CD-IF	PC card and interface cable used when notebook type PC-9800 series is used as host machine
IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT™ or compatible is used as host machine
IE-178048-NS-EM1 ^{Note}	Emulation board to emulate μ PD178048 Subseries
Product name undecided ^{Note}	Emulation probe for 64-pin plastic shrink DIP
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF178048 ^{Note}	Device file for μ PD178048 Subseries

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Notes on using development tools

- Use ID78K0-NS and SM78K0 in combination with DF178048.
- Use RX78K/0 in combination with RA78K/0 and DF178048.
- Flashpro II, flash writing adapter (product name undecided), and emulation probe (product name undecided) are products of Naito Densei Machidaseisakusho Co., Ltd. (Phone: +81-44-822-3813). Consult an authorized NEC distributor when purchasing these products.
- For development tools made by third parties, refer to 78K/0 Series Selection Guide (U11126E).
- The host machine corresponding to each software package is as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UM™]
	IBM PC/AT and Compatibles	SPARCstation™ [SunOS™]
Software	[Japanese/English Windows]	NEWS (RISC)™ [NEWS-OS™]
RA78K/0	\sqrt{Note}	\checkmark
CC78K/0	\sqrt{Note}	\checkmark
ID78K0-NS	\checkmark	—
SM78K0	\checkmark	—
RX78K/0	\sqrt{Note}	\checkmark
MX78K0	\sqrt{Note}	\checkmark

Note This software is based on DOS.

APPENDIX B. RELATED DOCUMENTS

Device Documents

Title		Document No.	
		English	Japanese
µPD178046, 178048 Preliminary Product Information		To be prepared	U13183J
μPD178048 Subseries User's Manual		To be prepared	To be prepared
78K/0 Series User's Manual — Instructions		U12326E	U12326J
78K/0 Series Instruction Set		—	U10904J
78K/0 Series Instruction Table		—	U10903J
µPD178048 Subseries Special Function Register Table		—	To be prepared
78K/0 Series Application Note	Basics (I)	IEA-1288	U12704J

Development Tool Documents (User's Manual)

Title		Document No.	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly	U11789E	U11789J
	Language		
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K0 C Compiler Application Note	Programming	EEA-1208	EEA-618
	Know-how		
CC78K Series Library Source File		—	U12322J
IE-78K0-NS		To be prepared	To be prepared
IE-178048-NS-EM1		To be prepared	To be prepared
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Parts User	U10092E	U10092J
	open Interface		
	Specifications		
ID78K0-NS Integrated Debugger PC Based	Reference	To be prepared	U12900J

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

Related Documents for Embedded Software (User's Manual)

Title		Document No.	
		English	Japanese
78K/0 Series Real-time OS	Fundamentals	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

Other Documents

Title	Document No.	
nie	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Guides on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Device by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_
Microcomputer-related Product Guide (Products by other Manufacturers)	—	U11416J

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860	NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583
NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388	Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951 NEC do Brasil S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810

Fax: 011-6465-6829

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation. HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.