Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MONOLITHIC 3-ASPECT SPINDLE MOTOR DRIVER

DESCRIPTION

 μ PD16873/A/B/C is 3 aspect spindle motor driver that composed by CMOS control circuit and MOS bridge output. The consumption electric power can be substantially reduced to the screwdriver which used a conventional Bipolar transistor by the adoption of 3 aspect all-wave PWM methods and making an output paragraph MOSFET.

FEATURES

- Low On resistance. (The summation of the on resistance of the upper and lower MOSFET) Ron = 0.6 Ω (TYP.)
- Low consumption power for 3 aspects all-wave PWM drive method.
- Index pulse (FG pulse) output function built in.
- · By the PWM-drive form and the IND pulse pattern, 4 kind, line-up

	PWM method	Pattern of IND pulse (at 12 pole motor)
μPD16873	normal	3 phase composition output (18 pulses/turn)
μPD16873A	normal	1 phase output (6 pulses/turn)
μPD16873B	synchronous	1 phase output (6 pulses/turn)
μPD16873C	synchronous	3 phase composition output (18 pulses/turn)

- · Built in STANDBY terminal and off the inner circuit at the time of the standby.
- Built in START/STOP terminal. Operating short brake works, when ST/SP terminal is off state.
- · Supply voltage: 5 V drive
- Low consumption current: IDD = 3 mA (MAX.)
- · Thermal shut down circuit (TSD) built in.
- · Over current protection circuit built in. (Setting by outside resistance)
- Low voltage malfunction prevention circuit built in.
- · Reverse turn prevention circuit built in.
- Hall bias switch built in. (synchronized STB signal.)
- Loading into 30-pin plastic TSSOP (300 mil).

ORDERING INFORMATION

Part number	Function	Package
μPD16873MC-6A4	normal-PWM/3 phase IND	
μPD16873AMC-6A4	normal-PWM/1 phase IND	20 min mlastic TOCOD (7.00 mm; (200))
μPD16873BMC-6A4	synchronous-PWM/1 phase IND	30-pin plastic TSSOP (7.62 mm (300))
μPD16873CMC-6A4	synchronous-PWM/3 phase IND	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

When mounted on a glass epoxy board (10 cm \times 10cm \times 1mm, 15% copper foil)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}	control block	-0.5 to +5.7	V
	Vм	output block	-0.5 to +5.7	V
Input voltage	Vin		-0.5 to V _{DD} + 0.5	V
Output pin voltage	Vouт		-0.5 to +6.7	V
Output current (DC) ^{Note 1}	I _{D(DC)}	DC	±0.5	A/phase
Output current (pulse)Note 2	ID(pulse)	PW < 5 ms, Duty < 30 %	±1.3	A/phase
Output current (pulse, reverse brake) Note 3	DR(pulse)	PW < 5 ms, Duty < 30 %	±1.9	A/phase
Power consumption	Рт		1.0	W
Peak junction temperature	Тсн(мах)		150	°C
Storage temperature range	T _{stg}		-55 to 150	°C

Notes 1. DC

- **2.** PW < 5 ms, Duty < 30 % (start-up, locking)
- **3.** PW < 5 ms, Duty < 30 % (reverse brake)

RECOMMENDED OPERATING CONDITIONS

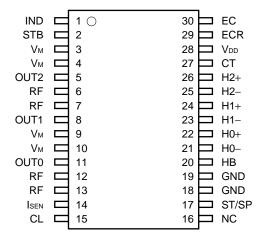
When mounted on a glass epoxy board (10 cm \times 10cm \times 1mm, 15% copper foil)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD}	control block	4.5	5.0	5.5	V
	Vм	output block	4.5	5.0	5.5	V
Input voltage	Vin		0		V _{DD}	V
Output current (DC) ^{Note 1}	I _{D(DC)}	DC			0.4	A/phase
Output current (pulse) Note 2	ID(pulse)	PW < 5 ms, Duty < 30 %			1.0	A/phase
Output current (pulse, reverse brake) ^{Note 3}	IDR(pulse)	PW < 5 ms, Duty < 30 %			1.5	A/phase
Hall bias current	Інв			10	20	mA
IND terminal output current	IFG			±2.5	±5.0	mA
Operating temperature	TA		-20		75	°C

Notes 1. DC

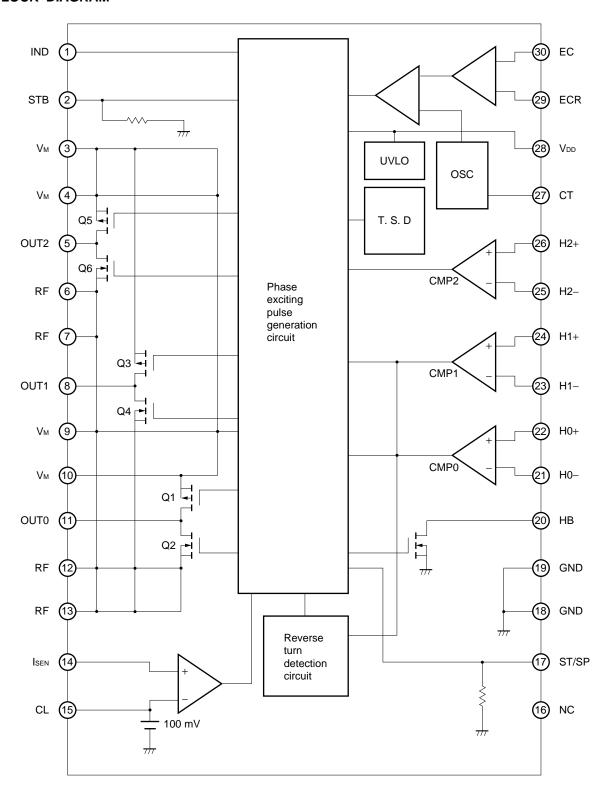
- **2.** PW < 5 ms, Duty < 30 % (start-up, locking)
- 3. PW < 5ms, Duty < 30 % (reverse brake)

CHARACTERISTICS (Unless otherwise specified, TA = 25°C, VDD = VM = 5 V)

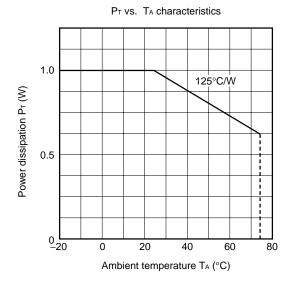

Parameter	Symbol	Condition	MIN.	TYP.	MAX	Unit
<all></all>			•			
V _{DD} pin current (operating)	IDD	STB = V _{DD}		1.5	3.0	mA
V _{DD} pin current (standby)	I _{DD(ST)}	STB = GND			1.0	μΑ
<st pin="" sp,="" stb=""></st>						
High level input voltage	ViH		1.8		V _{DD}	V
Low level input voltage	VIL				0.8	V
Input pull-down resistance	RIND			110		kΩ
<oscillation circuit="" part=""></oscillation>						
Triangle wave oscillation frequency	fрwм	Ст = 330pF		75		kHz
<hall amplifier="" part=""></hall>						
Same aspect input range	V _{Hch}		1.5		4.0	V
Hysteresis	V _{Hhys}	VH = 2.5 V		15	50	mV
Input bias voltage	Hbias				1.0	μΑ
<hall bias="" part=""></hall>						
Hall bias voltage	Vнв	Iнв = 10 mA		0.3	0.5	V
<ind output="" part="" signal=""></ind>						
IND terminal high level votlage	V _{FG_H}	IFG = -2.5 mA	3.5			V
IND terminal low level voltage	V _{FG_L}	IFG = +2.5 mA			0.5	V
<output part=""></output>						
Output on resistance (upper + lower MOSFET)	Ron	$I_D = 200 \text{ mA}$ -20°C < T _A < 75°C		0.6	0.9	Ω
Off state leakage	I _{D(OFF)}	-20°C < T _A < 75°C			10	μΑ
Output turn-on time	tonh	$R_M = 5\Omega$			1.0	μs
Output turn-off time	toffh	star connection			1.0	μs
<torque order="" part=""></torque>						
Control standard input votlage range	ECR		0.3		4.0	V
Control input voltage range	EC		0.3		4.0	V
Input current	lin	EC, ECR = 0.5 to 3.0 V			70	μΑ
Input voltage difference	ECR-EC	Duty = 100%, ECR = 2 V exclusing dead zone		0.75		V
Dead zone (+)	EC_d+	ECR = 2 V	0	65	100	mV
Dead zone (-)	EC_d-	ECR = 2 V	0	-65	-100	mV
<over current="" detection="" part=""></over>						
Input offset voltage	Vio		-15		15	mV
CL terminal voltage	VcL		90	100	110	mV

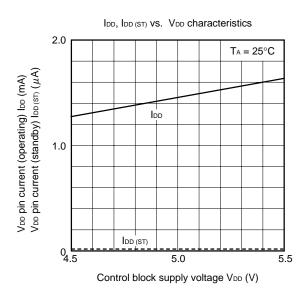
Thermal shut down circuit (TSD) works in TcH > 150°C.

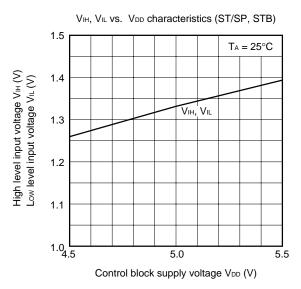
Low voltage malfunction prevention circuit (UVLO) works in 4 V (TYP.).

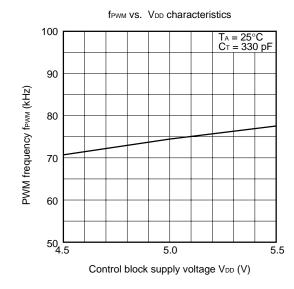

PIN CONNECTION

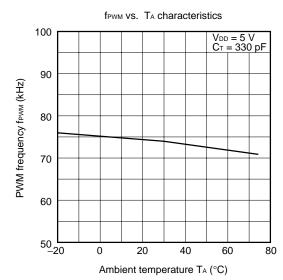
Pin No.	Pin name	Terminal function
1	IND	Index signal output terminal
2	STB	Standby mode input terminal
3	Vм	Supply voltage input terminal for motor part
4	Vм	Supply voltage input terminal for motor part
5	OUT2	Motor connection terminal (W-phase)
6	RF	3 pahse bridge common terminal
7	RF	3 phase bridge common terminal
8	OUT1	Motor connection terminal (V-phase)
9	Vм	Supply voltage input terminal for motor part
10	Vм	Supply voltage input terminal for motor part
11	OUT0	Motor connection terminal (U-phase)
12	RF	3 phase bridge common terminal
13	RF	3 phase bridge common terminal
14	Isense	Sense resistance connection terminal
15	CL	Over current detection voltage filter terminal
16	NC	No connection
17	ST/SP	Start/Stop input terminal
18	GND	Ground terminal
19	GND	Ground terminal
20	НВ	Hall bias terminal
21	H0-	Hall signal input terminal (U-phase)
22	H0+	Hall signal input terminal (U-phase)
23	H1–	Hall signal input terminal (V-phase)
24	H1+	Hall signal input terminal (V-phase)
25	H2-	Hall signal input terminal (W-phase)
26	H2+	Hall signal input terminal (W-phase)
27	Ст	Oscillation frequency setting condenser connection terminal
28	V _{DD}	Supply voltage input terminal for control part
29	ECR	Control standard voltage input terminal
30	EC	Control voltage input terminal

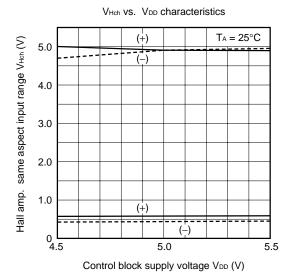

Caution Plural terminal (VM, RF, GND) is not only 1 terminal and connect all terminals.

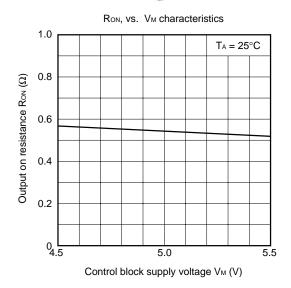

BLOCK DIAGRAM

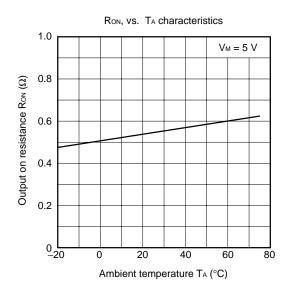


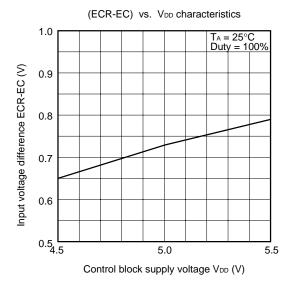

Caution Plural terminal (VM, RF, GND) is not only 1 terminal and connect all terminals.

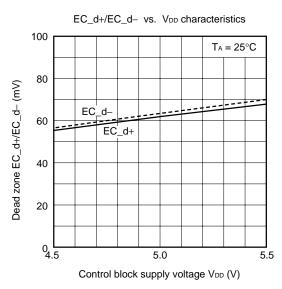

TYPICAL CHARACTERISTICS (TA = 25°C)

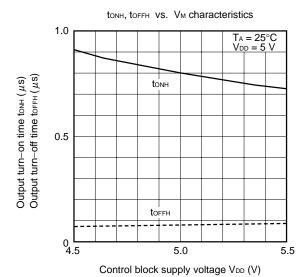












FUNCTION OPERATION TABLE

(1) ST/SP (start/stop) function

ON/OFF of the movement can be set up under the condition which makes oscillation circuit work. Setting is done with ST/SP terminal.

When ST/SP terminal is high level, it becomes active (operating) condition. And, when ST/SP terminal is low level, it becomes stop condition. It becomes short brake condition under the stop condition.

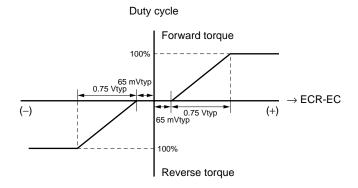
• ST/SP = "H"

Inp	out signal (Hall	l amplifier outp	out)	On and the area do	
CMP 0	CMP 1	CMP 2	PWM	Operation mode	exciting phase
Н	Н	L	Н	ON	$W\toV$
Н	Н	L	L	OFF	
Н	L	L	Н	ON	$W\toU$
Н	L	L	L	OFF	
Н	L	Н	Н	ON	$V\toU$
Н	L	Н	L	OFF	
L	L	Н	Н	ON	$V\toW$
L	L	Н	L	OFF	
L	Н	Н	Н	ON	$U\toW$
L	Н	Н	L	OFF	
L	Н	L	Н	ON	$U\toV$
L	Н	L	L	OFF	

In addition, the movement in OFF varies in the product.

Loop is composed through parasitic diode of the high-side MOSFET. (μ PD16873/ μ PD16873A) Loop is composed through channel of the high-side MOSFET. (μ PD16873B/ μ PD16873C)

• ST/SP = "L"


Inp	out signal (Hall	On a nation, mands		
CMP 0	CMP 1	Operation mode		
-	-	-	-	Stop (short brake)

It becomes short brake condition. (High side switch is "ON" and low side switch is "OFF")

(2) Torque order

The relation between difference (ECR-EC) in control standard voltage (ECR) and control voltage (EC) and the torque is as follows.

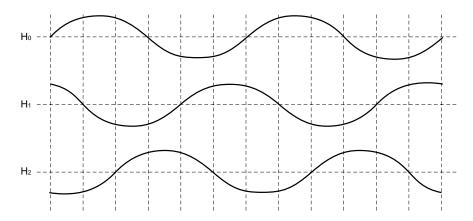
Input voltage difference (ECR-EC) and output PWM duty becomes related to the proportion.

In addition, it becomes reverse brake when input voltage is ECR < EC. It stops after the reverse rotation of the motor is detected under reverse braking mode. If input voltage difference is zero (ECR = EC), it becomes short brake mode.

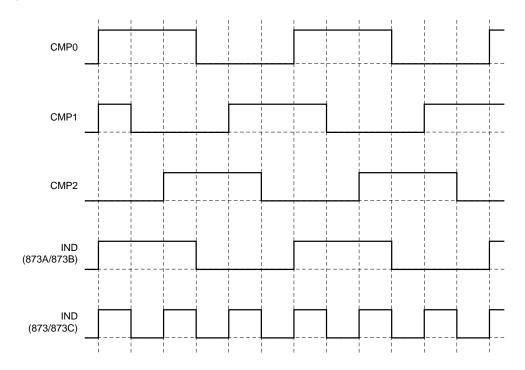
Input voltage difference	Output mode
ECR > EC	Forward turn
ECR = EC	Stop (short brake)
ECR < EC	Reverse turn Note

Note After detecting reverse, it stops.

(3) Standby mode


By the setting of standby mode, the power supply inside μ PD16873 can be made off.

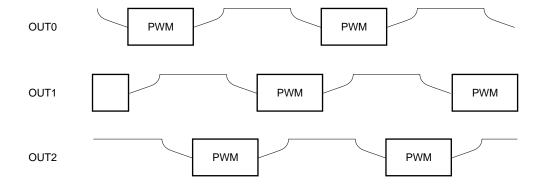
Each output terminal at the time of standby mode becomes high impedance. Also, the oscillation block inside, too, stops and it is possible for the circuit current to reduce.


STB terminal	Operation mode
"H" level	Regular mode
"L" level	Standby mode

TIMING CHART

(1) Hall signal input

(2) CMP signal


(3) Output MOSFET drive and comparator choice

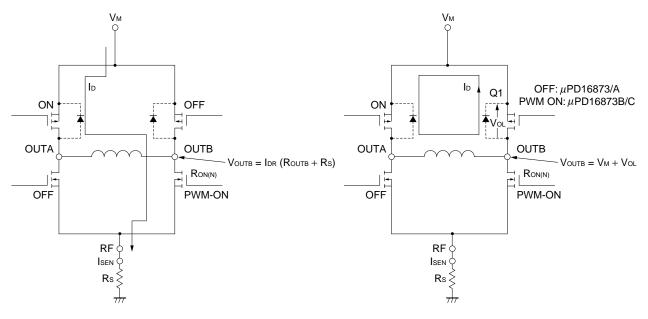
Q1		(SW)	(SW)		ON	ON		(SW)	(SW)		ON	ON	
Q2		SW	SW					SW	SW				
Q3	(SW)		ON	ON		(SW)	(SW)		ON	ON		(SW)	(SW)
Q4	SW					SW	SW					SW	SW
Q5	ON	ON		(SW)	(SW)		ON	ON		(SW)	(SW)		ON
Q6				SW	SW					SW	SW		

Remark μ PD16873/A are not synchronous switching. (Normal type PWM) μ PD16873B/C are synchronous switching of high-side MOSFET. (Synchronous type PWM)

(4) Output terminal voltage wave

Caution

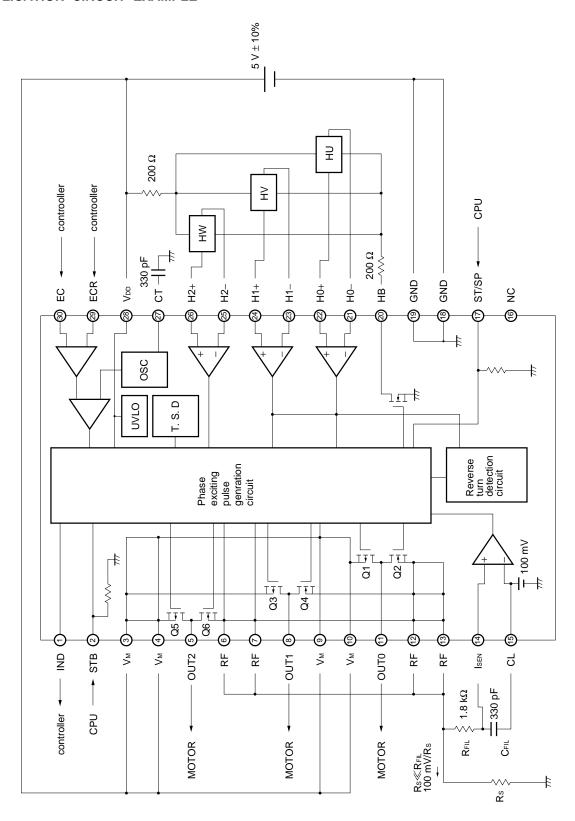
(1) About output current


The rated ouptut current differs depending on whether the motor revolves at a constant speed (steady state), is started (steady state), or Reverse brake is applied. The rated DC current when the motor revolves at a constant speed is 0.5 A, and the rated instantaneous current when the is started is 1.3 A. When the motor is stopped by using Reverse brake, the maximum current is 1.9 A.

When use Reverse brake, a current exceeding that when the motor revolves at a constant speed (immediately before a brake is applied) instantaneously flows because of the counter electromotive force due to the motor inductance. Determine the value of over current for steady state, taking the peak current for using Reverse brake to the motor into consideration.

(2) About output pin voltage

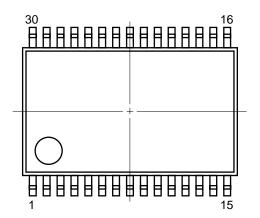
Output terminal (OUT0, OUT1, OUT2) takes the voltage which exceeds a motor power supply during following counter current.

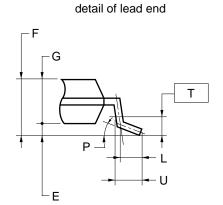

Maximum rate of output pin voltage is 6.7 V. Be careful that an output terminal doesn't take a voltage over 6.7 V.

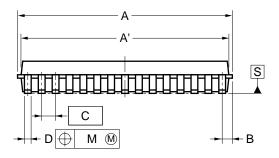
Lower Nch MOC: PWM-ON time

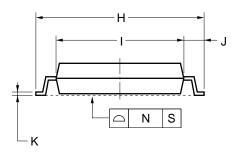
Lower Nch MOC: PWM-OFF time

APPLICATION CIRCUIT EXAMPLE




Caution If hall elements connected series, please change hall bias resistances, and hall signal include into same aspect input range of hall amplifier.




PACKAGE DIMENSION

30-PIN PLASTIC TSSOP (7.62mm(300))

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.10
A'	9.7±0.1
В	0.375
С	0.65 (T.P.)
D	0.24±0.05
Е	0.1±0.05
F	1.2 MAX.
G	1.0±0.05
Н	8.1±0.1
I	6.1±0.1
J	1.0±0.1
K	0.145±0.025
L	0.5
М	0.10
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15
	S30MC-65-6A4

RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For soldering methods and conditions other than those recommended, consult NEC.

For details of the recommended soldering conditions, refer to information document "Semiconductor Device Mounting Technology Manual".

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C; Time: 30 secs. max. (210°C min.); Number of times: 3 times max.; Number of day: none; Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.) is recommended.	IR35-00-3
VPS	Package peak temperature: 215°C; Time: 40 secs. max.; (200°C min.) Number of times: 3 times max.; Number of day: none; Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.) is recommended.	VP15-00-3
Wave Soldering	Package peak temperature: 260°C; Time: 10 secs. max.; Preheating temperature: 120°C max.; Number of times: once; Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% max.) is recommended.	WS60-00-1

Caution Do not use two or more soldering methods in combination.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.