# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



# MOS INTEGRATED CIRCUIT $\mu$ PD16520,16520A

### **VERTICAL DRIVER FOR CCD SENSORS**

#### DESCRIPTION

The  $\mu$  PD16520 and  $\mu$  PD16520A are vertical drivers for CCD image sensors that have a level conversion circuit and a 3-level output function. Since it incorporates a CCD vertical register driver equivalent to the  $\mu$  PD16510 (10 channels, consisting of six 3-level channels and four 2-level channels) and a VOD shutter driver (1 channel), it is ideal as a vertical driver for multiple-electrode high-pixel CCD transfer type area image sensors employed in digital still cameras.

The  $\mu$  PD16520 and  $\mu$  PD16520A use a CMOS process to achieve optimum transmission delay characteristics for vertical driving of CCD image sensors, as well as output on-state resistance characteristics. The  $\mu$  PD16520 and  $\mu$  PD16520A also support low-voltage logic (logic power supply voltage: 2.0 to 5.5 V).

#### FEATURES

- CCD vertical register driver: 10 channels (3-level: 6 channels, 2-level: 4 channels)
- VOD shutter driver: 1 channel
- High withstanding voltage: 33 V MAX.
- Low-output on-state resistance: 30  $\Omega$  TYP.
- Low-voltage input supported (Logic power supply voltage: 2.0 to 5.5 V)
- Latch-up free
- Same drive capacity as  $\mu$  PD16510
- Small package: 38-pin plastic SSOP (7.62 mm (300))
- Super small package: 42-pin wafer level CSP

#### APPLICATIONS

Digital still cameras, digital video cameras, etc.

#### **ORDERING INFORMATION**

| Part Number         | Package                              |
|---------------------|--------------------------------------|
| $\mu$ PD16520GS-BGG | 38-pin plastic SSOP (7.62 mm (300) ) |
| μ PD16520AFH-2Q1    | 42-pin wafer level CSP               |

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

The mark  $\star$  shows major revised points.

#### **1. PIN CONFIGURATION**

#### (1) 38-pin plastic SSOP (7.62 mm (300))

 $\mu$  PD16520GS-BGG (Top view)



#### (2) 42-pin wafer level CSP

 $\mu$  PD16520AFH-2Q1 (Bottom view)



| Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name |
|---------|----------|---------|----------|---------|----------|
| 1       | BO4      | 15      | Vss      | 29      | PG5      |
| 2       | Vsb      | 16      | VDD1     | 30      | PG2      |
| 3       | Vss      | 17      | VDD2a    | 31      | TI6      |
| 4       | BI4      | 18      | TO2      | 32      | TI4      |
| 5       | BI2      | 19      | TO3      | 33      | TI2      |
| 6       | BI1      | 20      | TO4      | 34      | GND      |
| 7       | PG6      | 21      | TO5      | 35      | TO1      |
| 8       | PG4      | 22      | TO6      | 36      | VDD2a    |
| 9       | PG3      | 23      | BO2      | 37      | VDD2a    |
| 10      | PG1      | 24      | BO3      | 38      | VDD2a    |
| 11      | T15      | 25      | BO4      | 39      | BO1      |
| 12      | TI3      | 26      | SUBO     | 40      | VDD2b    |
| 13      | TI2      | 27      | BI3      | 41      | SUBI     |
| 14      | TI1      | 28      | BI2      | 42      | Vcc      |

#### 2. BLOCK DIAGRAM

### (1) *µ* PD16520GS-BGG



#### (2) µ PD16520AFH-2Q1

NEC



#### 3. PIN FUNCTIONS

#### (1) μ PD16520GS-BGG

| Pin No. | Pin Name | I/O      | Function                                          |
|---------|----------|----------|---------------------------------------------------|
| 1       | GND      | _        | Ground                                            |
| 2       | Vcc      | _        | Logic power supply                                |
| 3       | TI1      | Input    | 3-level driver input (for charge transfer)        |
| 4       | TI2      | Input    | (Refer to 4. FUNCTION TABLES.)                    |
| 5       | ТІЗ      | Input    |                                                   |
| 6       | TI4      | Input    |                                                   |
| 7       | Т15      | Input    |                                                   |
| 8       | ТI6      | Input    |                                                   |
| 9       | PG1      | Input    | 3-level driver input (for charge read)            |
| 10      | PG2      | Input    | (Refer to 4. FUNCTION TABLES.)                    |
| 11      | PG3      | Input    |                                                   |
| 12      | PG4      | Input    |                                                   |
| 13      | PG5      | Input    |                                                   |
| 14      | PG6      | Input    |                                                   |
| 15      | BI1      | Input    | 2-level driver input (for charge transfer)        |
| 16      | BI2      | Input    | (Refer to 4. FUNCTION TABLES.)                    |
| 17      | BI3      | Input    |                                                   |
| 18      | BI4      | Input    |                                                   |
| 19      | SUBI     | Input    | VOD shutter drive pulse input                     |
| 20      | Vss      | _        | V∟ power supply                                   |
| 21      | Vsb      | <u> </u> | Vнн power supply (for SUB drive)                  |
| 22      | SUBO     | Output   | VOD shutter drive pulse output                    |
| 23      | BO4      | Output   | 2-level pulse output                              |
| 24      | воз      | Output   |                                                   |
| 25      | VDD2b    |          | V <sub>Mb</sub> power supply (for 2-level driver) |
| 26      | BO2      | Output   | 2-level pulse output                              |
| 27      | BO1      | Output   |                                                   |
| 28      | TO6      | Output   | 3-level pulse output                              |
| 29      | VDD2a    | _        | V <sub>Ma</sub> power supply (for 3-level driver) |
| 30      | TO5      | Output   | 3-level pulse output                              |
| 31      | TO4      | Output   |                                                   |
| 32      | VDD2a    | _        | V <sub>Ma</sub> power supply (for 3-level driver) |
| 33      | тоз      | Output   | 3-level pulse output                              |
| 34      | TO2      | Output   |                                                   |
| 35      | VDD2a    | -        | V <sub>Ma</sub> power supply (for 3-level driver) |
| 36      | TO1      | Output   | 3-level pulse output                              |
| 37      | VDD1     | _        | VH power supply                                   |
| 38      | Vss      | _        | V₋ power supply                                   |

#### (2) μ PD16520AFH-2Q1

| Pin No. | Pin Name | I/O    | Function                                          |
|---------|----------|--------|---------------------------------------------------|
| 1       | BO4      | Output | 2-level pulse output                              |
| 2       | Vsb      | _      | Vнн power supply (for SUB drive)                  |
| 3       | Vss      | _      | V <sub>L</sub> power supply                       |
| 4       | BI4      | Input  | 2-level driver input (for charge transfer)        |
| 5       | BI2      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 6       | BI1      | Input  |                                                   |
| 7       | PG6      | Input  | 3-level driver input (for charge read)            |
| 8       | PG4      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 9       | PG3      | Input  |                                                   |
| 10      | PG1      | Input  |                                                   |
| 11      | TI5      | Input  | 3-level driver input (for charge transfer)        |
| 12      | ТІЗ      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 13      | TI2      | Input  |                                                   |
| 14      | TI1      | Input  |                                                   |
| 15      | Vss      | _      | V <sub>L</sub> power supply                       |
| 16      | VDD1     | _      | VH power supply                                   |
| 17      | VDD2a    | _      | V <sub>Ma</sub> power supply (for 3-level driver) |
| 18      | TO2      | Output | 3-level pulse output                              |
| 19      | ТОЗ      | Output |                                                   |
| 20      | TO4      | Output |                                                   |
| 21      | TO5      | Output |                                                   |
| 22      | TO6      | Output |                                                   |
| 23      | BO2      | Output | 2-level pulse output                              |
| 24      | BO3      | Output |                                                   |
| 25      | BO4      | Output | <u>_</u>                                          |
| 26      | SUBO     | Output | VOD shutter drive pulse output                    |
| 27      | BI3      | Input  | 2-level driver input (for charge transfer)        |
| 28      | BI2      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 29      | PG5      | Input  | 3-level driver input (for charge read)            |
| 30      | PG2      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 31      | ТІ6      | Input  | 3-level driver input (for charge transfer)        |
| 32      | TI4      | Input  | (Refer to 4. FUNCTION TABLES.)                    |
| 33      | TI2      | Input  |                                                   |
| 34      | GND      | _      | Ground                                            |
| 35      | T01      | Output | 3-level pulse output                              |
| 36      | VDD2a    | _      | V <sub>Ma</sub> power supply (for 3-level driver) |
| 37      | VDD2a    | _      | 4                                                 |
| 38      | VDD2a    | _      |                                                   |
| 39      | BO1      | Output | 2-level pulse output                              |
| 40      | VDD2b    | _      | V <sub>Mb</sub> power supply (for 2-level driver) |
| 41      | SUBI     | Input  | VOD shutter drive pulse input                     |
| 42      | Vcc      | -      | Logic power supply                                |

#### 4. FUNCTION TABLE (VL = VSS, VMa = VDD2a, VMb = VDD2b, VH = VDD1, VHH = VSb)

#### Pins TO1 to TO6

|      |     | Input |     |     |     |     |     |     |     |     | Out             | tput |     |     |            |     |     |     |
|------|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|------|-----|-----|------------|-----|-----|-----|
| Pin  | TI1 | TI2   | TI3 | TI4 | TI5 | TI6 | PG1 | PG2 | PG3 | PG4 | PG5             | PG6  | TO1 | TO2 | TO3        | TO4 | TO5 | TO6 |
| Name |     |       |     |     |     |     |     |     |     |     |                 |      |     |     |            |     |     |     |
| Pin  | 3   | 4     | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13              | 14   | 36  | 34  | 33         | 31  | 30  | 28  |
| No.  | 14  | 13,   | 12  | 32  | 11  | 31  | 10  | 30  | 9   | 8   | 29              | 7    | 35  | 18  | 19         | 20  | 21  | 22  |
|      |     | 33    |     |     |     |     |     |     |     |     |                 |      |     |     |            |     |     |     |
|      |     |       | l   | _   |     |     |     | L   |     |     |                 |      |     | V   | <b>/</b> н |     |     |     |
|      | L   |       |     |     |     |     | н   |     |     |     | V <sub>Ma</sub> |      |     |     |            |     |     |     |
|      | н   |       |     |     |     |     | L   |     |     |     |                 |      | V   | /L  |            |     |     |     |
|      |     |       | ŀ   | 4   |     |     | н   |     |     |     |                 |      |     |     |            |     |     |     |

Remark Pin No. upper row: µ PD16520GS-BGG, lower row: µ PD16520AFH-2Q1

#### Pins BO1 to BO4

|      |     | Inp | out |     | Output          |     |     |     |
|------|-----|-----|-----|-----|-----------------|-----|-----|-----|
| Pin  | BI1 | BI2 | BI3 | BI4 | BO1             | BO2 | BO3 | BO4 |
| Name |     |     |     |     |                 |     |     |     |
| Pin  | 15  | 16  | 17  | 28  | 27              | 26  | 24  | 23  |
| No.  | 6   | 5,  | 27  | 4   | 39              | 23  | 24  | 1,  |
|      |     | 28  |     |     |                 |     |     | 25  |
|      |     | l   | _   |     | V <sub>Ma</sub> |     |     |     |
|      |     | ŀ   | 1   |     | VL              |     |     |     |

**Remark** Pin No. upper row:  $\mu$  PD16520GS-BGG, lower row:  $\mu$  PD16520AFH-2Q1

#### Pin SUBO

|      | Input | Output |
|------|-------|--------|
| Pin  | SUBI  | SUBO   |
| Name |       |        |
| Pin  | 19    | 22     |
| No.  | 41    | 26     |
|      | L     | Vнн    |
|      | Н     | VL     |

Remark Pin No. upper row: µ PD16520GS-BGG, lower row: µ PD16520AFH-2Q1

#### 5. ELECTRICAL SPECIFICATIONS

| Parameter                     | Symbol | Condition        | Rating                  | Unit |
|-------------------------------|--------|------------------|-------------------------|------|
| Power supply voltage          | Vss    |                  | 0 to -10                | V    |
|                               | Vcc    |                  | Vss – 0.3 to Vss + 20.0 | V    |
|                               | VDD1   |                  | Vss – 0.3 to Vss + 33.0 | V    |
|                               | VDD2   |                  | Vss – 0.3 to Vss + 33.0 | V    |
|                               | Vsb    |                  | Vss – 0.3 to Vss + 33.0 | V    |
| Input pin voltage             | VI     |                  | Vss – 0.3 to Vcc + 0.3  | V    |
| Operating ambient temperature | TA     |                  | -25 to +85              | °C   |
| Storage temperature           | Tstg   |                  | -40 to +125             | °C   |
| Allowable dissipation         | Pd     | μ PD16520GS-BGG  | 500                     | mW   |
|                               |        | μ PD16520AFH-2Q1 | 600 Note                | mW   |

#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C, GND = 0 V)

Note Mounted on 8-layer glass epoxy board of 30 mm x 30 mm x 1.6 mm

# Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### Recommended Operating Conditions (T<sub>A</sub> = 25°C, GND = 0 V)

| Parameter                     | Symbol   | Condition | MIN.    | TYP. | MAX.    | Unit |
|-------------------------------|----------|-----------|---------|------|---------|------|
| Power supply voltage          | Vcc      | -         | 2.0     |      | 5.5     | V    |
|                               | VDD1     | Note      | 10.5    | 15.0 | 21.0    | V    |
|                               | VDD1-Vss | Note      | 16.5    |      | 31.0    | V    |
|                               | VDD2a    |           | -1.0    |      | +4.0    | V    |
|                               | VDD2b    |           | -1.0    |      | +4.0    | V    |
|                               | Vss      |           | -10.0   |      | -6.0    | V    |
|                               | Vsb-Vss  | Note      |         |      | 31.0    | V    |
| High level input voltage      | VIH      |           | 0.8 Vcc |      | Vcc     | V    |
| Low level input voltage       | VIL      |           | 0       |      | 0.3 Vcc | V    |
| Operating ambient temperature | TA       |           | -20     |      | +70     | °C   |

Note Set VDD1 and Vss to values that satisfy VDD1-Vss rating.

|   | Parameter                     | Symbol          | Condition                          | MIN.        | TYP.   | MAX.        | Unit |
|---|-------------------------------|-----------------|------------------------------------|-------------|--------|-------------|------|
|   | High level output voltage     | Vн              | lo = -20 μA                        | VDD1 – 0.1  |        | VDD1        | V    |
|   | Middle level output voltage   | Vма             | $lo = -20 \mu A$                   | VDD2a - 0.1 |        | VDD2a       | V    |
|   |                               | V <sub>Mb</sub> | lo = 20 μA                         | VDD2b       |        | VDD2b + 0.1 | V    |
|   | Low level output voltage      | VL              | lo = 20 μA                         | Vss         |        | Vss + 0.1   | V    |
|   | SUB high level output voltage | VsubH           | lo = -20 μA                        | Vsb – 0.1   |        | Vsb         | V    |
|   | SUB low level output voltage  | VsubL           | lo = 20 μA                         | Vss         |        | Vss + 0.1   | V    |
| ★ | Output on-state resistance    | R∟              | lo = 10 mA                         |             | 20     | 30          | Ω    |
|   |                               | Rм              | lo = ±10 mA                        |             | 30     | 45          | Ω    |
|   |                               | Rн              | lo = -10 mA                        |             | 30     | 40          | Ω    |
|   |                               | Rsub            |                                    |             | 30     | 40          | Ω    |
|   | Transmission delay time 1     | TD1             | No load,                           |             | $\sim$ | 200         | ns   |
|   | Transmission delay time 2     | TD2             | Refer to Figure 5–2. Timing Chart. |             |        | 200         | ns   |
|   | Transmission delay time 3     | TD3             | -                                  |             |        | 200         | ns   |
|   | Rise/fall time 1              | TP1             | Refer to Figure 5–1. Output Load   |             |        | 500         | ns   |
|   | Rise/fall time 2              | TP2             | Equivalence Circuit and            |             |        | 500         | ns   |
|   | Rise/fall time 3              | TP3             | Figure 5–2. Timing Chart.          |             |        | 200         | ns   |

Electrical Characteristics (Unless otherwise specified,  $T_A = 25^{\circ}C$ , VDD1 = +15 V, VDD2a = 0 V, VDD2b = +1.0 V, Vsb = 21.5 V, Vcc = +2.5 V, Vss = -7.0 V, GND = 0 V)



Figure 5–1. Output Load Equivalence Circuit

#### TO1' TO2' TO3' TO4' TO5' TO6' BO1' BO2' BO4' BO3' GND C\_33 C\_23 C\_32 C\_23 TO1' \_ C\_33 C\_33 C\_33 C\_33 C\_32 C1 TO2' C\_33 \_ C\_33 C\_33 C\_33 C\_33 C\_23 C\_32 C\_23 C\_32 C2 TO3' C\_33 C\_33 -C\_33 C\_33 C\_33 C\_32 C\_23 C\_32 C\_23 СЗ TO4' C\_33 C\_33 C\_33 \_ C\_33 C\_33 C\_23 C\_32 C\_23 C\_32 C4 TO5' C\_33 C\_33 C\_33 C\_33 C\_33 C\_32 C\_23 C\_32 C\_23 \_ C5 C\_33 C\_33 C\_33 C\_32 C\_23 C\_32 TO6' C\_33 C\_33 \_ C\_23 C6 BO1' C\_32 C\_23 C\_32 C\_23 C\_32 C\_23 C\_22 C\_22 C\_22 C7 \_ BO2' C\_23 C\_32 C\_23 C\_32 C\_23 C\_32 C\_22 C\_22 C\_22 \_ C8 BO3' C\_32 C\_23 C\_32 C\_23 C\_32 C\_23 C\_22 C\_22 C\_22 C9 \_ BO4' C\_23 C\_32 C\_23 C\_32 C\_23 C\_32 C\_22 C\_22 C\_22 \_ C10 SUBO \_ \_ \_ \_ \_ \_ \_ \_ \_ C11 \_

#### Output Load Capacitance Symbol

(a) Between output pins

#### Output Load Equivalence Circuit Constants

| Parameter                                                          | Symbol    | Constant |
|--------------------------------------------------------------------|-----------|----------|
| Vertical register serial resistor                                  | R1 to R10 | 0 Ω      |
| Vertical register ground resistor                                  | PGND      | 0 Ω      |
| Capacitance 1 between vertical register clocks (3-level - 3-level) | C_33      | 0 pF     |
| Capacitance 2 between vertical register clocks (2-level - 2-level) | C_22      | 0 pF     |
| Capacitance 3 between vertical register clocks (3-level - 2-level) | C_32      | 1000 pF  |
| Capacitance 4 between vertical register clocks (2-level - 3-level) | C_23      | 500 pF   |
| Vertical register ground capacitance 1 (3-level)                   | C1 to C6  | 3000 pF  |
| Vertical register ground capacitance 2 (2-level)                   | C7 to C10 | 1500 pF  |
| Substrate ground capacitance                                       | C11       | 1600 pF  |



#### 6. NOTE ON USE

#### 6.1 Power ON/OFF Sequence

In the  $\mu$  PD16520 and  $\mu$  PD16520A, a PN junction (diode) exists between VDD2  $\rightarrow$  VDD1, input pin (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI)  $\rightarrow$  Vcc, so that in the case of voltage conditions: VDD2 > VDD1, input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI) > Vcc, an abnormal current flows. Therefore, when turning the power ON/OFF, make sure that the following voltage conditions are satisfied: VDD2  $\leq$  VDD1, input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI)  $\leq$  Vcc. Also, to minimize the negative potential applied to the SUB pin of the CCD image sensor, following the power ON/OFF sequence described below.

#### (1) Power ON

<1> Powering ON Vcc

Make sure that input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI)  $\leq$  Vcc. Also, when Vsb = 2 V, make sure that Vcc reaches the rated voltage.

<2> Powering ON Vsb, VDD1, VDD2a, VDD2b and Vss

At this time, make SUBI high level (0.8Vcc or higher) .



# NEC

#### (2) Power OFF

<1> Powering OFF Vsb, VDD1, VDD2a, VDD2b and Vss

Until Vcc power OFF, keep SUBI high level (0.8Vcc or higher) .

#### <2> Powering OFF Vcc

Power OFF Vcc when Vsb becomes 2 V or lower. At this time, make sure that the input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, and SUBI)  $\leq$  Vcc.



#### 6.2 Recommended Connection of Unused Pins

Handle input pins and output pins that are not used as follows.

Input pin: High level (connect to Vcc)

Output pin: Leave open









#### 8. PACKAGE DRAWINGS

## 38-PIN PLASTIC SSOP (7.62 mm (300))



#### NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS           |
|------|-----------------------|
| A    | 12.7±0.3              |
| В    | 0.65 MAX.             |
| С    | 0.65 (T.P.)           |
| D    | $0.37^{+0.05}_{-0.1}$ |
| E    | 0.125±0.075           |
| F    | 1.675±0.125           |
| G    | 1.55                  |
| Н    | 7.7±0.2               |
| I    | 5.6±0.2               |
| J    | 1.05±0.2              |
| К    | $0.2^{+0.1}_{-0.05}$  |
| L    | 0.6±0.2               |
| М    | 0.10                  |
| Ν    | 0.10                  |
| Р    | 3° <sup>+7°</sup> 3°  |
|      | P38GS-65-BGG-1        |

### 42-PIN WAFER LEVEL CSP (Unit: mm)



#### 9. RECOMMENDED SOLDERING CONDITIONS

The  $\mu$  PD16520 and  $\mu$  PD16520A should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

#### Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

#### Type of Surface Mount Device

| Process                | Conditions                                                            | Symbol    |
|------------------------|-----------------------------------------------------------------------|-----------|
| Infrared reflow        | Peak temperature: 235°C or below (package surface temperature),       | IR35-00-3 |
|                        | Reflow time: 30 seconds or less (at 210°C or higher) ,                |           |
|                        | Maximum number of reflow processes: 3 times or less.                  |           |
| Vapor phase soldering  | Peak temperature: 215°C or below (package surface temperature) ,      | VP15-00-3 |
|                        | Reflow time: 40 seconds or less (at 200°C or higher) ,                |           |
|                        | Maximum number of reflow processes: 3 times or less.                  |           |
| Wave soldering         | Solder temperature: 260°C or below, Flow time: 10 seconds or less,    | WS60-00-1 |
|                        | Maximum number of flow processes: 1 time,                             |           |
|                        | Pre-heating temperature: 120° or below (package surface temperature). |           |
| Partial heating method | Pin temperature: 300°C or below,                                      | -         |
|                        | Heat time: 3 seconds or less (per each side of the device) .          |           |

#### $\mu$ PD16520GS-BGG: 38-pin plastic SSOP (7.62 mm (300))

#### μPD16520AFH-2Q1: 42-pin wafer level CSP

| Process         | Conditions                                                      | Symbol    |
|-----------------|-----------------------------------------------------------------|-----------|
| Infrared reflow | Peak temperature: 260°C or below (package surface temperature), | IR60-00-3 |
|                 | Reflow time: 60 seconds or less (at 220°C or higher) ,          |           |
|                 | Maximum number of reflow processes: 3 times or less.            |           |

Caution Do not use different soldering methods together (except for partial heating) .

#### **REFERENCE DOCUMENTS**

NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades on NEC Semiconductor Devices (C11531E)

#### NOTES FOR CMOS DEVICES -

#### **1** VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (MAX) and  $V_{IH}$  (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (MAX) and  $V_{IH}$  (MIN).

#### **(2)** HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

#### **③** PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

#### **④** STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

#### 5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

#### **(6)** INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of February, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).