Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

240-OUTPUT LCD ROW DRIVER

DESCRIPTION

The μ PD16666A is a row (common) driver which contains a RAM capable of full-dot LCD display. With 240 outputs, this driver can be combined with a column (segment) driver μ PD16661A which contains a RAM to display VGA (640 by 480 dots), 1/2 VGA, or 1/4 VGA, etc. By combining it with the μ PD16661A, the μ PD16666A can provide four gray levels by frame rate control.

With its built-in display RAM in the column driver, the driver kit can reduce current consumption, thus making it most suitable for the display section of a PDA or portable terminal.

FEATURES

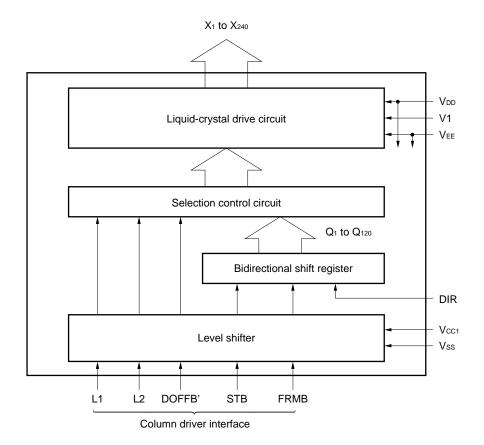
LCD-driven voltage: 20 to 36 V

• Duty: 1/240

· Driving type: 2 lines selected simultaneously

• Output count: 240 outputs

Capable of gray level display: 4 gray levels (frame rate control)


ORDERING INFORMATION

Part No.	Package		
μPD16666AN-XXX	TCP (TAB)		
μPD16666AN-051	Standard TCP (OLB: 0.2 mm pitch; folding)		

The TCP's external shape is custom-ordered. Therefore, if you have a shape in mind, please contact an NEC salesperson.

BLOCK DIAGRAM

BLOCK FUNCTION

1. Liquid-crystal drive circuit

This circuit selects and outputs the level for liquid-crystal driving.

One of VDD, VEE, and V1 is selected by the output of the selection control circuit.

2. Selection control circuit

This circuit creates the signal which will select the level of the output signal, based on the output of the shift register circuit and the driving level power selection signals L1 and L2

3. Bidirectional shift register circuit

This refers to the 120-bit bidirectional shift register circuit. The DIR signal can be used to switch over the shift direction.

The data that has been entered from the FRMB terminal is shifted by the row drive signal strobe (STB).

4. Level shifter circuit

This circuit transforms the 5-V signals to the high-voltage signals for liquid-crystal driving.

PIN FUNCTIONS

Classification	Pin Name	Input/Output	Pad No.	Function
Power	Vcc1 Vss Vdd Vee V1			5 V power for level shifter GND power for level shifter Power for logic; liquid-crystal drive level power Power for logic; liquid-crystal drive level power (GND) Liquid-crystal drive level power
Liquid-crystal display timing	STB FRMB DOFFB' L1 L2 DIR	 		Row drive strobe signal Frame signal Display OFF signal Drive level power selection signal (1st line) Drive level power selection signal (2nd line) Shift direction selection signal: when L (DIR = VEE), X1 → X240 when H (DIR = VDD), X240 → X1
Liquid-crystal drive output	X1 to X240	0		Liquid-crystal drive output Selects and outputs one of VDD, VEE, and V1.

DETAILS OF PIN FUNCTIONS

• STB (input)

Refers to the input pin of the row drive strobe signal.

The bidirectional shift register is shifted at STB's rising edge.

• FRMB (input)

Refers to the input pin of the frame signal.

The shift register data is read at STB's rising edge.

• DIR (input)

Refers to the input pin of the drive output's shift direction selection signal.

When the shift direction selection signal (DIR) is "L", the shift data (selection signal) is shifted from the drive output X_1 to the X_{240} direction. When "H", it is shifted from the X_{240} to the X_1 direction.

DOFFB' (input)

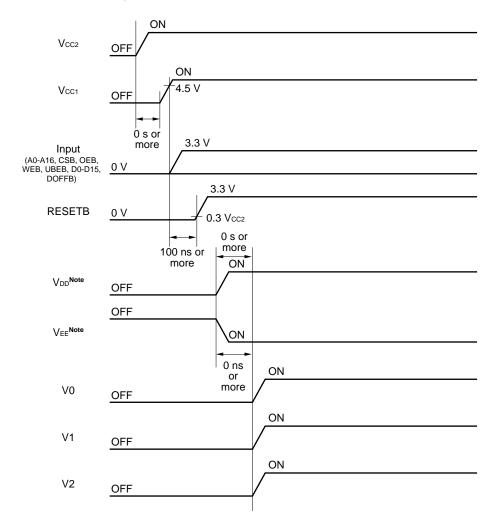
Refers to the input pin of the display OFF signal.

It is placed in the display OFF status (all outputs at V1) at the "L" level. In the mean time, it reads the frame signal and returns to the normal display status at the "H" level.

L1 & L2 (input)

Refer to the input pins of the drive level power selection signal.

In the case of the liquid-crystal drive output, the two lines are selected simultaneously by the shift register. L1 selects the first line, and L2 the second line. Both lines select V_{DD} at "H", and V_{EE} at "L".

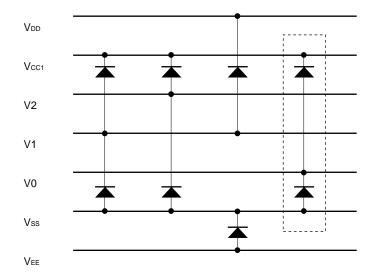


POWER SUPPLY SEQUENCE OF CHIP SET

It is recommended to apply power in the following sequence.

 $Vcc2 \rightarrow Vcc1 \rightarrow input \rightarrow Vdd, Vee \rightarrow V0, V1, V2$

Be sure to apply LCD drive voltages V0, V1, and V2 last.


Note VDD and VEE do not need to be turned ON at the same time.

Caution Turn off power to the chip set in the reverse sequence to the power application sequence.

EXAMPLE OF CONNECTING INTERNAL SCHOTTKY BARRIER DIODE OF MODULE TO REINFORCE POWER SUPPLY PROTECTION

(Use a Schottky barrier diode with Vf = 0.5 V or less.)

Connect the diodes enclosed in the dotted line when V₀ is not 0 V (GND)

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C, Vss = 0 V)

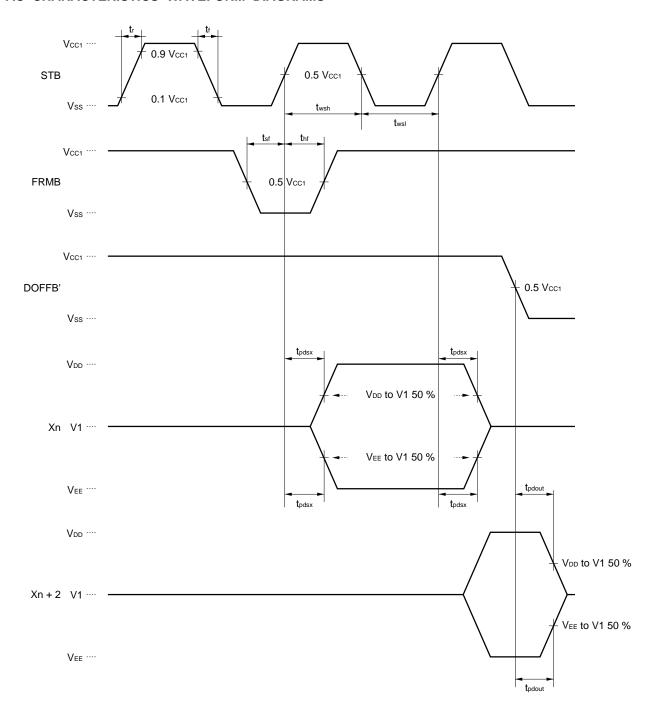
Parameter	Symbol	Condition	Ratings	Unit
Supply Voltage	Vcc1		-0.5 to +6.5	V
	V _{DD} – V _{EE}	Vcc1 ≤ Vdd, Vee ≤ Vss	40	
	V1		Vee - 0.5 to Vdd + 0.5	
Input Voltage	Vıı	Other than the DIR pin	-0.5 to Vcc1 + 0.5	
	V _{I2}	DIR pin	Vee - 0.5 to Vdd + 0.5	
Output Voltage	Vo		VEE - 0.5 to +VDD + 0.5	
Operating Temperature	TA		-20 to +70	°C
Storage Temperature	T _{stg}		-40 to +125	

Recommended Operating Range ($T_A = -20 \text{ to } +70 \text{ °C}$, $V_{SS} = 0 \text{ V}$)

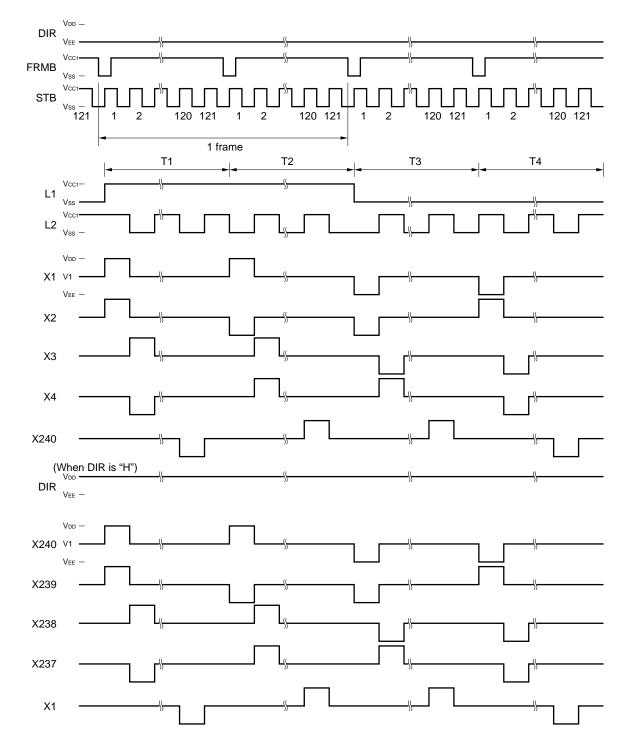
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc1		4.75		5.25	٧
	V _{DD} – V _{EE}	$V_{CC1} \le V_{DD}, V_{EE} \le V_{SS}$	20		36	
	V1		0		3	
Input Voltage	VI1	Other than DIR pin	0		Vcc1	
	V ₁₂	DIR pin	VEE		V _{DD}	

DC Characteristics (unless otherwise specified, $V_{CC1} = 4.75$ to 5.25 V, $V_{DD} - (V_{EE}) = 20$ to 31 V, $V_{CC1} \le V_{DD}$, $V_{EE} \le V_{SS}$, $V_{CC1} \le V_{DD}$, $V_{CC1} \le V$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-Level Input Voltage	V _{IH1}	Other than the DIR pin	0.8 Vcc1			V
	V _{IH2}	DIR pin	VDD-0.3 (VDD-VEE)			
Low-Level Input Voltage	VIL1	Other than the DIR pin			0.2 Vcc1	
	VIL2	DIR pin			VEE+0.3 (VDD-VEE)	
Driver ON Resistance	Ron	Load current = 100 μA		1.0	2.0	kΩ
Input Leakage Current	Іінт	V _{IN} = V _{CC} , other than the DIR pin			1.0	μΑ
	I _{IH2}	VIN = VDD, DIR pin			25	
	l _{IL1}	$V_{IN} = 0 V$, other than the DIR pin			-1.0	
	l _{IL2}	VIN = VEE, DIR pin			-25	
Current Consumption	Icc1	Frame frequency 70 Hz at		200	320	μΑ
	IDD	operation		120	210	


AC Characteristics

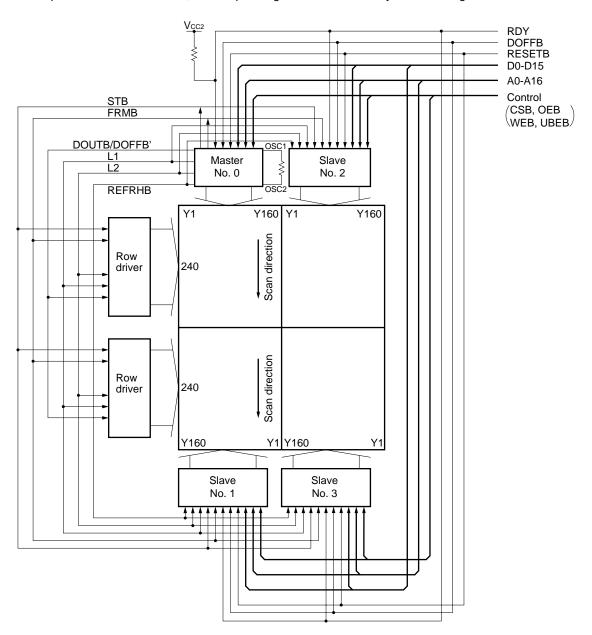
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
STB High-Level Width	t wsh		500			ns
STB Low-Level Width	twsl		500			
FRMB Setup Time	t sf		100			
FRMB Hold Time	thf		100			
STB Rise Time	tr				150	
STB Fall Time	tf				150	
Output Delay Time	t _{pdsx}	Output no-load			300	
	t pdout				200	


AC CHARACTERISTICS WAVEFORM DIAGRAMS

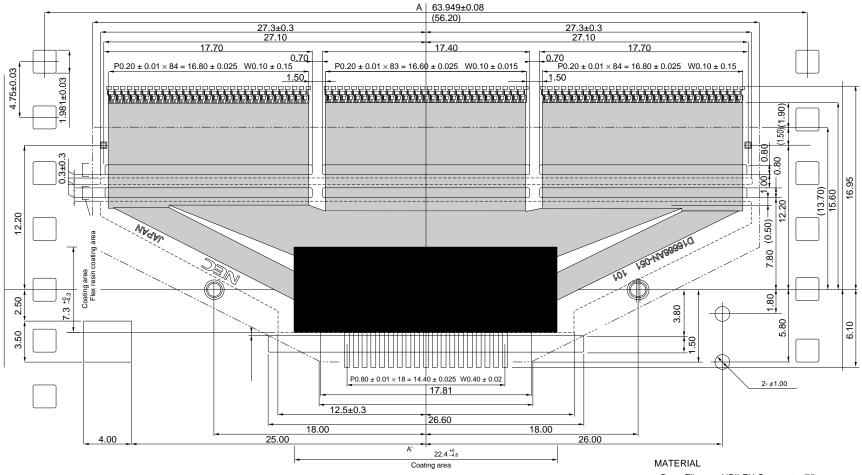
LEVEL SELECTION TIMING OF LIQUID-CRYSTAL DRIVE OUTPUT

The FRMB is input in one frame twice. The STB is input into half a frame 121 times, and into one frame 242 times.

Remark While the DOFFB' is "L", the X output remains at the V1 level. Afterward, if it becomes "H", the level of the X output is output timed with the above timing.

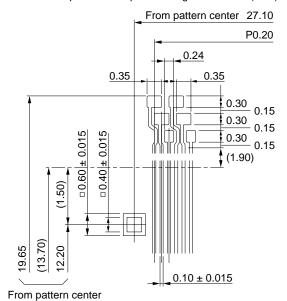

Note When the time lag between STB signal and the L1, L2 signals is large, hazard may occur in output.

SYSTEM CONFIGURATION EXAMPLE


An example of configuring a liquid-crystal panel of half-VGA size (480 across by 320) by using four column drivers and two row drivers.

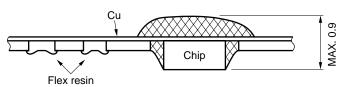
- Each column driver sets the LSI No. with PL0, 1, and 2 pins.
- The DIR pins of each column driver are all set to low level.
- Only one of the column drivers is set to the master; all the others are set to the slave. Signals are supplied from the master column driver to the slave column driver and to the row driver.
- Connect an oscillator resistor to the OSC1 and OSC2 pins on the master, and leave these pins open on the slave.
- All the signals from the system (D0 to D15, A0 to A16, CSB, OEB, WEB, UBEB, RDY, RESETB, and DOFFB) are connected in parallel to the column driver. Connect a pull-up resistor to the RDY signal.
- The TEST pin is used to test the LSI, and is open or grounded when the system is configured.

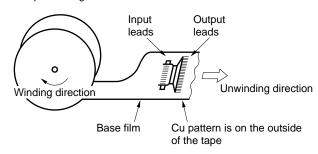
STANDARD TCP PACKAGE (µPD16666AN-051)

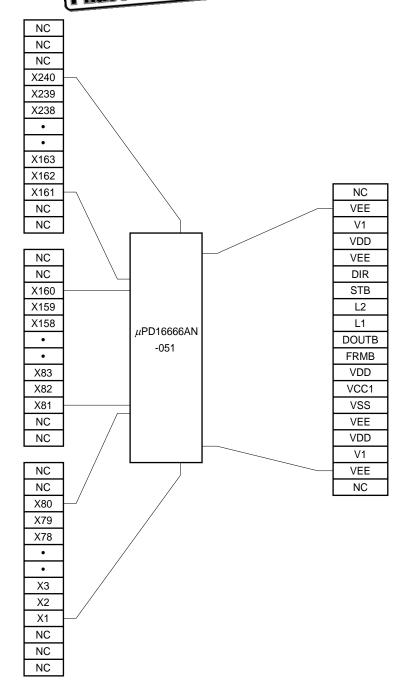



Base Film : UPILEX-S $t = 75 \mu S$ Adhesive : Epoxy $t = 12 \mu m$ Copper foil : Electrolysis Cu $t = 25 \mu S$ Plating : Sn $t = Min. 0.25 \mu m$ Solder resist : Epoxy $t = 25 \mu m$

This product is the flex specification Figures in parenthesis denote a reference value Corner radius unless otherwise specified R0.3 mm MAX. All tolerances unless otherwise specified ± 0.05 mm This figure is shown from the pattern side 5-pitch (23.75 mm) feed


Detail of output side test pad and alignment mark $(\times 20)$


Detail of alignment hole (x 20)



A - A' sectional view

TCP tape winding direction

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.