RENESAS

SLG47011

GreenPAK Programmable Mixed-Signal Matrix With Analog-to-Digital Data Acquisition System

The SLG47011 provides a small, low power solution for commonly used analog-to-digital conversion and mixed-signal functions. A flexible data acquisition system used in conjunction with configurable logic provides a way to implement a wide variety of functions with minimal cost. The user can create a circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM), to configure the interconnect logic, the macrocells, and the IO pins.

Features

- SAR ADC
 - 14-, 12-, 10-, 8-bit Selectable Resolution
 - Up to 2.35 Msps in 8-bit mode
 - Sampling up to Four Analog Channels
 - Output Options: Parallel, I²C, SPI
- Programmable Gain Amplifier
 - 1x to 64x Gain Selection
 - Differential, Single-Ended Modes
- MathCore
 - Multiplier, Adder, Subtractor, Shifter Options
- Four Independent Data Buffers
 - Buffer Length up to Eight 16-bit Words
 - Oversampling Mode (Increasing ADC Resolution)
 - Moving Average Mode
 - Counter Capture Mode
- 4096 Words x 12-bit Memory Table Macrocell
 - Full Range Mode or Two Ranges Mode
 - ADC Data Linearization or Any y = F(x) Function
 - ADDR-to-DATA/Storage Modes
- 16-bit Multichannel Digital Comparator (MDCMP)
 - · Sampling up to Four Independent Channels
 - Static or Dynamic Threshold
 - Hysteresis Option for Each Channel
- PWM Macrocell
 - 12-bit Resolution
 - Dynamic Duty Cycle Change (up to 4096 Duty Cycle Value)
- Width Converter Macrocell
 - 12-bit Parallel Data Output
- Optional 12 x 1-bit, 6 x 2-bit, 3 x 4-bit Output
- 12-bit 333 ksps Digital-to-Analog Converter
- Selectable Current Source
- Integrated Voltage References (V_{REF})

- High Speed Analog Comparator
 - Configurable Hysteresis and Reference
- Eighteen Combination Function Macrocells
 - Two 2-bit LUT or DFF/LATCH Macrocells
 - Eight 3-bit LUT or DFF/LATCH with Set/Reset
 - Six Selectable DFF/LATCH or 3-bit LUTs or Shift Registers
 - Two 4-bit LUT or DFF/LATCH with Set/Reset Macrocell
- Fourteen Multi-Function Macrocells
 - Ten Selectable DFF/LATCH or 3-bit LUTs + 12-bit Delay/Counters
 - Two Selectable DFF/LATCH or 4-bit LUT + 16-bit Delay/Counter/FSM
 - One Selectable DFF/LATCH or 3-bit LUTs + 12-bit Delay/Counter/FSM
 - 12-bit Memory Control Up/Down Counter
- Communication Interfaces
 - I²C Interface
 - SPI Interface
- Programmable Delay with Edge Detector Output
- Deglitch Filter or Edge Detector
- Two Oscillators (OSC)
 - 2 kHz/10 kHz Oscillator
 - 20 MHz/40 MHz Oscillator
- Analog Temperature Sensor
- Power-On Reset (POR) with CRC
- Read Back Protection (Read Lock)
- Power Supply
 - 1.71 V to 3.6 V
- Operating Temperature Range: -40 °C to 85 °C
- RoHS Compliant/Halogen-Free
- Available Package
 - 16-pin STQFN: 2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm pitch

Applications

- Consumer Electronics
- Handheld and Portable Electronics
- Industrial Automation and Process Control
- Personal Computers and Servers
- PC Peripherals
- Battery Voltage and Current Monitoring
- Power Monitors

Contents

1.	Overv	iew		14
	1.1	Block Diag	jram	14
	1.2	Analog and	d Digital Blocks Interaction	15
	1.3	User Prog	rammability and Customization	16
2.	Pin Inf	ormation		17
	2.1	Pin Assign	ments	17
	2.2	Pin Descri	ptions	18
3.	Specif	ications	·	21
-	3.1		Aaximum Ratings	
	3.2		gs	
	3.3		nded Operating Conditions	
	3.4		Specifications	
		3.4.1.	Logic IO Specifications	
		3.4.2.	I ² C Specifications	
		3.4.3.	SPI Specifications	
		3.4.4.	Estimated Typical Current of Macrocell Specifications	
		3.4.5.	Estimated Typical Delay for Each Macrocell	
		3.4.6.	Programmable Delay Typical Delays and Widths	
		3.4.7.	Typical Filter Rejection Pulse Width	
	3.5	Counter/D	elay Specifications	
		3.5.1.	Typical Counter/Delay Offset	
	3.6	Oscillator \$	Specifications	34
		3.6.1.	Oscillators Frequency Limits	34
		3.6.2.	Oscillator0 2 kHz/10 kHz Power-On Delay	35
		3.6.3.	Oscillator1 20 MHz/40 MHz Power-On Delay	35
	3.7	Analog Co	mparator Specifications	36
	3.8	Programm	able Gain Amplifier Specifications	38
		3.8.1.	PGA Specifications	38
		3.8.2.	PGA Gain Specifications	40
		3.8.3.	PGA Offset Specifications	42
	3.9	Analog-to-	Digital Converter Specifications	43
	3.10	Digital-to-A	Analog Converter Specifications	46
	3.11	DAC Outp	ut Buffer Specifications	47
	3.12	Analog Te	mperature Sensor Characteristics	47
	3.13	Internal V _R	REF Specifications	48
	3.14	Current Sc	purce Specifications	49
4.	IO Pin	s		50
	4.1	GPI Pin		51
		4.1.1.	GPI Structure	51
	4.2	GPIO Pins	3	52
		4.2.1.	GPIO with I ² C Mode Structure (for GPIO0 and GPIO1)	52
		4.2.2.	Matrix OE IO Structure (for GPIO2 to GPIO9, GPIO11, GPIO12)	
		4.2.3.	Matrix OE IO Structure (for GPIO10)	54
	4.3	Pull-Up/Pu	III-Down Resistors	54
	4.4	Fast Pull-L	Jp/Pull-Down During Power-Up	54

	4.5	Typical Pe	rformance of IOs	55
5.	Power	Architectu	ıre	56
	5.1	Power Arc	hitecture General Description	56
	5.2	Power Cor	ntroller	58
6.	Conne	ction Matri	ix	60
	6.1		n Matrix0 Input and Output	
	6.2		n Matrix1 Input and Output	
	6.3		n Matrix Virtual Inputs	
	6.4	Connection	n Matrix Virtual Outputs (Signal Readback)	72
7.	Combi	nation Fur	nction Macrocells	73
	7.1	2-bit LUT o	or D Flip-Flop Macrocells	73
	7.2	2-bit LUT o	or D Flip-Flop Macrocell Used as 2-bit LUT	74
	7.3		or D Flip-Flop with Reset/Set Macrocells	
	7.4	3-bit LUT o	or D Flip-Flop with Reset/Set or Shift Register Macrocells	79
		7.4.1.	3-bit LUT or D Flip-Flop Macrocells Used as 3-bit LUTs	86
	7.5	4-BIT LUT	or D Flip-Flop with Reset/Set Macrocell	88
		7.5.1.	4-bit LUT Macrocell Used as 4-bit LUT	89
8.	Multi-F	unction M	acrocells	91
	8.1		or DFF/LATCH with Counter/Delay Macrocells	
	8.2	CNT/DLY	Timing Diagrams	.105
		8.2.1.	Delay Mode (Edge Select: Both Edges, Counter Data: 3), CNT/DLY0 to CNT/DLY12	.105
		8.2.2.	Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY12	.108
		8.2.3.	One-Shot Mode CNT/DLY0 to CNT/DLY12	.108
		8.2.4.	Frequency Detection Mode CNT/DLY0 to CNT/DLY12	.109
		8.2.5.	Edge Detection Mode CNT/DLY0 to CNT/DLY12	.109
		8.2.6.	Delayed Edge Detection Mode	.110
		8.2.7.	Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes	.110
	8.3	Counter/D	elay/FSM Macrocells	.111
		8.3.1.	4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM Macrocell General Description	.111
		8.3.2.	3-bit LUT or DFF/LATCH with 12-bit CNT/DLY/FSM Macrocell General Description	.115
	8.4	CNT/FSM	Mode (CNT/DLY10, CNT/DLY11, and CNT/DLY12) Timing Diagrams	.116
	8.5	12-bit Men	nory Control Counter	.118
		8.5.1.	Memory Control Counter Operation Modes	.119
		8.5.2.	Controlling the Memory Table Macrocell Address with the Memory Control Counter	.121
		8.5.3.	Controlling the Width Converter Output	.122
		8.5.4.	Memory Control Counter Timing Diagrams	
	8.6	12-bit CNT	/DLY9 Macrocell Dynamic Counter Data Change	.125
9.	Analog	g Compara	tor Macrocell	126
	9.1	-	mparator General Description	
	9.2	-	mparator Sampling Mode	
	9.3	ACMPH T	ypical Performance	.127
10.	Progra	ammable G	ain Amplifier Macrocell	129
	10.1		eral Description	
	10.2	•	plexer Configuration	
	10.3	PGA Typic	al Performance	.134

11.	Analog	g-to-Digital Converter Macrocell	.142
	11.1	ADC Features	.142
	11.2	ADC General Description	.143
	11.3	ADC Offset Calibration	.143
	11.4	ADC Output	.145
	11.5	Sampling and Conversion Process	.147
	11.6	One-Shot Conversion Operation	.149
	11.7	Continuous Conversion Operation	.149
	11.8	ADC VREF	.150
	11.9	Fast ADC Read I ² C Command	.150
	11.10	Data Flow and Alignment	.151
	11.11	ADC Typical Performance	.152
12.	Digital	-to-Analog Converter Macrocell	.155
	12.1	DAC General Description	.155
	12.2	DAC VREF	.156
	12.3	DAC Typical Performance	.157
13.	Memo	v Table Macrocell	.163
	13.1	Memory Table General Description	.163
	13.2	ADDR-to-DATA Mode	
	13.3	Storage Mode	.165
14.	Data B	uffer Macrocells	
	14.1	Data Buffers General Description	
	14.2	Storage Mode	
	14.3	Moving Average Mode	
	14.4	Oversampling Mode	
	14.5	Data Buffers Structure	
15.	Mathe	natical Core Macrocell	
	15.1	MathCore General Description	
	15.2	MathCore Modes	
	15.3	MathCore Timing Diagrams	
16		nannel Digital Comparator Macrocell	
10.	16.1	Multichannel Digital Comparator General Description	
	16.2	Multichannel DCMP Timing Diagrams	
47		Width Modulator Macrocell	
17.	17.1	PWM Output	
	17.1	PWM DeadBand Control	
40			
18.		Converter Macrocell	
	18.1	12-to-12 Conversion Mode	
	18.2	12-to-4 Conversion Mode	
	18.3	12-to-2 Conversion Mode	
	18.4		
19.	-	mmable Delay/Edge Detector Macrocell	
	19.1	Programmable Delay Timing Diagram - Edge Detector Output	
	-	ch Filter Macrocell	
21.	Currer	t Source Macrocell	.195
22.	Interna	Il Voltage Reference	.196

	22.1	Internal V _{REF} General Description	196
	22.2	V _{REF} Typical Performance	.198
23.	Clocki	ng	199
	23.1	Oscillator0 (2 kHz, 10 kHz) Macrocell	
	23.2	Oscillator1 (20 MHz, 40 MHz) Macrocell	
	23.3	CNT/DLY Clock Scheme	
	23.4	External Clocking	201
		23.4.1. GPIO Source for Oscillator0 (2 kHz/10 kHz)	201
		23.4.2. GPIO Source for Oscillator1 (20 MHz/40 MHz)	
	23.5	Oscillators Power-On Delay	.201
	23.6	Oscillators Accuracy	.203
	23.7	Oscillator Settling Time	.206
	23.8	Oscillator Current Consumption	.208
24.	Power	-On Reset	210
	24.1	POR General Operation	
	24.2	POR Sequence	
	24.3	Macrocells Output States During POR Sequence	
	-	24.3.1. Initialization	
		24.3.2. Power-Down	
25	Hostli	nterface	
20.	25.1	Host Interface General Description	
	25.2	Reading Current Counter Value via I ² C/SPI	
	25.3	I ² C/SPI Byte Write Bit Masking	
	25.4	Chip Configuration Data Protection	
	25.5	I ² C/SPI Command Register Map	
26		mmunication Interface	
20.	26.1	I ² C Communications Device Addressing	
	26.2	I ² C General Timing	
	26.3	I ² C Communications Commands	
	20.5	26.3.1. Byte Write Command	
		26.3.2. Sequential Write Command	
		26.3.3. Current Address Read Command	
		26.3.4. Random Address Read Command	
		26.3.5. Sequential Read Command	
		26.3.6. I ² C Serial Reset Command	
		26.3.7. I ² C Additional Options	
27		ommunication Interface	
	-	g Temperature Sensor	
29.		ge Information	
	29.1	Package Outline Drawings	
		29.1.1. STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package	
	29.2	Package Top Marking	
		29.2.1. STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package	
	29.3	Junction-to-Ambient Thermal Resistance (θ _{JA})	
	29.4	Moisture Sensitivity Level	
	29.5	Soldering Information	.229

30.	PCB L	ayout Guidelines	230
		STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package	
31. Ordering Information		231	
		Tape and Reel Specifications	
	31.2	Carrier Tape Drawing and Dimensions	231
Glossary		232	
Revision History		235	

Figures

Figure 1. Block Diagram	14
Figure 2. Analog and Digital Blocks Combined Structure	15
Figure 3. Device Custom Design Procedure	16
Figure 4. Pin Assignments – STQFN 16L (Top View)	17
Figure 5. GPI Structure Diagram	51
Figure 6. GPIO with I ² C Mode IO Structure Diagram	52
Figure 7. Matrix OE IO Structure Diagram (with ESD Structure Type 1)	53
Figure 8. Matrix OE IO Structure Diagram (with ESD Structure Type 2)	54
Figure 9. Typical Іон vs. Vdd-Voн in Push-Pull Mode at T _A = +25 °C	55
Figure 10. Typical Io∟ vs. Vo∟ in Push-Pull Mode at T _A = +25 °C	55
Figure 11. Power Management Architecture of SLG47011	56
Figure 12. Connection Matrix0	60
Figure 13. Connection Matrix Usage Example	60
Figure 14. Interconnection of Connection Matrices	61
Figure 15. 2-bit LUT0 or DFF0	73
Figure 16. 2-bit LUT1 or DFF1	74
Figure 17. 3-bit LUT0 or DFF2	75
Figure 18. 3-bit LUT1 or DFF3	76
Figure 19. 3-bit LUT2 or DFF4	76
Figure 20. 3-bit LUT3 or DFF5	77
Figure 21. 3-bit LUT4 or DFF6	77
Figure 22. 3-bit LUT5 or DFF7	78
Figure 23. 3-bit LUT6 or DFF8	78
Figure 24. 3-bit LUT7 or DFF9	79
Figure 25. 3-bit LUT8 or DFF10, or SR0	80
Figure 26. 3-bit LUT9 or DFF11, or SR1	81
Figure 27. 3-bit LUT10 or DFF12, or SR2	81
Figure 28. 3-bit LUT11 or DFF13, or SR3	82
Figure 29. 3-bit LUT12 or DFF14, or SR4	82
Figure 30. 3-bit LUT13 or DFF15, or SR5	83
Figure 31. DFF10 to DFF15 or SR0 to SR5 Operation	83
Figure 32. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option	84
Figure 33. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option, Case 1	84
Figure 34. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option, Case 2	85
Figure 35. DFF10 to DFF15 or SR0 to SR5 Operation, nSET to All '1' Option	85
Figure 36. DFF10 to DFF15 or SR0 to SR5 Operation, nSET to All '1' Option, Case 1	86
Figure 37. DFF10 to DFF15 or SR0 to SR5 Operation, nSET to Default Value Option, Case 2	86
Figure 38. 4-bit LUT0 or DFF16	88

Figure 39. 4-bit LUT1 or DFF17	
Figure 40. Possible Connections Inside Multi-Function Macrocell	91
Figure 41. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY0).	93
Figure 42. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY1).	94
Figure 43. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT16/DFF20, CNT/DLY2).	
Figure 44. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT17/DFF21, CNT/DLY3).	
Figure 45. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT18/DFF22, CNT/DLY4).	
Figure 46. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT19/DFF23, CNT/DLY5).	
Figure 47. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT20/DFF24, CNT/DLY6).	
Figure 48. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT21/DFF25, CNT/DLY7).	
Figure 49. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT22/DFF26, CNT/DLY8).	
Figure 50. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT23/DFF27, CNT/DLY9).	
Figure 51. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT24/DFF28, CNT/DLY10/	/FSM2)103
Figure 52. Delay Macrocell Behavior with Different Oscillators Options (Edge Select: Both, Cl	NT Data = 3)105
Figure 53. Delay Mode Timing Diagram (Rising, Falling, and Both Edge Detection)	
Figure 54. Delay Mode (Both Edge Delay) Initial Value States	
Figure 55. Delay Mode (Rising Edge Delay) Initial Value States	
Figure 56. Delay Mode (Falling Edge Delay) Initial Value States	
Figure 57. Counter Mode Timing Diagram without Two DFFs Synced Up	
Figure 58. Counter Mode Timing Diagram with Two DFFs Synced Up	
Figure 59. One-Shot Function Timing Diagram	
Figure 60. Frequency Detection Mode Timing Diagram	
Figure 61. Edge Detection Mode Timing Diagram	
Figure 62. Delayed Edge Detection Mode Timing Diagram	
Figure 63. Counter Value, Counter Data = 3	110
Figure 64. Data Buffer0 Synchronization Option Enabled	113
Figure 65. Data Buffer0 Synchronization Option Disabled. X Data Options: (X + 7), (X + 8), Te	ransition Data113
Figure 66. 4-bit LUT2 or DFF29, or CNT/DLY11/FSM0 Macrocell	114
Figure 67. 4-bit LUT3 or DFF30, or CNT/DLY12/FSM1 Macrocell	115
Figure 68. CNT/FSM Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP = 0)	116
Figure 69. CNT/FSM Timing Diagram (Set Rising Edge Mode, OSC is Forced On, UP = 0)	
Figure 70. CNT/FSM Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP = 1)	116
Figure 71. DLY/FSM Mode, Falling Edge Delay, OSC is Forced On, DFFs Synced Up, UP = 0	0117
Figure 72. DLY/FSM Mode, Falling Edge Delay, OSC is Forced On, DFFs Synced Up, UP = 0	0117
Figure 73. One-Shot/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0.	117
Figure 74. Frequency Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced U	p, UP = 0118
Figure 75. Delayed Edge Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synce	d Up, UP = 0118
Figure 76. 12-bit Memory Control Counter Macrocell	
Figure 77. Memory Control Counter Configuration to Control Memory Table	
Figure 78. Memory Table Address Controlling with Memory Control Counter	

Figure 79. Memory Control Counter in Full Range Mode. Rising Edge Set Option	
Figure 80. Memory Control Counter in Full Range Mode. High Level Reset Option	.123
Figure 81. Memory Control Counter in Full Range Mode, Operation with Memory Table. Falling Edge Reset Option	.124
Figure 82. Memory Control Counter in Two Ranges Mode. Rising Edge Set Option	.124
Figure 83. Recommended Configuration for Dynamically Changed CNT Data Value	.125
Figure 84. Dynamic Counter Data Change Example	.125
Figure 85. ACMPH Block Diagram	.126
Figure 86. Propagation Delay vs. V_{REF} for ACMPH at $T_A = +25$ °C, $V_{DD} = 1.71$ V to 3.6 V	.127
Figure 87. ACMPH Power-On Delay vs. VDD at VREF – Forced OFF	.127
Figure 88. ACMPH Input Offset Voltage vs. External V_{REF} at $T_A = -40$ °C to 85 °C, $V_{DD} = 1.71$ V to 3.6 V	.128
Figure 89. ACMPH Current Consumption vs. VDD	.128
Figure 90. PGA Configuration Modes	.131
Figure 91. Input MUX Configuration	.133
Figure 92. Offset Voltage Referred to Output Distribution at $T_A = 25$ °C, PGA Mode 3, Gain = 1	.134
Figure 93. Offset Voltage Referred to Output Drift Distribution at $T_A = -40$ °C to +85 °C, $V_{DD} = 3.3$ V, PGA Mode 3, Gain = 1	134
Figure 94. 0.1 Hz to 10 Hz Noise (Oscillogram) at $T_A = +25$ °C, $V_{DD} = 3.3$ V, PGA Mode 6	.135
Figure 95. PSRR vs. Frequency at $T_A = +25$ °C, $V_{DD} = 1.71$ V to 3.6 V, PGA Mode 6	.135
Figure 96. Small-Signal Pulse Response at T _A = +25 °C, V _{DD} = 3.3 V, PGA Mode 6	.136
Figure 97. Large-Signal Pulse Response at T _A = +25 °C, V _{DD} = 3.3 V, PGA Mode 6	.136
Figure 98. Gain vs. Frequency at T _A = +25 °C	.137
Figure 99. Input Noise Voltage Density vs. Frequency at $T_A = +25$ °C, $V_{DD} = 3.3$ V, PGA Mode 6	.137
Figure 100. Output Voltage Low (V _{OUT} - GND) vs. Temperature at $T_A = +25$ °C, PGA Mode 6, R _{LOAD} = 1 M Ω (Including Output Swith Resistance)	138
Figure 101. Output Voltage High (V _{DDA} - V _{OUT}) vs. Temperature at T _A = 25 °C, PGA Mode 6, R _{LOAD} = 1M Ω (Including Output Swith Resistance)	138
Figure 102. Output Response to Power-Down Signal at T _A = +25 °C, V _{DD} = 3.3 V	139
Figure 103. Gain vs. Settling Time at $T_A = +25$ °C, $V_{DD} = 1.8$ V, Output Settling to 1 %	139
Figure 104. Gain vs. Settling Time at $T_A = +25$ °C, $V_{DD} = 3.3$ V, Output Settling to 1 %	
Figure 105. Pin Input Leakage Current vs. Negative Voltage Applied to the Pin at $T_A = +25$ °C, $V_{DD} = 3.3$ V, F Mode 5a, 5b	
Figure 106. Pin Input Leakage Current vs. Negative Voltage Applied to the Pin at $T_A = +25$ °C, $V_{DD} = 3.3$ V, F Mode 5a, 5b (Zoomed)	
Figure 107. SAR ADC Block Diagram	
Figure 108. ADC Internal Calibration Timing Diagram	.145
Figure 109. ADC System Calibration Timing Diagram	
Figure 110. Example of ADC Data Alignment (All Other Macrocells Except I ² C/SPI) in 8-bit Mode	.146
Figure 111. Example of ADC Data Alignment in Register Memory (Bytes 0x2200 and 0x2201) in 10-bit Mode	: 146
Figure 112. Voltage VIN(P) and VIN(N) at ADC Inputs in Differential Mode	.146
Figure 113. Voltage (VIN(P)-VIN(N)) of ADC Inputs in Differential Mode	.146
Figure 114. Voltage of ADC Inputs in Single-Ended and Pseudo-Differential Mode	147

Figure 115. A	ADC Timing Diagram. One-Shot Conversion Operation14	7
Figure 116. A	ADC Timing Diagram. Continuous Conversion Operation14	8
Figure 117. E	Example of Averaging Mode Implementation14	8
Figure 118. A	ADC Functioning in One-Shot Conversion Operation14	.9
Figure 119. A	ADC Functioning in Continuous Conversion Operation15	0
Figure 120. I	² C Sideband Sequential Read Protocol for ADC Data15	0
Figure 121. D	Data Flow and Alignment	1
	Differential Non-Linearity (DNL) vs. Code at T _A = +25 °C, V _{DD} = 3.6 V, Resolution = 12 bit, ksps, V _{REF} = 1.62 V (Internal)15	2
	ntegral Non-Linearity (INL) vs. Code at T _A = +25 °C, V _{DD} = 3.6 V, Resolution = 12 bit, ksps, V _{REF} = 1.62 V (Internal)15	2
Figure 124. F	Power Consumption vs. ADC Clock Frequency at $T_A = +25$ °C15	3
Figure 125. E External, AD	ENOB vs. Reference Voltage at T _A = +25 °C, V _{DD} = 3.3 V, Resolution = 14 bit, f _{sample} = 1 Msps, V _{REF} C Clock - External	3
	Fotal Unadjusted Error (TUE) vs. Input Voltage at T _A = +25 °C, V _{DD} = 3.3 V, Resolution = 14 bit, / (Internal)15	4
Figure 127. D	DAC Structure	6
	Differential Non-Linearity (DNL) vs. Code at $T_A = +25$ °C, $V_{REF} = 1.62$ V (Internal), DAC Buffer ON 15	7
	Differential Non-Linearity (DNL) vs. Code at $T_A = +25$ °C, $V_{REF} = 1.62$ V (External), $V_{DD} = 3.3$ V, DAC	
Figure 130. In	ntegral Non-Linearity (INL) vs. Code at T _A = +25 °C, V _{REF} = 1.62 V (Internal), DAC Buffer ON15	8
	ntegral Non-Linearity (INL) vs. Code at $T_A = +25$ °C, $V_{REF} = 1.62$ V (External), $V_{DD} = 3.3$ V, DAC	8
Figure 132. S	Supply Current vs. Supply Voltage at T _A = +25 °C15	9
	Nake-Up Time/Full-Scale Settling Time at T _A = +25 °C, V _{DD} = 1.8 V, V _{REF} = 1.62 V (Internal), DAC 	9
Figure 134. V	Norst Case Glitch Response at $T_A = +25$ °C, $V_{DD} = 1.8$ V, $V_{REF} = 1.62$ V (Internal), DAC Buffer ON	0
Figure 135. F	Frequency vs. Output Noise Spectral Density at T _A = +25 °C, V _{REF} = 1.62 V (Internal)16	0
Figure 136. C	Offset Error vs. Temperature at T_A = +25 °C, V_{REF} = 1.62 V (Internal), DAC Buffer ON16	1
Figure 137. C	Gain Error vs. Temperature at T _A = +25 °C, V _{REF} = 1.62 V (Internal), DAC Buffer ON16	51
Figure 138. D	DAC Output Voltage Drop vs. Load Current at $T_A = 25$ °C, $V_{DD} = 3.3$ V, DAC Buffer ON16	2
Figure 139. N	Assessed Table Means all Circultian Observations	
	Memory Table Macrocell Simplified Structure16	4
Figure 140. N	Memory Table Macrocell Simplified Structure	
-		5
Figure 141. N	Memory Table - ADC Bus Configuration	5 5
Figure 141. N Figure 142. C	Memory Table - ADC Bus Configuration	5 5 6
Figure 141. N Figure 142. C Figure 143. C	Memory Table - ADC Bus Configuration	5 5 6 7
Figure 141. M Figure 142. C Figure 143. C Figure 144. E	Memory Table - ADC Bus Configuration	5 5 6 7
Figure 141. M Figure 142. C Figure 143. C Figure 144. E Figure 145. E	Memory Table - ADC Bus Configuration	55 56 57 59 70
Figure 141. M Figure 142. C Figure 143. C Figure 144. E Figure 145. E Figure 146. A	Memory Table - ADC Bus Configuration	55 55 56 57 59 70 70

Figure 149. Data Buffer2 Structure Diagram	171
Figure 150. Data Buffer3 Structure Diagram	172
Figure 151. Mathematical Core Structure Diagram	176
Figure 152. MathCore Operation in Multiplier Mode (f = k * x Function)	177
Figure 153. MathCore Operation in Adder Mode (y = a + b Function)	178
Figure 154. MathCore Operation in Multiplier + Adder Mode (f = k * x + b Function)	179
Figure 155. Multichannel Digital Comparator Block Diagram	182
Figure 156. Multichannel DCMP Operation in Continuous Mode	183
Figure 157. Multichannel DCMP Operation in Sequence Conversion Mode Activated by Buffer2 Ready	183
Figure 158. Multichannel DCMP Operation in Sequence Conversion Mode Activated by Buffer2 Ready. E Length is Two Words	
Figure 159. PWM Functional Diagram	185
Figure 160. PWM Output Waveforms (OUT+ and OUT-)	186
Figure 161. PWM Output Waveforms (nOUT+ and OUT-)	186
Figure 162. PWM Output Waveforms (OUT+ and nOUT-)	186
Figure 163. PWM Output Waveforms (nOUT+ and nOUT-)	187
Figure 164. Width Converter in 12-to-12 Mode Functional Diagram	189
Figure 165. Width Converter in 12-to-12 Mode Output Waveforms	189
Figure 166. Width Converter in 12-to-4 Mode Functional Diagram	190
Figure 167. Width Converter in 12-to-4 Mode (without Sync) Output Waveforms	190
Figure 168. Width Converter in 12-to-4 Mode (With Sync) Output Waveforms	191
Figure 169. Width Converter in 12-to-2 Mode Functional Diagram	191
Figure 170. Width Converter in 12-to-2 Mode Output Waveforms	191
Figure 171. Width Converter in 12-to-1 Mode Functional Diagram	192
Figure 172. Width Converter in 12-to-1 Mode Output Waveforms	192
Figure 173. Programmable Delay	193
Figure 174. Edge Detector Output	193
Figure 175. Deglitch Filter/Edge Detector Simplified Structure	194
Figure 176. Current Source Structure	195
Figure 177. VREF Structure	196
Figure 178. DAC V _{REF} Output Buffer Typical Load Regulation at $T_A = +25$ °C, $V_{REF} = 1.62$ V (Internal)	198
Figure 179. Oscillator0 Block Diagram	200
Figure 180. Oscillator1 Block Diagram	200
Figure 181. Clock Scheme	201
Figure 182. Oscillator Startup Diagram	202
Figure 183. RC Oscillator Maximum Power-On Delay vs. V_{DD} at $T_A = +25$ °C, OSC0 = 2 kHz/10 kHz	202
Figure 184. RC Oscillator Maximum Power-On Delay vs. V _{DD} at $T_A = +25$ °C, OSC1 = 20 MHz/40 MHz	203
Figure 185. Oscillator0 Frequency vs. Temperature, OSC0 = 2 kHz	203
Figure 186. Oscillator0 Frequency vs. Temperature, OSC0 = 10 kHz	204
Figure 187. Oscillator1 Frequency vs. Temperature, OSC1 = 20 MHz	204

Figure 188. Oscillator1 Frequency vs. Temperature, OSC1 = 40 MHz	205
Figure 189. Oscillators Total Error vs. Temperature	
Figure 190. Oscillator0 Settling Time, OSC0 = 2 kHz	
Figure 191. Oscillator0 Settling Time, OSC0 = 10 kHz	
Figure 192. Oscillator1 Settling Time, OSC1 = 20 MHz	207
Figure 193. Oscillator1 Settling Time, OSC1 = 40 MHz	207
Figure 194. OSC0 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC0 = 2 kHz	208
Figure 195. OSC0 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC0 = 10 kHz	208
Figure 196. OSC1 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC1 = 20 MHz	209
Figure 197. OSC1 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC1 = 40 MHz	209
Figure 198. POR Sequence at Transition from Power Off State to Power On State in Case 1 and Case 2	211
Figure 199. POR Sequence in RETENTION Mode, Followed by Resumption from RETENTION Mode to A Mode	
Figure 200. POR Sequence in SLEEP Mode, Followed by Wakeup from SLEEP Mode to All ON Mode	213
Figure 201. Internal Macrocell States During POR Sequence	214
Figure 202. Power-Down	215
Figure 203. Example of I ² C Byte Write Bit Masking	217
Figure 204. Basic Command Structure	220
Figure 205. I ² C General Timing Characteristics	220
Figure 206. Byte Write Command, R/W = 0	221
Figure 207. Sequential Write Command	221
Figure 208. Current Address Read Command, R/W = 1	222
Figure 209. Random Address Read Command	222
Figure 210. Sequential Read Command	222
Figure 211. Reset Command Timing	223
Figure 212. SPI Block Scheme	225
Figure 213. Reading Memory Table Data in 16-bit Words from SLG47011 via SPI (CPOL = 0, CPHA = 1).	225
Figure 214. Reading Register 8-bit Data from SLG47011 via SPI (CPOL = 0, CPHA = 1)	225
Figure 215. Writing Configuration Register 8-bit Data to SLG47011 via SPI (CPOL = 0, CPHA = 1)	225
Figure 216. SPI Timing Diagram (CPHA = 0)	225
Figure 217. Analog Temperature Sensor Structure Diagram	226
Figure 218. TS Output vs. Temperature, V _{DD} = 1.71 V to 3.6 V	227
Figure 219. Package Outline Drawing	228

Tables

Table 1. Pin Assignments and Description	17
Table 2. Functional Pin Description	18
Table 3. Digital IO Input Transition Slew Rate Limitations	50
Table 4. Power Domains Description	56
Table 5. Macrocells Powered by Power Domains PD_Mx0, PD_Mx1, and PD_RET	57
Table 6. Power Modes, Power Domains State, Power Consumption, and Mode Transition Delays	59
Table 7. Matrix0 Input Table	62
Table 8. Matrix0 Output Table	63
Table 9. Matrix1 Input Table	64
Table 10. Matrix1 Output Table	68
Table 11. 2-bit LUT2_0 and 2-bit LUT2_1 Truth Table	74
Table 12. 2-bit LUT Standard Digital Functions	74
Table 13. 3-bit LUT3_0 to 3-bit LUT3_13 Truth Table	87
Table 14. 3-bit LUT Standard Digital Functions	87
Table 15. 4-bit LUT0 Truth Table	89
Table 16. 4-bit LUT Standard Digital Functions	90
Table 17. 3-BIT LUT or DFF/LATCH with Counter/Delay Macrocells Configuration	92
Table 18. 3-bit LUT8 to 3-bit LUT13 Truth Table	104
Table 19. 4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM Macrocells Configuration	111
Table 20. Memory Control Counter Start Value	120
Table 21. Memory Control Counter Operation in Two Ranges Mode with Memory Table	120
Table 22. PGA/ADC Input/Output Modes	129
Table 23. PGA Gain and Input Resistance vs. PGA Mode	130
Table 24. DAC Output Configuration	155
Table 25. Data Buffer0 LOAD or LOAD_EN	172
Table 26. Data Buffer1 LOAD or LOAD_EN	172
Table 27. Data Buffer2 LOAD or LOAD_EN	173
Table 28. Data Buffer3 LOAD or LOAD_EN	173
Table 29. Analog Comparator VREF Selection Table	196
Table 30. Oscillator Operation Mode Configuration Settings	199
Table 31. Read/Write Protection Options	218
Table 32. SPI Modes	224
Table 33. Junction-to-Ambient Thermal Resistance	229
Table 34. MSL Classification	229

1. Overview

1.1 Block Diagram

Figure 1. Block Diagram

1.2 Analog and Digital Blocks Interaction

Figure 2 shows the interconnect between combination function macrocells, multi-function macrocells, ADC, Data Buffers, Memory Table, DAC, DCMP, and other associated macrocells.

Figure 2. Analog and Digital Blocks Combined Structure

1.3 User Programmability and Customization

The SLG47011 is a user-programmable device with one time programmable (OTP) memory elements that can configure the connection matrix and macrocells. A programming development kit (Go Configure ™ Software Hub) allows the user the ability to create initial designs. Once the design is finalized, the programming code (.aap file) is forwarded to Renesas Electronics Corporation to integrate into the production process.

Figure 3. Device Custom Design Procedure

2. Pin Information

2.1 Pin Assignments

Figure 4. Pin Assignments – STQFN 16L (Top View)

Table 1. Pin Assignments and	Description
------------------------------	-------------

Pin Number	Pin Name	Pin Functions
1	V _{DD}	Power Supply
2	GND	Ground
3	GPI	GPI, SPI nCS
4	GPIO0	GPIO, I ² C SDA, SPI MOSI
5	GPIO1	GPIO, I ² C SCL, SPI CLK
6	GPIO2	GPIO, SPI MISO, SLA 0
7	GPIO3	GPIO, PGA In0+, EXT OSC1
8	GPIO4	GPIO, PGA In1+
9	GPIO5	GPIO, PGA In2+
10	GPIO6	GPIO, PGA In3+, SLA 1
11	GPIO7	GPIO, PGA In0-, CS out, ACMP In+, SLA 2
12	GPIO8	GPIO, PGA In1-, DAC out, SLA 3
13	GPIO9	GPIO, ACMP In+, PGA Out+
14	GPIO10	GPIO, ACMP In-, EXT OSC0, PGA Out-
15	GPIO11	GPIO, ADC Ext V_{REF} In, DAC Ext V_{REF} in, DAC V_{REF} Buffer out
16	GPIO12	GPIO

2.2 Pin Descriptions

Pin Name	Signal Name	Function	Input Options	Output Options
V _{DD}	V _{DD}	Digital Power Supply	Power	-
GND	GND	Analog and Digital GND	-	-
			Digital Input without Schmitt Trigger	-
0.51	GPI	General Purpose Input	Digital Input with Schmitt Trigger	-
GPI			Low Voltage Digital Input	-
	SPI nCS	SPI nCS	Digital	-
			Digital Input without Schmitt Trigger	Open-Drain NMOS
	GPIO0	General Purpose Input/Open-Drain Output	Digital Input with Schmitt Trigger	-
GPIO0			Low Voltage Digital Input	-
I ² C_SDA		I ² C Serial Data	Digital	Digital
	SPI MOSI	SPI MOSI	Digital	-
			Digital Input without Schmitt Trigger	Open-Drain NMOS
	GPIO1	General Purpose Input/Open-Drain Output	Digital Input with Schmitt Trigger	-
GPIO1 I ² C_SCL SPI CLK			Low Voltage Digital Input	-
		I ² C Serial Clock	Digital	-
		SPI CLK	Digital	-
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO2	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO2			Low Voltage Digital Input	-
	SPI MISO	SPI MISO	-	Digital
	SLA 0	I ² C Slave Address Bit0	Digital	-
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO3	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO3			Low Voltage Digital Input	-
	PGA In0+	PGA Positive Input0	Analog	-
Ē	EXT OSC1	External CLK1 Input	Digital	-

Table 2. Functional Pin Description

Pin Name	Signal Name	Function	Input Options	Output Options
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO4	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO4			Low Voltage Digital Input	-
	PGA In1+	PGA Positive Input1	Analog	-
			Digital Input without Schmitt Trigger	Push-Pull
GPIO5	GPIO5	General Purpose IO with OE	eneral Purpose IO with OE Digital Input with Schmitt Trigger	
GPIO5			Low Voltage Digital Input	-
			Analog	-
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO6	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO6			Low Voltage Digital Input	-
	PGA In3+	PGA Positive Input3 Analog		-
	SLA 1	I ² C Slave Address Bit1	Digital	-
GPIO7			Digital Input without Schmitt Trigger	Push-Pull
		General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
			Low Voltage Digital Input	-
GPIO7	PGA In0-			-
	ACMP In+	ACMP Positive Input	Analog	-
	CS Out	Current Source Output	-	Analog
	SLA 2	I ² C Slave Address Bit2	Digital	-
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO8	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO8			Low Voltage Digital Input	-
GPIO8	PGA In1-	PGA Negative Input1	Analog	-
	DAC out	DAC Output	-	Analog
	SLA 3	I ² C Slave Address Bit3	Digital	-
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO9	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
GPIO9			Low Voltage Digital Input	-
	ACMP In+	ACMP Positive Input	Analog	-
	PGA Out+	PGA Positive Output	-	Analog

Pin Name	Signal Name	Function	Input Options	Output Options
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO10	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
			Low Voltage Digital Input	-
GPIO10	ACMP In-	ACMP Negative Input	Analog	-
	EXT OSC0 External CLK0 Input		Digital	-
	PGA Out-	PGA Negative Output	-	Analog
			Digital Input without Schmitt Trigger	Push-Pull
	GPIO11	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
			Low Voltage Digital Input	-
GPIO11	ADC Ext V _{REF} In	ADC External Voltage Reference Input	Analog	-
DAC Ext V _{REF} in DAC V _{REF} Buffer out		DAC External Voltage Reference Input	Analog	-
		DAC Voltage Reference Buffer Output	-	Analog
			Digital Input without Schmitt Trigger	Push-Pull
GPIO12	GPIO12	General Purpose IO with OE	Digital Input with Schmitt Trigger	Open-Drain NMOS
			Low Voltage Digital Input	-

3. Specifications

3.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to the absolute maximum conditions for extended periods may affect the device reliability.

	Parameter	Min	Мах	Unit	
V _{DD} Voltage to GND			4.5	V	
SDA/GPIO0 and SCL/GPIO1 Pin	Voltage to GND	- 0.3	V _{DD} + 0.3, up to 4.5	V	
GPIO2 – GPIO12, and GPI Pin Vo	bltage to GND	- 0.3	V _{DD} + 0.3, up to 4.5	V	
V _{DD} DC Current			90	mA	
GND DC Current			90	mA	
GPIO DC Current	Push-Pull Output Mode		8	mA	
GPIO DC Current	Open-Drain Output Mode		8		
Current at Input Pin		-1.0	1.0	mA	
Continuous Power Dissipation (JESD51-7, $T_A = +85^{\circ}C$)	STQFN 16L (Derate 16.7 mW/°C above $T_A = +85$ °C)	-	- 1083		
Junction Temperature	ure 150			°C	
Storage Temperature Range		-65	150	°C	
Moisture Sensitive Level			1		

3.2 ESD Ratings

Parameter	Min	Max	Unit
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)	500		V

3.3 Recommended Operating Conditions

Parameter	Conditions	Min	Тур	Мах	Unit
V _{DD} Supply Voltage Range		1.71	3.3	3.6	V
SDA/GPIO0 and SCL/GPIO1 Pin Voltage to GND		- 0.2		V _{DD} + 0.2, up to 4.5	V
GPIO2 – GPIO12, and GPI Pin Voltage to GND		- 0.2		V _{DD} + 0.2, up to 4.5	V
Operating Ambient Temperature Range (T _A)		-40		85	°C
Input Capacitor at V _{DD} Pin		0.1			μF
Analog Input Common Mode Range	Allowable Input Voltage at Analog Pins	-0.3		V _{DD}	V

3.4 Electrical Specifications

3.4.1. Logic IO Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Logic Input ^{[1] [3]}	$0.7 \times V_{DD}$			V
HIGH-Level Input Voltage	V _{IH}	Logic Input with Schmitt Trigger	$0.7 \text{ x V}_{\text{DD}}$			V
		Low-voltage Logic Input ^{[1] [3]}	0.9			V
		Logic Input ^{[1] [3]}			0.3 x V _{DD}	V
LOW-Level Input Voltage	V _{IL}	Logic Input with Schmitt Trigger			0.3 x V _{DD}	V
		Low-voltage Logic Input [1] [3]			0.3	V
Schmitt Trigger Hysteresis Voltage	V _{HYS}		0.166 x V _{DD}	0.23 x V _{DD}	0.304 x V _{DD}	V
		Push-pull, V _{DD} = 1.8 V ± 5 %, I _{OH} = 100 μA	0.994 x V _{DD}			V
		Push-pull, V _{DD} = 1.8 V ± 5 %, I _{OH} = 2 mA	0.895 x V _{DD}			V
HIGH-Level Output Voltage		Push-pull, V _{DD} = 2.5 V ± 10 %, I _{OH} = 100 μA	0.996 x V _{DD}			V
	V _{он}	Push-pull, V _{DD} = 2.5 V ± 10 %, I _{OH} = 2 mA	0.940 x V _{DD}			V
		Push-pull, V _{DD} = 3.3 V ± 10 %, I _{OH} = 100 μA	0.998 x V _{DD}			V
		Push-pull, V _{DD} = 3.3 V ± 10 %, I _{OH} = 2 mA	0.983 x V _{DD}			V
		Push-pull, V _{DD} = 1.8 V ± 5 %, I _{OH} = 100 μA			0.002 x V _{DD}	V
		Push-pull, V _{DD} = 1.8 V ± 5 %, I _{OH} = 2 mA			0.047 x V _{DD}	V
		Push-pull, V _{DD} = 2.5 V ± 10 %, I _{OH} = 100 μA			0.002 x V _{DD}	V
LOW-Level Output Voltage	V _{OL}	Push-pull, V _{DD} = 2.5 V ± 10 %, I _{OH} = 2 mA			0.028 x V _{DD}	V
		Push-pull, V _{DD} = 3.3 V ± 10 %, I _{OH} = 100 μA			0.001 x V _{DD}	V
		Push-pull, V _{DD} = 3.3 V ± 10 %, I _{OH} = 2 mA			0.019 x V _{DD}	V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		NMOS OD, V _{DD} = 1.8 V ± 5 %, I _{OH} = 100 μA			0.004 x V _{DD}	V
		NMOS OD, V _{DD} = 1.8 V ± 5 %, I _{OH} = 2 mA			0.077 x V _{DD}	V
	V	NMOS OD, V _{DD} = 2.5 V ± 10 %, I _{OH} = 100 μA			0.002 x V _{DD}	V
LOW-Level Output Voltage	V _{OL}	NMOS OD, V _{DD} = 2.5 V ± 10 %, I _{OH} = 2 mA			0.045 x V _{DD}	V
		NMOS OD, V _{DD} = 3.3 V ± 10 %, I _{OH} = 100 μA			0.002 x V _{DD}	V
		NMOS OD, V _{DD} = 3.3 V ± 10 %, I _{OH} = 2 mA			0.029 x V _{DD}	V
		Push-pull, V _{DD} = 1.8 V ± 5 %, V _{OH} = V _{DD} x 0.8	2.96			mA
HIGH-Level Output Pulse Current ^[2]	I _{OH}	Push-pull, V _{DD} = 2.5 V ± 10 %, V _{OH} = V _{DD} x 0.8	5.13			mA
		Push-pull, V _{DD} = 3.3 V ± 10 %, V _{OH} = V _{DD} x 0.8	8.41			mA
		Push-pull, V _{DD} = 1.8 V ± 5 %, V _{OL} = V _{DD} x 0.2	5.27			mA
		Push-pull, V _{DD} = 2.5 V ± 10 %, V _{OL} = V _{DD} x 0.2	9.09			mA
		Push-pull, V _{DD} = 3.3 V ± 10 %, V _{OL} = V _{DD} x 0.2	14.48			mA
		NMOS OD, PINs 4-5, V _{DD} = 1.8 V ± 5 %, V _{OL} = V _{DD} x 0.1	5.53			mA
LOW-Level Output Pulse Current ^[2]	I _{OL}	NMOS OD, PINs 4-5, V _{DD} = 2.5 V ± 10 %, V _{OL} = V _{DD} x 0.1	9.14			mA
		NMOS OD, PINs 4-5, V _{DD} = 3.3 V ± 10 %, V _{OL} = V _{DD} x 0.1	14.14			mA
		NMOS OD, PINs 6-16, V _{DD} = 1.8 V ± 5 %, V _{OL} = V _{DD} x 0.1	3.81			mA
		NMOS OD, PINs 6-16, V _{DD} = 2.5 V ± 10 %, V _{OL} = V _{DD} x 0.1	6.50			mA
		NMOS OD, PINs 6-16, V _{DD} = 3.3 V ± 10 %, V _{OL} = V _{DD} x 0.1	10.28			mA

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		From V _{DD} rising past PON _{THR} OTP load including SRAM		4.2	4.37	ms
		From V_{DD} rising past PON _{THR} OTP load excluding SRAM		1.7	1.93	ms
Startup Time	Τ _{su}	Transition from SLEEP mode to All ON mode, OTP load including SRAM		3.8		ms
		Transition from SLEEP mode to All ON mode, OTP load excluding SRAM		1.4		ms
		Transition from RETENTION mode to All ON mode		0.4		ms
Power-On Threshold	PON _{THR}	V_{DD} level required to start up the chip	1.44	1.5	1.56	V
Power-Off Threshold	POFF _{THR}	V_{DD} level required to switch off the chip	0.66	0.7	0.72	V
Pull-Up or Pull-Down		50 k for pull-up: $V_{IN} = GND$; for pull-down: $V_{IN} = V_{DD}$	35	50	65	kΩ
Resistance	R _{PULL}	10 k for pull-up: $V_{IN} = GND$; for pull-down: $V_{IN} = V_{DD}$	7	10	13	kΩ
Input Capacitance	6	PIN 9, 12, 13, 14, 15, 16 Input Capacity on one PIN, T _A = 25 °C		4.5		pF
	C _{IN}	PIN 3, 4, 5, 6, 8, 10 Input Capacity on one PIN, T _A = 25 °C		6.8		pF
Input Leakage Current [4]	I _{Leak}	Absolute Value			500	nA

[1] No hysteresis.

[2] DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.

[3] When using Logic Input without Schmitt Trigger the minimal slew rate of input signal is limited, please see section 4 IO Pins for details.

[4] Guaranteed by design, not tested in production.

3.4.2. I²C Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol Conditions	Fast-Mode		Fast-Mode Plus		Unit	
		Conditions	Min	Max	Min	Max	Unit
IO Stage							
LOW-Level Input Voltage	V _{IL}	Logic Input with Schmitt Trigger		0.3 x V _{DD}		0.3 x V _{DD}	V
		Low-voltage Logic Input [1]		0.3	N/A	N/A	

			Fast-M	lode	Fast-Mo	de Plus	
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
HIGH-Level Input Voltage	VIH	Logic Input with Schmitt Trigger	0.7 x V _{DD}		0.7 x V _{DD}		V
		Low-voltage Logic Input [1]	0.9		N/A	N/A	
Hysteresis of Schmitt Trigger Inputs	V _{HYS}		0.05 x V _{DD}		0.05 x V _{DD}		V
LOW-Level Output Voltage 1	V _{OL1}	Open-drain at 3 mA sink current, V _{DD} > 2 V	0	0.4	0	0.4	V
LOW-Level Output Voltage 2	V _{OL2}	Open-drain at 2 mA sink current, $V_{DD} \le 2 V$	0	0.2 x V _{DD}	0	0.2 x V _{DD}	V
		$V_{OL} = 0.4 \text{ V}, V_{DD} = 1.8 \text{ V}$	3		17		mA
		$V_{OL} = 0.4 \text{ V}, V_{DD} = 2.5 \text{ V}$	3		20		mA
LOW-Level Output Current ^[2]	I _{OL}	$V_{OL} = 0.4 \text{ V}, V_{DD} = 3.3 \text{ V}$	3		20		mA
		V _{OL} = 0.6 V	6				mA
Output Fall Time from $V_{IH(MIN)}$ to $V_{IL(MAX)}$ ^[2]	t _{of}		-	250	-	120	ns
Pulse Width of Spikes that must be suppressed by the Input Filter	t _{SP}		0	10 ^[3]	0	10 ^[3]	ns
Input Current Each IO Pin	li	$0.1 \text{ x } V_{DD} < V_{I} < 0.9 \text{ x } V_{DD(MAX)}$	-10	+10	-10	+10	μA
Capacitance for Each IO Pin	Ci			10		10	pF
Timing (See Figure 205 for D	iagram)						
Clock Frequency, SCL	f _{SCL}			400		1000	kHz
Clock Pulse Width Low	t _{LOW}		1300		500		ns
Clock Pulse Width High	t _{HIGH}		600		260		ns
Start Hold Time	t _{HD_STA}		600		260		ns
Set-up Time for a Repeated START Condition	t _{su_sta}		600		260		ns
Data Hold Time	t _{HD_DAT}	Logic Input with Schmitt Trigger	0 [4]		0 [4]		ns
		Low-voltage Logic Input	70 ^[4]		N/A	N/A	
Data Set-Up Time	t _{su_dat}	Logic Input with Schmitt Trigger	100		50		ns
		Low-voltage Logic Input	100		N/A	N/A	
Rise Time of both SDA and SCL Signals	t _R			300		120	ns

Demonster	Conditions		Fast-M	lode	Fast-Mod	de Plus	Unit	
Parameter	Symbol	Conditions	Conditions Min N		Min Max			
Fall Time of both SDA and SCL Signals	t⊧			300		120	ns	
Set-Up Time for STOP Condition	t _{su_sто}		600		260		ns	
Bus Free Time between STOP and START Condition	t _{BUF}		1300		500		ns	
Capacitive Load for Each Bus Line	C _b			400		400	pF	
Data Valid Time	t _{VD_DAT}			900		450	ns	
Data Valid Acknowledge Time	t _{VD_ACK}			900		450	ns	

[1] No hysteresis.

[2] Does not meet standard I²C specifications: $t_{OF(MIN)} = 20 \times (V_{DD}/5.5 \text{ V})$; for Fast-Mode Plus, $I_{OL(MIN)} = 20 \text{ mA at } V_{OL} = 0.4 \text{ V}$.

[3] Does not meet standard I²C specifications: pulse width of spikes that must be suppressed by the input filter – 50 ns.

[4] Does not meet standard I²C specifications.

3.4.3. SPI Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Max	Unit
IO Stage			·		
		Schmitt Trigger Input		$0.3 \text{ x V}_{\text{DD}}$	
LOW-Level Input Voltage	V _{IL}	Low-voltage Logic Input		0.3	V
		Schmitt Trigger Input	0.7 x V _{DD}		
HIGH-Level Input Voltage	VIH	Low-voltage Logic Input	0.9		V
LOW-Level Output Voltage	V _{OL}	I _{OL} = 1 mA	0	0.2	V
HIGH-Level Output Voltage	V _{OH}	I _{OH} = -1 mA	V _{DD} - 0.2 V		V
Timing (See Figure 216 for Dia	gram)		·		
		Receive only operation. Logic Input with Schmitt Trigger Cpol = 0, Cpha = 0	52		
CLK Period	t _{CP}	Receive only operation. Low-voltage Logic Input Cpol = 0, Cpha = 0	95		ns
		Receive and transmit operations Logic Input with Schmitt Trigger Cpha = 0	85		

Parameter	Symbol	Conditions	Min	Мах	Unit
		Receive and transmit operations Logic Input with Schmitt Trigger Cpha = 1	205		ns
CLK Period	t _{CP}	Receive and transmit operations Low-voltage Logic Input Cpol = 0, Cpha = 0	294		
		Logic Input with Schmitt Trigger	52		
CLK Pulse Width High	t _{сн}	Low-voltage Logic Input	10		ns
CLK Pulse Width Low		Logic Input with Schmitt Trigger	21		
CLK Pulse Width Low	tc∟	Low-voltage Logic Input	95		ns
nCS Fall to CLK First Edge		Logic Input with Schmitt Trigger	14		
Setup	t _{css}	Low-voltage Logic Input	85		ns
CLK Last Edge to nCS Rise Hold	t _{csн}		25		ns
nCS Pulse Width High	t _{csw}		25		ns
Data Hold Time	t _{DIH}		10		ns
Data Sat Lin Timo	+	Logic Input with Schmitt Trigger	0		200
Data Set-Up Time	t _{DIS}	Low-voltage Logic Input	91		- ns

3.4.4. Estimated Typical Current of Macrocell Specifications

Typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	V _{DD} = 1.8 V	V _{DD} = 2.5 V	V _{DD} = 3.3 V	Unit																									
		Power Detector + Matrix 0 active (SLEEP mode)	0.5	0.5	0.6	μA																									
		Power Detector + Matrix 0 active + Memory Table and Data Buffers retained (RETENTION mode)	4.7	4.8	4.9	μA																									
		Power Detector + I ² C/SPI + Matrix 0 active + Matrix 1 active (All ON mode)	30.1	30.4	30.7	μA																									
	I _{DD}	I _{DD}	Temperature Sensor	17.6	17.8	18.0	μA																								
Current			I _{DD} -	OSC1 20 MHz, Pre-divider = 1	27.1	27.0	27.0	μA																							
Current					IDD	IDD		-		IDD	OSC1 20 MHz, Pre-divider = 4	30.0	29.9	29.9	μA																
																								-			OSC1 20 MHz, Pre-divider = 8	29.5	29.4	29.4	μA
																		OSC1 40 MHz, Pre-divider = 1	49.8	49.7	49.7	μA									
									OSC1 40 MHz, Pre-divider = 4	55.5	55.5	55.5	μΑ																		
		OSC1 40 MHz, Pre-divider = 8	54.5	54.5	54.5	μA																									
		OSC0 2 kHz, Pre-divider = 1	0.5	0.8	1.4	μA																									

Parameter	Symbol	Conditions	V _{DD} = 1.8 V	V _{DD} = 2.5 V	V _{DD} = 3.3 V	Unit		
		OSC0 2 kHz, Pre-divider = 4	0.5	0.8	1.4	μA		
		OSC0 2 kHz, Pre-divider = 8	0.5	0.8	1.4	μA		
		OSC0 10 kHz, Pre-divider = 1	0.5	0.8	1.5	μA		
		OSC0 10 kHz, Pre-divider = 4	0.5	0.8	1.5	μA		
		OSC0 10 kHz, Pre-divider = 8	0.5	0.8	1.5	μA		
		ACMP (V_{REF} Source - Internal $V_{IN+} = 0 V$; $V_{IN-} = 27 mV$)	5.8	5.8	5.9	μΑ		
		PGA, Mode 2, Gain = 64, $V_{IN} = V_{DD}/64$	18.6	20.5	24.1	μA		
		PGA, Mode 3, Gain = 64, $V_{IN(CM)} = V_{DD}/2$, $V_{IN(DIFF)} = V_{DD}/64$	26.9	28.7	32.3	μA		
		PGA, Mode 4, Gain = 64, $V_{IN+} = V_{DD}/32$, $V_{IN-} = V_{DD}/64$	16.1	17.9	21.5	μA		
		PGA, Mode 5, Gain = 64, $V_{IN+} = V_{DD}/64$, $V_{IN-} = V_{DD}/128$, $V_{REF} = V_{DD}/2$ (ADC V_{REF} buffer ON)	873.4	878.8	887.5	μA		
		PGA, Mode 5, Gain = 64, $V_{IN+} = V_{DD}/64$, $V_{IN-} = V_{DD}/128$, Ext V_{REF} (ADC V_{REF} buffer OFF)	37.2	39.1	42.8	μΑ		
Current	I _{DD}	PGA, Mode 6, $V_{IN} = V_{DD}/2$	19.1	20.5	23.9	μA		
		ADC, 14-bit resolution, 40 MHz CLK, 1 Msps, continuous conversion operation, four input channels sampled, $V_{REF} = 1.62$ V internal	1180	1197	1222	μΑ		
				ADC, 14-bit resolution, 40 MHz CLK, 1 Msps, continuous conversion operation, four input channels sampled, V_{REF} = 1.62 V external	331.7	346.5	367.2	μΑ
		ADC, 8-bit resolution, 40 MHz CLK, 2.35 Msps, continuous conversion operation, one input channel sampled, V_{REF} = 1.62 V internal	1214	1244	1285	μA		
		ADC, 8-bit resolution, 40 MHz CLK, 2.35 Msps, continuous conversion operation, one input channel sampled, V_{REF} = 1.62 V external	348.9	377.2	416.2	μA		
		DAC, static code = 7FFh, DAC buffer ON, V _{REF} = 1.62 V internal	869.5	902.9	940.0	μA		
		DAC, static code = 000h, DAC buffer ON, V _{REF} = 1.62 V internal	791.4	842.6	882.9	μA		
		DAC, static code = 7FFh, DAC buffer ON, V_{REF} = 1.62 V external	848.8	883.0	920.8	μA		
		DAC, static code = 000h, DAC buffer ON, V _{REF} = 1.62 V external	787.8	835.2	876.0	μA		

Parameter	Symbol	Conditions	V _{DD} = 1.8 V	$V_{DD} = 2.5 V$	V _{DD} = 3.3 V	Unit
		DAC, static code = 7FFh, DAC buffer OFF, V_{REF} = 1.62 V internal	118.1	118.3	118.7	μA
		DAC, static code = 7FFh, DAC buffer OFF, V _{REF} = 1.62 V external	107.1	107.2	107.4	μA
		DAC, code is incrementing by +1 from 0 to FFF, 1.042 MHz clock, DAC buffer ON, V _{REF} = 1.62 V internal ^[1]	879.8	914.3	951.4	μA
Current	I _{DD}	DAC, code is incrementing by +1 from 0 to FFF, 1.042 MHz clock, DAC buffer ON, $V_{REF} = 1.62$ V external ^[1]	812.7	859.7	900.2	μA
		DAC, code is incrementing by +1 from 0 to FFF, 1.042 MHz clock, DAC buffer OFF, V _{REF} = 1.62 V internal ^[1]	139.4	139.6	140.0	μA
		DAC, code is incrementing by +1 from 0 to FFF, 1.042 MHz clock, DAC buffer OFF, V _{REF} = 1.62 V external ^[1]	85.1	85.2	85.4	μA
		Current Source. Setting 1 µA.	9.3	9.3	9.4	μA

3.4.5. Estimated Typical Delay for Each Macrocell

Typical values are at $T_A = +25$ °C, unless otherwise specified.

			V _{DD} =	1.8 V	V _{DD} =	= 2.5 V	V _{DD} =	: 3.3 V	
Parameter	Symbol	Conditions	Rising [1]	Falling	Rising [1]	Falling	Rising [1]	Falling	Unit
GPI and GP	IO Macroo	cell			•				•
Delay	t _{PD}	Digital Input to PP (Matrix0)	23	22	15	14	12	12	ns
Delay	t _{PD}	Digital Input to PP (Matrix0 to Matrix1)	23	19	17	15	14	13	ns
Delay	t _{PD}	Digital Input to PP (Matrix1)	19	17	15	13	13	12	ns
Delay	t _{PD}	Digital Input with Schmitt Trigger to PP (Matrix0)	24	22	16	15	13	12	ns
Delay	t _{PD}	Digital Input with Schmitt Trigger to PP (Matrix1)	20	18	16	14	14	12	ns
Delay	t _{PD}	Low Voltage Digital Input to PP (Matrix0)	22	77	15	48	12	36	ns
Delay	t _{PD}	Low Voltage Digital Input to PP (Matrix1)	18	72	14	47	13	37	ns
Delay	t _{PD}	Digital Input to NMOS (Matrix0)		22		14		12	ns
Delay	t _{PD}	Output Enable from Pin, OE Hi-Z to 1 (Matrix0)	22		15		12		ns
Delay	t _{PD}	Output Enable from Pin, OE Hi-Z to 0 (Matrix0)		21		14		12	ns

ParameterSymbolConditionsRising in the initial sector initial sector in the initial sector initial sec				V _{DD} =	1.8 V	V _{DD} =	2.5 V	$V_{DD} = 3.3 V$		
DelaytraPP 3 State Hi-Z to 0 (Matrix0)-21-14-12Combination version versi	Parameter	Symbol	Conditions						Falling [1]	Unit
Combination FunctionMacrocellCombination FunctionDelay17 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Delay	t _{PD}	PP 3 State Hi-Z to 1 (Matrix0)	22		15		12		ns
DelayLatch Q (Matrix0)10127755DelayLatch Q (Matrix1)333333333DelayLoLatch nQ (Matrix 0)11107665DelayLoLatch nQ (Matrix 1)544DelayLoLatch nRST High Q (Matrix 0)12128866DelayLoLatch nRST High Q (Matrix 0)12128866DelayLoLatch nRST High nQ (Matrix 0)12128866DelayLoLatch nRST High nQ (Matrix 0)12128866DelayLoLatch nRST High nQ (Matrix 0)121288666DelayLoLatch nRST Low Q (Matrix 1)33<	Delay	t _{PD}	PP 3 State Hi-Z to 0 (Matrix0)		21		14		12	ns
DelayIncIntermIntermIntermIntermIntermIntermIntermDelayIntermI	Combinatio	n Functio	n Macrocell							
LATCH Q (Matrix 1)3333333DelayhebLATCH Q (Matrix 0)1110766665DelayhebLATCH nQ (Matrix 1)54444DelayhebLATCH nRST High Q (Matrix 0)12128876666DelayhebLATCH nRST High Q (Matrix 0)121288886666DelayhebLATCH nRST High Q (Matrix 0)121288886666DelayhebLATCH nRST High nQ (Matrix 0)1212833333333333DelayhebLATCH nRST Low Q (Matrix 1)334343434343434<	Dula		LATCH Q (Matrix0)	10	12	7	7	5	5	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Delay	τ _{PD}	LATCH Q (Matrix1)	3	3	3	3	3	3	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dalass		LATCH nQ (Matrix 0)	11	10	7	6	6	5	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	t _{PD}	LATCH nQ (Matrix 1)	5		4		4		ns
LinkLATCH nRST High Q (Matrix 1)5444DelayHroLATCH nRST High nQ (Matrix 0)121288886666LATCH nRST High nQ (Matrix 1)333333333DelayHroLATCH nRST Low Q (Matrix 0)121277886666LATCH nRST Low Q (Matrix 0)121277886666DelayHroLATCH nRST Low Q (Matrix 0)121188776657DelayHroLATCH nRST Low Q (Matrix 0)121188706657DelayHroLATCH nRST Low nQ (Matrix 0)1211881006668DelayHroLATCH nSET High Q (Matrix 0)1216881006668DelayHroLATCH nSET High Q (Matrix 0)161210778866DelayHroLATCH nSET High nQ (Matrix 0)161210708866DelayHroLATCH nSET Low Q (Matrix 0)16121067707070DelayHroLATCH nSET Low Q (Matrix 0)1612106870	Delevi		LATCH nRST High Q (Matrix 0)	12	12	8	7	6	6	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	ι _{PD}	LATCH nRST High Q (Matrix 1)	5		4		4		ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Delevi		LATCH nRST High nQ (Matrix 0)	12	12	8	8	6	6	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	τ _{PD}	LATCH nRST High nQ (Matrix 1)	3	3	3	3	3	3	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dalass		LATCH nRST Low Q (Matrix 0)	12	12	7	8	6	6	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	τ _{PD}	LATCH nRST Low Q (Matrix 1)	3	3	3	3	3	3	ns
$ \frac{1}{1} = \frac{1}{1} + 1$	Dalas		LATCH nRST Low nQ (Matrix 0)	12	11	8	7	6	5	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	ι _{PD}	LATCH nRST Low nQ (Matrix 1)	5		4		4		ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dalass		LATCH nSET High Q (Matrix 0)	12	16	8	10	6	8	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	ι _{PD}	LATCH nSET High Q (Matrix 1)	3	4	3	4	3	4	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dula		LATCH nSET High nQ (Matrix 0)	16	12	10	7	8	6	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Delay	τ _{PD}	LATCH nSET High nQ (Matrix 1)	6		6		5		ns
LATCH nSET Low Q (Matrix 1) 5 4 4 Delay tpD LATCH nSET Low nQ (Matrix 0) 16 12 10 8 8 6 LATCH nSET Low nQ (Matrix 1) 4 3 4 3 4 3		_	LATCH nSET Low Q (Matrix 0)	12	16	8	10	6	7	ns
Delay t _{PD} LATCH nSET Low nQ (Matrix 1) 4 3 4 3 4 3	Delay	t _{PD}	LATCH nSET Low Q (Matrix 1)	5		4		4		ns
LATCH nSET Low nQ (Matrix 1) 4 3 4 3 4 3		_	LATCH nSET Low nQ (Matrix 0)	16	12	10	8	8	6	ns
LATCH16 Second nRST High nQ (Matrix 0) 13 8 6	Delay	t _{PD}	LATCH nSET Low nQ (Matrix 1)	4	3	4	3	4	3	ns
	Dala		LATCH16 Second nRST High nQ (Matrix 0)	13		8		6		ns
Delay t _{PD} LATCH17 Second nRST High nQ (Matrix 1) 3 3 3	Delay	τ _{PD}	LATCH17 Second nRST High nQ (Matrix 1)	3		3		3		ns
Delay	Dolori		2-bit LUT (Matrix 0)	8	9	5	5	4	4	ns
Delay t _{PD} 2-bit LUT (Matrix 1) 3 3 3 3 3 3	Delay	τ _{PD}	2-bit LUT (Matrix 1)	3	3	3	3	3	3	ns

			V _{DD} =	1.8 V	V _{DD} =	2.5 V	2.5 V V _{DD} =	3.3 V	
Parameter	Symbol	Conditions	Rising [1]	Falling [1]	Rising [1]	Falling [1]	Rising [1]	Falling	Unit
Delevi		3-bit LUT (Matrix 0)	10	10	6	6	5	5	ns
Delay	t _{PD}	3-bit LUT (Matrix 1)	3	3	3	3	3	3	ns
Delay	t _{PD}	4-bit LUT (Matrix 0)	11	10	7	6	5	5	ns
Delay	чрD	4-bit LUT (Matrix 1)	2	2	2	2	2	2	ns
Delay	t	DFF Q (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	DFF Q (Matrix 1)	3		3		3		ns
Dalau		DFF nQ (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	DFF nQ (Matrix 1)	3		3		3		ns
Delay	t _{PD}	DFF nRST High Q (Matrix 0)		14		8		6	ns
		DFF nRST High nQ (Matrix 0)	14		9		7		ns
Delay	t _{PD}	DFF nRST High nQ (Matrix 1)	3		3		3		ns
Delevi		DFF nRST Low Q (Matrix 0)		14		9		7	ns
Delay	t _{PD}	DFF nRST Low Q (Matrix 1)		3		3		3	ns
-		DFF nRST Low nQ (Matrix 0)	14		9		7		ns
Delay	t _{PD}	DFF nRST Low nQ (Matrix 1)	5		4		4		ns
-		DFF nSET High Q (Matrix 0)	14		9		7		ns
Delay	t _{PD}	DFF nSET High Q (Matrix 1)	3		3		3		ns
Delay	t _{PD}	DFF nSET High nQ (Matrix 0)		14		8		6	ns
		DFF nSET Low Q (Matrix 0)	14		9		7		ns
Delay	t _{PD}	DFF nSET Low Q (Matrix 1)	5		5		4		ns
		DFF nSET Low nQ (Matrix 0)		14		9		7	ns
Delay	t _{PD}	DFF nSET Low nQ (Matrix 1)		4		4		4	ns
Dub		Shift Register Transition (Matrix 0)	19	17	12	11	9	8	ns
Delay	t _{PD}	Shift Register Transition (Matrix 1)	4		4		4		ns
Delevi		Shift Register Reset (Matrix 0)	18 [2]	18 ^[2]	11 ^[2]	11 ^[2]	8 [2]	8 [2]	ns
Delay	t _{PD}	Shift Register Reset (Matrix 1)		4 [2]		4 ^[2]		4 ^[2]	ns

			V _{DD} =	1.8 V	V _{DD} =	= 2.5 V	V _{DD} =		
Parameter	Symbol	Conditions	Rising	Falling	Rising [1]	Falling	Rising [1]	Falling [1]	Unit
Multi-Funct	ion Macro	cell		•	L		L		
Dala		Multi-function LATCH Q (Matrix 0)	12	13	7	8	6	6	ns
Delay	t _{PD}	Multi-function LATCH Q (Matrix 1)	3	3	3	3	3	3	ns
Dalau		Multi-function LATCH nQ (Matrix 0)	12	11	8	7	6	5	ns
Delay	t _{PD}	Multi-function LATCH nQ (Matrix 1)	5		4		4		ns
Delay		Multi-function LATCH nRST Q (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	Multi-function LATCH nRST Q (Matrix 1)	3	3	3	3	3	3	ns
Delay		Multi-function LATCH nRST nQ (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	Multi-function LATCH nRST nQ (Matrix 1)	5		4		4		ns
Dula		Multi-function LATCH nSET Q (Matrix 0)	13	17	9	10	7	8	ns
Delay	t _{PD}	Multi-function LATCH nSET Q (Matrix 1)	5		4		4		ns
Delay		Multi-function LATCH nSET nQ (Matrix 0)	17	13	11	8	8	6	ns
Delay	t _{PD}	Multi-function LATCH nSET nQ (Matrix 1)	5	3	5	3	5	3	ns
Dula		Multi-function 3-bit LUT (Matrix 0)	11	11	7	7	5	5	ns
Delay	t _{PD}	Multi-function 3-bit LUT (Matrix 1)	3	3	3	3	3	3	ns
Dalau		Multi-function 3-bit LUT, CNT Delay (Matrix 0)	26	29	16	18	12	13	ns
Delay	t _{PD}	Multi-function 3-bit LUT, CNT Delay (Matrix 1)	6	7	6	7	6	7	ns
Dula		Multi-function Edge Detect (Matrix 0)	13 ^[2]	13 ^[2]	8 ^[2]	9 [2]	6 ^[2]	7 ^[2]	ns
Delay	t _{PD}	Multi-function Edge Detect (Matrix 1)	3 [2]	5 ^[2]	3 ^[2]	5 ^[2]	3 [2]	4 ^[2]	ns
		Multi-function Edge Detect (Matrix 0)	56 ^[2]	57 ^[2]	35 ^[2]	35 ^[2]	27 ^[2]	27 ^[2]	ns
Width	t _{PD}	Multi-function Edge Detect (Matrix 1)	22 [2]	24 [2]	23 ^[2]	24 ^[2]	23 ^[2]	24 ^[2]	ns
Dula		Multi-function DFF Q (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	Multi-function DFF Q (Matrix 1)	4		4		4		ns
Deleti		Multi-function DFF nQ (Matrix 0)	13	13	8	8	6	6	ns
Delay	t _{PD}	Multi-function DFF nQ (Matrix 1)	3		3		3		ns
Dala		Multi-function DFF nRST Q (Matrix 0)		14		9		7	ns
Delay	t _{PD}	Multi-function DFF nRST Q (Matrix 1)		3		3		3	ns

			V _{DD} =	= 1.8 V	V _{DD} =	= 2.5 V	V _{DD} =	: 3.3 V	
Parameter	Symbol	Conditions	Rising [1]	Falling	Rising [1]	Falling [1]	Rising [1]	Falling	Unit
Delay	+	Multi-function DFF nRST nQ (Matrix 0)	14		9		7		ns
Delay	t _{PD}	Multi-function DFF nRST nQ (Matrix 1)	5		5		4		ns
Dolov	+	Multi-function DFF nSET Q Matrix 0)	14		9		7		ns
Delay	t _{PD}	Multi-function DFF nSET Q (Matrix 1)	5		5		4		ns
D. I.		Multi-function DFF nSET nQ (Matrix 0)		14		9		7	ns
Delay	t _{PD}	Multi-function DFF nSET nQ (Matrix 1)		4		4		4	ns
Filter Macro	ocell								
Delay	t _{PD}	Filter Q	11	11	11	11	11	11	ns
Delay	t _{PD}	Filter nQ	9	13	10	13	10	12	ns
Edge Detec	tor Macro	cell							
Delay	t _{PD}	Edge Detector	6 [2]	8 [2]	6 ^[2]	7 [2]	6 [2]	7 [2]	ns
Width	tw	Edge Detector	26 [2]	26 [2]	26 ^[2]	26 ^[2]	27 ^[2]	27 ^[2]	ns
Width Conv	erter Mac	rocell							
Delay	t _{PD}	Width Converter Clock	3 [2]		3 [2]		3 [2]		ns
[1] Edge at [2] Edge at	-								

3.4.6. Programmable Delay Typical Delays and Widths

Typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Note	V _{DD} = 1.8 V	V _{DD} = 2.5 V	V _{DD} = 3.3 V	Unit
Pulse Width	tw	Mode (any) edge detect, edge detect output	253	157	117	ns
Delay	time1	Mode (any) edge detect, edge detect output	26	17	13	ns
Delay	time2	Mode: both edge delay, edge detect output	277	173	129	ns

3.4.7. Typical Filter Rejection Pulse Width

Typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	V _{DD} = 1.8 V	$V_{DD} = 2.5 V$	$V_{DD} = 3.3 V$	Unit
Filtered Pulse Width	T _{BLOCK}	< 8	< 11	< 10	ns
Filtered Pulse Width	T _{PASS}	> 14	> 13	> 12	ns

3.5 Counter/Delay Specifications

3.5.1. Typical Counter/Delay Offset

Typical values are at $T_A = +25$ °C, unless otherwise specified.

Parameter	OSC Frequency	OSC Power Control	V _{DD} = 1.8 V	V _{DD} = 2.5 V	V _{DD} = 3.3 V	Unit
Maximum Power-On Time	20 MHz	auto	35	30	30	ns
Maximum Power-On Time	40 MHz	auto	33	30	28	ns
Maximum Power-On Time	2 kHz	auto	135	136	126	μs
Maximum Power-On Time	10 kHz	auto	23	34	24	μs
Frequency Settling Time (settle from 95 % to 105 % of target frequency)	20 MHz	auto	3	3	3	Nominal CLK periods
Frequency Settling Time (settle from 95 % to 105 % of target frequency)	40 MHz	auto	5	5	5	Nominal CLK periods
Frequency Settling Time (settle from 95 % to 105 % of target frequency)	2 kHz	auto	2	2	2	Nominal CLK periods
Frequency Settling Time (settle from 95 % to 105 % of target frequency)	10 kHz	auto	3	2	2	Nominal CLK periods
Variable (CLK period)	20 MHz	forced	0 - 1	0 - 1	0 - 1	Nominal CLK periods
Variable (CLK period)	40 MHz	forced	0 - 1	0 - 1	0 - 1	Nominal CLK periods
Variable (CLK period)	2 kHz	forced	0 - 1	0 - 1	0 - 1	Nominal CLK periods
Variable (CLK period)	10 kHz	forced	0 - 1	0 - 1	0 - 1	Nominal CLK periods

3.6 Oscillator Specifications

3.6.1. Oscillators Frequency Limits

 V_{DD} = 1.71 V to 3.6 V, unless otherwise specified.

	Temperature Range										
Parameter	+25 °C			-40 °C to +85 °C							
	Min [kHz]	Max [kHz]	Error [%]	Min [kHz]	Max [kHz]	Error [%]					
	1.040	0.000	1.65	1.889 2.0	1.000	4 000	4 999				2.90
2 kHz OSC0	1.948	2.033	-2.60		2.058	-5.55					
	0 705	40.055	2.55			10.000	3.69				
10 kHz OSC0	9.785	10.255	-2.15	9.509	10.369	-4.91					

Parameter	Temperature Range						
	+25 °C			-40 °C to +85 °C			
	Min [kHz]	Max [kHz]	Error [%]	Min [kHz]	Max [kHz]	Error [%]	
	19462.6	20570.2	2.88	19096.3 2	21051.6	5.26	
20 MHz OSC1	19462.6	20576.2	-2.69			-4.52	
	39650	40350	0.88	38883.8	41318.0	3.30	
40 MHz OSC1	53050	40330	-0.88			-2.79	

3.6.2. Oscillator0 2 kHz/10 kHz Power-On Delay

 T_A = 25 °C, OSC power setting: "Auto Power-on", unless otherwise specified.

V _{DD} Range [V]	OSCO	2 kHz	OSC0	10 kHz
	Typ [µs]	Max [µs]	Typ [µs]	Max [µs]
1.71	129	159	19	28
1.8	124	135	17	23
2.5	122	136	24	34
3.0	117	129	20	27
3.3	114	126	18	24
3.6	112	124	16	21

3.6.3. Oscillator1 20 MHz/40 MHz Power-On Delay

T_A = 25 °C, OSC power setting: "Auto Power-on", unless otherwise specified.

VDD Range [V]	OSC1	20 MHz	OSC1 40 MHz		
	Typ [cycle]	Max [cycle]	Typ [cycle]	Max [cycle]	
1.71	0.6	0.7	1.2	1.4	
1.8	0.6	0.7	1.2	1.4	
2.5	0.5	0.6	1.1	1.2	
3.0	0.5	0.6	1.0	1.2	
3.3	0.5	0.6	1.0	1.2	
3.6	0.5	0.6	1.0	1.2	

3.7 Analog Comparator Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Note	Conditions	Min	Тур	Max	Unit
ACMP Input		Positive Input		0		V _{DD}	V
Voltage Range	V _{ACMP}	Negative Input		0		Vdd	V
ACMP Input		ACMP V _{HYS} = 0 mV,	T _A = 25 °C	-6.95		6.28	mV
Offset	Voffset	Gain = 1, V _{REF} = 27 mV to 1620 mV	$T_A = -40 \ ^\circ C$ to 85 $^\circ C$	-9.89		6.76	mV
					0.2		mV
ACMP Built-In		Selectable hysteresis (Comparator threshold should	T 05 00		25.6		
Hysteresis ^[1]	V _{HYS}	be larger than hysteresis voltage when used)	T _A = 25 °C		52.5		
		voltage when used)			160.7		
ACMP Startup	tstart	ACMP Power-on delay, Minimal required wake time for the "Wake and Sleep function"	V _{REF} auto power-on			121.4	μs
Time			V _{REF} forced power-on			19.2	μs
	R _{SIN}	Gain = 1x			10		GΩ
Series Input Resistance		Gain = 0.5x			1.1		MΩ
Resistance		Gain = 0.33x			1.1		MΩ
	(LOW (HIGH PROP (LOW (HIGH	$Gain = 1,$ $V_{REF} = 27 \text{ mV to 1620 mV},$ $Overdrive = 10 \text{ mV}$ $(LOW to HIGH: V_{REF} - 100 \text{ mV}$ $to V_{REF} + Overdrive)$ $(HIGH to LOW: V_{REF} + 100 \text{ mV}$ $to V_{REF} - Overdrive)$ $Gain = 1,$ $V_{REF} = 27 \text{ mV to 1620 mV},$ $Overdrive = 100 \text{ mV}$ $(LOW to HIGH: V_{REF} - 100 \text{ mV}$ $to V_{REF} + Overdrive)$ $(HIGH to LOW: V_{REF} + 100 \text{ mV}$ $to V_{REF} - Overdrive)$ $(HIGH to LOW: V_{REF} + 100 \text{ mV}$ $to V_{REF} - Overdrive)$ $Gain = 1, T_A = 25 \text{ °C},$ $V_{REF} = 27 \text{ mV},$ $Overdrive = 10 \text{ mV}$ $(LOW to HIGH: V_{REF} - 100 \text{ mV}$ $to V_{REF} + Overdrive)$ $(LOW to HIGH: V_{REF} - 100 \text{ mV}$ $to V_{REF} + Overdrive)$ $(HIGH to LOW: V_{REF} + 100 \text{ mV}$ $to V_{REF} - Overdrive)$	LOW to HIGH		1.52	3.19	μs
			HIGH to LOW		2.11	6.71	μs
Propagation			LOW to HIGH		0.46	1.19	μs
Delay, Response Time			HIGH to LOW		0.69	1.24	μs
			LOW to HIGH		0.98		μs
			HIGH to LOW		1.79		μs
Parameter	Symbol	Note	Conditions	Min	Тур	Max	Unit
---	--	--	-------------	-------	-------	-------	------
		Gain = 0.5, T_A = 25 °C, V_{REF} = 27 mV, Overdrive = 10 mV	LOW to HIGH		1.42		μs
Propagation Delay, PROP Response Time		(LOW to HIGH: V _{REF} -100 mV to V _{REF} + Overdrive) (High to Low: V _{REF} + 100 mV to V _{REF} - Overdrive)	HIGH to LOW		2.20		μs
		Gain = 0.33, T_A = 25 °C, V_{REF} = 27 mV, Overdrive = 10 mV (LOW to HIGH: V_{REF} - 100 mV	LOW to HIGH		1.38		μs
	to V_{REF} + Overdrive) (HIGH to LOW: V_{REF} + 100 mV to V_{REF} - Overdrive)	HIGH to LOW		2.11		μs	
		Gain = 1, T_A = 25 °C, V_{REF} = 27 mV, Overdrive = 100 mV (LOW to HIGH: V_{REF} – 100 mV	LOW to HIGH		0.34		μs
	PROP	to V _{REF} + Overdrive)	HIGH to LOW		1.03		μs
		$\label{eq:Gain} \begin{array}{l} \text{Gain} = 0.5, \ \text{T}_{\text{A}} = 25 \ ^{\circ}\text{C}, \\ V_{\text{REF}} = 27 \ \text{mV}, \\ \text{Overdrive} = 100 \ \text{mV} \\ \text{(LOW to HIGH: } V_{\text{REF}} - 100 \ \text{mV} \\ \text{to } V_{\text{REF}} + \text{Overdrive}) \\ \text{(HIGH to LOW: } V_{\text{REF}} + 100 \ \text{mV} \\ \text{to } V_{\text{REF}} - \text{Overdrive}) \end{array}$	LOW to HIGH		0.55		μs
			HIGH to LOW		1.44		μs
		Gain = 0.33, $T_A = 25 \text{ °C}$, $V_{REF} = 27 \text{ mV}$, Overdrive = 100 mV (I OW) to HIGH: Vare = 100 mV	LOW to HIGH		0.53		μs
		(LOW to HIGH: V _{REF} - 100 mV to V _{REF} + Overdrive) (HIGH to LOW: V _{REF} + 100 mV to V _{REF} - Overdrive)	HIGH to LOW		1.39		μs
Gain Error		G = 1		1	1	1	
(Note: ACMP comparator	G	G = 0.5		0.481	0.501	0.519	
offset is included)		G = 0.33	1	0.317	0.332	0.344	

3.8 Programmable Gain Amplifier Specifications

3.8.1. PGA Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Input Parameters				•		•
Input Common- Mode Voltage Range ^{[1], [2]}	V _{CMR}	Conditionally rail-to-rail depending on different modes	- 0.3		V _{DD}	V
		PGA is configured as mode 5b, gain = 1		57.7		
		PGA is configured as mode 5b, gain = 2		76.2		
Oseran Mada		PGA is configured as mode 5b, gain = 4		80.2		
Common-Mode Rejection Ratio	CMRR (RTI)	PGA is configured as mode 5b, gain = 8		69.5		dB
(Referred to Input)	(((()))	PGA is configured as mode 5b, gain = 16		70.1		
		PGA is configured as mode 5b, gain = 32		73.8		
		PGA is configured as mode 5b, gain = 64		79.7		
Power Supply	PSRR	PGA is configured as mode 3, gain = 1. Includes gain resister matrix.		111.2		
		PGA is configured as mode 3, gain = 64. Includes gain resister matrix.		82.6		
Rejection Ratio		PGA is configured as mode 5a, gain = 1. Includes gain resister matrix.		57.7		dB
		PGA is configured as mode 5a, gain = 64. Includes gain resister matrix.		52.2		
		PGA is configured as mode 6, T _A = 25 °C, V _{DD} = 1.71 V to 2.5 V	-12	0.2	14	
		PGA is configured as mode 6, T _A = 25°C, V _{DD} = 3.3 V	-25	0.9	32	
Input Bias Current ^[3] (Including PIN Leakage Current)	I _B	PGA is configured as mode 6, T _A = -40 °C to +85 °C, V _{DD} = 1.71 V to 2.5 V	-15	1.8	28	nA
		PGA is configured as mode 6, T _A = -40 °C to +85 °C, V _{DD} = 3.3 V	-34	2.8	72	
		PGA is configured as mode 6 T _A = -40 °C to +85 °C, V _{DD} = 1.71 V to 3.6 V	-41	3.0	96	
Noise Performance	9					
Input Voltage Noise Density	V _n	f = 1 kHz, PGA is configured as mode 6		53.9	62.30	nV/√Hz

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Noise Current Density ^[4]	In	f = 1 kHz, PGA is configured as mode 6		105.5	173.5	fA/√Hz	
Input Voltage Noise	en	f = 0.1 to 10 Hz, PGA is configured as mode 6, $V_{DD} = 2.5$ V to 3.6 V		1.02	2.35	µV p-p	
		PGA is configured as mode 6, Sin frequency = 0.1 kHz, Harmonic frequency = 0.1 - 1 kHz		0.027	0.23		
Total Harmonic Distortion	THD	PGA is configured as mode 6, Sin frequency = 1kHz, Harmonic frequency = 1 - 10 kHz		0.030	0.25	%	
		PGA is configured as mode 6, Sin frequency = 10 kHz, Harmonic frequency = 10 - 100kHz		0.356	0.71		
Output Voltage Range	V _{outrng}	Without load, $R_{LOAD} = Hi-Z$	GND + 0.035		V _{DD} - 0.035	V	
		PGA is configured as mode 2, gain = 2	194.25	265.7	331.92		
		PGA is configured as mode 2, gain = 4	73.23	109.0	144.15		
	BW	PGA is configured as mode 2, gain = 8	17.62	23.2	28.56		
-3 dB Signal Bandwidth		PGA is configured as mode 2, gain = 16	11.38	14.2	16.92	kHz	
		PGA is configured as mode 2, gain = 32	6.99	8.8	10.41		
		PGA is configured as mode 2, gain = 64	4.06	5.2	6.24	-	
		PGA is configured as mode 6	461.36	612.6	768.70		
Quiescent Current	Ι _Q	PGA is configured as mode 6, $V_{DD} = 2.5 \text{ V}, V_{CM} = V_{DD} / 2$		20.5	34.1	μA	
Shutdown Charact	eristics						
Amplifier Turn-On Time	t _{ON}	t_{ON} PGA is configured as mode 6. Turn-on time: PGA enable to 90 % of target output. $V_{DD} = 2.5 \text{ V}, V_{CM} = V_{DD}/2.$		33	40	μs	
Amplifier Turn-Off Time	t _{OFF}	PGA is configured as mode 6. Turn-off time: PGA disable to 10 % target output. $V_{DD} = 2.5 V$, $V_{CM} = V_{DD}/2$.		273	306	μs	

[2] Please see Figure 105 and Figure 106 for pin input leakage current at negative voltage applied to the pin.

[3] Guaranteed by design, not tested in production.

[4] Guaranteed by design simulation.

3.8.2. PGA Gain Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
PGA Mode Interna	I Gain Resi	stor Ratio				•
		Mode 2, Gain = 2		800/800		
		Mode 2, Gain = 4		2400/800		
Rb/Ra Internal Resistors Values		Mode 2, Gain = 8		3150/450		
in Mode 2 (Figure 90)		Mode 2, Gain = 16		3000/200]
		Mode 2, Gain = 32		3100/100]
		Mode 2, Gain = 64		3150/50]
		Mode 3, Gain = 1		0/800		
		Mode 3, Gain = 2		400/800		
Rb/Ra Internal	Destin	Mode 3, Gain = 4		1200/800		κΩ/kΩ
Resistors Values in Mode 3		Mode 3, Gain = 8		2800/800		
(Figure 90)	Rratio	Mode 3, Gain = 16		3000/400		κΩ/κΩ
		Mode 3, Gain = 32		3100/200		
		Mode 3, Gain = 64		3150/100		
		Mode 4/5, Gain = 1		800/800		
		Mode 4/5, Gain = 2		1600/800		
Rb/Ra Internal		Mode 4/5, Gain = 4		3200/800		
Resistors Values in Mode 4/5		Mode 4/5, Gain = 8		3200/400		
(Figure 90)		Mode 4/5, Gain = 16		3200/200		
		Mode 4/5, Gain = 32		3200/100		
		Mode 4/5, Gain = 64		3200/50		
PGA Gain						
		Mode 2, Gain setting = 2	2.00	2.02	2.03	
		Mode 2, Gain setting = 4	3.99	4.00	4.02	
Gain, Mode 2 ^[1]	O a lia	Mode 2, Gain setting = 8	7.98	8.01	8.06	
	Gain	Mode 2, Gain setting = 16	15.85	15.91	16.01	V/V
		Mode 2, Gain setting = 32	31.45	31.68	31.90	
		Mode 2, Gain setting = 64	62.07	62.94	63.67	

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
		Mode 3, Gain setting = 1	1.00	1.00	1.01	
		Mode 3, Gain setting = 2	2.00	2.01	2.03	
		Mode 3, Gain setting = 4	3.99	4.01	4.04	
Gain, Mode 3 ^[2]		Mode 3, Gain setting = 8	7.95	8.01	8.07	
		Mode 3, Gain setting = 16	15.82	15.97	16.11	
		Mode 3, Gain setting = 32	31.30	31.77	32.25	
		Mode 3, Gain setting = 64	62.16	63.27	64.53	
		Mode 4, Gain setting = 1	1.00	1.02	1.03	_
		Mode 4, Gain setting = 2	2.00	2.01	2.02	
		Mode 4, Gain setting = 4	3.99	4.02	4.04	
Gain, Mode 4 ^[2]	Gain	Mode 4, Gain setting = 8	7.94	7.99	8.04	V/V
		Mode 4, Gain setting = 16	15.73	15.87	15.96	
		Mode 4, Gain setting = 32	30.99	31.47	31.73	
		Mode 4, Gain setting = 64	60.80	62.21	62.95	
		Mode 5a, Gain setting = 1	1.00	1.02	1.03	
		Mode 5a, Gain setting = 2	2.00	2.01	2.02	
		Mode 5a, Gain setting = 4	3.99	4.02	4.04	
Gain, Mode 5a ^[3]		Mode 5a, Gain setting = 8	7.93	7.99	8.04	1
		Mode 5a, Gain setting = 16	15.73	15.87	15.96	1
		Mode 5a, Gain setting = 32	30.98	31.47	31.73	1
		Mode 5a, Gain setting = 64	60.80	62.26	62.98	1

[1] V_{IN} = 0.5/Gain.

 $\label{eq:VIN-} \textbf{[3]} \quad V_{\text{IN-}} = -0.5/\text{Gain} \ (at \ V_{\text{DD}} < 2 \ \text{V}), \ V_{\text{IN-}} = (V_{\text{DD}} \ \text{-}1.9 \ \text{V})/\text{Gain} \ (at \ V_{\text{DD}} > 2 \ \text{V}), \ V_{\text{CM}} = V_{\text{DD}} \ /2, \ \Delta V_{\text{IN}} > (V_{\text{DD}} \ \text{-} \ 0.2 \ \text{V})/\text{Gain} \ /2.$

RENESAS

3.8.3. PGA Offset Specifications

 $T_A = -40$ °C to +85 °C, $V_{DD} = 1.71$ V to 3.6 V, typical values are at $T_A = +25$ °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Mode 2, Gain setting = 2	-2.093	-0.378	2.506	
		Mode 2, Gain setting = 4	-3.021	-0.932	6.432	
		Mode 2, Gain setting = 8	-3.734	-1.654	2.803	
			Mode 2, Gain setting = 16	-7.947	-2.742	0.897
		Mode 2, Gain setting = 32	-15.933	-4.788	2.918	
		Mode 2, Gain setting = 64	-28.114	-8.911	4.280	
		Mode 3, Gain setting = 1	-0.008	0.161	0.295	
		Mode 3, Gain setting = 2	-0.409	-0.107	0.289	
		Mode 3, Gain setting = 4	-0.940	-0.098	0.463	
		Mode 3, Gain setting = 8	-1.870	-0.077	1.126	
		Mode 3, Gain setting = 16	-2.362	-0.076	1.920	
		Mode 3, Gain setting = 32	-3.706	-0.017	2.712	
		Mode 3, Gain setting = 64	-5.763	0.036	4.699	
Offset Referred to Output (Including	V _{OS_OUT}	Mode 4, Gain setting = 1	-13.628	-5.542	1.149	mV
Il Error Sources),		Mode 4, Gain setting = 2	-9.294	-3.010	2.337	
		Mode 4, Gain setting = 4	-11.674	-2.947	3.225	
		Mode 4, Gain setting = 8	-9.180	1.287	10.126	
		Mode 4, Gain setting = 16	-7.034	5.015	15.889	
		Mode 4, Gain setting = 32	-6.362	6.922	19.195	
		Mode 4, Gain setting = 64	-17.959	7.448	31.550	
		Mode 5a, Gain setting = 1	-2.414	-0.036	2.444	
		Mode 5a, Gain setting = 2	-2.309	-0.046	2.517	
		Mode 5a, Gain setting = 4	-2.615	0.011	2.460	
		Mode 5a, Gain setting = 8	-3.371	0.002	2.994	
		Mode 5a, Gain setting = 16	-3.075	0.025	3.114	
		Mode 5a, Gain setting = 32	-4.958	-0.117	4.654	
		Mode 5a, Gain setting = 64	-10.977	0.048	10.916	

3.9 Analog-to-Digital Converter Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Full-Scale Input Range	V _{SR}	Differential mode	V _{IN+} = V _{CM} - V _{REF} /4 V _{IN-} = V _{CM} + V _{REF} /4		V _{IN+} = V _{CM} + V _{REF} /4 V _{IN-} = V _{CM} - V _{REF} /4	V	
		Single-ended mode	GND		V_{REF}		
ADC Reference Voltage Allowable Range	V _{REF}		1.5		2	V	
Input Clock Frequency	f _{CLK}	For optimized ENOB performance measurement			40	MHz	
Input Clock Duty Cycle	Duty Cycle	For optimized ENOB performance measurement	48	50	52	%	
Input Capacitance	C _{IN}			3.6		pF	
Input Resistance [1]	R _{IN}			28.9 ^[2]		ΚΩ	
Reference Input Capacitance	$C_{\text{IN}_{\text{REF}}}$			8.5		pF	
		14-bit mode		40		Cycles	
Output Data Latanau		12-bit mode		28		Cycles	
Output Data Latency	Latency	10-bit mode		20		Cycles	
		8-bit mode		17		Cycles	
		14-bit mode, $f_{ADC_CLK} = 40 \text{ MHz}$		1		Msps	
Sample Rate		12-bit mode, f _{ADC_CLK} = 40 MHz		1.42			
Sample Rate	Sr	10-bit mode, $f_{ADC_CLK} = 40 \text{ MHz}$		2			
		8-bit mode, $f_{ADC_CLK} = 40 \text{ MHz}$		2.35			
Internal Calibration Period	T _{CAL}			6415		Cycles	
Resolution	Res	No missing codes			12	Bits	
		14-bit resolution, $f_{ADC_CLK} = 10 \text{ MHz} \text{ (external)},$ $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{IN} = 10 \text{ kHz} \text{ sine wave}$	61.83	65.5			
Signal to (Noise + Distortion) Ratio	SINAD	12-bit resolution, $f_{ADC_CLK} = 7 \text{ MHz} \text{ (external)},$ $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{IN} = 10 \text{ kHz} \text{ sine wave}$	62.50	64.5		dB	
		10-bit resolution, $f_{ADC_CLK} = 5 \text{ MHz} \text{ (external)},$ $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{IN} = 10 \text{ kHz} \text{ sine wave}$	56.52	59.2			

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal to (Noise + Distortion) Ratio	SINAD	8-bit resolution, $f_{ADC_CLK} = 4.25 \text{ MHz} \text{ (external)},$ $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{IN} = 10 \text{ kHz} \text{ sine wave}$	44.73	49.4		dB
Integral Non-Linearity Error		14-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 20 \text{ MHz}/5 \text{ MHz} \text{ (internal)}/ 20 \text{ MHz}$ (external)		±5		
		12-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz} \text{ (external)}$	-2.9		2.9	
	INL	12-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal),}$ $f_{ADC_CLK} = 10 \text{ MHz}/2.5 \text{ MHz} \text{ (internal)}$	-2.8		2.8	LSB
		10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz} \text{ (external)}$	-1.0		1.0	
		10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal),}$ $f_{ADC_CLK} = 10 \text{ MHz (internal)}$	-0.9		0.9	
		8-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz}$	-0.5		0.5	
		14-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)/1.5 V (external),}$ $f_{ADC_CLK} = 20 \text{ MHz/5 MHz (internal)/20 MHz}$ (external)		±1		
		12-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz} \text{ (external)}$	-1.0	-	1.0	
Differential Non-Linearity Error	DNL	12-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal),}$ $f_{ADC_CLK} = 10 \text{ MHz}/2.5 \text{ MHz} \text{ (internal)}$	-1.0	-	1.1	LSB
Non-Lineanty Error	DAL	10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz} \text{ (external)}$	-0.5	-	0.5	
		10-bit resolution, $V_{REF} = 1.62 V$ (internal), $f_{ADC_CLK} = 10 MHz$ (internal)	-0.5		0.5	
		8-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} = 10 \text{ MHz}$	-0.5		0.5	

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		14-, 12-, 10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} (14\text{-bit}) = 20 \text{ MHz} \text{ (external)},$ $f_{ADC_CLK} (12\text{-},10\text{-bit}) = 10 \text{ MHz} \text{ (external)}$	-0.7		0.4	
Gain Error	Ge	14-, 12-, 10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{ADC_CLK} (14\text{-bit}) = 20 \text{ MHz/5 MHz} \text{ (internal)},$ $f_{ADC_CLK} (12\text{-},10\text{-bit}) = 10 \text{ MHz/2.5 MHz} \text{ (internal)}$	-0.7		0.4	%FS
		8-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)}, f_{ADC_CLK} = 10 \text{ MHz}$		±0.4		
Offset Error		14-, 12-, 10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)},$ $f_{ADC_CLK} (14\text{-bit}) = 20 \text{ MHz} \text{ (external)},$ $f_{ADC_CLK} (12\text{-},10\text{-bit}) = 10 \text{ MHz} \text{ (external)}$	-0.5		0.2	
	Offe	14-, 12-, 10-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)},$ $f_{ADC_CLK} (14\text{-bit}) = 20 \text{ MHz/5 MHz} \text{ (internal)},$ $f_{ADC_CLK} (12\text{-},10\text{-bit}) = 10 \text{ MHz/2.5 MHz} \text{ (internal)}$	-0.2		0.2	%FS
		8-bit resolution, $V_{REF} = 1.62 \text{ V} \text{ (internal)}/1.5 \text{ V} \text{ (external)}, f_{ADC_CLK} = 10 \text{ MHz}$		±0.5		
		$ \begin{array}{l} 14\mbox{-bit resolution,} \\ f_{ADC_CLK} = 10 \mbox{ MHz (external),} \\ V_{REF} = 1.62 \mbox{ V (internal),} \\ f_{IN} = 10 \mbox{ HHz} \end{array} $	10.0	10.6		
Effective Number of Bits	5105	12-bit resolution, f_{ADC_CLK} 7 MHz (external), V_{REF} = 1.62 V (internal), f_{IN} = 10 kHz	10.1	10.4		
	ENOB		9.1	9.4		bits
			7.1	7.9		

[1] Depends on the Input Clock Frequency (f_{CLK}) and the Input Capacitance (C_{IN}). Input Resistance of the ADC is calculated by the formula: $R_{IN} = 5/(f_{CLK} * C_{IN})$.

[2] Guaranted by design simulation.

3.10 Digital-to-Analog Converter Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Monotonicity	MN			12		Bits
Resolution	Res			12		Bits
Conversion time	t _{CONV}	V _{REF} = 1.62 V internal			6	μs
		$V_{DD} \ge 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±10.7	
Integral Non-Linearity Error	INL	$V_{DD} < 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±15	LSB
		V _{REF} = 1.62 V internal, DAC output buffer ON			±8.9	
		$V_{DD} \ge 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±1.3	
Differential Non-Linearity Error	DNL	V_{DD} < 2.7 V, V_{REF} = V_{DD} , DAC output buffer ON			±1.4	LSB
		V _{REF} = 1.62 V internal, DAC output buffer ON			±4.4	
Zero Offset Error		$V_{DD} \ge 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±24.2	
	ZOE	$V_{DD} < 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±32.4	LSB
		V _{REF} = 1.62 V internal, DAC output buffer ON			±36	
		$V_{DD} \ge 2.7 \text{ V}, V_{REF} = V_{DD},$ DAC output buffer ON			±13.7	
Center Offset Error	COE	V_{DD} < 2.7 V, V_{REF} = V_{DD} , DAC output buffer ON			±21.4	LSB
		V _{REF} = 1.62 V internal, DAC output buffer ON			±36	
Offset Temperature Drift	OFD	V _{REF} = 1.62 V internal, DAC output buffer ON			±44.4	μV/°C
Full Scale Gain Error	GE	V _{REF} = 1.62 V internal, DAC output buffer ON			±1.15	% FS
Output Characteristics						
DAC Output Resistance	R _{OUT}	DAC output buffer OFF		8.9		kΩ
Power Supply Rejection Ratio	PSRR	Excluding Bandgap Error Contribution, DAC output buffer ON		69.4	120.64	dB
Load Resistance	R _{LOAD}	DAC output buffer OFF		2		MΩ
Load Capacitance	C _{LOAD}	DAC output buffer OFF			20	pF

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output Voltage Range	OVR	DAC output buffer OFF	GND		V _{REF}	V
Output Settling Time	OTT	From 0 to 100% of Full Scale, accuracy 1 %			3.7	μs
	STT	From 0 to 100% of Full Scale, accuracy 1 LSB			15.2	μs
Total Harmonic Distortion	THD	f = 1 kHz, DAC output buffer OFF		0.3		%
		DAC output buffer OFF	0		0xFFF	
DAC Input Code Range	D _{IN}	DAC output buffer ON, $V_{REF} < 2.7 V$ ^[1]	0x1F8		0xE07	
		DAC output buffer ON, $V_{REF} \ge 2.7 V$ ^[1]	0x0E0		0xF1F	

3.11 DAC Output Buffer Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Symbol	Conditions	Min	Тур	Max	Unit
	T _A = 25 °C, I _{LOAD} = 100 μA	-7.05	-0.03	7.02	
VDAC_BUF_Offset	$T_A = -40 \text{ °C to } +85 \text{ °C},$ $I_{LOAD} = 100 \mu\text{A}$	-7.49	-0.03	7.54	mV
$V_{\text{DAC}_\text{BUF}_\text{OH}}$	$T_A = -40 \text{ °C to } +85 \text{ °C},$ $I_{LOAD} = 100 \mu\text{A}$	V _{DD} – 12			mV
Vdac_buf_ol	$T_{A} = -40 \text{ °C to } +85 \text{ °C},$ $I_{LOAD} = 100 \mu\text{A}$			GND + 16.35	mV
	I_{SC} to V_{DD}		47.4		mA
I _{SC}	I _{sc} to GND		47.8		mA
IDAC_BUF_Q	No load		821.4	1140.4	μA
Vdac_buf_outcap	Connected to GPIO, Load Resistance = 5 k Ω			50 ^[1]	pF
	VDAC_BUF_Offset VDAC_BUF_OH VDAC_BUF_OL I _{SC} IDAC_BUF_Q	$V_{DAC_BUF_Offset} \qquad \begin{array}{c} T_A = 25 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline V_{DAC_BUF_OH} \qquad \begin{array}{c} T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline V_{DAC_BUF_OL} \qquad \begin{array}{c} T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline \end{array} \\ \hline V_{DAC_BUF_OL} \qquad \begin{array}{c} T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \\ I_{LOAD} = 100 \ \mu A \\ \hline \end{array} \\ \hline \begin{array}{c} I_{SC} \ & I_{$	$\frac{T_{A} = 25 \ ^{\circ}\text{C},}{I_{LOAD} = 100 \ \mu\text{A}} -7.05}$ $\frac{V_{DAC_BUF_Offset}}{V_{DAC_BUF_OH}} = \frac{T_{A} = 25 \ ^{\circ}\text{C},}{I_{LOAD} = 100 \ \mu\text{A}} -7.49}$ $\frac{V_{DAC_BUF_OH}}{V_{DAC_BUF_OH}} = \frac{T_{A} = -40 \ ^{\circ}\text{C} \text{ to } +85 \ ^{\circ}\text{C},}{I_{LOAD} = 100 \ \mu\text{A}} -7.49}$ $\frac{V_{DAC_BUF_OL}}{V_{DAC_BUF_OL}} = \frac{T_{A} = -40 \ ^{\circ}\text{C} \text{ to } +85 \ ^{\circ}\text{C},}{I_{LOAD} = 100 \ \mu\text{A}} -12}$ $\frac{V_{DAC_BUF_OL}}{I_{SC}} = \frac{T_{A} = -40 \ ^{\circ}\text{C} \text{ to } +85 \ ^{\circ}\text{C},}{I_{LOAD} = 100 \ \mu\text{A}} -1}$ $\frac{I_{SC} \text{ to } V_{DD}}{I_{SC} \text{ to } V_{DD}} = \frac{-1}{I_{SC} \text{ to } V_{DD}} -12}$ $\frac{I_{SC} \text{ to } V_{DD}}{I_{SC} \text{ to } GND} = -1$ $\frac{I_{DAC_BUF_Q}}{I_{SC} \text{ to } GND} = -1$	VDAC_BUF_Offset T _A = 25 °C, ILOAD = 100 µA -7.05 -0.03 VDAC_BUF_Offset T _A = -40 °C to +85 °C, ILOAD = 100 µA -7.49 -0.03 VDAC_BUF_OH T _A = -40 °C to +85 °C, ILOAD = 100 µA -7.49 -0.03 VDAC_BUF_OH T _A = -40 °C to +85 °C, ILOAD = 100 µA VDD - 12 VDAC_BUF_OL T _A = -40 °C to +85 °C, ILOAD = 100 µA VDAC_BUF_OL I _{SC} to VDD 47.4 I _{SC} I _{SC} to GND 47.8 I _{DAC_BUF_Q} No load 821.4	VDAC_BUF_Offset T_A = 25 °C, ILOAD = 100 µA -7.05 -0.03 7.02 VDAC_BUF_Offset T_A = -40 °C to +85 °C, ILOAD = 100 µA -7.49 -0.03 7.54 VDAC_BUF_OH T_A = -40 °C to +85 °C, ILOAD = 100 µA -7.49 -0.03 7.54 VDAC_BUF_OH T_A = -40 °C to +85 °C, ILOAD = 100 µA VDD - 12 VDAC_BUF_OL T_A = -40 °C to +85 °C, ILOAD = 100 µA GND + 16.35 VDAC_BUF_OL T_A = -40 °C to +85 °C, ILOAD = 100 µA VDAC_BUF_OL T_A = -40 °C to +85 °C, ILOAD = 100 µA GND + 16.35 ISC Isc to VDD 47.4 ISC to GND 47.8 IDAC_BUF_Q No load 821.4 1140.4

3.12 Analog Temperature Sensor Characteristics

 V_{DD} = 1.71 V to 3.6 V, unless otherwise specified.

T. (°C)		V _{TS_OUT} [V]		Calculate	ed Tյ [°C]	TJ Accuracy [°C]		
T _J [°C]	Target VTS_OUT [V]	Min	Max	Min	Мах	Min	Max	
-40	0.827	0.819	0.832	-42.6	-35.5	-2.6	4.5	
-30	0.809	0.801	0.814	-32.7	-25.7	-2.7	4.3	
-20	0.79	0.783	0.796	-22.8	-15.8	-2.8	4.2	
-10	0.772	0.765	0.778	-13	-6.1	-3	3.9	

T [00]	Turnet V D.O.	V _{TS_0}	υτ [V]	Calculate	ed Tյ [°C]	TJ Accuracy [°C]		
TJ [°C]	Target VTS_OUT [V]	Min	Мах	Min	Max	Min	Max	
0	0.754	0.747	0.759	-2.8	3.7	-2.8	3.7	
10	0.736	0.729	0.740	7.4	13.4	-2.6	3.4	
20	0.717	0.712	0.722	17.2	22.8	-2.8	2.8	
25	0.708	0.704	0.712	22.6	27.4	-2.4	2.4	
30	0.699	0.692	0.704	27	33.9	-3	3.9	
40	0.681	0.674	0.685	37.4	43.8	-2.6	3.8	
50	0.662	0.656	0.667	47.4	53.5	-2.6	3.5	
60	0.644	0.637	0.649	57.2	64	-2.8	4	
70	0.626	0.618	0.631	67	74.4	-3	4.4	
80	0.607	0.599	0.613	76.7	84.5	-3.3	4.5	
85	0.598 0.589 0.60		0.604	82.1	89.8	-2.9	4.8	

3.13 Internal VREF Specifications

 V_{DD} = 1.71 V to 3.6 V, V_{REF} = 1.62 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
ACMP VREF							
		T _A = 25 °C, V _{REF} = 1.62 V	-0.26		0.31		
Internal ACMP V_{REF}		$T_A = -40 \text{ °C to } +85 \text{ °C}, V_{REF} = 1.62 \text{ V}$	-1.19		0.93	%	
Accuracy	V_{REF}_{ACC}	$T_A = -20 \text{ °C to } +85 \text{ °C}, V_{REF} = 1.62 \text{ V}$	-0.88		0.74	70	
		$T_A = 0 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \ V_{REF} = 1.62 \ V$	-0.88		0.56		
		$T_A = 25 \text{ °C}, V_{REF} = 0.027 \text{ V}$	-0.49	-	2.05		
		T _A = 25 °C, V _{REF} = 0.81 V	-5.64		6.48	mV	
ACMP V _{REF} Divider		T _A = 25 °C, V _{REF} = 1.512 V	-7.37		8.11		
Accuracy	V _{REF_DIV_ACC}	T_{A} = -40 °C to +85 °C, V_{REF} = 0.027 V	-1.00		2.33		
		$T_A = -40 \text{ °C to } +85 \text{ °C}, V_{REF} = 0.81 \text{ V}$	-16.88		12.58		
		T_A = -40 °C to +85 °C, V_{REF} = 1.512 V	-28.28		19.31		
ADC VREF Buffer							
ADC V _{REF} Error	V _{REF} _ADC_err	$T_A = -40 \text{ °C to } +85 \text{ °C}, V_{REF} = 1.62 \text{ V}$	-18.99		14.40	mV	
		$T_A = -20 \text{ °C to } +85 \text{ °C}, V_{REF} = 1.62 \text{ V}$	-12.26		11.69	1	

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
DAC VREF Buffer							
	V _{REF_} DAC_err	T _A = -40 °C to +85 °C, No Load.	V _{REF} = 1.62 V	-19.20	-0.27	16.20	mV
		$T_A = -20$ °C to +85 °C, No Load.	-13.55	-0.27	12.95		
DAC V _{REF} Buffer Output Capacitive Loading	Cap_load_DAC_buff	Load resistance = 1 MC V_{REF} = 1.62 V	Σ,		10		pF
DAC V _{REF} Buffer Output		$T_A = 25 \ ^{\circ}C$ (steady DC	DAC is ON			10	μA
Current Capability	I_DAC_buf	conditions due to circuit topology)	DAC is OFF			160	μA
DAC V_{REF} Buffer to Pin Switch Resistance	R_DAC_buff_SW	T _A = 25 °C			328		Ω

3.14 Current Source Specifications

 V_{DD} = 1.71 V to 3.6 V, T_A = -40 °C to +85 °C, typical values are at T_A = +25 °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Headroom for Output Current Source	V _{HEADROOM}			0.34	-	V
Accuracy	CS_Accuracy	All settings		4.5		%

4. IO Pins

The SLG47011 has one GPI and thirteen GPIO pins, which can function as either user-defined inputs or outputs.

In Matrix0, four GPI functions and three GPO functions are available. In Matrix1, fourteen GPI functions and ten GPO functions are available (see Figure 14).

Each input can be configured in three ways: Logic Input (Non-Schmitt Trigger Input), Logic Input with Schmitt Trigger (Schmitt Trigger Input), Low-voltage Logic Input. For general digital input, Schmitt Trigger Input is recommended. The Schmitt trigger provides hysteresis, which helps to ensure clean transitions. Non-Schmitt Trigger Input should only be used if a narrow V_{IH} to V_{IL} range is required. Note that the lack of hysteresis in this mode can cause a spurious chatter when signal transitions are too slow compared to internal propagation delays. To prevent such chatter when Non-Schmitt Trigger Input is used, the slew rate of the input source between V_{IH} and V_{IL} should exceed the values in Table 3.

Parameter	Configuration	Minimal Value	Unit
Slew rate for low to high transition	Logic Input, Input Voltage between V_{IL} and V_{IH}	65	V/µs
Siew rate for low to high transition	Low-voltage Logic Input, Input Voltage between V_{IL} and V_{IH}	5	v/µs
Claur rate for high to low transition	Logic Input, Input Voltage between V_{IH} and V_{IL}	30	
Slew rate for high to low transition	Low-voltage Logic Input, Input Voltage between V_{IH} and V_{IL}	11	V/µs

Table 3. Digital IO Input Transition Slew Rate Limitations

4.1 GPI Pin

The GPI pin serves as a general purpose input pin and is available for connections in Matrix 0 and Matrix 1 (see Figure 14).

4.1.1. GPI Structure

Registers abbreviations: **GPI_INPUT_MODE [473:472] → INPUT_MODE [1:0]** 00b: Digital Input without Schmitt Trigger (WOSMT_EN = 1, OE = 0) 01b: Digital Input with Schmitt Trigger (SMT_EN = 1, OE = 0) 10b: Low-voltage Digital Input (LV_EN = 1, OE = 0) 11b: Reserved

GPI_RES_SEL [478:477] → **RES_SEL [1:0]** 00b: Floating 01b: 10 kΩ 10b: 50 kΩ

GPI_PULLUP_EN [479] → PULLUP_EN [0] Ob: Pull-Down 1b: Pull-Up

Note:

"Digital IN" is a Connection Matrix Input.

Figure 5. GPI Structure Diagram

4.2 GPIO Pins

GPIO0 to GPIO12 serve as General Purpose IO pins.

GPIO10 to GPIO12 digital inputs and outputs are available for connections in Matrix0.

GPIO0 to GPIO12 digital inputs and GPIO0 to GPIO9 digital outputs are available for connections in Matrix1 (see Figure 14).

4.2.1. GPIO with I²C Mode Structure (for GPIO0 and GPIO1)

Figure 6. GPIO with I²C Mode IO Structure Diagram

4.2.2. Matrix OE IO Structure (for GPIO2 to GPIO9, GPIO11, GPIO12)

Figure 7. Matrix OE IO Structure Diagram (with ESD Structure Type 1)

4.2.3. Matrix OE IO Structure (for GPIO10)

Figure 8. Matrix OE IO Structure Diagram (with ESD Structure Type 2)

4.3 Pull-Up/Pull-Down Resistors

All IO pins have the option for user-selectable resistors connected to the input structure. The selectable values of these resistors are 10 k Ω and 50 k Ω . The internal resistors can be configured as either pull-up or pull-down.

4.4 Fast Pull-Up/Pull-Down During Power-Up

During power-up, IO pull-up/down resistance will switch to 2.6 k Ω initially and then switch to its normal setting value. This function is enabled by register IO_QCHG_EN [504].

Figure 10. Typical I_{OL} vs. V_{OL} in Push-Pull Mode at T_{A} = +25 $^{\circ}\text{C}$

5. Power Architecture

5.1 **Power Architecture General Description**

The SLG47011 supports three power domains (PD) and can operate in three power modes. Two power domains can be powered on and off using matrix outputs, one power domain is always ON. The description of power domains is shown in Table 4.

Domain Name	Description
PD_Mx0	Always powered ON domain. It comprises combination function and multi-function macrocells, configuration registers, and Connection Matrix0.
PD_Mx1	Sleep power domain. It comprises ADC Sampling Engine, MathCore, Width Converter, Memory Table control, PWM, DCMP, combination function and multi-function macrocells, I ² C/SPI interfaces, and Connection Matrix1.
PD_RET	Retention power domain. It comprises Memory Table RAM, internal memory address counter (in Storage mode), and Data Buffers memory.

Table 4. Power Domains Description

The power architecture of the SLG47011 is shown in structural scheme in Figure 11.

The detailed list of digital macrocells powered by PD_Mx0, PD_Mx1, and PD_RET power domains is shown in Table 5.

Matrix0	м	latrix1
Always ON Domain (PD_Mx0)	Sleep Domain (PD_Mx1)	Retention Domain (PD_RET)
LUT2_0/DFF0	LUT2_1/DFF1	Data Buffer0
LUT3_0/DFF2	LUT3_4/DFF6	Data Buffer1
LUT3_1/DFF3	LUT3_5/DFF7	Data Buffer2
LUT3_2/DFF4	LUT3_6/DFF8	Data Buffer3
LUT3_3/DFF5	LUT3_7/DFF9	Memory Table
LUT3_8/DFF10/Shift_Reg0	LUT3_10/DFF12/Shift_Reg2	
LUT3_9/DFF11/Shift_Reg1	LUT3_11/DFF13/Shift_Reg3	
LUT4_0/DFF16	LUT3_12/DFF14/Shift_Reg4	
LUT3_14/DFF18/CNT0	LUT3_13/DFF15/Shift_Reg5	
LUT3_15/DFF19/CNT1	LUT4_1/DFF17	
Programmable delay	LUT3_16/DFF20/CNT2	
Oscillator0	LUT3_17/DFF21/CNT3	
	LUT3_18/DFF22/CNT4	
	LUT3_19/DFF23/CNT5	
	LUT3_20/DFF24/CNT6	
	LUT3_21/DFF25/CNT7	
	LUT3_22/DFF26/CNT8	
	LUT3_23/DFF27/CNT9	
	LUT3_24/DFF28/CNT10/FSM2	
	LUT4_2/DFF29/CNT11/FSM0	
	LUT4_3/DFF30/CNT12/FSM1	
	Memory Table Control CNT	
	Width Converter	
	DCMP	
	ADC	
	PWM	
	MathCore	

Table 5. Macrocells Powered by Power Domains PD_Mx0, PD_Mx1, and PD_RET

Matrix0	Ма	trix1
Always ON Domain (PD_Mx0)	Sleep Domain (PD_Mx1)	Retention Domain (PD_RET)
	DAC	
	Current source	
	Filter Edge detect	
	Temperature sensor	
	I ² C/SPI	
	Oscillator1	

Note: If PD_Mx1 is powered off, the outputs of all macrocells powered by this power domain are LOW. Internal states of macrocells powered by PD_Mx1 are reset after transition to Power-off mode.

There are three different power modes in the SLG47011:

All ON: device is active, all digital power domains and ADC are enabled.

RETENTION: Memory Table RAM, internal memory address counter (in Storage mode), and Data Buffers are retained while PD_Mx1 is powered off. ADC is powered off.

SLEEP: PD_Mx0 is active, PD_Mx1 and PD_RET are disabled. Memory Table RAM and configuration registers of macrocells powered by PD_Mx1 are powered off.

5.2 Power Controller

The SLG47011 has a Power Controller block that controls power modes. There are two user controlled matrix outputs SLP (CMO0 [44]) and RET (CMO0 [45]) that set the power mode.

The transition from SLEEP to RETENTION power mode is followed by the sequence: transition to All ON mode, loading the data from NVM to RAM, transition to RETENTION mode.

The transition times from SLEEP and RETENTION modes to All ON mode are shown in section 3.4.5 Estimated Typical Delay for Each Macrocell. All operations with the Memory Table or the Data Buffers should be completed 5 µs before entering SLEEP or RETENTION modes.

The configuration of matrix outputs, power domains state, and power consumption are shown in Table 6. The power consumption data is for static inputs and outputs, including all the leakages of all internal blocks, while all analog blocks are powered off, such as OSC and V_{REF} generator at $T_A = 25$ °C and $V_{DD} = 3.3$ V.

	Matrix Inputs Configuration		Power Domains State			ADC (in	Analog)		Mada	
Power Mode	SLP (from CMO0 [44])	RET (from CMO0 [45])	PD_Mx0	PD_RET	PD_Mx1	CVDD	AV _{DDIO} , AV _{DD} , V _{REF}	Power Consumption	Mode Transition Delay	
All ON	0	х	ON	ON	ON	ON	ON/OFF	30.36 µА at V _{DD} = 2.5 V	RETENTION to All ON 0.41 ms SLEEP to All ON 1.37 ms	
RETENTION	1	1	ON	ON	OFF	ON	OFF	4.75 μA at V _{DD} = 2.5 V		
SLEEP	1	0	ON	OFF	OFF	OFF	OFF	0.50 μA at V _{DD} = 2.5 V		

Table 6. Power Modes, Power Domains State, Power Consumption, and Mode Transition Delays

During device loading and transition from SLEEP/RETENTION modes to All ON, the Memory Table data can be loaded from NVM to RAM or bypassed. Memory Table data loading is controlled by SKIP_NVM_MEM [541] register.

If SKIP_NVM_MEM [541] = 0 – the Memory Table data will be loaded from NVM to RAM during device loading and transition from SLEEP/RETENTION modes to All ON mode.

If SKIP_NVM_MEM [541] = 1 – the Memory Table data loading will be bypassed. If the Memory Table macrocell is not used in the design, then SKIP_NVM_MEM [541] must to be set to "1".

6. Connection Matrix

The SLG47011 features two connection matrices, Matrix0 and Matrix1, that define the connectivity for internal digital signals. The output of each functional macrocell has a specific digital code assigned to it, that is either set to active (HIGH) or inactive (LOW), based on the user's design. Once all NVM bit registers are programmed, a fully custom circuit will be created.

Matrix0 is always ON, while Matrix1 can be powered on/off depending on the selected power mode (see section 5 Power Architecture)

Matrix0 has 32 inputs and 46 outputs. Matrix1 has 95 inputs and 124 outputs. Each Matrix input is hard-wired to the digital output of a particular source macrocell, including IO pins, LUTs, ADC, analog comparators, other digital macrocells, V_{DD}, and GND. The input to a digital macrocell uses a 5-bit register (Matrix0) and a 7-bit register (Matrix1) to select one of the 32 (Matrix0) and 95 (Matrix1) lines, respectively.

All macrocells associated with a particular matrix have both their inputs and outputs connected to that matrix. To make connections to macrocells associated with the other matrix, the user can utilize the matrix cross connection lines (see Figure 13).

Each matrix has dedicated output connections for connecting to the other matrix, known as the cross connection outputs. Matrix0 has 6 outputs to Matrix1, Matrix1 has 9 outputs to Matrix0 (see Figure 14). When using these cross connections, any macrocell can be connected to any other macrocell in the device by first connecting through the other matrix. Because there is a limited number of matrix cross connections, it is important to make connections between the outputs of macrocells to the inputs of other macrocells within the same matrix whenever possible. This will free up the matrix cross connection lines for digital connections to the resources associated with the other matrix.

Figure 12. Connection Matrix0

Figure 14. Interconnection of Connection Matrices

6.1 Connection Matrix0 Input and Output

Matrix Input	Metrix Innut Simol Function		Mat	trix Dec	ode	
Number	Matrix Input Signal Function	4	3	2	1	0
0	GND	0	0	0	0	0
1	LUT2_0/DFF0 output	0	0	0	0	1
2	LUT3_0/DFF2 output	0	0	0	1	0
3	LUT3_1/DFF3 output	0	0	0	1	1
4	LUT3_2/DFF4 output	0	0	1	0	0
5	LUT3_3/DFF5 output	0	0	1	0	1
6	LUT3_8/DFF10 output/Shift_Reg0 output	0	0	1	1	0
7	LUT3_9/DFF11 output/Shift_Reg1 output	0	0	1	1	1
8	LUT4_0/DFF16 output	0	1	0	0	0
9	CNT0 output	0	1	0	0	1
10	MLT0_LUT3_14/DFF18_OUT	0	1	0	1	0
11	CNT1 output	0	1	0	1	1
12	MLT1_LUT3_15/DFF19_OUT	0	1	1	0	0
13	Programmable Delay/Edge Detector Output	0	1	1	0	1
14	GPI	0	1	1	1	0
15	GPIO10	0	1	1	1	1
16	GPIO11	1	0	0	0	0
17	GPIO12	1	0	0	0	1
18	Oscillator0 output	1	0	0	1	0
19	In0 Input from Matrix1	1	0	0	1	1
20	In1 Input from Matrix1	1	0	1	0	0
21	In2 Input from Matrix1	1	0	1	0	1
22	In3 Input from Matrix1	1	0	1	1	0
23	In4 Input from Matrix1	1	0	1	1	1
24	In5 Input from Matrix1	1	1	0	0	0
25	In6 Input from Matrix1	1	1	0	0	1
26	In7 Input from Matrix1	1	1	0	1	0
27	In8 Input from Matrix1	1	1	0	1	1
28	Reserved	1	1	1	0	0
29	Reserved	1	1	1	0	1

Table 7. Matrix0 Input Table

Matrix Input Number Matrix Inpu	Matrix Input Signal Function		Mat	rix Dec	ode	
	Matrix input Signal Function	4	3	2	1	0
30	POR	1	1	1	1	0
31	V _{DD}	1	1	1	1	1

Table 8. Matrix0 Output Table

Register Bit Address	Matrix0 Output Signal Function	Matrix Output Number
[4:0]	IN0 of LUT2_0 or Clock Input of DFF0	0
[9:5]	IN1 of LUT2_0 or Data Input of DFF0	1
[14:10]	IN0 of LUT3_0 or CLK Input of DFF2	2
[19:15]	IN1 of LUT3_0 or Data of DFF2	3
[24:20]	IN2 of LUT3_0 or nRST (nSET) of DFF2	4
[29:25]	IN0 of LUT3_1 or CLK Input of DFF3	5
[34:30]	IN1 of LUT3_1 or Data of DFF3	6
[39:35]	IN2 of LUT3_1 or nRST (nSET) of DFF3	7
[44:40]	IN0 of LUT3_2 or CLK Input of DFF4	8
[49:45]	IN1 of LUT3_2 or Data of DFF4	9
[54:50]	IN2 of LUT3_2 or nRST (nSET) of DFF4	10
[59:55]	IN0 of LUT3_3 or CLK Input of DFF5	11
[64:60]	IN1 of LUT3_3 or Data of DFF5	12
[69:65]	IN2 of LUT3_3 or nRST (nSET) of DFF5	13
[74:70]	IN0 of LUT3_8 or CLK Input of DFF10 or Clock Input of Shift_Reg0	14
[79:75]	IN1 of LUT3_8 or Data of DFF10 or Data Input of Shift_Reg0	15
[84:80]	IN2 of LUT3_8 or nRST (nSET) of DFF10 or nRST (nSET) of Shift_Reg0	16
[89:85]	IN0 of LUT3_9 or CLK Input of DFF11 or Clock Input of Shift_Reg1	17
[94:90]	IN1 of LUT3_9 or Data of DFF11 or Data Input of Shift_Reg1	18
[99:95]	IN2 of LUT3_9 or nRST (nSET) of DFF11 or nRST (nSET) of Shift_Reg1	19
[104:100]	IN0 of LUT4_0 or CLK Input of DFF16	20
[109:105]	IN1 of LUT4_0 or Data of DFF16	21
[114:110]	IN2 of LUT4_0 or nRST (nSET) of DFF16	22
[119:115]	IN3 of LUT4_0	23
[124:120]	IN0 of LUT3_14 or CLK Input of DFF18 or Delay0 Input (or Counter0 nRST Input)	24

Register Bit Address	Matrix0 Output Signal Function	Matrix Output Number
[129:125]	IN1 of LUT3_14 or nRST (nSET) of DFF18 or Delay0 Input (or Counter0 nRST Input)	25
[134:130]	IN2 of LUT3_14 or Data of DFF18 or Delay0 Input (or Counter0 nRST Input)	26
[139:135]	IN0 of LUT3_15 or CLK Input of DFF19 or Delay1 Input (or Counter1 nRST Input)	27
[144:140]	IN1 of LUT3_15 or nRST (nSET) of DFF19 or Delay1 Input (or Counter1 nRST Input)	28
[149:145]	IN2 of LUT3_15 or Data of DFF19 or Delay1 Input (or Counter1 nRST Input)	29
[154:150]	Programmable Delay/Edge Detect Input	30
[159:155]	GPIO10 Digital Output OE	31
[164:160]	GPIO10 Digital Output	32
[169:165]	GPIO11 Digital Output OE	33
[174:170]	GPIO11 Digital Output	34
[179:175]	GPIO12, Digital Output OE	35
[184:180]	GPIO12, Digital Output	36
[189:185]	OSC0 Enable	37
[194:190]	Out0 output to Matrix1	38
[199:195]	Out1 output to Matrix1	39
[204:200]	Out2 output to Matrix1	40
[209:205]	Out3 output to Matrix1	41
[214:210]	Out4 output to Matrix1	42
[219:215]	Out5 output to Matrix1	43
[224:220]	SLP in of Power controller	44
[229:225]	RET in of Power controller	45

6.2 Connection Matrix1 Input and Output

Table 9. Matrix1 Input Table

Matrix	put Matrix1 Input Signal Function	Matrix Decode							
Input Number		6	5	4	3	2	1	0	
0	GND	0	0	0	0	0	0	0	
1	LUT2_1/DFF1 output	0	0	0	0	0	0	1	
2	LUT3_4/DFF6 output	0	0	0	0	0	1	0	
3	LUT3_5/DFF7 output	0	0	0	0	0	1	1	
4	LUT3_6/DFF8 output	0	0	0	0	1	0	0	

Matrix	Notified langet Circuit Franction	Matrix Decode							
Input Number	Matrix1 Input Signal Function	6	5	4	3	2	1	0	
5	LUT3_7/DFF9 output	0	0	0	0	1	0	1	
6	LUT3_10/DFF12 output/Shift_Reg2 output	0	0	0	0	1	1	0	
7	LUT3_11/DFF13 output/Shift_Reg3 output	0	0	0	0	1	1	1	
8	LUT3_12/DFF14 output/Shift_Reg4 output	0	0	0	1	0	0	0	
9	LUT3_13/DFF15 output/Shift_Reg5 output	0	0	0	1	0	0	1	
10	LUT4_1/DFF17 output	0	0	0	1	0	1	0	
11	CNT2 output	0	0	0	1	0	1	1	
12	MLT2_LUT3_16/DFF20_OUT	0	0	0	1	1	0	0	
13	CNT3 output	0	0	0	1	1	0	1	
14	MLT3_LUT3_17/DFF21_OUT	0	0	0	1	1	1	0	
15	CNT4 output	0	0	0	1	1	1	1	
16	MLT4_LUT3_18/DFF22_OUT	0	0	1	0	0	0	0	
17	CNT5 output	0	0	1	0	0	0	1	
18	MLT5_LUT3_19/DFF23_OUT	0	0	1	0	0	1	0	
19	CNT6 output	0	0	1	0	0	1	1	
20	MLT6_LUT3_20/DFF24_OUT	0	0	1	0	1	0	0	
21	CNT7 output	0	0	1	0	1	0	1	
22	MLT7_LUT3_21/DFF25_OUT	0	0	1	0	1	1	0	
23	CNT8 output	0	0	1	0	1	1	1	
24	MLT8_LUT3_22/DFF26_OUT	0	0	1	1	0	0	0	
25	CNT9 output	0	0	1	1	0	0	1	
26	MLT9_LUT3_23/DFF27_OUT	0	0	1	1	0	1	0	
27	CNT10 output	0	0	1	1	0	1	1	
28	MLT10_LUT3_24/DFF28_OUT	0	0	1	1	1	0	0	
29	CNT10 PWM OUT0	0	0	1	1	1	0	1	
30	CNT10 PWM OUT1	0	0	1	1	1	1	0	
31	16-bit CNT11 output	0	0	1	1	1	1	1	
32	MLT11_LUT4_2/DFF29_OUT	0	1	0	0	0	0	0	
33	16-bit CNT12 output	0	1	0	0	0	0	1	
34	MLT12_LUT4_3/DFF30_OUT	0	1	0	0	0	1	0	

Matrix	Matrice lawset Circula Function			Matrix Decode						
Input Number	Matrix1 Input Signal Function	6	5	4	3	2	1	0		
35	Memory control counter Out	0	1	0	0	0	1	1		
36	Edge Detect Filter Output	0	1	0	0	1	0	0		
37	Width Converter Output0	0	1	0	0	1	0	1		
38	Width Converter Output1	0	1	0	0	1	1	0		
39	Width Converter Output2	0	1	0	0	1	1	1		
40	Width Converter Output3	0	1	0	1	0	0	0		
41	Width Converter Output4	0	1	0	1	0	0	1		
42	Width Converter Output5	0	1	0	1	0	1	0		
43	Width Converter Output6	0	1	0	1	0	1	1		
44	Width Converter Output7	0	1	0	1	1	0	0		
45	Width Converter Output8	0	1	0	1	1	0	1		
46	Width Converter Output9	0	1	0	1	1	1	0		
47	Width Converter Output10	0	1	0	1	1	1	1		
48	Width Converter Output11	0	1	1	0	0	0	0		
49	Data Buffer0 ready	0	1	1	0	0	0	1		
50	Data Buffer1 ready	0	1	1	0	0	1	0		
51	Data Buffer2 ready	0	1	1	0	0	1	1		
52	Data Buffer3 ready	0	1	1	0	1	0	0		
53	BufferX ready output	0	1	1	0	1	0	1		
54	DCMP Output 0	0	1	1	0	1	1	0		
55	DCMP Output 1	0	1	1	0	1	1	1		
56	DCMP Output 2	0	1	1	1	0	0	0		
57	DCMP Output 3	0	1	1	1	0	0	1		
58	DCMP Data ready output	0	1	1	1	0	1	0		
59	Memory Table Data Ready output	0	1	1	1	0	1	1		
60	ADC Data Ready output	0	1	1	1	1	0	0		
61	MathCore Math_DR output	0	1	1	1	1	0	1		
62	ACMP_H Output	0	1	1	1	1	1	0		
63	I ² C/SPI virtual Input 0/I2C_Ack	0	1	1	1	1	1	1		
64	I ² C/SPI virtual Input 1	1	0	0	0	0	0	0		

Matrix			Matrix Decode						
Input Number	Matrix1 Input Signal Function	6	5	4	3	2	1	0	
65	I ² C/SPI virtual Input 2	1	0	0	0	0	0	1	
66	I ² C/SPI virtual Input 3	1	0	0	0	0	1	0	
67	l ² C/SPI virtual Input 4	1	0	0	0	0	1	1	
68	I ² C/SPI virtual Input 5	1	0	0	0	1	0	0	
69	I ² C/SPI virtual Input 6	1	0	0	0	1	0	1	
70	I ² C/SPI virtual Input 7	1	0	0	0	1	1	0	
71	GPI Digital Input	1	0	0	0	1	1	1	
72	GPIO0 Digital Input or SDA	1	0	0	1	0	0	0	
73	GPIO1 Digital Input or SCL	1	0	0	1	0	0	1	
74	GPIO2 Digital Input	1	0	0	1	0	1	0	
75	GPIO3 Digital Input	1	0	0	1	0	1	1	
76	GPIO4 Digital Input	1	0	0	1	1	0	0	
77	GPIO5 Digital Input	1	0	0	1	1	0	1	
78	GPIO6 Digital Input	1	0	0	1	1	1	0	
79	GPIO7 Digital Input	1	0	0	1	1	1	1	
80	GPIO8 Digital Input	1	0	1	0	0	0	0	
81	GPIO9 Digital Input	1	0	1	0	0	0	1	
82	GPIO10 Digital Input	1	0	1	0	0	1	0	
83	GPIO11 Digital Input	1	0	1	0	0	1	1	
84	GPIO12 Digital Input	1	0	1	0	1	0	0	
85	Oscillator0 output	1	0	1	0	1	0	1	
86	Oscillator1 output	1	0	1	0	1	1	0	
87	In0 Input from Matrix0	1	0	1	0	1	1	1	
88	In1 Input from Matrix0	1	0	1	1	0	0	0	
89	In2 Input from Matrix0	1	0	1	1	0	0	1	
90	In3 Input from Matrix0	1	0	1	1	0	1	0	
91	In4 Input from Matrix0	1	0	1	1	0	1	1	
92	In5 Input from Matrix0	1	0	1	1	1	0	0	
93	POR	1	0	1	1	1	0	1	
94	V _{DD}	1	0	1	1	1	1	0	

Register Bit Address	Matrix1 Output Signal Function	Matrix Output Number
[830:824]	IN0 of LUT2_1 or Clock Input of DFF1	0
[837:831]	IN1 of LUT2_1 or Data Input of DFF1	1
[844:838]	IN0 of LUT3_4 or CLK Input of DFF6	2
[851:845]	IN1 of LUT3_4 or Data of DFF6	3
[858:852]	IN2 of LUT3_4 or nRST (nSET) of DFF6	4
[865:859]	IN0 of LUT3_5 or CLK Input of DFF7	5
[872:866]	IN1 of LUT3_5 or Data of DFF7	6
[879:873]	IN2 of LUT3_5 or nRST (nSET) of DFF7	7
[886:880]	IN0 of LUT3_6 or CLK Input of DFF8	8
[893:887]	IN1 of LUT3_6 or Data of DFF8	9
[900:894]	IN2 of LUT3_6 or nRST (nSET) of DFF8	10
[907:901]	IN0 of LUT3_7 or CLK Input of DFF9	11
[914:908]	IN1 of LUT3_7 or Data of DFF9	12
[921:915]	IN2 of LUT3_7 or nRST (nSET) of DFF9	13
[928:922]	IN0 of LUT3_10 or CLK Input of DFF12 or Clock Input of Shift_Reg2	14
[935:929]	IN1 of LUT3_10 or Data of DFF12 or Data Input of Shift_Reg2	15
[942:936]	IN2 of LUT3_10 or nRST (nSET) of DFF12 or nRST (nSET) of Shift_Reg2	16
[949:943]	IN0 of LUT3_11 or CLK Input of DFF13 or Clock Input of Shift_Reg3	17
[956:950]	IN1 of LUT3_11 or Data of DFF13 or Data Input of Shift_Reg3	18
[963:957]	IN2 of LUT3_11 or nRST (nSET) of DFF13 or nRST (nSET) of Shift_Reg3	19
[970:964]	IN0 of LUT3_12 or CLK Input of DFF14 or Clock Input of Shift_Reg4	20
[977:971]	IN1 of LUT3_12 or Data of DFF14 or Data Input of Shift_Reg4	21
[984:978]	IN2 of LUT3_12 or nRST (nSET) of DFF14 or nRST (nSET) of Shift_Reg4	22
[991:985]	IN0 of LUT3_13 or CLK Input of DFF15 or Clock Input of Shift_Reg5	23
[998:992]	IN1 of LUT3_13 or Data of DFF15 or Data Input of Shift_Reg5	24
[1005:999]	IN2 of LUT3_13 or nRST (nSET) of DFF15 or nRST (nSET) of Shift_Reg5	25
[1012:1006]	IN0 of LUT4_1 or CLK Input of DFF17	26
[1019:1013]	IN1 of LUT4_1 or Data of DFF17	27
[1026:1020]	IN2 of LUT4_1 or nRST (nSET) of DFF17	28
[1033:1027]	IN3 of LUT4_1	29

Table 10. Matrix1 Output Table

Register Bit Address	Matrix1 Output Signal Function	Matrix Output Number
[1040:1034]	IN0 of LUT3_16 or CLK Input of DFF20 or Delay2 Input (or Counter2 nRST Input)	30
[1047:1041]	IN1 of LUT3_16 or nRST (nSET) of DFF20 or Delay2 Input (or Counter2 nRST Input)	31
[1054:1048]	IN2 of LUT3_16 or Data of DFF20 or Delay2 Input (or Counter2 nRST Input)	32
[1061:1055]	IN0 of LUT3_17 or CLK Input of DFF21 or Delay3 Input (or Counter3 nRST Input)	33
[1068:1062]	IN1 of LUT3_17 or nRST (nSET) of DFF21 or Delay3 Input (or Counter3 nRST Input)	34
[1075:1069]	IN2 of LUT3_17 or Data of DFF21 or Delay3 Input (or Counter3 nRST Input)	35
[1082:1076]	IN0 of LUT3_18 or CLK Input of DFF22 or Delay4 Input (or Counter4 nRST Input)	36
[1089:1083]	IN1 of LUT3_18 or nRST (nSET) of DFF22 or Delay4 Input (or Counter4 nRST Input)	37
[1096:1090]	IN2 of LUT3_18 or Data of DFF22 or Delay4 Input (or Counter4 nRST Input)	38
[1103:1097]	IN0 of LUT3_19 or CLK Input of DFF23 or Delay5 Input (or Counter5 nRST Input)	39
[1110:1104]	IN1 of LUT3_19 or nRST (nSET) of DFF23 or Delay5 Input (or Counter5 nRST Input)	40
[1117:1111]	IN2 of LUT3_19 or Data of DFF23 or Delay5 Input (or Counter5 nRST Input)	41
[1124:1118]	IN0 of LUT3_20 or CLK Input of DFF24 or Delay6 Input (or Counter6 nRST Input)	42
[1131:1125]	IN1 of LUT3_20 or nRST (nSET) of DFF24 or Delay6 Input (or Counter6 nRST Input)	43
[1138:1132]	IN2 of LUT3_20 or Data of DFF24 or Delay6 Input (or Counter6 nRST Input)	44
[1145:1139]	IN0 of LUT3_21 or CLK Input of DFF25 or Delay7 Input (or Counter7 nRST Input)	45
[1152:1146]	IN1 of LUT3_21 or nRST (nSET) of DFF25 or Delay7 Input (or Counter7 nRST Input)	46
[1159:1153]	IN2 of LUT3_21 or Data of DFF25 or Delay7 Input (or Counter7 nRST Input)	47
[1166:1160]	IN0 of LUT3_22 or CLK Input of DFF26 or Delay8 Input (or Counter8 nRST Input)	48
[1173:1167]	IN1 of LUT3_22 or nRST (nSET) of DFF26 or Delay8 Input (or Counter8 nRST Input)	49
[1180:1174]	IN2 of LUT3_22 or Data of DFF26 or Delay8 Input (or Counter8 nRST Input)	50
[1187:1181]	IN0 of LUT3_23 or CLK Input of DFF27 or Delay9 Input (or Counter9 nRST Input)	51
[1194:1188]	IN1 of LUT3_23 or nRST (nSET) of DFF27 or Delay9 Input (or Counter9 nRST Input)	52
[1201:1195]	IN2 of LUT3_23 or Data of DFF27 or Delay9 Input (or Counter9 nRST Input)	53
[1208:1202]	Load of Delay9 or Counter9	54
[1215:1209]	IN0 of LUT3_24 or CLK Input of DFF28 or Delay10 Input (or Counter10 nRST Input) or UP Input of FSM2	55
[1222:1216]	IN1 of LUT3_24 or nRST (nSET) of DFF28 or Delay10 Input (or Counter10 nRST Input) or DLY/CNT10/FSM2 External CLK input	56
[1229:1223]	IN2 of LUT3_24 or Data of DFF28 or Delay10 Input (or Counter10 nRST Input) or FSM Reset/Set input	57
[1236:1230]	IN0 of LUT4_2 or CLK Input of DFF29 or Delay11 Input (or Counter11 nRST Input)	58

Register Bit Address	Matrix1 Output Signal Function	Matrix Output Number
[1243:1237]	IN1 of LUT4_2 or nRST of DFF29 or Delay11 Input (or Counter11 nRST Input) or Delay/Counter11 External CLK source	59
[1250:1244]	IN2 of LUT4_2 or nSET of DFF29 or Delay11 Input (or Counter11 nRST Input) or Delay/Counter11 External CLK source or KEEP Input of FSM0	60
[1257:1251]	IN3 of LUT4_2 or Data of DFF29 or Delay11 Input (or Counter11 nRST Input) or UP Input of FSM0	61
[1264:1258]	IN0 of LUT4_3 or CLK Input of DFF30 or Delay12 Input (or Counter12 nRST Input)	62
[1271:1265]	IN1 of LUT4_3 or nRST of DFF30 or Delay12 Input (or Counter12 nRST Input) or Delay/Counter12 External CLK source	63
[1278:1272]	IN2 of LUT4_3 or nSET of DFF30 or Delay12 Input (or Counter12 nRST Input) or Delay/Counter12 External CLK source or KEEP Input of FSM1	64
[1285:1279]	IN3 of LUT4_3 or Data of DFF30 or Delay12 Input (or Counter12 nRST Input) or UP Input of FSM1	65
[1292:1286]	Memory Control counter External Clock Input / Width Converter CLK input	66
[1299:1293]	Memory Control counter Reset/Set Input	67
[1306:1300]	Memory Control counter Up/Down Input	68
[1313:1307]	Memory Control counter Keep/Range Input	69
[1320:1314]	Filter/Edge Detect Input	70
[1327:1321]	ADC Conversion Start	71
[1334:1328]	ADC Start Calibration	72
[1341:1335]	ADC CLK input	73
[1348:1342]	MathCore Calc_EN	74
[1355:1349]	PGA Power-Up	75
[1362:1356]	Current source Power-up	76
[1369:1363]	DCMP Enable	77
[1376:1370]	DCMP Reset	78
[1383:1377]	ADC Power-up	79
[1390:1384]	Data Buffer0 Load	80
[1397:1391]	Data Buffer1 Load	81
[1404:1398]	Data Buffer2 Load	82
[1411:1405]	Data Buffer3 Load	83
[1418:1412]	PWM Power-up	84
[1425:1419]	DAC Power-up	85
[1432:1426]	ACMP_H Power-up	86

Register Bit Address	Matrix1 Output Signal Function	Matrix Output Number
[1439:1433]	GPIO0 Digital Output	87
[1446:1440]	GPIO1 Digital Output	88
[1453:1447]	GPIO2 Digital Output OE	89
[1460:1454]	GPIO2 Digital Output	90
[1467:1461]	GPIO3 Digital Output OE	91
[1474:1468]	GPIO3 Digital Output	92
[1481:1475]	GPIO4 Digital Output OE	93
[1488:1482]	GPIO4 Digital Output	94
[1495:1489]	GPIO5 Digital Output OE	95
[1502:1496]	GPIO5 Digital Output	96
[1509:1503]	GPIO6 Digital Output OE	97
[1516:1510]	GPIO6 Digital Output	98
[1523:1517]	GPIO7 Digital Output OE	99
[1530:1524]	GPIO7 Digital Output	100
[1537:1531]	GPIO8 Digital Output OE	101
[1544:1538]	GPIO8 Digital Output	102
[1551:1545]	GPIO9 Digital Output OE	103
[1558:1552]	GPIO9 Digital Output	104
[1565:1559]	Temperature sensor Power-up	105
[1572:1566]	OSC1 Enable	106
[1579:1573]	I ² C/SPI Virtual Output 7 (Signal Readback Input 7)	107
[1586:1580]	I ² C/SPI Virtual Output 6 (Signal Readback Input 6)	108
[1593:1587]	I ² C/SPI Virtual Output 5 (Signal Readback Input 5)	109
[1600:1594]	I ² C/SPI Virtual Output 4 (Signal Readback Input 4)	110
[1607:1601]	I ² C/SPI Virtual Output 3 (Signal Readback Input 3)	111
[1614:1608]	I ² C/SPI Virtual Output 2 (Signal Readback Input 2)	112
[1621:1615]	I ² C/SPI Virtual Output 1 (Signal Readback Input 1)	113
[1628:1622]	I ² C/SPI Virtual Output 0 (Signal Readback Input 0)	114
[1635:1629]	Out0 output to Matrix0	115
[1642:1636]	Out1 output to Matrix0	116

Register Bit Address	Matrix1 Output Signal Function	Matrix Output Number
[1649:1643]	Out2 output to Matrix0	117
[1656:1650]	Out3 output to Matrix0	118
[1663:1657]	Out4 output to Matrix0	119
[1670:1664]	Out5 output to Matrix0	120
[1677:1671]	Out6 output to Matrix0	121
[1684:1678]	Out7 output to Matrix0	122
[1691:1685]	Out8 output to Matrix0	123

6.3 Connection Matrix Virtual Inputs

Most connection matrix inputs come from the outputs of various digital macrocells on the device. Eight of the connection matrix inputs connect to a register that can be written via I²C/SPI by the user. This gives the user an access to the inputs of other macrocells through the connection matrix. The I²C/SPI address for reading and writing these register values is 0x0061.

Seven out of eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I²C/SPI write command to this register bits will set the desired signal values of the connection matrix inputs.

One out of eight Connection Matrix Virtual Inputs is shared with I2C_Ack output (I²C/SPI virtual Input 0 or I2C_Ack). The register I2C_ACK_HV0_SEL [3435] selects whether the connection matrix input comes from the I2C_Ack output or from the I²C/SPI virtual Input 0. If the virtual input mode is selected, the I²C/SPI write command to this register bit will set the signal value going into the connection matrix to the desired state.

I²C/SPI virtual inputs are always available for read/write operation via I²C/SPI interfaces. Protection bits have no effect on I²C/SPI virtual inputs (see section 25.4 Chip Configuration Data Protection).

6.4 Connection Matrix Virtual Outputs (Signal Readback)

The digital outputs of the various macrocells are routed to the connection matrix to enable interconnections to the inputs of other macrocells. It is possible to read the state of any of the macrocell outputs through the Host Interface (I²C/SPI). This option, called Connection Matrix Virtual Outputs, allows the user to read the state of each macrocell outputs, which are connected to eight inputs of the Signal Readback block register: I²C/SPI Virtual Output 0 (CMO1 [114]) to I²C/SPI Virtual Output 7 (CMO1 [107]). The I²C/SPI address for reading this register is 0x0062. Write commands to these same register values will be ignored.

7. Combination Function Macrocells

The SLG47011 has 18 combination function macrocells that can perform more than one logic or timing function. Each macrocell can function as a Look Up Table (LUT) or another logic or timing function.

See the list below for the functions that can be implemented in these macrocells.

- Two macrocells that can serve as either 2-bit LUTs or DFFs.
- Eight macrocells that can serve as either 3-bit LUTs or DFFs with reset/set input.
- Six macrocells that can serve as either 3-bit LUTs, DFFs with reset/set input, or as Shift Register.
- Two macrocells that can serve as either 4-bit LUTs or DFF with reset/set input.

Inputs and outputs of those combination function macrocells are configured by the connection matrix with specific logic functions being defined by the state of configuration bits.

When the macrocell is used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user-defined function, including the following standard digital logic functions: AND, NAND, OR, NOR, XOR, XNOR, buffer, inverter.

7.1 2-bit LUT or D Flip-Flop Macrocells

There are two macrocells that can serve as either 2-bit LUTs or DFFs. If the LUT function is selected, the 2-bit LUT will take two input signals from the connection matrix outputs (CMOs) and produce a single output, which will connect back to the connection matrix input (CMI). If DFF function is selected, the two input signals from the connection matrix will connect to data (D) and clock (CLK) inputs for the DFF with the output connecting back to the connection matrix input. The DFF/LATCH_SEL registers select either the DFF or LATCH function. The operations of DFF and LATCH functions are described below:

- **DFF:** Q = D at a rising edge of CLK (edge-triggered), otherwise Q retains its previous value.
- LATCH: Q = D when CLK is low (level-triggered), otherwise Q retains its previous value.

RENESAS

7.2 2-bit LUT or D Flip-Flop Macrocell Used as 2-bit LUT

When these macrocells are configured as LUT functions, 4-bit registers are used to define their output functions:

- 2-bit LUT0 is defined by registers Reg[235:232]
- 2-bit LUT1 is defined by registers Reg[1699:1696].

Table 11. 2-bit LUT2_0 and 2-bit LUT2_1 Truth Table

IN1	INO	OUT LUT0	OUT LUT1	
0	0	Reg[232]	Reg[1696]	LSB
0	1	Reg[233]	Reg[1697]	
1	0	Reg[234]	Reg[1698]	
1	1	Reg[235]	Reg[1699]	MSB

Table 12 shows the register bits for the standard digital logic functions: AND, NAND, OR, NOR, XOR, XNOR, that can be created within each of the 2-bit LUT logic cells.

Table 12. 2-bit LUT Standard Digital Functions

		0		
Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

7.3 3-bit LUT or D Flip-Flop with Reset/Set Macrocells

There are eight macrocells that can function as either 3-bit LUTs or DFFs with reset/set inputs. If the LUT function is selected, the 3-bit LUTs will each take three input signals from the connection matrix outputs (CMOs) and produce a single output, which will connect back to the connection matrix input (CMI). If the DFF function is selected, the three input signals from the connection matrix outputs will be connected to data (D), clock (CLK), and reset/set (nRST/nSET) inputs, and the output will connect back to the connection matrix input. It is possible to select the polarity of the reset/set input of DFF/LATCH macrocell. The DFF_RST_POL bit selects either active-high (RST/SET) or active-low (nRST/nSET) options. The DFF/LATCH_SEL registers select either DFF or LATCH function. The operations of DFF and LATCH functions are described below:

- DFF: Q = D at a rising edge of CLK (edge-triggered), otherwise Q retains its previous value.
- LATCH: Q = D when CLK is low (level-triggered), otherwise Q retains its previous value.

7.4 3-bit LUT or D Flip-Flop with Reset/Set or Shift Register Macrocells

There are six macrocells that can serve as 3-bit LUTs, DFFs/LATCH, or shift registers (SR). The user can select the functionality (LUT, DFF/LATCH, or SR) of the macrocell by writing to registers. LUTs of DFF/Shift Register are selected by registers LUT/DFF_SR_SEL. If the macrocell is configured as a LUT, it will take three input signals from the connection matrix outputs (CMOs) and produce a single output, which will connect back to the connection matrix input (CMI).

If DFF/LATCH function is selected, the three input signals from the connection matrix outputs will be connected to data (D), clock (CLK) and reset/set (nRST/nSET) inputs of the DFF/LATCH, and the output will connect back to the connection matrix input. The active function for the reset/set input is defined by register DFF_RST/SET_SEL. The user can select the polarity of the reset/set input of the DFF/LATCH macrocell. The register DFF_RST_POL selects either active-high (RST/SET) or active-low (nRST/nSET) options. The DFF/LATCH_SEL registers select either DFF or LATCH function. The operations of the DFF and LATCH functions are as follows:

- **DFF**: Q = D at a rising edge of CLK (edge-triggered), otherwise Q retains its previous value.
- LATCH: Q = D when CLK is low (level-triggered), otherwise Q retains its previous value.

The user can also define the active level, Q or nQ, for the macrocell output by using the register OUT_POL.

If the macrocell is configured as a SR, the three input signals from the connection matrix outputs will be connected to the data (D), the clock (CLK) and the reset/set (nRST/nSET) inputs of the SR and its output will be fed back to the connection matrix input.

The user may select one of three options for the nSET/nRST input by registers DFF_RST/SET_SEL:

- Set the Shift Register to all ones (1).
- Set the Shift Register to the default value defined by the user.
- Reset the Shift Register to all zeros (0).

The user can select the polarity of the reset/set input of the SR macrocell by using the register DFF_RST_POL.

The input data (D) is written to the Shift Register input (starting from the LSB), and the length of the SR (up to 8 bits per memory cell) is selected by the DFF/SR_LEN [2:0] register. If the length of the SR is one, it will function as a DFF/LATCH.

The Shift Registers can be read or written through the I²C/SPI interface. Note that the data (D) and the clock (CLK) inputs must remain unchanged while the I²C/SPI master is reading data from the Shift Register. Otherwise, the I²C/SPI master can read the wrong data. Signals at D and CLK inputs of the Shift Register will be ignored while I²C/SPI master is writing new data to the Shift Register macrocell. Also, note that the reset input of the Shift Register has higher priority to the Shift Register than the I²C/SPI write routine.

Figure 25. 3-bit LUT8 or DFF10, or SR0

LUT3_9_DFF11_SHR1_SHR_LEN [339:337] LUT3_9_DFF11_SHR1_LATCH_SEL [340] LUT3_9_DFF11_SHR1_OUT_POL [341] LUT3_9_DFF11_SHR1_RSTSET_SEL [343:342] LUT3_9_DFF11_SHR1_RSTSET_LEVEL [344] LUT3_9_TRUTH_SR1_DATA [295:288]

LUT3_10_DFF12_SHR2_SHR2_LATCH_SEL [1826:1824] LUT3_10_DFF12_SHR2_LATCH_SEL [1827] LUT3_10_DFF12_SHR2_OUT_POL [1828] LUT3_10_DFF12_SHR2_RSTSET_SEL [1830:1829] LUT3_10_DFF12_SHR2_RSTSET_LEVEL [1831] LUT3_10_TRUTH_SR1_DATA [1743:1736] → DFF/SR_LEN [2:0] → DFF/LATCH_SEL [0] → OUT_POL [0] → DFF_RST/SET_SEL [1:0] → DFF_SETRST_POL [0] → LUT_TRUTH/SR_DATA [7:0]

Figure 27. 3-bit LUT10 or DFF12, or SR2

LUT3_11_DFF13_SHR3_SHR_LEN [1835:1833] LUT3_11_DFF13_SHR3_LATCH_SEL [1836] LUT3_11_DFF13_SHR3_OUT_POL [1837] LUT3_11_DFF13_SHR3_RSTSET_SEL [1839:1838] LUT3 11 DFF13 SHR3 RSTSET LEVEL [1840]

LUT3_11_TRUTH_SR3_DATA [1759:1752]

→ LUT/DFF_SR_SEL [0]
→ DFF/SR_LEN [2:0]
→ DFF/LATCH_SEL [0]
→ OUT_POL [0]
→ DFF_RST/SET_SEL [1:0]
→ DFF_SETRST_POL [0]
→ LUT TRUTH/SR DATA [7:0]

LUT3_12_DFF14_SHR4_RSTSET_SEL [1849:1848] LUT3 12 DFF14 SHR4 RSTSET LEVEL [1850] LUT3_12_TRUTH_SR4_DATA [1775:1768]

→ OUT_POL [0] → DFF_RST/SET_SEL [1:0] → DFF SETRST POL [0] → LUT_TRUTH/SR_DATA [7:0]

Figure 29. 3-bit LUT12 or DFF14, or SR4

LUT3_13_DFF15_SHR5_LUT_SEL[1851] LUT3_13_DFF15_SHR5_SHR_LEN[1854:1852] LUT3_13_DFF15_SHR5_LATCH_SEL[1855] LUT3_13_DFF15_SHR5_OUT_POL[1856] LUT3_13_DFF15_SHR5_RSTSET_SEL[1858:1857] LUT3_13_DFF15_SHR5_RSTSET_LEVEL[1859] LUT3_13_TRUTH_SR5_DATA[1791:1784] → LUT/DFF_SR_SEL [0] → DFF/SR_LEN [2:0] → DFF/LATCH_SEL [0] → OUT_POL [0] → DFF_RST/SET_SEL [1:0] → DFF_SETRST_POL [0] → LUT_TRUTH/SR_DATA [7:0]

Note 1: Macrocell is configured as DFF.

Note 2: Macrocell is configured as 8-bit Shift Register.

Figure 31. DFF10 to DFF15 or SR0 to SR5 Operation

Note 2: Macrocell is configured as DFF.

Note 3: Macrocell is configured as 8-bits.

Figure 32. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option

Note 3: Macrocell is configured as 8-bits.

Figure 33. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option, Case 1

Note 1: DFF Setting "Initial Value = 1". **Note 2:** Macrocell is configured as DFF.

Note 3: Macrocell is configured as 8-bits.

Figure 34. DFF10 to DFF15 or SR0 to SR5 Operation, nRST Option, Case 2

Note 3: Macrocell is configured as 8-bits.

Figure 35. DFF10 to DFF15 or SR0 to SR5 Operation, nSET to All '1' Option

RENESAS

Note 1: DFF Setting "Initial Value = 0".

Note 2: Macrocell is configured as DFF. **Note 3:** Macrocell is configured as 8-bits.

Note 1: DFF Setting "Initial Value = 0". **Note 2:** Macrocell is configured as DFF.

Note 3: Macrocell is configured as 8-bits.

Figure 37. DFF10 to DFF15 or SR0 to SR5 Operation, nSET to Default Value Option, Case 2

7.4.1. 3-bit LUT or D Flip-Flop Macrocells Used as 3-bit LUTs

Each macrocell operating as LUT uses an 8-bit register to define its output function:

- 3-bit LUT3_0 is defined by Reg[243:236]
- 3-bit LUT3_1 is defined by Reg[251:244]
- 3-bit LUT3_2 is defined by Reg[259:252]
- 3-bit LUT3_3 is defined by Reg[267:260]
- 3-bit LUT3_4 is defined by Reg[1707:1700]
- 3-bit LUT3_5 is defined by Reg[1715:1708]

SLG47011 Datasheet

- 3-bit LUT3_6 is defined by Reg[1723:1716]
- 3-bit LUT3_7 is defined by Reg[1731:1724]
- 3-bit LUT3_8 is defined by Reg[279:272]
- 3-bit LUT3_9 is defined by Reg[295:288]
- 3-bit LUT3_10 is defined by Reg[1743:1736]
- 3-bit LUT3_11 is defined by Reg[1759:1752]
- 3-bit LUT3_12 is defined by Reg[1775:1768]
- 3-bit LUT3_13 is defined by Reg[1791:1784].

Table 13. 3-bit LUT3_0 to 3-bit LUT3_13 Truth Table

IN2	INI	ONI	OUT LUT 3_0		OUT LUT 3_2		OUT LUT 3_4	OUT LUT 3_5	OUT LUT 3_6		OUT LUT 3_8		OUT LUT 3_10	OUT LUT 3_11	OUT LUT 3_12	OUT LUT 3_13	
0	0	0	Reg [236]	Reg [244]	Reg [252]	Reg [260]	Reg [1700]	Reg [1708]	Reg [1716]	Reg [1724]	Reg [272]	Reg [288]	Reg [1736]	Reg [1752]	Reg [1768]	Reg [1784]	LSB
0	0	1	Reg [237]	Reg [245]	Reg [253]	Reg [261]	Reg [1701]	Reg [1709]	Reg [1717]	Reg [1725]	Reg [273]	Reg [289]	Reg [1737]	Reg [1753]	Reg [1769]	Reg [1785]	
0	1	0	Reg [238]	Reg [246]	Reg [254]	Reg [262]	Reg [1702]	Reg [1710]	Reg [1718]	Reg [1726]	Reg [274]	Reg [290]	Reg [1738]	Reg [1754]	Reg [1770]	Reg [1786]	
0	1	1	Reg [239]	Reg [247]	Reg [255]	Reg [263]	Reg [1703]	Reg [1711]	Reg [1719]	Reg [1727]	Reg [275]	Reg [291]	Reg [1739]	Reg [1755]	Reg [1771]	Reg [1787]	
1	0	0	Reg [240]	Reg [248]	Reg [256]	Reg [264]	Reg [1704]	Reg [1712]	Reg [1720]	Reg [1728]	Reg [276]	Reg [292]	Reg [1740]	Reg [1756]	Reg [1772]	Reg [1788]	
1	0	1	Reg [241]	Reg [249]	Reg [257]	Reg [265]	Reg [1705]	Reg [1713]	Reg [1721]	Reg [1729]	Reg [277]	Reg [293]	Reg [1741]	Reg [1757]	Reg [1773]	Reg [1789]	
1	1	0	Reg [242]	Reg [250]	Reg [258]	Reg [266]	Reg [1706]	Reg [1714]	Reg [1722]	Reg [1730]	Reg [278]	Reg [294]	Reg [1742]	Reg [1758]	Reg [1774]	Reg [1790]	
1	1	1	Reg [243]	Reg [251]	Reg [259]	Reg [267]	Reg [1707]	Reg [1715]	Reg [1723]	Reg [1731]	Reg [279]	Reg [295]	Reg [1743]	Reg [1759]	Reg [1775]	Reg [1791]	MSB

Table 14 shows the register bits for standard digital logic functions: AND, NAND, OR, NOR, XOR, XNOR, that can be utilized within each of the fourteen 3-bit LUT logic cells.

Table 14. 3-bit LUT Standard Digital Functions

Function	MSB							LSB
AND-3	1	0	0	0	0	0	0	0
NAND-3	0	1	1	1	1	1	1	1
OR-3	1	1	1	1	1	1	1	0
NOR-3	0	0	0	0	0	0	0	1
XOR-3	1	0	0	1	0	1	1	0
XNOR-3	0	1	1	0	1	0	0	1

7.5 4-BIT LUT or D Flip-Flop with Reset/Set Macrocell

There are two macrocells that can function as either a 4-bit LUT or a DFF/LATCH with reset/set input. The 4-bit LUT takes four input signals from the connection matrix outputs (CMOs) and generates a single output, which connects back to the connection matrix input (CMI). For the DFF/LATCH function, the input signals from the connection matrix outputs are connected to data (D), clock (CLK), and reset/set (nRST/nSET) inputs, and the output connects back to the connection matrix input. The user can select the polarity of the reset/set input of DFF/LATCH macrocell. The DFFx_RST_POL bit selects either active-high (RST/SET) or active-low (nRST/nSET) options. The DFF/LATCH_SEL bit selects either DFF or LATCH function. The operations of the DFF and LATCH functions are described below:

- **DFF**: Q = D at a rising edge of the CLK (edge-triggered), otherwise Q retains its previous value.
- LATCH: Q = D when CLK is low (level-triggered), otherwise Q retains its previous value.

Figure 38. 4-bit LUT0 or DFF16

Figure 39. 4-bit LUT1 or DFF17

7.5.1. 4-bit LUT Macrocell Used as 4-bit LUT

This macrocell uses a 16-bit register to define the output function:

- 4-bit LUT0 is defined by Reg[319:304]
- 4-bit LUT1 is defined by Reg[1815:1800].

Table 15. 4-bit LUT0 Truth Table

IN3	IN2	IN1	INO	4-bit LUT0 OUT	4-bit LUT1 OUT	
0	0	0	0	Reg[304]	Reg[1800]	LSB
0	0	0	1	Reg[305]	Reg[1801]	
0	0	1	0	Reg[306]	Reg[1802]	
0	0	1	1	Reg[307]	Reg[1803]	
0	1	0	0	Reg[308]	Reg[1804]	
0	1	0	1	Reg[309]	Reg[1805]	
0	1	1	0	Reg[310]	Reg[1806]	
0	1	1	1	Reg[311]	Reg[1807]	
1	0	0	0	Reg[312]	Reg[1808]	
1	0	0	1	Reg[313]	Reg[1809]	

IN3	IN2	IN1	INO	4-bit LUT0 OUT	4-bit LUT1 OUT	
1	0	1	0	Reg[314]	Reg[1810]	
1	0	1	1	Reg[315]	Reg[1811]	
1	1	0	0	Reg[316]	Reg[1812]	
1	1	0	1	Reg[317]	Reg[1813]	
1	1	1	0	Reg[318]	Reg[1814]	
1	1	1	1	Reg[319]	Reg[1815]	MSB

Table 16. 4-bit LUT Standard Digital Functions

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1

8. Multi-Function Macrocells

The SLG47011 features fourteen multi-function macrocells that can perform various logic or timing functions. Each multi-function macrocell can operate as a LUT, a DFF with flexible settings, or a counter/delay with multiple modes such as delay, reset counter, one-shot, frequency detection, edge detection, delayed edge detection. The multi-function macrocell is also capable of combining the LUT/DFF with the CNT/DLY function in a serial fashion, as shown in Figure 40.

See the list below for the functions that can be implemented in these macrocells:

- Ten macrocells that can function as 3-bit LUTs/DFFs and as 12-bit counter/delays.
- Two macrocells that can function as 4-bit LUTs/DFFs and as 16-bit counter/delays/FSM.
- One macrosell that can function as 3-bit LUT/DFF and as 12-bit counter/delay/FSM.
- One macrocell that can function as a 12-bit Up/Down Counter.

Figure 40. Possible Connections Inside Multi-Function Macrocell

The IOs of the multi-function macrocells are configured from the connection matrix with specific logic functions being defined by the state of the NVM bits.

If the LUT function is selected, the outputs of the LUTs can be configured to any user-defined function, including the following standard digital logic functions: AND, NAND, OR, NOR, XOR, XNOR, buffer, inverter.

8.1 3-BIT LUT or DFF/LATCH with Counter/Delay Macrocells

The SLG47011 features eleven macrocells that can function as 3-bit LUTs/DFFs and as 12-bit counter/delays.

If the LUT function is selected, the 3-bit LUTs take three input signals from the connection matrix outputs (CMOs) and produce a single output, which connects back to the connection matrix input (CMI) or can be connected to the input of CNT/DLY.

If the DFF function is selected, the three input signals from the connection matrix outputs are connected to data (D), clock (CLK), and reset/set (nRST/nSET) inputs, and the output connects back to the connection matrix input or to the input of CNT/DLY.

If the Counter/Delay function is selected, each macrocell has a dedicated matrix input connection. Each macrocell can be driven by a variety of internal and external clock sources. The user has also an option to use the output of the previous (N-1) CNT/DLY macrocell as a clock input, to implement larger/longer count/delay circuits. Counter end output signal can be routed to the next counter clock input, that can be used as a counter chain with twice as many bits as a single counter. All counters can be chained together.

These macrocells can also operate in a one-shot mode that generates an output pulse of user-defined width. They can also operate in a frequency detection or an edge detection mode.

All possible multi-function macrocell configurations (3-BIT LUT or DFF/LATCH with 12-bit CNT/DLY) and corresponding matrix outputs functions are shown in Table 17.

Function	LUT_ DFF_ SEL	MF_INT_ CONN[1]	MF_INT_ CONN[1]	MULTI_ FUNC_ SEL[1]	MULTI_ FUNC_ SEL[0]	ln2	In1	In0	D	nRST/ nSET	CLK	DLY_IN	EXT_ CLK
Single 3-bit LUT	0	0	0	0	0	Matrix A	Matrix B	Matrix C	0	0	0	0	0
Single DFF with RST and SET	1	0	0	0	0	Matrix A	Matrix B	Matrix C	Matrix A	Matrix B	Matrix C	0	0
Single CNT/DLY	0	0	0	0	1	DLY_OUT	DLY_OUT	DLY_OUT	0	0	0	Matrix A	Matrix B
	0	0	0	1	0	DLY_OUT	Matrix B	Matrix C	0	0	0	Matrix A	0
CNT/DLY → LUT	0	0	1	1	0	Matrix A	DLY_OUT	Matrix C	0	0	0	Matrix B	0
	0	1	0	1	0	Matrix A	Matrix B	DLY_OUT	0	0	0	Matrix C	0
	1	0	0	1	0	DLY_OUT	Matrix B	Matrix C	DLY_OUT	Matrix B	Matrix C	Matrix A	0
$\begin{array}{c} \text{CNT/DLY} \rightarrow \\ \text{DFF} \end{array}$	1	0	1	1	0	Matrix A	DLY_OUT	Matrix C	Matrix A	DLY_OUT	Matrix C	Matrix B	0
	1	1	0	1	0	Matrix A	Matrix B	DLY_OUT	Matrix A	Matrix B	DLY_OUT	Matrix C	0
LUT → CNT/DLY	0	0	0	1	1	Matrix A	Matrix B	Matrix C	0	0	0	LUT_OUT	0
DFF → CNT/DLY	1	0	0	1	1	Matrix A	Matrix B	Matrix C	Matrix A	Matrix B	Matrix C	DFF_OUT	0

Table 17. 3-BIT LUT or DFF/LATCH with Counter/Delay Macrocells Configuration

Each counter/delay macrocell is initialized with a default value, which is set during the power-up. It is possible to select either initial LOW or initial HIGH as the initial value defined by a Delay macrocell Input signal. For example, if the initial LOW option is used, the rising edge delay will start operation.

For timing diagrams refer to sections 7.1 2-bit LUT or D Flip-Flop Macrocells and 8.2 CNT/DLY Timing Diagrams.

Note: After two DFFs – counters initialize with counter data = 0 after POR.

- Initial state = 1 counters initialize with counter data = 0 after POR.
- Initial state = 0 and after two DFFs are bypassed counters initialize with counter data after POR.

Note: If the counter's Rising Edge Reset option is used, it is recommended: 1) to use the "After two DFFs" setting for CNT mode synchronization; 2) spread the CNT clock and the Reset signals over time.

The user can read the counter states of 16-bit CNT11, 16-bit CNT12, and the 12-bit Memory Control Counter via I²C/SPI. The user can also write any counter data using I²C/SPI write commands. In counter/delay mode, it is possible to load the count data immediately (after two DFFs) or after the counter finishes counting. See section 25 Host Interface for further details.

The 12-bit CNT/DLY10/FSM2 macrocell can operate as a Pulse Width Modulation (PWM) period counter when the PWM macrocell is enabled. The counting direction of the 12-bit CNT/DLY10 macrocell in PWM mode is:

- from CNT Data to 0 if register PWM_CNT_UP [3157] = 0
- from 0 to CNT Data if register PWM_CNT_UP [3157] = 1.

The user can dynamically change the Counter data (CNT data) of the 12-bit CNT/DLY9 macrocell using the Memory Control Counter.

Figure 41. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY0)

Figure 42. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY1)

Figure 48. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT21/DFF25, CNT/DLY7)

Figure 50. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT23/DFF27, CNT/DLY9)

Figure 51. 12-bit Multi-Function Macrocells Block Diagram (3-bit LUT24/DFF28, CNT/DLY10/FSM2)

As shown in Figure 41-Figure 51, it is possibile to use LUT/DFF and CNT/DLY simultaneously.

Note: It is not possible to use LUT and DFF simultaneously. The user can consider following use cases involving LUT/DFF and CNT/DLY macrocells:

• Case 1: LUT/DFF in series with CNT/DLY.

Three input signals from the connection matrix outputs are connected to the inputs of the LUT or DFF and produce a single output that connects to the input of CNT/DLY. The output of CNT/DLY connects back to the connection matrix input.

• Case 2: CNT/DLY in series with LUT/DFF.

Two input signals, IN and CLK, from the connection matrix outputs are connected to the input of CNT/DLY macrocell. Its output signal can be connected to any input of LUT/DFF macrocell. The output of the LUT/DFF connects back to the connection matrix input.

• Case 3: Single LUT/DFF or CNT/DLY.

The LUT/DFF or CNT/DLY function can be used as a standalone function. In this case, all inputs and output of the macrocell are connected to the connection matrix.

If the LUT function is used, an 8-bit register defines the output function:

- 3-bit LUT3_14 is defined by Reg[359:352]
- 3-bit LUT3_15 is defined by Reg[415:408]
- 3-bit LUT3_16 is defined by Reg[1871:1864]

SLG47011 Datasheet

- 3-bit LUT3_17 is defined by Reg[1927:1920]
- 3-bit LUT3_18 is defined by Reg[1983:1976]
- 3-bit LUT3_19 is defined by Reg[2039:2032]
- 3-bit LUT3_20 is defined by Reg[2095:2088]
- 3-bit LUT3_21 is defined by Reg[2151:2144]
- 3-bit LUT3_22 is defined by Reg[2207:2200]
- 3-bit LUT3_23 is defined by Reg[2263:2256]
- 3-bit LUT3_24 is defined by Reg[2327:2320].

IN2	IN1	IN0	OUT LUT 3_14	OUT LUT 3_15	OUT LUT 3_16	OUT LUT 3_17	OUT LUT 3_18	OUT LUT 3_19	OUT LUT 3_20	OUT LUT 3_21	OUT LUT 3_22	OUT LUT 3_23	OUT LUT 3_24	
0	0	0	Reg [352]	Reg [408]	Reg [1864]	Reg [1920]	Reg [1976]	Reg [2032]	Reg [2088]	Reg [2144]	Reg [2200]	Reg [2256]	Reg [2320]	LSB
0	0	1	Reg [353]	Reg [409]	Reg [1865]	Reg [1921]	Reg [1977]	Reg [2033]	Reg [2089]	Reg [2145]	Reg [2201]	Reg [2257]	Reg [2321]	
0	1	0	Reg [354]	Reg [410]	Reg [1866]	Reg [1922]	Reg [1978]	Reg [2034]	Reg [2090]	Reg [2146]	Reg [2202]	Reg [2258]	Reg [2322]	
0	1	1	Reg [355]	Reg [411]	Reg [1867]	Reg [1923]	Reg [1979]	Reg [2035]	Reg [2091]	Reg [2147]	Reg [2203]	Reg [2259]	Reg [2323]	
1	0	0	Reg [356]	Reg [412]	Reg [1868]	Reg [1924]	Reg [1980]	Reg [2036]	Reg [2092]	Reg [2148]	Reg [2204]	Reg [2260]	Reg [2324]	
1	0	1	Reg [357]	Reg [413]	Reg [1869]	Reg [1925]	Reg [1981]	Reg [2037]	Reg [2093]	Reg [2149]	Reg [2205]	Reg [2261]	Reg [2325]	
1	1	0	Reg [358]	Reg [414]	Reg [1870]	Reg [1926]	Reg [1982]	Reg [2038]	Reg [2094]	Reg [2150]	Reg [2206]	Reg [2262]	Reg [2326]	
1	1	1	Reg [359]	Reg [415]	Reg [1871]	Reg [1927]	Reg [1983]	Reg [2039]	Reg [2095]	Reg [2151]	Reg [2207]	Reg [2263]	Reg [2327]	MSB

Table 18. 3-bit LUT8 to 3-bit LUT13 Truth Table

8.2 CNT/DLY Timing Diagrams

8.2.1. Delay Mode (Edge Select: Both Edges, Counter Data: 3), CNT/DLY0 to CNT/DLY12

The macrocell shifts the respective edge to a set time and restarts by appropriate edge. If the time difference between rising and falling edge of the input signal is less than the programmed delay time of the macrocell, then no signal will appear at the delay cell output. Please note that because Input signal and Clock signal (OSC) are not synchronized, variable delays are added to the total delay time.

Figure 52. Delay Macrocell Behavior with Different Oscillators Options (Edge Select: Both, CNT Data = 3)

Figure 53. Delay Mode Timing Diagram (Rising, Falling, and Both Edge Detection)

The initial value of delay macrocell output defines what the delay macrocell output will be during a power-on. This setting is selected by register CNTDLY_INIT [1:0]:

- **Bypass the initial:** the delay cell is bypassed during startup and the DLY input is forwarded to output during startup.
- Initial 0: DLY output will be held LOW during startup.
- Initial 1: DLY output will be held HIGH during startup.

The output signals of a delay macrocell depends on the input signal and the initial value set by the register. See Figure 54, Figure 55, and Figure 56 for details and signal timing.

CNTDLY_INIT = BYPASS, CNTDLY_IN parked LOW before POR release	CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH before POR release
	CNTDLY_IN
POR	POR
OCS0	OCS0
CNTDLY_OUT	CNTDLY_OUT
CNTDLY_INIT = 0, CNTDLY_IN parked LOW before POR release	CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before POR release
CNTDLY_IN	CNTDLY_IN
POR	POR
OCS0	ocso
CNTDLY_OUT	CNTDLY_OUT
CNTDLY_INIT = 1, CNTDLY_IN parked LOW before POR release CNTDLY_IN	CNTDLY_INIT = 1, CNTDLY_IN parked HIGH before POR release CNTDLY IN
POR	POR
ocso	OCS0
CNTDLY_OUT	CNTDLY_OUT

Figure 54. Delay Mode (Both Edge Delay) Initial Value States

SLG47011 Datasheet

_	S, CNTDLY_IN parked LOW before POR release	CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b	
CNTDLY_IN		CNTDLY_IN	
POR		POR	
OCS0		OCS0	
		CNTDLY_OUT	
ITDLY_INIT = 0, CNT	DLY_IN parked LOW before POR release	CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before F	POR release
CNTDLY_IN		CNTDLY_IN	
POR		POR	
OCS0		ocso	
		CNTDLY_OUT	
TDLY_INIT = 1, CNT	DLY_IN parked LOW before POR release	CNTDLY_INIT = 1, CNTDLY_IN parked HIGH before F	POR release
CNTDLY_IN		CNTDLY_IN	
POR		POR	
OCS0		OCS0	
CNTDLY_OUT		CNTDLY_OUT Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b	efore POR release
	Figure 55. Delay Mode (efore POR release
NTDLY_INIT = BYPAS	S, CNTDLY_IN parked LOW before POR release	CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b	efore POR release
ITDLY_INIT = BYPAS	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN	efore POR release
ITDLY_INIT = BYPAS CNTDLY_IN POR_N 	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N	efore POR releas
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCS0 	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N OCS0	
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCS0 CNTDLY_OUT	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N OCS0 CNTDLY_OUT	
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCS0 CNTDLY_OUT ITDLY_INIT = 0, CNT	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N OCS0 CNTDLY_OUT CNTDLY_OUT CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before F	
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N OCS0 CNTDLY_OUT CNTDLY_OUT CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before F CNTDLY_IN	
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN POR_N	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N OCS0 CNTDLY_OUT CNTDLY_OUT CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before F CNTDLY_IN POR_N POR_N	
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN POR_N OCSO CNTDLY_IN CNTDLY_INIT POR_N OCSO CNTDLY_OUT OCSO CNTDLY_OUT	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN POR_N CNTDLY_OUT CNTDLY_OUT CNTDLY_INIT = 0, CNTDLY_IN parked HIGH before F CNTDLY_IN POR_N OCS0 OCS0 OCS0	POR release
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN POR_N OCSO CNTDLY_IN CNTDLY_INIT POR_N OCSO CNTDLY_OUT POR_N OCSO CNTDLY_OUT	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States	POR release
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN OCSO CNTDLY_OUT ITDLY_INIT = 1, CNT	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN	POR release
ITDLY_INIT = BYPAS CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN POR_N OCSO CNTDLY_OUT ITDLY_INIT = 0, CNT CNTDLY_IN OCSO CNTDLY_OUT ITDLY_INIT = 1, CNT CNTDLY_IN POR_N POR_N	S, CNTDLY_IN parked LOW before POR release	Rising Edge Delay) Initial Value States CNTDLY_INIT = BYPASS, CNTDLY_IN parked HIGH b CNTDLY_IN	POR release

Figure 56. Delay Mode (Falling Edge Delay) Initial Value States

8.2.2. Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY12

Counter mode timing diagrams with rising edge detection for CNT_DATA [11:0] = 3 are shown in Figure 57 (CNT_SYNC_EN = 0) and Figure 58 (CNT_SYNC_EN = 1).

Figure 58. Counter Mode Timing Diagram with Two DFFs Synced Up

8.2.3. One-Shot Mode CNT/DLY0 to CNT/DLY12

This macrocell will generate a pulse whenever a selected edge is detected at its input. Register CNTDLY_FUNC [3:0] set the edge selection. The pulse width is determined by a counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is selected by register CNT_OUT_POL [0]. Any incoming edges will be ignored during the pulse generation. Figure 59 shows one-shot functions for non-inverted output.

Figure 59. One-Shot Function Timing Diagram
8.2.4. Frequency Detection Mode CNT/DLY0 to CNT/DLY12

In frequency detection mode, the macrocell output transitions HIGH if the time between two respective edges selected by register CNTDLY_FUNC [3:0] is less than the specified delay. See Figure 60:

- Rising Edge Detection: the output transitions HIGH if the time between two successive edges is less than the specified delay. The output transitions LOW if the subsequent rising edge has not come after the last rising edge within the specified time.
- Falling Edge Detection: the output transitions HIGH if the time between two successive falling edges is less than the specified delay. The output transitions LOW if the second falling edge has not come after the last falling edge within the specified time.
- Both Edge Detection: the output transitions HIGH if the time between the rising and falling edges is less
 than the specified delay, which is equivalent to the length of the pulse. The output transitions LOW if the
 subsequent edge has not come after the last rising/falling edge within the specified time.

Figure 60. Frequency Detection Mode Timing Diagram

8.2.5. Edge Detection Mode CNT/DLY0 to CNT/DLY12

In edge detection mode, the macrocell generates a high-level short pulse when detecting the respective edge (see Figure 61).

8.2.6. Delayed Edge Detection Mode

In delayed edge detection mode, high-level short pulses are generated at the macrocell output after the configured delay time, if the specified edge was detected at the input.

If the input signal changes its state during the set delay time, the pulse will not be generated. See Figure 62:

Figure 62. Delayed Edge Detection Mode Timing Diagram

8.2.7. Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes

There is a difference in counter value between counter and delay/one-shot/frequency detect modes. The counter value is shifted for two rising edges of the clock signal in delay/one-shot/frequency detect modes compared to counter mode. See Figure 63:

Figure 63. Counter Value, Counter Data = 3

8.3 Counter/Delay/FSM Macrocells

8.3.1. 4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM Macrocell General Description

The SLG47011 features two macrocells that can operate as either 4-bit LUT/DFFs or as 16-bit counter/delays.

For the LUT function, the 4-bit LUT takes in four input signals from the connection matrix and generates a single output that connects back into the connection matrix.

For the D Flip-flop function, the two input signals from the connection matrix connect to the data (D) and clock (CLK) inputs for the Flip-flop, with the output connecting back to the connection matrix.

For the 16-bit Counter/Delay function, two out of four input signals from the connection matrix connect to the external clock (EXT_CLK) and the reset (DLY_IN/CNT Reset) for the counter/delay, with the output connecting back to the connection matrix.

This macrocell has also an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to control the FSM.

This macrocell can operate in the one-shot mode, which generates an output pulse of user-defined width.

This macrocell can also operate in the frequency detection or edge detection mode.

The current counter value of 16-bit CNT/DLY11 and CNT/DLY12 can be stored in the Data Buffer0 and Data Buffer2, respectively (CNT/DLY11 \rightarrow Data Buffer0 and CNT/DLY12 \rightarrow Data Buffer2).

All possible multi-function macrocell (4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM) configurations and corresponding matrix outputs functions are shown in Table 19.

Function	CNT_ EXT_ CLK_ SEL[1]		LUT_ DFF_ SEL	MF_ INT_ CONN [1]	INT_	MULTI_ FUNC_ SEL[1]		ln3	ln2	ln1	In0	D	nSET	nRST	CLK	DLY_ IN	EXT_ CLK	UP	KEEP
Single 4-bit LUT	0	0	0	0	0	0	0	Matrix A	Matrix B	Matrix C	Matrix D	0	0	0	0	0	0	0	0
Single DFF with RST and SET	0	0	1	0	0	0	0	Matrix A	Matrix B	Matrix C	Matrix D	Matrix A	Matrix B	Matrix C	Matrix D	0	0	0	0
Single CNT/DLY	0	0	0	0	0	0	1	DLY_ OUT	DLY_ OUT	DLY_ OUT	DLY_ OUT	0	0	0	0	Matrix D	Matrix C	Matrix A	Matrix B
	0	0	0	0	0	1	0	DLY_ OUT	Matrix B	Matrix C	Matrix D	0	0	0	0	Matrix A	0	0	0
	0	1	0	0	0	1	0	DLY_ OUT	0	Matrix C	Matrix D	0	0	0	0	Matrix A	Matrix B	0	0
	1	0	0	0	0	1	0	DLY_ OUT	Matrix B	0	Matrix D	0	0	0	0	Matrix A	Matrix C	0	0
CNT/DLY →	0	0	0	0	1	1	0	Matrix A	DLY_ OUT	Matrix C	Matrix D	0	0	0	0	Matrix B	0	0	0
LUT	1	0	0	0	1	1	0	Matrix A	DLY_ OUT	0	Matrix D	0	0	0	0	Matrix B	Matrix C	0	0
	0	0	0	1	0	1	0	Matrix A	Matrix B	DLY_ OUT	Matrix D	0	0	0	0	Matrix C	0	0	0
	0	1	0	1	0	1	0	Matrix A	0	DLY_ OUT	Matrix D	0	0	0	0	Matrix C	Matrix B	0	0
	0	0	0	1	1	1	0	Matrix A	Matrix B	Matrix C	DLY_ OUT	0	0	0	0	Matrix D	0	0	0

Table 19. 4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM Macrocells Configuration

Function	CNT_ EXT_ CLK_ SEL[1]	EVT	LUT_ DFF_ SEL	MF_ INT_ CONN [1]	INI_	MULTI_ FUNC_ SEL[1]	FUNC	In3	In2	In1	In0	D	nSET	nRST	CLK	DLY_ IN	EXT_ CLK	UP	KEEP
$CNT/DLY \rightarrow$	0	1	0	1	1	1	0	Matrix A	0	Matrix C	DLY_ OUT	0	0	0	0	Matrix D	Matrix B	0	0
LUT	1	0	0	1	1	1	0	Matrix A	Matrix B	0	DLY_ OUT	0	0	0	0	Matrix D	Matrix C	0	0
	0	0	1	0	0	1	0	DLY_ OUT	Matrix B	Matrix C	Matrix D	DLY_ OUT	Matrix B	Matrix C	Matrix D	Matrix A	0	0	0
	0	1	1	0	0	1	0	DLY_ OUT	1	Matrix C	Matrix D	DLY_ OUT	1	Matrix C	Matrix D	Matrix A	Matrix B	0	0
	1	0	1	0	0	1	0	DLY_ OUT	Matrix B	1	Matrix D	DLY_ OUT	Matrix B	1	Matrix D	Matrix A	Matrix C	0	0
	0	0	1	0	1	1	0	Matrix A	DLY_ OUT	Aatrix (Matrix D	Matrix A	DLY_ OUT	Matrix C	Matrix D	Matrix B	0	0	0
$CNT/DLY \rightarrow$	1	0	1	0	1	1	0	Matrix A	DLY_ OUT	1	Matrix D	Matrix A	DLY_ OUT	1	Matrix D	Matrix B	Matrix C	0	0
DFF	0	0	1	1	0	1	0	Matrix A	Matrix B	DLY_ OUT	Matrix D	Matrix A	Matrix B	DLY_ OUT	Matrix D	Matrix C	0	0	0
	0	1	1	1	0	1	0	Matrix A	1	DLY_ OUT	Matrix D	Matrix A	1	DLY_ OUT	Matrix D	Matrix C	Matrix B	0	0
	0	0	1	1	1	1	0	Matrix A	Matrix B	Matrix C	DLY_ OUT	Matrix A	Matrix B	Matrix C	DLY_ OUT	Matrix D	0	0	0
	0	1	1	1	1	1	0	Matrix A	1	Matrix C	DLY_ OUT	Matrix A	1	Matrix C	DLY_ OUT	Matrix D	Matrix B	0	0
	1	0	1	1	1	1	0	Matrix A	1	1	DLY_ OUT	Matrix A	1	1	DLY_ OUT	Matrix D	Matrix C	0	0
	0	0	0	0	0	1	1	Matrix A	Matrix B	Matrix C	Matrix D	0	0	0	0	LUT_ OUT	0	0	0
LUT → CNT/DLY	0	1	0	0	0	1	1	Matrix A	0	Matrix C	Matrix D	0	0	0	0	LUT_ OUT	Matrix B	0	0
	1	0	0	0	0	1	1	Matrix A	Matrix B	0	Matrix D	0	0	0	0	LUT_ OUT	Matrix C	0	0
	0	0	1	0	0	1	1	Matrix A	Matrix B	Matrix C	Matrix D	Matrix A	Matrix B	Matrix C	Matrix D	DFF_ OUT	0	0	0
DFF → CNT/DLY	0	1	1	0	0	1	1	Matrix A	1	Matrix C	Matrix D	Matrix A	1	Matrix C	Matrix D	DFF_ OUT	Matrix B	0	0
	1	0	1	0	0	1	1	Matrix A	Matrix B	1	Matrix D	Matrix A	Matrix B	1	Matrix D	DFF_ OUT	Matrix C	0	0

The user can optionally enable the Data Buffers synchronization (registers BUF0_LOAD_SYNC [2793:2792], BUF2_LOAD_SYNC [2797:2796]) to guarantee the correct counter data to be loaded into the Data Buffers. Please note that synchronization option will add a latency of one or two counter clocks to Data Buffer output (see Figure 64, Figure 65).

Figure 64. Data Buffer0 Synchronization Option Enabled

Figure 65. Data Buffer0 Synchronization Option Disabled. X Data Options: (X + 7), (X + 8), Transition Data

The user can read the CNT macrocell active count value via I²C/SPI. See section 25.2 Reading Current Counter Value via I2C/SPI for details.

Note: After two DFFs – counters initialize with counter data = 0 after POR.

Initial state = 1 - counters initialize with counter data = 0 after POR.

Initial state = 0 and after two DFFs are bypassed – counters initialize with counter data after POR.

Note: If counter Rising Edge Reset option is used, it is recommended: 1) to use "After two DFFs" setting of CNT mode synchronization; 2) spread CNT clock and Reset, Keep, Up signals over time.

Figure 66. 4-bit LUT2 or DFF29, or CNT/DLY11/FSM0 Macrocell

8.3.2. 3-bit LUT or DFF/LATCH with 12-bit CNT/DLY/FSM Macrocell General Description

The SLG47011 features one multi-function macrocell that has a limited FSM functionality: 3-bit LUT24, DFF/LATCH28, CNT/DLY10/FSM2. This macrocell operates as the FSM macrocells described in section 8.3.1 4-bit LUT or DFF/LATCH with 16-bit CNT/DLY/FSM Macrocell General Description, with the exception that FSM2 macrocell has no Keep input (see Figure 51).

Also, CNT/DLY10/FSM2 macrocell is used as the PWM period counter. If PWM is enabled, the macrocell will be switched to the counter mode and the signals at the set/reset input of CNT/DLY10/FSM2 will be ignored.

RENESAS

8.4 CNT/FSM Mode (CNT/DLY10, CNT/DLY11, and CNT/DLY12) Timing Diagrams

Figure 68. CNT/FSM Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP = 0)

Figure 73. One-Shot/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0

Figure 74. Frequency Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0

8.5 12-bit Memory Control Counter

The SLG47011 features a macrocell that can operate as 12-bit Up/Down counter and provide an output signal to the connection matrix (see Figure 76). This macrocell can be used to control the address input of the Memory Table macrocell (see section 13 Memory Table Macrocell).

The Memory Control Counter inputs are as follows:

- **Clock**: Clock input to the macrocell. It can be an external signal (from the connection matrix) or the output signal from one of the internal oscillators.
- **Up/Down**: Controls if a CLK pulse either increments (Up/nDown = 1) or decrements (Up/nDown = 0) the current counter value of Memory Control Counter.
- Reset/Set: loads zero (Reset option) or default counter data (Set option) to the counter.
- **Keep/Range**: stops the counter (Keep option) or selects one of two operation ranges (Range option, when the Two Ranges mode is selected).

The counter value is readable via I²C/SPI. See section 25.2 Reading Current Counter Value via I2C/SPI for details.

Figure 76. 12-bit Memory Control Counter Macrocell

8.5.1. Memory Control Counter Operation Modes

Every CLK pulse increments or decrements the Memory Control Counter. The Up/Down input is used to select between incrementing (HIGH) or decrementing (LOW) the counter.

The Memory Control Counter macrocell can operate in two basic modes:

- Full Range Mode (see Figure 79): set the register MCC_CNT_TWO_RANGES_EN [3184] = 0 to activate this mode. The counter value is ranged from 0 to the upper limit value defined by registers MCC_UPPER_LIMIT [3219:3216, 3231:3224]. The counter start value after power-up can be 0 or the CNT Data depending on register MCC_CNT_START_VAL [3185] (see Table 20). The Reset/Set input is used to either reset the current CNT value to 0 or set the current CNT value to CNT Data depending on register MCC_CNT_SET_RST [3186] setting. The CNT Data must not be larger than registers MCC_UPPER_LIMIT [3219:3216, 3231:3224].
- Two Ranges Mode (see Figure 82): to activate this mode, set the register MCC_CNT_TWO_RANGES_EN [3184] = 1. When this mode is active, the counter range is divided into two ranges. The 1st range is from 0 to CNT Data. The 2nd range ranges from (CNT Data + 1) to the upper limit defined by two registers MCC_UPPER_LIMIT [3219:3216] and MCC_UPPER_LIMIT[3231:3224]. In this mode the Keep/Range input is used to select the range. If Keep/Range is LOW, the counter will operate in the 1st range. If Keep/Range is HIGH, the counter will operate in the 2nd range. The counter start value after power-up is set by register MCC_CNT_START_VAL [3185] and the selected counter range (see Table 20).

If the Keep/Range input transitions from LOW to HIGH, the current counter value will be set to [CNT Data + 1] (if $MCC_CNT_SET_RST$ [3186] = 0, Reset option) or set to the upper limit value (if $MCC_CNT_SET_RST$ [3186] = 1, Set option), and the counter will operate in the 2nd range.

If Keep/Range goes from HIGH to LOW, the current counter value will be set to 0 (if MCC_CNT_SET_RST [3186] = 0, Reset option) or to CNT Data (if MCC_CNT_SET_RST [3186] = 1, Set option), and the counter will operate in the 1st range.

If the reset signal is sent to the Memory Control Counter macrocell and the "Reset to 0" option is chosen (MCC_CNT_SET_RST [3186] = 0), the current counter value loads 0 or (CNT Data + 1) depending on the operation range. If the reset signal comes to the Memory Control Counter macrocell and the "Set to CNT Data"

option is chosen (MCC_CNT_SET_RST [3186] = 1), the current counter value loads CNT Data or the upper limit value depending on the operation range.

The user has the option to select Overflow or Stop at Boundaries modes. If Overflow mode is selected (MCC_OVF_EN [3187] = 1), the counter will continue counting when reaching the boundaries.

	Full Range Mode	Two Ranges Mode: Keep/Range = 0 (1 st Range)	Two Ranges Mode: Keep/Range = 1 (2 nd Range)						
MCC_CNT_START_VAL [3185] = 0	Initial value = 0	Initial value = 0	Initial value = (CNT Data + 1) ^[1]						
MCC_CNT_START_VAL [3185] = 1	Initial value = CNT Data	Initial value = CNT Data	Initial value = MCC_UPPER_LIMIT [3219:3216, 3231:3224]						
 [1] Restrictred if MCC_OVF_EN [3187] = 1, MCC_CNT_TWO_RANGES_EN [3184] = 1, MCC_CNT_START_VAL [3185] = 1, and Keep/Range (CMO1[69]) = HIGH. [2] The behavior of MCC first period after POR event will be different. 									

Table 20. Memory Control Counter Start Value

If Memory Control Counter is functioning in Two Ranges mode with Memory Table Macrocell, its operation is different from the case, when MCC is operating as standalone counter (see Table 21).

Up/Down	MCC_CNT_START_VAL	Keep/Range	MCC_OVF_EN = 1	MCC_OVF_EN = 0
		0	0, 1, 2,, CNT_data, 0, 1, 2,	0, 1, 2,, CNT_data
0	0	1	N/A	CNT_data+1, CNT_data+2,, MCC_UPPER_LIMIT
		0	CNT_data, 0, 1, 2, …, CNT_data, 0, 1, 2,…	CNT_data
	1	1	MCC_UPPER_LIMIT, CNT_data+1, CNT_data+2,, MCC_UPPER_LIMIT-1, MCC_UPPER_LIMIT, CNT_data+1,	MCC_UPPER_LIMIT
	0	0	0, CNT_data, CNT_data-1,, 0, CNT_data, CNT_data-1,	0
		1	N/A	CNT_data+1
		0	CNT_data, CNT_data-1,, 0, CNT_data, CNT_data-1,	CNT_data, CNT_data-1,, 0
	1	1	MCC_UPPER_LIMIT, MCC_UPPER_LIMIT-1,, CNT_data+1, MCC_UPPER_LIMIT, MCC_UPPER_LIMIT-1,	MCC_UPPER_LIMIT, MCC_UPPER_LIMIT-1,, CNT_data+1

Table 21. Memory Control Counter Operation in Two Ranges Mode with Memory Table

1.1

Example: the counter operates in Two Ranges mode and the 2nd range is selected, CNT Data = 250, MCC_UPPER_LIMIT = 1000, MCC_CNT_START_VAL = 1 (starts from MCC_UPPER_LIMIT), MCC_OVF_EN [3187] = 1 (overflow). If the counter counts up, then the current counter value will be: 1000, 251, 252, ..., 999, 1000, 251, 252, and others. If the counter counts down, the current counter value will be: 1000, 999, ..., 251, 1000, 999, and others.

Example: the counter operates in Full Range mode, CNT Data = 250, MCC_UPPER_LIMIT = 1000, MCC_CNT_START_VAL [3185] = 0 (starts from 0), MCC_OVF_EN [3187] = 1 (overflow), MCC is operating with Memory Table macrocell. If the counter counts down, then the current counter value will be: 0, 1000, 999, ..., 2, 1, 0, 1000, and others. If the counter counts up, then the current counter value will be 0, 1, ..., 999, 1000, 0, 1, and others.

If Stop at Boundaries mode is selected (MCC_OVF_EN [3187] = 0) and the counter operates in Full Range mode, then the counter will stop at 0 or at the upper limit MCC_UPPER_LIMIT. If Stop at Boundaries mode is selected (MCC_OVF_EN [3187] = 0) and the counter operates in Two Ranges mode, then the counter will stop at 0 or CNT Data when operating in the 1st range. If Stop at Boundaries mode is selected (MCC_OVF_EN [3187] = 0) and the counter operates mode, then the counter will stop at 0 or CNT Data when operating in the 1st range. If Stop at Boundaries mode is selected (MCC_OVF_EN [3187] = 0) and the counter operates in Two Ranges mode, then the counter will stop at (CNT Data + 1) or the upper limit when operating in the 2nd range.

The Memory Control Counter output to the connection matrix is HIGH if:

- counter value reaches 0 (zero) in Full Range mode
- counter value reaches 0 when operating in the 1st range of Two Ranges mode
- counter value reaches (CNT Data + 1) when operating in the 2nd range of Two Ranges mode.

If the counter counts up and the overflow option is enabled (MCC_OVF_EN [3187] = 1), the connection matrix output MCC Out (CMI1 [35]) can be used to observe the counter overflow events.

Note that changing registers MCC_CNT_DATA [3203:3200, 3215:3208], MCC_UPPER_LIMIT [3219:3216, 3231:3224], MCC_CNT_TWO_RANGES_EN [3184], MCC_CNT_START_VAL [3185], or MCC_OVF_EN [3187] with I²C/SPI during the counter operation may lead to undefined counter behavior.

Maximum clock speed for the Memory Control Counter is 20 MHz when operating with the Memory Table.

The MCC function is enabled/disabled by the MCC_EN [3199] register. If MCC_en is set to 1, the MCC will start to request the corresponding clock. If the user does not want to use the MCC, this register should be set to 0 to save power.

8.5.2. Controlling the Memory Table Macrocell Address with the Memory Control Counter

The Memory Control Counter macrocell can be used to control the input address of the Memory Table macrocell (see Figure 77). To activate this mode, MEM_ADDR_SEL [2732:2729] must be set to 7h (see section 13 Memory Table Macrocell). In this mode, the current counter value of the Memory Control Counter macrocell is the input address to the Memory Table.

In memory control mode (MEM_ADDR_SEL [2732:2729] = 7h), the address range and, consequently, the current counter value can be a number in a range from 0 to the upper limit value defined by MCC_UPPER_LIMIT [3219:3216, 3231:3224]. For correct operation of the Memory Table, the maximum allowable value of MCC_UPPER_LIMIT [3219:3216, 3231:3216, 3231:3224] is 4095 (0xFFF).

The timing diagram of the Memory Table Address controlled by the Memory Control Counter is shown in Figure 78.

Figure 78. Memory Table Address Controlling with Memory Control Counter

8.5.3. Controlling the Width Converter Output

To control the Width Converter output, the Memory Control Counter is used in combination with the Memory Table. If the Width Converter is enabled, the clock for the Memory Control Counter will come from the Width Converter and will depend on the Width Converter setting (see section 18 Width Converter Macrocell). All other features and behavior of the Memory Control Counter remain the same in this mode.

8.5.4. Memory Control Counter Timing Diagrams

Note 1: Start from CNT Data. Full range mode. Stop at boundaries option enabled. Start value is CNT Data = 0xFFD. Upper limit value = 0xFFF. **Note 2:** Set to CNT Data option. Rising edge activated set signal.

Note 1: Start from CNT Data. Full range mode. Stop at boundaries option enabled. Start value is CNT Data = 0xFFD. Upper limit value = 0xFFF. **Note 2:** Reset to 0 option. High level reset.

Figure 80. Memory Control Counter in Full Range Mode. High Level Reset Option

Note 1: Start from CNT Data. Full range mode. Stop at boundaries option disabled (overflow mode). Start value is CNT Data = 0xFFD. Upper limit value = 0xFFF. **Note 2:** Reset to 0 option. Falling edge reset.

Note 1: Two ranges mode. Stop at boundaries option disabled. Start from CNT Data optic CNT Data = 0xFA. Upper limit value = 0x3E8.

Note 2: Set to CNT Data option. Rising edge activated Set.

Figure 82. Memory Control Counter in Two Ranges Mode. Rising Edge Set Option

Note: The change of Memory Control Counter data during operation is prohibited. Counter data must be loaded before the start of operation.

8.6 12-bit CNT/DLY9 Macrocell Dynamic Counter Data Change

The counter data for the 12-bit CNT/DLY9 macrocell can be dynamically changed with the data from the Memory Table macrocell (see Figure 50). This mode is disabled by default and can be activated by setting register LUT3_23_DFF27_CNTDLY9_DATA_SRC_SEL [2284] = 1 (see Figure 83).

At power-up, 12-bit CNT/DLY9 always loads its default CNT Data value from the NVM (registers LUT3_23_DFF27_CNTDLY9_CNT_DATA [2291:2288, 2303:2296]). New data will be loaded from the Memory Table to the CNT data after each CLK pulse at the Load input (see Figure 84).

Note: If CNT/DLY9 is used in delay mode, OSC1 should be powered ON before the Load signal is applied.

Figure 83. Recommended Configuration for Dynamically Changed CNT Data Value

Figure 84. Dynamic Counter Data Change Example

9. Analog Comparator Macrocell

9.1 Analog Comparator General Description

The SLG47011 features a High Speed Rail-to-Rail General Purpose Analog Comparator (ACMP) macrocell. For the ACMP macrocell to be used in a GreenPAK design, the power-up signals (ACMPH PWR UP) need to be active. It is possible to have the ACMP be continuously ON, continuously OFF, or switched on periodically based on a digital signal coming from the connection matrix. If the ACMP is powered down (OFF), its output will be LOW.

The ACMP's positive input can be driven by a variety of external sources and can also have a selectable gain stage (1x, 0.5x, 0.33x, 0.25x) in its signal path. The gain divider is unbuffered and has input resistance (shown in section 3.7 Analog Comparator Specifications).

The ACMP's negative input is either driven by an internal V_{REF} or provided by any external source (GPIO10). Note that the external V_{REF} signal is filtered with a 2nd order low pass filter with 300 kHz typical bandwidth, see Figure 85.

The ACMP's Input bias current is less than 1 nA (typ). The PWR_UP signal determines the power state of the ACMP: if PWR_UP = 1, the ACMP will be powered up, if PWR_UP = 0, the ACMP will be powered down.

During power-up, the ACMP output will remain LOW, and then become valid after power-up signal transitions HIGH (see parameter t_{start} in section 3.7 Analog Comparator Specifications).

Input LPF (Low Pass Filter) at the positive input, and Output LPF at the ACMP's output can be enabled using register ACMPH_INLPF_EN [3304] and register ACMPH_OUTLPF_EN [3305].

The possible ACMPH IN+ sources are GPIO, analog MUX GPIO9, V_{DD} , and temperature sensor.

The possible ACMPH IN- sources are GPIO, internal VREF, and DAC Out.

Please allow for sufficient settling time when changing the ACMP input dynamicly.

9.2 Analog Comparator Sampling Mode

The analog comparator features an optional Sampling mode. In this mode, the ACMP is enabled to process its analog inputs in the shortest amount of time after the rising edge at the power-up input. Then the ACMP latches its value and enters Power-Off mode (OFF) automatically.

Register ACMPH_SAMPLING_EN [3303] enables Sampling mode for the comparator.

9.3 ACMPH Typical Performance

Figure 87. ACMPH Power-On Delay vs. VDD at VREF – Forced OFF

Figure 88. ACMPH Input Offset Voltage vs. External V_{REF} at T_A = -40 °C to 85 °C, V_{DD} = 1.71 V to 3.6 V

Figure 89. ACMPH Current Consumption vs. VDD

10. Programmable Gain Amplifier Macrocell

10.1 PGA General Description

The Programmable Gain Amplifier (PGA) macrocell of the SLG47011 (see Figure 91 and Figure 107) allows to amplify signals or to interface a sensor with a high output impedance. The PGA has a 3-bit gain selection. Possible gain settings are PGA bypass, 1x, 2x, 4x, 8x, 16x, 32x, and 64x. PGA can by bypassed, and signals can be measured directly by ADC.

PGA allows to operate with up to 4 channels. PGA control registers are assigned for each channel, where numbers in control register names correspond directly to channel numbers.

The PGA Gain selection registers PGA_CHx_GAIN [2:0] (PGA_CH0_GAIN [2658:2656], PGA_CH1_GAIN [2661:2659], PGA_CH2_GAIN [2666:2664], PGA_CH3_GAIN [2669:2667]) can be written via I²C/SPI during the operation, and require a settling time for the PGA to stabilize.

The PGA has eight modes (see Figure 90) that share three input categories:

- Differential (mode 3 and mode 5): gain is applied to the difference between V_{IN(P)} (positive input) and V_{IN(N)} (negative input) (mode 3), and to the difference between V_{IN(P)} and V_{IN(N)} with an offset of ADC_V_{REF}/2 (mode 5). For example, in mode 5, the output is ADC_V_{REF}/2 when the input voltage difference is zero. V_{IN(P)} can be above or below V_{IN(N)}.
- **Pseudo-differential** (mode 4): gain is applied to the difference between V_{IN(P)} and V_{IN(N)} with no offset. The output is 0 V when the input difference is zero. The operating range assumes V_{IN(P)} is always above V_{IN(N)}.
- Single-ended (mode 2): with V_{IN(N)} connected to the ground.

The PGA modes for channels 0 to 3 are configured by registers PGA_CHx_MODE [2:0] (PGA_CH0_MODE [2644:2642], PGA_CH1_MODE [2647:2645], PGA_CH2_MODE [2650:2648], PGA_CH3_MODE [2653:2651]).

Mada	PGA In/Out C	ADC input Configuration					
Mode	Input	Output					
1a	Bypass	Bypass	Differential				
1b	Bypass	Bypass	Single-ended				
2	Single-ended	Single-ended	Single-ended				
3	Differential	Differential	Differential				
4	Pseudo-differential	Single-ended	Single-ended				
5a	Differential	Single-ended	Single-ended				
5b	Differential	Differential	Differential				
6	Buffer	Buffer	Single-ended				

Table 22. PGA/ADC Input/Output Modes

Mode 1a/1b: The PGA is bypassed, and signals are passed directly to the ADC operating in differential or single-ended mode.

Mode 2: High input impedance non-inverting single-ended amplifier.

Mode 3: Instrumentation amplifier with common mode voltage limits and high input impedance.

Mode 4: Pseudo-differential amplifier with low input impedance and extended common mode voltage.

Mode 5a: Differential amplifier with low input impedance and $V_{REF}/2$ reference voltage, and single-ended output.

Mode 5b: The same as 5a, but the output is differential.

Note: Register [2557] ADC_HALF_DIVIDER_EN must be enabled when operating in mode 5a and 5b.

Mode 6: Single-ended voltage follower with high input impedance and single-ended output.

Individual analog gain settings are made through the PGA_CHx_GAIN [2:0] registers.

PGA positive and negative inputs can be configured for different GPIOs or internal signals (ACMP V_{REF} , Temperature Sensor).

Mode	Mode Description	Gain	Output voltage	Input Resistance
1a	Bypass, differential ADC in configuration		$V_{OUT}(diff) = V_{IN(P)} - V_{IN(N)}$	Determined by ADC input resistance $R_{IN} = 5/(F_{clk} * C_{IN})$ (see section 3.9 Analog-to- Digital Converter Specifications)
1b	Bypass, single-ended ADC in configuration		$V_{\text{OUT}} = V_{\text{IN}}$	Determined by ADC input resistance $R_{IN} = 5/(F_{clk} * C_{IN})$ (see section 3.9 Analog-to- Digital Converter Specifications)
2	Non-inverting single-ended input, single-ended output	$Gain = 1 + (R_b/R_a)$	V _{OUT} = V _{IN} * Gain	Hi-Z
3	Instrumentation amplifier Differential input, differential output	$Gain = 1 + (2R_b/R_a)$	$V_{OUT}(diff) = (V_{IN(P)} - V_{IN(N)}) *$ Gain	Hi-Z
4	Pseudo-differential input, single-ended output	Gain = R _b /R _a	$V_{OUT} = (V_{IN(P)} - V_{IN(N)}) * Gain$	$R_{in(p)} = R_a + R_b$ $R_{in(n)} = \frac{R_a}{1 - \frac{V_{in(p)}}{V_{in(n)}} \times \frac{R_b}{R_a + R_b}}$
5a	Differrential input, single-ended output	Gain = R₀/R _a	$V_{OUT} = (V_{IN(P)} - V_{IN(N)}) * Gain + V_{REF}/2$	$R_{in(p)} = \frac{V_{in(p)} \times (R_a + R_b)}{V_{in(p)} - V_{ref}/2}$ $R_{in(n)} = \frac{R_a}{1 - \frac{V_{in(p)} - V_{ref}/2}{V_{in(n)}} \times \frac{R_b}{R_a + R_b} + \frac{V_{ref}/2}{V_{in(n)}}}$
5b	Differential input, differential output	Gain = R₀/R _a	$V_{OUT}(diff) = (V_{IN(P)} - V_{IN(N)}) *$ Gain	$R_{in(p)} = \frac{V_{in(p)} \times (R_a + R_b)}{V_{in(p)} - V_{ref}/2}$ $R_{in(n)} = \frac{R_a}{1 - \frac{V_{in(p)} - V_{ref}/2}{V_{in(n)}} \times \frac{R_b}{R_a + R_b} + \frac{V_{ref}/2}{V_{in(n)}}}$ (ADC effect is not considered)
6	Single-ended buffer	1	$V_{OUT} = V_{IN}$	Hi-Z

Table 23. PGA Gain and Input Resistance vs. PGA Mode

Registers PGA_INN_SEL_CHx [2:0] (PGA_INN_SEL_CH0 [2674:2672], PGA_INN_SEL_CH1 [2677:2675], PGA_INN_SEL_CH2 [2682:2680], PGA_INN_SEL_CH3 [2685:2683]) are used to configure the negative input for channels 0 to 3.

Registers PGA_INP_SEL_CHx [2:0] (PGA_INP_SEL_CH0 [2679:2678], PGA_INP_SEL_CH1 [2687:2686], PGA_INP_SEL_CH2 [2689:2688], PGA_INP_SEL_CH3 [2691:2690]) are used to configure the positive input for channels 0 to 3.

The PGA can be used as a standalone amplifier with the single-ended or differential output connected to GPIO9 and GPIO10. Register PGA_OUT_N [2693] selects GPIO10 as a PGA negative output, and PGA_OUT_P [2692] selects GPIO9 as a PGA positive output, respectively. PGA outputs are connected to GPIO througt high-impedance switches. Therefore, the PGA should only be loaded with a high-impedance. When the PGA is powered down and the PGA output is routed to GPIO9, the PGA output is in a Hi-Z state.

When the PGA power-up signal is LOW or when the PGA is powered off by register PGA_POWERUP [2640], bypass switches connect the analog signal from the input MUXs to the ADC. This way, input signals can be sampled and converted without powering the PGA.

The PGA output can also be connected to the analog comparator's non-inverting input multiplexer via register setting ACMPH_POS_SRC_SEL [3300:3298] = 1.

The PGA power-up signal can be controlled independently by PGA Power-Up signal (from CMO1 [75]).

After the PGA is powered up, its signals undergo a settling process and become valid after to_N time (see section 3.8.1 PGA Specifications).

10.2 Input Multiplexer Configuration

The input MUX and its connectivity is shown in Figure 91. The PGA has per-channel configuration registers that control mode/gain/MUX settings and the ADC has per-channel configuration registers that control the ADC mode. The ADC controller generates the curr_adc_ch[1:0] signal for channel selection. If register PGA_IMUX_SEL_EN [2641] = 1, the MUX configuration selection will be directly determined by the setting registers ADC_CH_SEL [2619:2618]. This allows the PGA to be controlled without the ADC enabled.

Figure 91. Input MUX Configuration

10.3 PGA Typical Performance

Figure 93. Offset Voltage Referred to Output Drift Distribution at $T_A = -40$ °C to +85 °C, $V_{DD} = 3.3$ V, PGA Mode 3, Gain = 1

Figure 94. 0.1 Hz to 10 Hz Noise (Oscillogram) at $T_A = +25$ °C, $V_{DD} = 3.3$ V, PGA Mode 6

Figure 95. PSRR vs. Frequency at T_A = +25 °C, V_{DD} = 1.71 V to 3.6 V, PGA Mode 6

RENESAS

Figure 96. Small-Signal Pulse Response at T_A = +25 °C, V_{DD} = 3.3 V, PGA Mode 6

Figure 97. Large-Signal Pulse Response at T_A = +25 °C, V_{DD} = 3.3 V, PGA Mode 6

Figure 99. Input Noise Voltage Density vs. Frequency at T_A = +25 °C, V_{DD} = 3.3 V, PGA Mode 6

RENESAS

Figure 100. Output Voltage Low (V_{OUT} - GND) vs. Temperature at $T_A = +25$ °C, PGA Mode 6, $R_{LOAD} = 1 M\Omega$ (Including Output Swith Resistance)

Figure 101. Output Voltage High (V_{DDA} - V_{OUT}) vs. Temperature at T_A = 25 °C, PGA Mode 6, R_{LOAD} = 1M Ω (Including Output Swith Resistance)

RENESAS

Figure 102. Output Response to Power-Down Signal at T_A = +25 °C, V_{DD} = 3.3 V

Figure 103. Gain vs. Settling Time at T_A = +25 °C, V_{DD} = 1.8 V, Output Settling to 1 %

Figure 104. Gain vs. Settling Time at T_A = +25 °C, V_{DD} = 3.3 V, Output Settling to 1 %

Figure 105. Pin Input Leakage Current vs. Negative Voltage Applied to the Pin at $T_A = +25$ °C, $V_{DD} = 3.3$ V, PGA Mode 5a, 5b

Figure 106. Pin Input Leakage Current vs. Negative Voltage Applied to the Pin at $T_A = +25$ °C, $V_{DD} = 3.3$ V, PGA Mode 5a, 5b (Zoomed)

11. Analog-to-Digital Converter Macrocell

The SLG47011 has a 14-bit successive approximation register Analog-to-Digital Converter (SAR ADC) macrocell, which samples an incoming signal that is amplified by Programmable Gain Amplifier or comes directly from GPIO pins (see Figure 107).

Figure 107. SAR ADC Block Diagram

11.1 ADC Features

- Programable ADC resolution: 14, 12, 10, 8 bit.
- Sample rate up to 2.35 Msps in 8-bit mode.
- Differential or single-ended input modes.
- Selectable internal or external reference voltage.
- Selectable internal or external ADC clock source.
- Fixed internal voltage source can be connected to ADC input via input MUX.
- Parallel data output.
- Data ready signal indicates the end of the conversion process.
- Continuous or one-shot conversion operations.
- ADC System offset calibration procedure.
- ADC conversion data can be stored or processed in up to 4 buffers.
- Programmable channel count and sampling order.
- Programmable number of samples per channel (same for all channels).
- Optional ADC data output to Data Buffers, Memory Table macrocell or MathCore macrocell.
- Optional ADC access measurement bypassing PGA.
- Programable delay before sampling.

11.2 ADC General Description

The ADC has an internal Sampling Engine block that manages the analog MUX and the ADC data receivers (Data Buffers or Memory Table macrocell).

The signal can be amplified through the PGA, which has programmable gain and is configurable for each individual channel (see Section 10 Programmable Gain Amplifier).

The ADC can sample up to four channels. Each chanel is programmable to operate with any of possible analog inputs (see Section 10.2 Input Multiplexer Configuration).

ADC data destination options:

- Data Buffers
- Address input of Memory Table macrocell (ADDR-to-DATA mode)
- Data input of Memory Table macrocell (Storage mode)
- MathCore inputs
- Internal one-word buffer accessible via I²C/SPI Host Interface

ADC voltage reference sources:

- External source (GPIO11)
- Internal reference 1.62 V
- AV_{DD} divider.

ADC clock sources:

- Internal OSC 20 MHz/40 MHz
- External clock via connection matrix
- Configurable clock divider.

The ADC's differential or single-ended input mode is configured by registers ADC_CHx_IN_MODE [0] for channels 0 to 3 independently (ADC_CH0_IN_MODE [2612], ADC_CH1_IN_MODE [2613], ADC_CH2_IN_MODE [2614], ADC_CH3_IN_MODE [2615]).

To power up the ADC, both registry setting ADC_POWER_UP [2544] must be set to 1 and matrix output ADC power-up (CMO1 [79]) must be asserted.

Please note that the ADC macrocell has to be powered off during any ADC configuration change via I²C/SPI.

11.3 ADC Offset Calibration

There are two types of offset calibration in the ADC:

- Internal Offset Calibration (inherent SAR ADC calibration).
- System Offset Calibration (specially designed customer calibration to simplify some differential mode measurements).

The Internal Calibration measures the ADC offset and then subtracts it from the ADC conversion data. Internal Calibration of the ADC is initiated automatically after the device power-up and after the transition from SLEEP to All ON mode (register ADC_PWRUP_CAL [2558]). The Internal Offset Calibration procedure requires 6415 ADC clock periods and should be considered in the user design (refer to Figure 108).

System Offset Calibration considers the entire signal path, including the external source, the internal input MUX, and the PGA. To initiate the system offset calibration, the external device or sensor must be in its zero signal state and the ADC Start Calibration (CMO1 [72]) signal must be set. The result of the System Offset Calibration will be saved as a system offset error value in the ADC_SYSTEM_OFFSET_ERROR_x [13:0] register using a 2's complement 14-bit word and subtracted from every ADC measurement. Register is allowable for read/write via I²C/SPI.

Two registers, ADC_CHANNEL0_SYSTEM [2616] (for channel 0, 1) and ADC_CHANNEL2_SYSTEM [2617] (for channel 2, 3) are used to configure which pair of differential GPIO ports will be calibrated and which differential channel will be corrected during operation. System Offset Calibration starts with a rising edge at the Start Calibration input (refer to Figure 109). While the conversion is running, the signal ADC Start Calibration (CMO1 [72]) will be blocked. Likewise, while the system calibration is running, the incoming CMO signal ADC Conversion Start (CMO1 [71]) will be ignored.

System Offset Calibration will be performed using the ADC and PGA register settings.

The System Offset Calibration time is defined by the following:

- Single channel system calibration:
 - If ADC_SETTLING_DELAY > 0: (D1 + ADC_Latency + 5) * ADC_T_CLK + (D1 + ADC_Latency) * 7 * ADC_T_CLK + 3 * ADC_T_CLK
 - If ADC_SETTLING_DELAY = 0: (7 + ADC_Latency + 5)*ADC_T_CLK + (7 + ADC_Latency) * 7 * ADC_T_CLK + 3 * ADC_T_CLK
- Two channels system calibration:
 - If ADC_SETTLING_DELAY > 0: [(D1 + ADC_Latency + 5) * ADC_T_CLK + (D1 + ADC_Latency) * 7 * ADC_T_CLK + 3 * ADC_T_CLK] * 2
 - If ADC_SETTLING_DELAY = 0: [(7 + ADC_Latency + 5) * ADC_T_CLK + (7 + ADC_Latency) * 7 * ADC_T_CLK + 3 * ADC_T_CLK] * 2,

where

D1 is the ADC_SETTLING_DELAY value set by register ADC_SETTLING_DELAY [2599:2592, 2607:2600],

ADC_Latency is the ADC Output data Latency (refer to section 3.9 Analog-to-Digital Converter Specifications),

ADC_T_CLK is the ADC clock period.

When the System Offset Calibration is complete, the system offset calibration value is stored in the ADC_SYSTEM_OFFSET_ERROR_x [13:0] register, and the ADC internal offset calibration value will be subtracted from the ADC conversion data.

The calibration register value can be written via I²C/SPI and must be represented as 2's complement 14-bit word.

System Offset Calibration is available for both channels configured as differential inputs. Each input pair has its own system offset calibration registers (ADC_SYSTEM_OFFSET_ERROR_0 [2565:2560, 2575:2568] and ADC_SYSTEM_OFFSET_ERROR_2 [2581:2576, 2591:2584]). Registers are allowable for read/write via I²C/SPI.

The ADC configuration registers should not be changed while the ADC is operating or in calibration mode.

If ADC is operating in combination with PGA, the ADC should wait for the PGA signal to settle after PGA power-up (see section 3.8.1 PGA Specifications).

If PGA differential mode (1a, 3, 5b, refer to Table 22) is selected, all measurements will be sampled from the voltage level $V_{REF}/2$. The ADC's zero output code is also half of its code range (8192 for 14-bit resolution, 2048 for 12-bit, 512 for 10-bit, and 128 for 8-bit, refer to Figure 112 and Figure 113). The system offset calibration result = ADC_data_after_Calibration_Start – Midscale_value.

ADC_data_after_Calibration_Start is a sample specifically created after the ADC macrocell receives a pulse at ADC Start Calibration (CMO1 [72]).

For example, if the zero scale output code for 10-bit resolution is measured to be 500, the offset code will be 500 -512 = -12. This value will be subtracted from the ADC raw data (ADC raw data - (-12), which will add 12 to the ADC raw data). The calibration registers can be used to subtract the desired values from each ADC sample.

Note: ADC_POWER_UP [2544] = 1, ADC_PWRUP_CAL [2558] = 1, ADC_SETTLING_DELAY [2599:2592, 2607:2600] = 0.

Figure 108. ADC Internal Calibration Timing Diagram

Note: ADC_POWER_UP [2544] = 1, ADC_PWRUP_CAL [2558] = 1, ADC_SETTLING_DELAY [2599:2592, 2607:2600] = 0.

Figure 109. ADC System Calibration Timing Diagram

11.4 ADC Output

The ADC output code from the ADC channel's differential analog input is shown in Figure 112. If the common mode voltage (V_{CM}) is applied to both inputs, the output code will be half of the selected code range.

The voltage swing of each positive and negative input will be limited to a VREF/2 peak-to-peak amplitude.

Each ADC channel can be assigned to a specific Data Buffer, which can be selected by register BUFx_LOAD_SRC [2:0]. The ADC ready signal will also be connected to the selected Data Buffer.

In the 12-bit, 10-bit, and 8-bit ADC modes, the ADC's internal data bus can be aligned to the block output data bus shifted to the most significant bits or the least significant bits. This option is configured by the register ADC_DATA_ALIGN [2559]. Its default value is 1 (see Figure 110).

The ADC data can be read from register bytes 0x2201 and 0x2200 via I²C/SPI Host Interface. Depending on the value of register ADC_DATA_ALIGN [2559], the ADC data in register bytes 0x2201 and 0x2200 is aligned as shown in Figure 111.

Figure 111. Example of ADC Data Alignment in Register Memory (Bytes 0x2200 and 0x2201) in 10-bit Mode

Figure 112. Voltage V_{IN(P)} and V_{IN(N)} at ADC Inputs in Differential Mode

Figure 114. Voltage of ADC Inputs in Single-Ended and Pseudo-Differential Mode

11.5 Sampling and Conversion Process

The ADC starts operating when the rising edge is applied to the Conversion Start input.

An acquisition time (t_{ACQ}) is required for the input source to charge the sampling capacitor in the ADC's sample and hold circuit. After t_{ACQ} and a conversion time (t_{CONV}) has passed, the ADC's conversion result is available to be transferred to other macrocells.

The ADC can sample up to four channels. Any channel can be excluded from a sampling sequence.

If the Conversion Start signal is a short pulse (shorter than conversion period, but no less than one clock cycle), the ADC samples all channels in the selected sequence. Each channel is sampled a defined number of times (once, twice, 4 times, or 8 times), as defined by ADC_SAMPLE_COUNT [2553:2552] register and then stops until the next pulse is applied to the Conversion Start input.

If the Conversion Start is asserted and remains HIGH beyond a single conversion, the ADC continues sampling all channels in the sequence a defined number of samples per channel, and then repeats the process (continuous conversion operation). The ADC continues sampling signals until the Conversion Start input becomes LOW. After the HIGH to LOW transition of the Conversion Start input, the ADC will finish the current sampling sequence and then stops.

The ADC has a Data Ready output (CMI1 [60]) that is set HIGH when the ADC is idle, set LOW when the conversion is in process, and is a high-level pulse when the ADC has finished sampling the current channel. The ADC Data ready pulse duration is at least one ADC clock cycle time in continuous conversion operation.

Figure 115 shows the timing diagram of the ADC in one-shot conversion operation, and Figure 116 shows the ADC timing diagram in continuous conversion operation, in which one analog input is converted continuously.

Figure 116. ADC Timing Diagram. Continuous Conversion Operation

For one-shot conversion operation, the ADC data ready time is described by the following:

- If ADC_SETTLING_DELAY = 0: One-shot ADC cycle = (7 + ADC_Latency + 5) * ADC_T_CLK.
- If ADC_SETTLING_DELAY > 0: One-shot ADC cycle = (D1 + ADC_Latency + 5) * ADC_T_CLK.

For continuous conversion operation, the ADC data ready time is described by the following:

- If ADC_SETTLING_DELAY = 0: Continuous conversion ADC cycle #1 = (7 + ADC_Latency + 5) * ADC_T_CLK, and continuous conversion ADC cycle #2, #3, #4, ... = ADC_Latency * ADC_T_CLK.
- If ADC_SETTLING_DELAY > 0: Continuous conversion ADC cycle #1 = (D1 + ADC_Latency + 5) * ADC_T_CLK, and continuous conversion ADC cycle #2, #3, #4, ... = (D1 + ADC_Latency) * ADC_T_CLK

Where:

D1 is ADC_SETTLING_DELAY value set by register ADC_SETTLING_DELAY [2599:2592, 2607:2600],

ADC_Latency is ADC Output data Latency (refer to section 3.9 Analog-to-Digital Converter Specifications),

ADC_T_CLK is ADC clock period.

ADC conversion data can be stored in any Data Buffer. This function can be configured using the BUFx_LOAD_SRC [2:0] register (see Section 14 Data Buffer). Channel sampling order is from channel 0 to channel 3. The Data Buffers can accept up to eight samples from each channel. Sample count per channel is defined by programming the ADC_SAMPLE_COUNT [2553:2552] register, and the sample count number is the same for all Data Buffers and channels. In continuous conversion operation, the new ADC's conversion result overwrites the previous data in the Data Buffers.

Optionally, samples from ADC can be routed to the Data Buffer for averaging before going to the Memory Table, as shown in Figure 117.

If the MathCore is utilized to process ADC conversion data, sampled channels will be assigned to the MathCore inputs by the corresponding MathCore register (see section 15 Mathematical Core).

Figure 117. Example of Averaging Mode Implementation

11.6 One-Shot Conversion Operation

One-shot conversion operation is enabled by a single Conversion Start signal pulse that is shorter than a conversion period. One-shot conversion operation (see Figure 118) facilitates a single conversion event one or multiple samples, depending on the number of samples set by register, after the Conversion Start signal transitions from LOW to HIGH. After all the channels in the sequence are sampled and converted, the ADC Sampling Engine idles until the next rising edge at the Conversion Start input.

Figure 118 shows ADC operation in one-shot conversion operation. Two analog inputs are sampled and stored in the Data Buffers: GPIO3 data is stored in Data Buffer0 and temperature sensor data is stored in Data Buffer1. The Data Buffer length is two words and two samples are made per channel. The Data ready output is configured to indicate when the Data Buffers are filled.

Additional delay before each sampling cycle can be enabled to allow the PGA to settle out switching transients when transitioning between input channels. The delay period is set by ADC_SETTLING_DELAY [2599:2592, 2607:2600], where values can range from 0 to 65535 delay (in ADC clocks) and the default selection is "0" for seven ADC clock cycles delay.

Figure 118. ADC Functioning in One-Shot Conversion Operation

11.7 Continuous Conversion Operation

Continuous conversion operation is enabled by setting and holding the Conversion Start signal HIGH. Connecting V_{DD} or POR signal to ADC Conversion Start will not start the conversion because the ADC needs time to power up and calibrate after chip startup. The ADC starts sampling data after the Conversion Start signal's LOW to HIGH transition. The ADC samples all channel sequence a defined number of times and then repeats the process by overwriting the previous data in the Data Buffers. If the ADC Conversion Start (CMO1 [71]) signal drops LOW five clocks before finishing the last sample of the sequence, the ADC finishes sampling the whole sequence of channels. If the ADC Conversion Start (CMO1 [71]) signal stays HIGH after the data ready signal arrives, the ADC starts a new sampling sequence and updates previously recorded data. The current sequence sampling procedure cannot be interrupted by a new pulse at the Conversion Start input.

Note: A LOW to HIGH transition of the ADC Conversion Start signal before the POR signal will be ignored.

Figure 119 shows ADC operation in continuous conversion operation. Two analog inputs are sampled and stored in the Data Buffers: GPIO3 data is stored in Data Buffer0 and Temperature Sensor data is stored in Data Buffer1. The Data Buffer length is two words and two conversions are performed per channel. The Conversion Start signal transitions LOW (on the 5th sample) after a new sampling sequence has started, so the sampling process stops only after an entire second sampling sequence is completed (eight samples in total). Only after the 8th sample is completed, the data ready output will transition HIGH, and the ADC will idle. If the ADC is

connected to the Memory Table in Storage mode, the sampling process will stop only after the entire Memory Table of the configured size is filled with ADC samples (MEMORY_TABLE_SIZE [2739:2736, 2751:2744] registers).

A delay before each sampling cycle can be enabled. This delay will help the PGA settle its output voltage in the transition process after switching between input channels. The delay time before sampling the next channel is set by ADC_SETTLING_DELAY [2599:2592, 2607:2600], where values can range from 0 to 65535 delay (in ADC clocks) and the default selection is "0" for seven ADC clock cycles delay.

Figure 119. ADC Functioning in Continuous Conversion Operation

11.8 ADC V_{REF}

The user can supply the ADC's reference voltage V_{REF} from GPIO11. Alternatively, the SLG47011 features also an internal VREF source for the ADC. Two options are available: 1.62 V internal VREF source, or selectable divider from the AV_{DD}. These options are selected by the V_{REF} MUX (registers ADC_VREF_SEL [2547:2546]). If an external reference is used for the ADC via the GPIO11 pin, the GPIO11 switch must be turned on and internal buffer must be turned off (ADC VREF TO GPIO [2550] = 0). For details see section 22 Internal Voltage Reference.

11.9 Fast ADC Read I²C Command

The SLG47011 has sideband sequential read access path for I²C direct access to the ADC 14-bit output, which avoids repeated read request from host device. The sideband path for the I²C sequential read ADC output can be operated at up to 2 MHz speed.

To provide synchronization of I²C sideband sequential read with other macrocells, the I²C ACK signal is routed to the connection matrix input I²C_ACK (CMI1 [63]). I²C_ACK (CMI1 [63]) is synchronized with the ACK (nACK) bit. The synchronization of ADC Conversion Start and I²C readout can be implemented by GreenPAK logic cells. Figure 120 shows the I²C sideband sequential read protocol for ADC data readout. Register address 0xFFFF should be used for access to ADC data via I²C sideband sequential read.

11.10 Data Flow and Alignment

The macrocells in the SLG47011 have different data bus width:

- ADC: 14 bit
- Data Buffers: 16 bit
- Memory Table: 12 bit
- MathCore: 16 bit
- DAC: 12 bit.
- Width Converter: 12 bit.

Different data alignment and truncation options are shown in Figure 121.

Figure 121. Data Flow and Alignment

Figure 122. Differential Non-Linearity (DNL) vs. Code at T_A = +25 °C, V_{DD} = 3.6 V, Resolution = 12 bit, f_{sample} = 700 ksps, V_{REF} = 1.62 V (Internal)

Figure 123. Integral Non-Linearity (INL) vs. Code at $T_A = +25$ °C, $V_{DD} = 3.6$ V, Resolution = 12 bit, $f_{sample} = 700$ ksps, $V_{REF} = 1.62$ V (Internal)

RENESAS

Figure 125. ENOB vs. Reference Voltage at T_A = +25 °C, V_{DD} = 3.3 V, Resolution = 14 bit, f_{sample} = 1 Msps, V_{REF} - External, ADC Clock - External

RENESAS

Figure 126. Total Unadjusted Error (TUE) vs. Input Voltage at $T_A = +25$ °C, $V_{DD} = 3.3$ V, Resolution = 14 bit, $V_{REF} = 1.62$ V (Internal)

12. Digital-to-Analog Converter Macrocell

12.1 DAC General Description

The Digital-to-Analog Converter (DAC) macrocell outputs a voltage to the GPIO8 pin with a resolution of 12 bits. The DAC Power-up CMO1 [85] signal is used to control power-up/sleep state of the DAC. There are a variety of options available for the reference voltage V_{REF} of the DAC. These options are shared with the ADC (see section 22 Internal Voltage Reference).

The DAC input can be a static value stored in registers DAC_VALUE [3251:3248, 3263:3256], Memory Table macrocell data, or MathCore output data. The static value can be changed via I²C/SPI interfaces.

The DAC input data from the MathCore is controlled by registers DAC_MATH_MSB_SEL [3269:3268] and has four data alignment options (see Figure 121).

The DAC has three output options: buffered output (inverting buffer), unbuffered output, or out to the ACMP (see Table 24). The output option is selected by DAC_EN_INV_BUF [3264] and DAC_BUF_OUT [3266] registers.

DAC_EN_INV_BUF [3264]	DAC_BUF_OUT [3266]	Mode Description	Output to GPIO	Output to ACMP
0	0	Unbuffered output to GPIO	Unbuffered	Open, Hi-Z
0	1	Unbuffered output to ACMP	Open, Hi-Z	Unbuffered
1	0	Buffered inverted output to GPIO	Buffered inverted	Open, Hi-Z
1	1	No output to GPIO or ACMP	Open, Hi-Z	Open, Hi-Z

Table 24. DAC Output Configuration

If the DAC output is buffered (inverting buffer), the output voltage is defined by the following equation:

VDACOUT = VREF - (DAC input code) * VREF/4096

If DAC output is unbuffered or out to ACMP is selected, the output voltage is defined by the following equation:

V_{DACOUT} = (DAC input code) * V_{REF}/4096

The DAC startup time from DAC Power-up CMO1 [85] signal to DAC output ready is approximately 26 µs.

Note: Before issuing a DAC configuration change command via I²C/SPI, the DAC must be powered off.

The DAC has built-in offset correction. Offset is automatically measured at mid-scale and stored in 2's complement format in read-only registers DAC_OFFS_BUFF [3279:3272] and DAC_OFFS_UNBUFF [3287:3280].

Figure 127. DAC Structure

$12.2 \ DAC \ V_{\text{REF}}$

There are three options for the DAC V_{REF} source: 1.62 V internal V_{REF} source, selectable divider of the AV_{DD} voltage, and external V_{REF} source via the GPIO11 pin. V_{REF} options are selected by registers DAC_VREF_SEL [3292:3291].

To source the DAC V_{REF} voltage from the GPIO11 pin, the GPIO11 switch must be turned on (DAC_VREF_TO_GPIO [3288] = 1).

For details see section 22 Internal Voltage Reference.

12.3 DAC Typical Performance

Figure 128. Differential Non-Linearity (DNL) vs. Code at T_A = +25 °C, V_{REF} = 1.62 V (Internal), DAC Buffer ON

Figure 129. Differential Non-Linearity (DNL) vs. Code at T_A = +25 °C, V_{REF} = 1.62 V (External), V_{DD} = 3.3 V, DAC Buffer OFF

Figure 130. Integral Non-Linearity (INL) vs. Code at T_A = +25 °C, V_{REF} = 1.62 V (Internal), DAC Buffer ON

Figure 131. Integral Non-Linearity (INL) vs. Code at T_A = +25 °C, V_{REF} = 1.62 V (External), V_{DD} = 3.3 V, DAC Buffer OFF

Figure 133. Wake-Up Time/Full-Scale Settling Time at TA = +25 °C, VDD = 1.8 V, VREF = 1.62 V (Internal), DAC Buffer ON

Figure 134. Worst Case Glitch Response at TA = +25 °C, VDD = 1.8 V, VREF = 1.62 V (Internal), DAC Buffer ON

Figure 135. Frequency vs. Output Noise Spectral Density at T_A = +25 °C, V_{REF} = 1.62 V (Internal)

Figure 137. Gain Error vs. Temperature at $T_A = +25$ °C, $V_{REF} = 1.62$ V (Internal), DAC Buffer ON

Figure 138. DAC Output Voltage Drop vs. Load Current at T_A = 25 °C, V_{DD} = 3.3 V, DAC Buffer ON

13. Memory Table Macrocell

13.1 Memory Table General Description

The Memory Table macrocell is a memory block that can hold 4096 12-bit words. It has a 12-bit address and a 12-bit data port. The structure diagram of the Memory Table Macrocell is shown in Figure 139.

The Memory Table can work in two modes selected by register MEM_MODE_SEL [2728]:

- ADDR-to-DATA mode (register MEM_MODE_SEL [2728] = 1): Memory Table output consists of the data pre-written in addressed cell.
- Storage mode (register MEM_MODE_SEL [2728] = 0): Memory Table works as a general purpose storage block, which can be read via I²C/SPI.

Data in all modes can be written via I²C/SPI interface.

The memory address input source is selected by registers MEM_ADDR_SEL [2732:2729]. The address input source for the Memory Table can be selected from:

- Data Buffer0
- Data Buffer1
- Internal counter (must be selected when operating in Storage mode only)
- ADC channels 0 to 3
- Memory Control Counter
- I²C/SPI Host Interface.

The data input source is selected by register MEM_DATA_SEL [2735]. The data input source for Memory Table can be selected from:

- Data Buffer0
- ADC channels 0 to 3
- NVM
- I²C/SPI Host Interface.

The data output can be sourced to:

- DAC
- PWM
- CNT/DLY 9
- MathCore
- DCMP
- Width Converter.

Maximum clock rate for the Memory Table is 20 MHz.

All operations with the Memory Table or Data Buffers should be completed 5 µs before entering SLEEP or RETENTION modes (see section 5 Power Architecture).

Figure 139. Memory Table Macrocell Simplified Structure

13.2 ADDR-to-DATA Mode

In ADDR-to-DATA mode, the Memory Table data is loaded from NVM at chip startup. If an address is applied to the address input, the corresponding data word will be available after some propagation delay and access time at the output port. ADDR-to-DATA mode is enabled by setting register MEM_MODE_SEL [2728] = 1.

The initial output value of the Memory Table macrocell can be the first SRAM address (0x200) after NVM load completed. This option is enabled by the MEM_INIT_OUT [3784] register. Otherwise, if register MEM_INIT_OUT [3784] = 0, the Memory Table output will be unpredictable after Power-up event.

The address source choices for the Memory Table (in ADDR-to-DATA mode) selected by MEM_ADDR_SEL [2732:2729] can be: Data Buffer0, Data Buffer1, ADC channels 0 to 3, Memory Control Counter, or I²C/SPI Host Interface.

If ADC channel 0 to 3 is selected as address source (registers MEM_ADDR_SEL [2732:2729] = 3 to 6), the ADC conversion data from selected channel will be used as the Memory Table address.

If the ADC is operating with a resolution other than 12-bit, address alignment rules are as follows. In case of 14-bit resolution, the MSB from the ADC will be aligned with the MSB of the Memory Table. In case of an 8-bit and 10-bit ADC resolution, LSB of the ADC code will align with the Memory Table, as shown in Figure 140.

If the Data Buffer (ADDR-to-DATA or Storage mode) is selected as the input source of the Memory Table address bus, only 12 bits of the 16 Data Buffer bits can be used as the Memory Table address. Registers MEM_TRUNC [2734:2733] are used to configure which 12 bits of the Data Buffer will be used as the memory address (MSB, LSB, middle part), see Figure 141. Setting the value to '0b00' will use the MSB, while setting the value to '0b01' will use the LSB, and setting the value to '0b10' will use the middle part from bit 2 to bit 13. '0b00' is the default setting of this register.

If the Memory Table is in ADDR-to-DATA mode and the user accesses its data via I²C/SPI, any macrocell that accesses the Memory Table (ADC, Memory Control Counter, Data Buffers) must be stopped or disabled via register settings and the Memory Table address input source should be changed to MEM_ADDR_SEL [2732:2729] = 0x8. After the host read/write operation, the Memory Table source setting should be reverted to the previous setting and the operation of the ADC, control counter, or Data Buffers can be resumed.

The Memory Table macrocell output can be connected to the DAC, 12-bit CNT/DLY9, Width Converter, PWM macrocell, as well as to the MUX of a positive input of the DCMP macrocell.

Figure 140. Memory Table - ADC Bus Configuration

13.3 Storage Mode

Storage mode is an operating mode that stores ADC conversion data in the Memory Table, acting as a buffer. Storage mode is enabled by setting register MEM MODE SEL [2728] = 0. In this mode, data input for the Memory Table macrocell is selected by the MEM_DATA_SEL [2735], options are: ADC output and Data Buffer0. The memory address is automatically incremented by an internal counter for every new data word that is available from the ADC.

If the Memory Table is connected to the ADC via Data Buffer0, the ADC sample count will be increased by the value stored in ADC_SAMPLE_COUNT [2553:2552] and divided by BUF0_RDY_DIV [2769:2768] (Data Buffer0 will output intermediate values of the averaging process into the memory). For example: MEM_TABLE_SIZE [2739:2736, 2751:2744] = N * (ADC_SAMPLE_COUNT [2553:2552] * ADC channel enable count/BUFx_RDY_DIV [1:0]) - 1,

where N is the number of conversion start pulses needed to fill the Memory Table size.

If the ADC is connected directly to the Memory Table without Data Buffer, the number of conversion start pulse needed to fill the Memory Table with N size words will be

MEM_TABLE_SIZE [2739:2736, 2751:2744] = N * (ADC_SAMPLE_COUNT [2553:2552] * ADC channel enable count) - 1.

Each channel will be sampled sequentially as many times as set by ADC_SAMPLE_COUNT [2553:2552] and written into the Memory Table. For example, if two channels are sampled and the sample count is also two, then two conversion start pulses will fill the Memory Table contents starting from a zero address with the following samples: Ch1 sample 1, Ch2 sample 1, Ch1 sample 2, Ch2 sample 2, Ch1 sample 3, Ch2 sample 3, Ch1 sample 4, Ch2 sample 4.

Internal counter overflow behavior is configured with the MEM_OVERFLOW [2743] register. Two available options are to continue from the start address (MEM_OVERFLOW [2743] = 1) or stop at the end address (MEM_OVERFLOW [2743] = 0).

Storage mode starts operating by loading ADC conversion data from each ADC channel selected after the ADC Conversion Start signal becomes active. Next, the Memory Table stores samples incrementally until the end of the buffer (4096 words maximum). The Memory Table size is defined by MEM_TABLE_SIZE [2739:2736, 2751:2744], and the value can range from 1 to 4096 data words.

The user can read the contents of the Memory Table via I²C/SPI interface.

If ADC Conversion Start (CMO [71]) remains asserted beyond five ADC clock cycles before the Memory Table is filled, and MEM_OVERFLOW [2743] = 1, the conversion procedure will continue writing samples to the Memory Table (continuous conversion operation) (see Figure 142). If the Memory Table starts from the zero address, the previous data in the Memory Table will be overwritten with new samples. If Conversion Start is de-asserted before Memory Table is filled (more than five ADC clock cycles before the Memory Table ready signal become active), then the Sampling Engine will finish sampling until the end address of the Memory Table, which is configured by MEM_TABLE_SIZE [2739:2736, 2751:2744] and sampling will stop. The Memory Table ready (CMI1 [59]) signal will appear when the last sample is transferred. For any subsequent ADC conversions and memory updates, the user should set the ADC Conversion Start (CMO1 [71]) active again. New samples of the ADC will overwrite prior data in the Memory Table.

After the last data word is stored in the Memory Table, a data ready output (CMI1 [59]) signal is asserted until a new ADC Conversion Start (CMO1 [71]) signal is received (it drops LOW on Conversion Start rising edge).

Figure 142. Continuous and One-Shot Conversion Operation with Storage Mode Memory Table Diagram

The order of input channels that are selected and loaded to the memory cells is from Channel 0 to Channel 3. That is, every new recording into the first memory cell starts with Channel 0 and is followed by Channel 1, and others (see Figure 143).

SLG47011 Datasheet

Note that the Memory Table macrocell cannot perform read/write operations simultaneously. If the Memory Table is in Storage mode and the I²C/SPI communication requests to read data from the Memory Table, the ADC will pause for the I²C/SPI read operation to complete. After the I²C/SPI transaction is completed, the ADC will resume the suspended operation from the address where it was interrupted.

14. Data Buffer Macrocells

14.1 Data Buffers General Description

The SLG47011 has four Data Buffers designed to store or process data from the ADC or CNT/DLY. The input sources for a Data Buffer can be ADC conversion data (all Data Buffers), current value of CNT/DLY/FSM0 (Data Buffer0), current value of CNT/DLY/FSM1 (Data Buffer2), MathCore output (Data Buffer1), and also previous Data Buffer results in Daisy chain mode (Data Buffer1, Data Buffer2, Data Buffer3). A Data Buffer length of 1, 2, 4, or 8 words can be selected, as well as the initial data of the Data Buffers (0x0000 or 0xFFFF).

The operating modes for the Data Buffer are:

- Storage mode
- Moving Average mode
- Oversampling mode.

Every rising edge at the LOAD input of the Data Buffer loads data from the input. If the LOAD signal comes from an internal source, then the matrix output operates as LOAD_EN. If LOAD_EN is HIGH, it enables LOAD from an internal connection. If LOAD_EN is LOW, the internal LOAD is disabled. Note that if the Data Buffer is connected to the ADC, then the internal ADC Sampling Engine controls the LOAD signal. Each ADC channel can be assigned to a specific Data Buffer, which can be selected by registers BUFx_LOAD_SRC [2:0]. If data at the output of the Data Buffer is ready for reading, then the Buffer Ready output signal will transition HIGH. By setting registers BUFx_RDY_DIV [1:0] (BUF0_RDY_DIV [2769:2768], BUF1_RDY_DIV [2771:2770], BUF2_RDY_DIV [2773:2772], and BUF3_RDY_DIV [2775:2774]) the user can select how many samples are required to generate a BufferX Ready signal.

It is also possible to select one of the BufferX READY signals from one of four Data Buffers or one signal that indicates that all Data Buffers are READY by setting registers BUF_RD [2766:2764].

The Data Buffer latency from the arrival of the buffer LOAD signal to the buffer READY signal asserting is five oscillator OSC1 clock cycles when register DATABUFFER_BUFx_L_SYNC [1:0] = 0x0 (without sync), and five oscillator OSC1 clock + three sync clock cycles when syncronization option enabled (with ADC, FSM0, FSM1, or MathCore clock) by register DATABUFFER_BUFx_L_SYNC [1:0].

Both outputs of Data Buffer0 and Data Buffer1 (DATA or Result) can be routed to the Memory Table macrocell address input, while only Data Buffer0 (DATA or Result) can be routed to the Memory Table macrocell data input. Data stored in the Data Buffers can also be read directly via I²C/SPI interfaces. Either 8x16-bit data from the DATA block or the 16-bit average value from the Result block can be read via I²C/SPI.

Figure 144. Data Buffers Structure Diagram

RENESAS

14.2 Storage Mode

Storage of data is implemented according to the FIFO (first in, first out) principle, where new data written to the Data Buffer is written over the oldest data in the Data Buffer. Data Buffers can be connected in a daisy chain. This way, if only one ADC channel is used, the length of the buffer can be increased from 8 to 32 words. If the daisy chain connection is used, the output of Data Buffer (for example, Data Buffer0) is connected to the input of the subsequent Data Buffer (for example, Data Buffer1). In the daisy chain connection, the internal BufferX signal can be connected to the LOAD signal of the subsequent Data Buffer using a direct internal connection, instead of connecting through the connection matrix (see Table 25 to Table 28).

14.3 Moving Average Mode

In Moving Average mode, N - the number of data words, are taken from the Data Buffer DATA, added together, and the result is divided by N, and written to the Buffer Result register. The result is updated with every new data word loaded into the Data Buffer. If four Data Buffers are connected in daisy chain (Figure 145), it is possible to average up to 4096 equivalent samples. In the daisy chain connection, the LOAD signal is sourced from the previous Data Buffer once every X clock cycles, where X is the length of the previous Data Buffer. In the daisy chain connected to the LOAD signal of the next Data Buffer using a direct internal connection, instead of connecting through the connection matrix (see Table 25 to Table 28).

Figure 145. Daisy Chain for Averaging 4096 Equivalent Samples

Figure 146 shows an example of averaging 16 equivalent samples. Data Buffer0 with buffer length 4 words is connected to the Data Buffer1 with buffer length 4 words.

Figure 146. Averaging 16 Equivalent Samples

14.4 Oversampling Mode

Oversampling mode can be used to increase the effective resolution of the ADC. For example, if a 14-bit ADC is used and it is necessary to generate codes with 15-bits of resolution, oversampling can be used to get a 15-bit ADC result.

Oversampling is only available for buffer length of four or eight words. If buffer length is four words and Oversampling mode is activated, four samples are taken from the Data Buffer DATA, added together, and the result is divided by 2 and written to the Buffer Result. If buffer length is eight and Oversampling mode is active, eight samples are taken from the Data Buffer DATA, added together, and the result is divided by 4 and written to the Buffer Result. If buffer length is eight and the result is divided by 4 and written to the Buffer Result register. If two Data Buffers are connected in a daisy chain, oversampling can increase the ADC resolution to 16 bits.

In the daisy chain connection, the BufferX Data READY signal of a Data Buffer can be connected to the LOAD signal of the next Data Buffer using a direct internal connection, instead of connecting through the connection matrix (see Table 25 to Table 28).

14.5 Data Buffers Structure

Figure 147. Data Buffer0 Structure Diagram

Figure 148. Data Buffer1 Structure Diagram

Figure 149. Data Buffer2 Structure Diagram

Figure 150. Data Buffer3 Structure Diagram

The LOAD/LOAD_EN Data Buffer input settings depend on the input data source selection (see Table 25 to Table 28).

Data Input	CMO Option: LOAD or LOAD_EN	Load Signal Source	Mode of the Previous Data Buffer (Load Signal Source Selection Rule)	Sync Pulsegen Options
From ADC Ch0	LOAD_EN	from ADC Data_rdy (from Sampling Engine)		No, Syncronized with ADC CLK
From FSM0	LOAD	from Matrix output		No, Syncronized with FSM0 CLK

Table 25. Data Buffer0 LOAD or LOAD_EN

Table 26. Data Buffer1 LOAD or LOAD_EN

Data Input	CMO Option: LOAD or LOAD_EN	Load Signal Source	Mode of the Previous Data Buffer (Load Signal Source Selection Rule)	Sync Pulsegen Options
From ADC Ch1	LOAD_EN	from ADC Data_rdy (from Sampling Engine)		No, Syncronized with ADC CLK
From Buffer0 LOA		from Buffer0_Load	if Buffer0 mode is Storage mode	No
	LOAD_EN	from Buffer0_Ready	if Buffer0 mode is Moving Average mode or Oversampling mode	
From MathCore	LOAD_EN	from MathCore Data_rdy		No, Syncronized with MathCore CLK

Data Input	CMO Option: LOAD or LOAD_EN	Load Signal Source	Mode of the Previous Data Buffer (Load Signal Source Selection Rule)	Sync Pulsegen Options
From ADC Ch2	LOAD_EN	from ADC Data_rdy (from Sampling Engine)		No, Syncronized with ADC CLK
From Buffer1	LOAD_EN	from Buffer1_Load	if Buffer1 mode is Storage mode	No
		from Buffer1_Ready	if Buffer1 mode is Moving Average mode or Oversampling mode	
From FSM1	LOAD	from Matrix output		No, Syncronized with FSM1 CLK

Table 27. Data Buffer2 LOAD or LOAD_EN

Table 28. Data Buffer3 LOAD or LOAD_EN

Data Input	CMO Option: LOAD or LOAD_EN	Load Signal Source	Mode of the Previous Data Buffer (Load Signal Source Selection Rule)	Sync Pulsegen Options
From ADC Ch3	LOAD_EN	from ADC Data_rdy (from Sampling Engine)		No, Syncronized with ADC CLK
From Buffer2	LOAD_EN	from Buffer2_Load	if Buffer2 mode is Storage mode	No
		from Buffer2_Ready	if Buffer2 mode is Moving Average mode or Oversampling mode	

15. Mathematical Core Macrocell

15.1 MathCore General Description

The SLG47011 has a Mathematical Core (MathCore) macrocell, which can perform four mathematical operations: addition, subtraction, multiplication, division (cyclic shift), as well as their combinations. The function to be calculated by the MathCore can be selected according to one of the following operation modes:

- Multiplier and Shifter mode
- Adder/Subtractor mode
- Multiplier + Adder/Subtractor mode
- Adder/Subtractor + Multiplier mode.

MathCore input sources are:

- ADC channel 0 output
- ADC channel 1 output
- ADC channel 2 output
- ADC channel 3 output
- Memory Table macrocell output
- Data Buffer0 output
- Data Buffer1 output
- Data Buffer2 output
- Constant K (from register)
- Constant B (from register).

The structure of the MathCore is shown in Figure 151. The main components of the MathCore are two calculation units: Multiplier/Shifter and Adder/Subtractor, and a Math Control unit. The Multiplier/Shifter unit consists of a Multiplier and a Shifter/Divider, which are connected in series and provide a single result at the unit output. The Adder/Subtractor unit consists of an Adder and a Subtractor.

Each calculation unit has two data inputs. The input sources for the "k" and "x" inputs of the Multiplier/Shifter unit are selected by the value of MATH_K_SRC [2842:2840] and MATH_X_SRC [2845:2843] respectively (see Figure 151). The input sources for the "a" and "b" inputs of the Adder/Subtractor unit are selected by the value of MATH_A_SRC [2850:2848] and MATH_B_SRC [2853:2851] respectively. Detailed description of the input sources for the calculation units is listed below:

- ADC 14-bit data from ADC output
- Data Buffer0 16-bit data from Data Buffer0 output
- Data Buffer1 16-bit data from Data Buffer1 output
- Data Buffer2 16-bit data from Data Buffer2 output
- Memory Table 12-bit data from Memory Table output
- Const K 16-bit coefficient from internal registers MATH_CONST_K [2863:2856, 2871:2864], which can be set by the user
- Const B 16-bit coefficient from internal registers MATH_CONST_B [2879:2872, 2887:2880], which can be set by the user
- Fout 16-bit data from Multiplier/Shifter calculation unit output
- Y out 16-bit data from Adder/Subtractor calculation unit output.

The Calc_EN (CMO1 [74]) (calculation enable) signal controls the start of calculation. The mathematical operation is performed by the calculation unit when the data on both inputs is ready and the calculation is enabled by the Math Control unit. Input data is latched into the input register of the calculation unit after receiving the Data Ready (DR) signals at the internal DR inputs of the Control Unit. After completing the operation, the

Data Ready signal is generated on the DR output of the calculation unit and the calculation result is stored in a 16-bit Storage register.

The MathCore has a single 16-bit output. Depending on the selected mode of the MathCore, the output Math_OUT switches between two calculation units selected by the out_sel signal. The MathCore output can be connected to the Data Buffer1 input, DAC, and DCMP. The MathCore data output Math_OUT is reset to 0x0000 during POR.

The output registers MATH_MULT_STORE [2895:2888, 2903:2896] and MATH_ADD_SUB_STORE [2911:2904, 2919:2912] of both the Multiplier/Shifter and the Adder/Subtractor blocks can be read via the I²C/SPI interface.

The Math_DR (CMI1 [61]) signal is set to HIGH when the calculation is complete and the output data becomes available on the data bus. The latency from the last argument received to the Math_DR signal in different modes is as follows:

- 1. For Adder/Subtractor mode, the delay time from the latest argument (k or x) arrival to Math_DR assertion is around seven OSC1 clock cycles.
- 2. For Multiplier mode, the delay time from the latest argument (a or b) arrival to Math_DR assertion is around eight OSC1 clock cycles.
- 3. For Adder + Multiplier or Multiplier + Adder mode, the delay time from the latest argument arrival to Math_DR assertion is 8 + 7 =15 OSC1 clock cycles.

The delay time from Calc_EN arrival to MathCore starting to detect arguments is three OSC1 clock cycles.

Depending on the MATH_RESET [2827] register value, the Math_DR output:

- transitions LOW after Calc_EN rising edge (MATH_RESET [2827] = 0)
- transitions LOW after the last argument is received (MATH_RESET [2827] = 1).

The initial state of the Math_DR output during POR is set by MATH_DR_INIT [2830]. If MATH_DR_INIT [2830] = 0 - the Math_DR output is LOW until the first calculation is completed. If MATH_DR_INIT [2830] = 1 - the Math_DR output is HIGH until the first calculation is started.

Figure 151. Mathematical Core Structure Diagram

15.2 MathCore Modes

The mathematical function to be performed by the MathCore is selected by setting the MATH_FUNC_SEL [2825:2824] register. There are four basic modes:

- Multiplier mode (f = k * x function)
- Adder/Subtractor mode (y = a + b or y = a b function)
- Multiplier + Adder/Subtractor mode (y = k * x + b or y = k * x b function)
- Adder/Subtractor + Multiplier mode (y = (a + b) * k or y = (a b) *k function).

Mathematical operations (adding or subtraction) performed by the Adder/Subtractor unit are defined by MATH_ADD_SUB_SEL [2828] register.

Alternatively, the adding or subtraction operation can be defined by the MSB value of the input. This option is set by the MATH_MSB_ADD_SUB_SEL [2829] register. If MSB = 0, then the addition operation is performed; if MSB = 1, then the subtraction operation is performed. This option can be set only if MATH_ADD_SUB_SEL [2828] = 0 (Adder mode).

In Multiplier mode, the output is the result of multiplying two arguments received at the "k" and "x" inputs of the Multiplier/Shifter unit. Because multiplying two 16-bit input numbers results in a 32-bit number, the multiplication should be followed by a cyclic shift operation to generate a 16-bit result compatible with data bus width. The number of bits to be shifted is defined by the MATH_DIVIDER [2836:2832] register and should consider the maximal expected value of the multiplication result. The cyclic shift effectively provides a division function, and

the result of multiplication can be divided by a number 2^n (n = 1 to 32). The 'n' value is set by the MATH_DIVIDER [2836:2832] register value.

In Adder/Subtractor mode, the output is the result of adding/subtracting two arguments received at the "a" and "b" inputs of the Adder/Subtractor unit. If the sum of two arguments is larger than a maximal 16-bit number (0xFFF), the output will be set to 0xFFFF. The MathCore does not operate with negative numbers. If the value "a" input of the Subtractor is less than the value "b", that is, the result of the subtraction is less than 0, then the output value will be 0x0000.

In Multiplier + Adder/Subtractor mode, a two-stage operation is performed. The first operation multiplies two arguments received at the "k" and "x" inputs of the Multiplier/Shifter. At the second stage, the calculation result F_out from the Multiplier/Shifter received at the "a" input of the Adder/Subtractor is added/subtracted with the argument at the "b" input. In this mode, the result of the Multiplier/Shifter output (F_out) unit is automatically selected as a source for the "a" input of the Adder/Subtractor unit. Similarly, in Multiplier + Adder/Subtractor mode, if the sum of two arguments is larger than a maximal 16-bit number (0xFFFF), the output will be set to 0xFFFF. If the result of the subtraction is less than 0, then the output value will be 0x0000.

The Adder/Subtractor + Multiplier mode is also a two-stage operation. The first operation adds/subtracts two arguments received at the "a" and "b" inputs of the Adder/Subtractor unit. The calculation result Y_out from the Adder/Subtractor is received at the "x" input of the Multiplier and then multiplied by the argument received at the "k" input. In this mode, of the Adder/Subtractor unit output (Y_out) is automatically selected as a source for the "x" input of the Multiplier/Shifter unit.

15.3 MathCore Timing Diagrams

Timing diagrams for the MathCore operation in Multiplier mode (f = k * x function) are shown in Figure 152. The diagram shows the "k" input – ADC channel 0 conversion result, and the "x" input – Data Buffer0 average result from four samples of ADC channel 1. Calculation is run once after a Calc_EN signal pulse. Register MATH_RESET [2827] is set to 0 and the Math_DR output goes LOW after a Calc_EN rising edge.

Timing diagrams for the MathCore operation in Adder mode (y = a + b function) are shown in Figure 153. The diagram shows the "a" input – ADC channel 0 conversion result, and the "b" input – Memory Table output at ADC channel 1 input. Calculation runs until the Calc_EN signal is HIGH.

Note 1: MathCore DR output goes LOW after last argument received (MATH_RESET [2827] = 1). Note 2: MathCore DR output goes LOW after Calc_EN rising edge (MATH_RESET [2827] = 0).

Figure 153. MathCore Operation in Adder Mode (y = a + b Function)

Timing diagrams for the MathCore operation in Multiplier + Adder mode (f = k * x + b function) are shown in Figure 154. The diagram shows the "k" input – constant K (from register), the "x" input – ADC channel 0 conversion result, and the "b" input – ADC channel 1 conversion result. Calculation is performed once after a Calc_EN signal pulse.

Note 1: MathCore DR output goes LOW after last argument received (MATH_RESET [2827] = 1). **Note 2:** MathCore DR output goes LOW after Calc_EN rising edge (MATH_RESET [2827] = 0).

Figure 154. MathCore Operation in Multiplier + Adder Mode (f = k * x + b Function)

16. Multichannel Digital Comparator Macrocell

16.1 Multichannel Digital Comparator General Description

The SLG47011 has a 16-bit multichannel digital comparator (DCMP) that can make periodic comparisons of up to four input channels, and latch the results at four outputs.

Selectable input sources for each of four positive inputs of the multichannel DCMP are:

- Memory Table output
- MathCore output
- Data Buffer0 output
- Data Buffer1 output
- Data Buffer2 output
- Data Buffer3 output
- Fixed value from registers (one static threshold per channel).

Selectable input sources for each of four negative inputs of the multichannel DCMP are:

- Data Buffer0 output
- Data Buffer1 output
- Data Buffer2 output
- Data Buffer3 output
- Fixed value from registers (one static threshold per channel).

Note 1: If the 12-bit Memory Table output is selected as the input of the 16-bit DCMP, the 12 least significant bits of the DCMP input consist of the 12-bit Memory Table data, and the four most significant bits are '0000', for example, {0000, memory_table_data [11:0]}.

Note 2: To prevent unexpected issues, changing the value of the threshold registers via I²C/SPI must be performed only when the DCMP is disabled.

Up to four channels can be selected to be compared. For example, Channel0, Channel2, and Channel3. The active DCMP channels are selected by register DCMP_CHx_EN (DCMP_CH0_EN [2940], DCMP_CH1_EN [2941], DCMP_CH2_EN [2942], and DCMP_CH3_EN [2943]). Note that the channels are sampled in fixed order from 0 to 3.

It is possible to set a 16-bit hysteresis value for each channel. Depending on the register settings (DCMP_HYST_MODE [2923]), there are two hysteresis modes:

- **Regular hysteresis mode:** when active, the multichannel DCMP operates like an analog comparator with hysteresis.
 - LOW to HIGH transition of output '>' occurs when In+ > (In- + Hysteresis).
 - HIGH to LOW transition of output '>' occurs when In+ ≤ In-.
- Offset adding mode: in this mode, the In+ source is always compared with the value (In- + Hysteresis).
 - LOW to HIGH transition of output '>' occurs when In+ > (In- + Hysteresis).
 - HIGH to LOW transition of output '>' occurs when $In+ \leq (In- + Hysteresis)$.

The user can also select the 'equal' = DCMP output instead of 'greater than' > output. This option is selected with registers (COMPARE_SEL_CHx) for each channel. This function is only available in Offset adding mode, and the function is defined as follows:

- High logic level of output '>' occurs when In+ = (In- + Hysteresis).
- Low logic level of output '>' occurs when In+ < (In- + Hysteresis) or In+ > (In- + Hysteresis).

Basic modes for the multichannel DCMP are described by the following:
- **Continuous mode:** registers DCMP_MODE [2921:2920] = b00. In this mode, the multichannel DCMP continuously compares the data at the inputs. To start the comparison, the user must set HIGH level signal at an Enable input. After the high logic level is released (low logic level appears at the Enable input), the multichannel DCMP finishes comparison of the channel sequence and then turns off. The user can select a clock source for this mode.
- Sequence conversion mode activated by an Enable signal: registers DCMP_MODE [2921:2920] = b01. This mode is activated by the LOW to HIGH transition of the Enable signal. The multisampling DCMP performs the comparison of the channel sequence and then turns off. To start a new comparison, the user should reapply the signal at the Enable input. The user can select a clock source for this mode.
- Sequence conversion mode activated by an internal Buffer Ready signal: registers DCMP_MODE
 [2921:2920] = b10. The multisampling DCMP performs the comparison of the channel sequence once and
 then turns off. This mode is activated by the LOW to HIGH transition of the Buffer Ready or Memory Table
 Data Ready signal. The user can select any of four Buffer Ready signals or Memory Table Data Ready signal
 as a trigger to start the DCMP comparison. When this mode is active and the ADC is used as a source for
 Data Buffers or Memory Table, the DCMP will share clock source with the ADC.

Note that if the DCMP operates in continuous mode, the DCMP clock and the source data update rate synchronization must be controlled to avoid incorrect results.

The DCMP Enable input source is selected by the DCMP_EN_SRC_SEL [2929:2928] registers and the available options include: matrix output, BufferX ready, Memory Table Data Ready, MathCore Math_DR.

The multichannel DCMP uses a clock to switch between channels, make comparisons, and latch the results. The clock sources can come from OCS1 oscillator, OSC1 dividers, and the ADC clock. If the "Auto power-on" setting of the oscillator is selected, a logic HIGH (or rising edge, depending on setting) at the Enable input of the DCMP starts the internal oscillator.

Note: If the DCMP is enabled by the DCMP Enable signal, it will take two additional DCMP sampling clock pulses to generate the expected channel output.

The way the results appear at the outputs of the multichannel DCMP can be configured. In asynchronous mode (DCMP_SYNC_EN [2922] = 0), the results appear continuously after each channel is sampled. In synchronous mode (DCMP_SYNC_EN [2922] = 1), the results at the output appear simultaneously after the last selected channel has been sampled. The signal DCMP Sync Data Ready (CMI1 [58]) generates a pulse when the sequence of selected channels has been sampled.

The signal DCMP Data ready (CMI1 [58]) is set to HIGH when the sequence of selected channels has been sampled and the DCMP Data ready output goes LOW after Conversion Start is activated by the Enable signal.

The initial state of the DCMP Data ready output during power-up is set by DCMP_DR_INIT [2927] (see Figure 157). If DCMP_DR_INIT [2927] = 0, then the DCMP Data ready output is LOW until the 1st sequence of channels is sampled. If DCMP_DR_INIT [2927] = 1, then the DCMP Data ready output is HIGH until the 1st sequence of channels is started.

The latency of the DCMP from the DCMP Enable signal arrival to the DCMP Data ready signal asserting is as follows:

- 1st channel latency: 1 sampling clock period (if register MDCMP_EN_SYNC_SEL [3108] = 0), and 2 sync clock periods + 1 sampling clock period (if register MDCMP_EN_SYNC_SEL [3108] = 1).
- 2nd channel latency: 1st channel latency + 1 sampling clock period.
- 3rd channel latency: 2nd channel latency + 1 sampling clock period.
- 4th channel latency: 3rd channel latency + 1 sampling clock period.

Note: To guarantee the correct conversion result of the DCMP, it is not recommended to change the values at the DCMP inputs during operation.

The output values of the DCMP channels can be non-inverted (Q) or inverted (nQ). The type of output is selected by Q_nQ_SEL_CHx [0] (Q_NQ_SEL_CH0 [3104], Q_NQ_SEL_CH1 [3105], Q_NQ_SEL_CH2 [3106], Q_NQ_SEL_CH3 [3107]).

The rising edge at the Reset input of the DCMP (DCMP Reset) resets the state of OUT0-OUT3 and the Data ready outputs of the DCMP. If the DCMP reset occurs during DCMP operation, the current comparison is aborted and the DCMP outputs are reset. The state of OUT0-OUT3 and the Data ready outputs is not forced LOW while the high level at the Reset input is holding.

Figure 155. Multichannel Digital Comparator Block Diagram

16.2 Multichannel DCMP Timing Diagrams

Note 1: DCMP data ready output initial state is High during POR (DCMP_DR_INIT [2927] = 1). **Note 2:** DCMP data ready output initial state is LOW during POR (DCMP_DR_INIT [2927] = 0).

Figure 157. Multichannel DCMP Operation in Sequence Conversion Mode Activated by Buffer2 Ready

SLG47011 Datasheet

Figure 158. Multichannel DCMP Operation in Sequence Conversion Mode Activated by Buffer2 Ready. Buffer Length is Two Words

17. Pulse Width Modulator Macrocell

The SLG47011 has a 12-bit pulse width modulator (PWM) logic macrocell (see Figure 159), which generates output signal with variable duty cycle. The PWM power-up is set by CMO1 [84] (if PWR_UP is LOW – PWM is OFF, if PWR_UP is HIGH – PWM is ON). The PWM has a positive (IN+) input and a negative (IN-) input. The signal input IN+ accepts 12-bit data from the Memory Table macrocell or a 12-bit user-defined signal value (PWM_THLD [3163:3160, 3175:3168]). The signal that goes through the IN- input takes 12-bit data from CNT10. The PWM reads new data from IN+ every rising edge of PWM power-up when CNT10 has counted to either 0 or to CNT data (at the end of each PWM period). If PWM power-up (CMO1 [84]) is HIGH, then CNT10 operates with the PWM.

Figure 159. PWM Functional Diagram

17.1 PWM Output

The PWM output duty cycle can range from 0 % to 100 % and is determined by: Output Duty Cycle = IN+/IN-(IN+ = 0: output duty cycle = 0/IN- = 0 %; IN+ = IN-: output duty cycle = 100 %). The outputs of the PWM block can be inverted and are enabled by registers. Both OUT+ and OUT- have a separate register to select its inverted or non-inverted output option (PWM_OUT+_INV [3154] and PWM_OUT-_INV [3155]). Each output has also a separate register to select initial state output when PWM is OFF (PWM_OUT+_INIT_STATE [3152] and PWM_OUT+_INIT_STATE [3153]).

17.2 PWM DeadBand Control

The deadband interval can be set with NVM bits by setting PWM_DEADBAND [3159:3158]. It is possible to select no deadband time or deadband time equal to one, two, or three PWM period clock cycles.

Figure 161. PWM Output Waveforms (nOUT+ and OUT-)

Figure 162. PWM Output Waveforms (OUT+ and nOUT-)

18. Width Converter Macrocell

The SLG47011 has a 12-bit Width Converter (WCN) macrocell designed to provide data from the Memory Table macrocell to the connection matrix. The WCN converts a 12-bit parallel data word into a series of words of smaller width, effectively functioning as a parallel-to-serial converter with programmable bit width. The WCN takes 12-bit data from the Memory Table Output and is enabled by register WCONV_EN [3112]. The Width Converter clock is synchronized with the 12-bit Memory Control CNT block using internal synchronization, which functions as a frequency divider. The Width Converter initial value is defined by register WCONV_INIT_VAL_x [11:0]. This value appears at the output of the macrocell after power-up or after applying a LOW level at the Reset input of the Memory Control CNT. If the Memory Control Counter is configured in Two Ranges mode, then the Width Converter initial value for the first range is defined by registers WCONV_INIT_VAL_0 [3123:3120, 3135:3128], and for the second range - by registers WCONV_INIT_VAL_1 [3139:3136, 3151:3144].

The clock inputs of the Memory Control CNT and Width Converter are connected to the same matrix output through internal signal selection MUX, which is automatically controlled by WCN enable signal. When the Width Converter is enabled, the clock for the Memory Control CNT will be supplied from the Width Converter, whereas if the WCN is disabled, the matrix output will directly drive the clock input of the Memory Control CNT.

Basic modes for the Width Converter are selected by the registers WCONV_MODE [3114:3113] and are listed below:

- 12-to-12 mode (12-bit parallel output)
- 12-to-4 mode (12-bit word to three 4-bit words)
- 12-to-2 mode (12-bit word to six 2-bit words)
- 12-to-1 mode (12-bit word to serial bit stream).

If the Memory Control Counter operates with the WCN, the maximum clock frequency of the Memory Control Counter is the following:

- If the WCN is operating in the 12-to-12 mode, the maximum CLK frequency is 20 MHz.
- If the WCN is operating in the 12-to-4, 12-to-2, 12-to-1 mode, the maximum CLK frequency is 40 MHz.

The maximum clock frequency of 40 MHz is guaranteed.

18.1 12-to-12 Conversion Mode

In the 12-to-12 mode, the Width Converter converts data from Memory Table to 12 parallel outputs, as shown in Figure 164 and Figure 165.

Figure 164. Width Converter in 12-to-12 Mode Functional Diagram

Figure 165. Width Converter in 12-to-12 Mode Output Waveforms

18.2 12-to-4 Conversion Mode

In the 12-to-4 mode, the Width Converter converts a 12-bit word from Memory Table into three 4-bit words to four parallel outputs, see Figure 166 and Figure 167.

Figure 166. Width Converter in 12-to-4 Mode Functional Diagram

Figure 167. Width Converter in 12-to-4 Mode (without Sync) Output Waveforms

18.3 12-to-2 Conversion Mode

In the 12-to-2 mode, the Width Converter converts a 12-bit word from Memory Table into six 2-bit words to two parallel outputs, see Figure 169 and Figure 170.

18.4 12-to-1 Conversion Mode

In the 12-to-1 mode, the Width Converter converts a 12-bit word from Memory Table into a single serial bit stream output, see Figure 171 and Figure 172.

Figure 171. Width Converter in 12-to-1 Mode Functional Diagram

Figure 172. Width Converter in 12-to-1 Mode Output Waveforms

19. Programmable Delay/Edge Detector Macrocell

The SLG47011 has a programmable time delay macrocell that can generate a fixed time delay. The programmable time delay cell can generate one of four different delay patterns: rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay period. See Figure 173, Figure 174, and section 3.4.6 Programmable Delay Typical Delays and Widths for further information.

Note that the input signal must be longer than the delay, otherwise it will be filtered out.

Figure 173. Programmable Delay

19.1 Programmable Delay Timing Diagram - Edge Detector Output

20. Deglitch Filter Macrocell

The SLG47011 has a Deglitch Filter macrocell with inverter function. The filter blocks the input signal for pulse width < t_{block} (at typical temperature 25 °C, see section 3.4.7 Typical Filter Rejection Pulse Width) and passes the input signal for pulse width > t_{pass} (at typical temperature 25 °C). For pulse widths in between, the output pulse width will be reduced.

In addition, this macrocell can be configured as an Edge Detector, with the following settings:

- Rising Edge Detector
- Falling Edge Detector
- Both Edge Detector
- Both Edge Delay.

Figure 175. Deglitch Filter/Edge Detector Simplified Structure

21. Current Source Macrocell

The Current Source (CS) is a macrocell that outputs (sources) a constant current to the load connected to GPIO7 (Figure 176). The current value is selected by a register CS_CURRENT [3322:3320] and can range from 1 μ A to 100 μ A (1, 2, 5, 10, 20, 50, 100 μ A).

The CS power-up signal CMO1 [76] provides power-up/sleep macrocell control capability. The output current is referenced to GND.

Figure 176. Current Source Structure

22. Internal Voltage Reference

22.1 Internal VREF General Description

The SLG47011 has a Voltage Reference (V_{REF}) to provide a fixed reference of 1.62 V to the ADC and DAC. The Analog Comparator (ACMP) has also an access to the Voltage Reference via a programmable voltage divider, see

Table 29. The ACMP Reference voltage can range from 27 mV to 1.62 V.

The DAC reference voltage also has the option to output on pin GPIO11 (see Table 1).

Note 1: The switch, which outputs the V_{REF} voltage to GPIO11 has a resistance specified in section 3.13 Internal VREF Specifications. Please consider the switch resistance in the circuit design when using the V_{REF} output to external pin.

Note 2: Excessive capacitance on GPIO11 may cause a DAC V_{REF} buffer instability. Please consider the pin capacitance in the circuit design when using the V_{REF} output to external pin.

Figure 177. VREF Structure

VREF_SEL [3317:3312]	V _{REF} [V]	VREF_SEL [3317:3312]	VREF [V]	
0	0.027	31	0.864	
1	0.054	32	0.891	
2	0.081	33	0.918	
3	0.108	34	0.945	
4	0.135	35	0.972	
5	5 0.162		0.999	

Table 29. Analog Comparator VREF Selection Table

SLG47011 Datasheet

VREF_SEL [3317:3312]	VREF [V]	VREF_SEL [3317:3312]	V _{REF} [V]	
6	0.189	37	1.026	
7	0.216	38	1.053	
8	0.243	39	1.08	
9	0.27	40	1.107	
10	0.297	41	1.134	
11	0.324	42	1.161	
12	0.351	43	1.188	
13	0.378	44	1.215	
14	0.405	45	1.242	
15	0.432	46	1.269	
16	0.459	47	1.296	
17	0.486	48	1.323	
18	0.513	49	1.35	
19	0.54	50	1.377	
20	0.567	51	1.404	
21	0.594	52	1.431	
22	0.621	53	1.458	
23	0.648	54	1.485	
24	0.675	55	1.512	
25	0.702	56	1.539	
26	0.729	57	1.566	
27	0.756	58	1.593	
28	0.783	59	1.62	
29	0.81	60	N/A	
30	0.837	61	N/A	

22.2 VREF Typical Performance

Figure 178. DAC VREF Output Buffer Typical Load Regulation at TA = +25 °C, VREF = 1.62 V (Internal)

23. Clocking

The SLG47011 has two internal oscillators to support a variety of applications:

- Oscillator0 (2 kHz or 10 kHz optional selection)
- Oscillator1 (20 MHz or 40 MHz optional selection).

Oscillator0 can operate in one of two modes (2 kHz or 10 kHz) selected by register OSC0_FREQ_SEL [531], and Oscillator1 can operate in one of two modes (20 MHz or 40 MHz) selected by register OSC1_FREQ_SEL [3447]. There are two divider stages for each oscillator that provides flexibility for introducing clock signals to the connection matrix, as well as various other macrocells. The pre-divider (first stage) for Oscillator0 is clock /1, /2, /4, or /8. The pre-divider (first stage) for Oscillator1 is clock /1, /2, /4, /8, /12, /24, /48, /96. The second stage divider has an input of frequency from the pre-divider and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24, or /64 on connection matrix input lines CMO0 [18], CMO1 [85], and CMO1 [86]. Please see Figure 179, Figure 180, and Figure 181 for more details on the SLG47011 clock scheme.

The Matrix Power-down/Force On function switches off or forces on the oscillators using an external pin. The Matrix Power-down/Force On (CMO0 [37] and CMO1 [106]) signals have the highest priority. Exceptions are the ADC, MathCore, Memory Table, Data Buffer, DAC, and DCMP macrocells, which each can force OSC1 on internally, but makes the OSC1 output to the connection matrix unavailable.

The OSC operates according to Table 30:

POR	External Clock Selection	Signal From Connection Matrix	Register: Power-Down or Force On by Matrix Input	Register: Auto Power-On or Force On	OSC Enable Signal from Macrocells	OSC Operation Mode		
0	Х	Х	Х	х	Х	OFF		
1	1	х	x	х	x	Internal OSC is OFF, logic is ON		
1	0	1	0	Х	Х	OFF		
1	0	1	1	х	Х	ON		
1	0	0	Х	1	Х	ON		
1	0	0	x	0	CNT/DLY requires OSC	ON		
1	0	0	x	0	CNT/DLY does not require OSC	OFF		
1	0	х	x	х	ADC, MathCore, Memory Table, Data Buffer, DAC, and DCMP	ON, no output to connection matrix		
[1] The	[1] The OSC will run only when any macrocell that uses OSC is powered on.							

Table 30. Oscillator Operation Mode Configuration Settings

23.1 Oscillator0 (2 kHz, 10 kHz) Macrocell

23.2 Oscillator1 (20 MHz, 40 MHz) Macrocell

23.3 CNT/DLY Clock Scheme

The CNT/DLY within each multi-function macrocell and Memory Control Counter has its own additional clock divider fed from to the oscillators pre-divider. Available dividers are:

- OSC0/1, OSC0/8, OSC0/16, OSC0/32, OSC0/64, OSC0/512, OSC0/4096
- OSC1/1, OSC1/4, OSC1/8, OSC1/64, OSC1/512.

CNT0 and CNT1's input clock source is limited to OSC0 only.

Figure 181. Clock Scheme

23.4 External Clocking

The SLG47011 supports several options to use an external, higher accuracy clock as a reference source for internal operations.

23.4.1. GPIO Source for Oscillator0 (2 kHz/10 kHz)

If register OSC0_EXT_CLK [512] is set to '1', the external clock signal applied to pin GPIO10 will replace the internal oscillator derived from the 2 kHz/10 kHz clock source (see Figure 179). The low and the high limits of the external frequency are 0 kHz and 10 kHz.

23.4.2. GPIO Source for Oscillator1 (20 MHz/40 MHz)

If register OSC1_EXT_CLK [3440] is set to '1', an external clock signal applied to pin GPIO3 will replace the internal oscillator derived from the 20 MHz clock source (see Figure 180). The external frequency ranges from 0 MHz to 235 MHz at V_{DD} = 1.8 V, 286 MHz at V_{DD} = 2.5 V, and 281 MHz at V_{DD} = 3.3 V.

Note: Proper operation of internal blocks is guaranteed for a maximum clock frequency of 40 MHz.

23.5 Oscillators Power-On Delay

If "Auto Power-On" is selected, the "OSC enable" signal transitions HIGH if any macrocell that uses the OSC is powered on (see Figure 182). The values of Power-on Delay are in section 3.6.2 Oscillator0 2 kHz/10 kHz Power-On Delay.

Figure 182. Oscillator Startup Diagram

Figure 183. RC Oscillator Maximum Power-On Delay vs. V_{DD} at T_A = +25 °C, OSC0 = 2 kHz/10 kHz

Figure 184. RC Oscillator Maximum Power-On Delay vs. V_{DD} at T_A = +25 °C, OSC1 = 20 MHz/40 MHz

23.6 Oscillators Accuracy

Note: OSC power setting: Force Power-on; clock to matrix input: enable; bandgap turned on by register: enable.

Figure 185. Oscillator0 Frequency vs. Temperature, OSC0 = 2 kHz

Figure 187. Oscillator1 Frequency vs. Temperature, OSC1 = 20 MHz

Figure 189. Oscillators Total Error vs. Temperature

RENESAS

23.7 Oscillator Settling Time

Figure 193. Oscillator1 Settling Time, OSC1 = 40 MHz

23.8 Oscillator Current Consumption

Figure 195. OSC0 Current Consumption vs. V_{DD} (All Pre-Dividers), OSC0 = 10 kHz

Figure 197. OSC1 Current Consumption vs. V_{DD} (All Pre-Dividers), OSC1 = 40 MHz

24. Power-On Reset

The SLG47011 has a Power-on Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the V_{DD} power is first ramping to the device, and while the V_{DD} voltage is falling during power-down. To accomplish this goal, the POR drives a defined sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of the IO pins.

24.1 POR General Operation

The SLG47011 is guaranteed to be powered down and non-operational if the V_{DD} voltage (voltage on PIN1) is lower than the power-off threshold (POFF_{THR}), but not less than -0.6 V. Another essential condition for the device to be powered down is that no voltage higher than the V_{DD} voltage is applied to any other pin. For example, if V_{DD} voltage is 0.3 V, applying a voltage higher than 0.3 V to any other pin can lead to incorrect or unexpected device behavior.

Note: There is a 0.6 V margin due to forward drop voltage on the ESD protection diodes.

To initiate the POR sequence, the V_{DD} needs to exceed the power-on threshold (PON_{THR}). The full operational V_{DD} range for the SLG47011 is 1.71 V to 3.6 V. This means that the POR sequence will start before the V_{DD} voltage reaches its operating voltage range. Once the POR sequence has initiated, the SLG47011 will need a certain time to go through all the steps in the POR sequence.

While the POR sequence is progressing, all the pins are in Hi-Z state. The last step in the POR sequence is the release of the IO pins from their Hi-Z state. The pin configuration at this point of time is defined by the design programmed into the device. Once the POR sequence is complete, the device will be completely operational.

To power down the device, the V_{DD} voltage needs to be pulled below the power-off threshold. The power-off threshold and the power-on threshold are specified in section 3.4.1 Logic IO Specifications.

24.2 POR Sequence

The POR system generates a staggered sequence of POR signals that enable certain macrocells. The POR sequence depends on the selected power mode (All ON, RETENTION, SLEEP, refer to Table 6).

If the selected power mode is All ON, the POR sequence shown in Figure 198 incudes POR stages related to the PD_Mx0 and PD_Mx1 power domains (Case 1). If selected power mode is SLEEP, the POR sequence in Figure 198 incudes only the POR stages related to the PD_Mx0 power domain (Case 2) and the stages related to PD_Mx1 power domain are skipped.

The POR sequence for RETENTION mode, followed by the transition from RETENTION mode to All ON mode is shown in Figure 199. The POR sequence for SLEEP mode, followed by wakeup from SLEEP mode to All ON mode is shown in Figure 200.

Figure 198. POR Sequence at Transition from Power Off State to Power On State in Case 1 and Case 2

SLG47011 Datasheet

Figure 199. POR Sequence in RETENTION Mode, Followed by Resumption from RETENTION Mode to All ON Mode

RENESAS

Figure 200. POR Sequence in SLEEP Mode, Followed by Wakeup from SLEEP Mode to All ON Mode

RENESAS

As shown in Figure 198, once the V_{DD} voltage exceeds the POR (Power-on Reset) threshold, the on-die NVM controller gets reset first. Next, the device reads the data from the NVM and transfers this information to CMOS latches that configure each macrocell and the connection matrices. At the third stage, the input pins get reset and enabled. Then, the LUTs are reset and become active. After that, the delay cells, RC OSC, DFFs, and LATCHES are initialized. After all macrocells are initialized, the internal POR signal (POR macrocell output) transitions from LOW to HIGH. At the last step of the device initialization, the output pins transition from high impedance state to active.

The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many operating conditions, such as the V_{DD} voltage and its slew-rate, temperature, and process variations.

24.3 Macrocells Output States During POR Sequence

Figure 201 describes the output states of all macrocells in the SLG47011 during the POR sequence.

Before the device has been reset, the outputs of all macrocells are set to logic-low, except for the output pins which are in Hi-Z state. Until the NVM is ready, the outputs of all macrocell are unpredictable, except for the output pins. At the next step, some macrocells start initialization:

- Output states of the input pins become low
- LUT outputs become low.

Only the programmable delay macrocell, which is configured as an edge detector, becomes active at this time. After that, input pins are enabled. Next, only LUTs are configured. Soon thereafter, all other macrocells are initialized. When all macrocells are initialized, the internal POR matrix signal switches from LOW to HIGH. At the last step, the output pins become active and their output states are determined by the input signals.

24.3.1. Initialization

All macrocells have logic LOW as the initial state by default. After the indicated power-up time from the condition that the V_{DD} voltage exceeds the power-on threshold (PON_{THR}, see section 3.4.1 Logic IO Specifications), all macrocells are powered on, while they are forced into a reset state. At this stage, all outputs are in Hi-Z state and the device starts loading the initial data from the NVM. After that, the reset signal is released for the macrocells to start initializing according to the following sequence:

- 1. Input pins, Pull-up/down.
- 2. LUTs, Width Converter.
- 3. DFFs, Delays/Counters, OSCs, ACMP, DCMP, ADC, and other macrocells.
- 4. POR output to matrix.
- 5. Output pins correspond to the internal logic.

The low-to-high transition of the POR signal indicates that the power-up sequence is complete.

Note: The maximum voltage applied to any pin should not be higher than the V_{DD} level. There are ESD diodes between pin $\rightarrow V_{DD}$ and pin $\rightarrow GND$ on each pin. So, if the input signal applied to pin is higher than V_{DD} , then current will sink through the diode to V_{DD} . Exceeding V_{DD} results in leakage current on the input pin, and V_{DD} will be pulled up, following the voltage on the input pin. There is no effect from input pin when input voltage is applied at the same time as V_{DD} .

24.3.2. Power-Down

When the V_{DD} voltage drops below the power-off threshold (POFF_{THR}), the macrocells in the SLG47011 are powered off. In case the V_{DD} voltage ramp-down is slow, the outputs can possibly switch states during power-down.

Figure 202. Power-Down

25. Host Interface

25.1 Host Interface General Description

The Host Interface block provides communication between the SLG47011 and the host device via the I²C/SPI communication interface. Only one interface (I²C or SPI) can be active in the design. The active interface selection is controlled by register HST_IF_SEL [801] and is enabled by register HST_IF_EN [800]. See section 26 I2C Communication Interface for I²C interface description 27 SPI Communication Interface for the SPI interface description

In the standard use case for GreenPAK devices, the desired configuration is stored in the Non-Volatile Memory (NVM). This information is transferred at startup time to the RAM registers that determine the configuration of the macrocells and the connection matrices. Other RAM registers in the device are responsible for setting the connections in the connection matrix in order to route signals in the manner most appropriate for the application.

The Host Interface allows an I²C/SPI bus Master to read and write configuration information via a serial channel directly to the RAM registers, allowing the remote re-configuration of macrocells and remote changes to signal chains being used.

The I²C/SPI bus Master is also able to read and write other register bits that are not associated with NVM memory. As an example, the input signals to the connection matrix can be read. These are the signal outputs for each of the macrocells in the device, giving the I²C/SPI bus Master the capability to remotely read the current value of any macrocell.

The user has the flexibility to control read access and write access via registers bits RPR [3657:3656] and WPR [3659:3658]. See section 25.5 I2C/SPI Command Register Map for more details on I²C/SPI read/write memory protection.

25.2 Reading Current Counter Value via I²C/SPI

The current count value of all counters in the device can be read via I²C/SPI.

25.3 I²C/SPI Byte Write Bit Masking

The SLG47011 supports the masking of individual bits within a byte that is written to the configuration registers in RAM memory space via I²C/SPI. This function is supported across the entire RAM memory space. To implement this function, the following Byte Write Commands are used (see section 26.3.1 Byte Write Command for details):

- 1. Byte Write Command on the I²C/SPI Byte Write Mask Register (address 0x0060) with the desired Bit Mask Pattern.
- 2. Byte Write Command on the target memory location (target register) with New Write Data.

This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register byte. If the mask bit is set to '1', the corresponding bit in the target register isn't changed. If the mask bit is set to '0', the corresponding bit in the target register will be changed to the new value. If the next command received by the device is not the Byte Write Command, the bit mask will be kept in the I²C/SPI Byte Write Mask Register until a new bit mask is written into this register. Figure 203 shows an example of this function.

Figure 203. Example of I²C Byte Write Bit Masking

25.4 Chip Configuration Data Protection

The SLG47011 uses a function that allows a part of or the entire memory to be inhibited from being read or written. To enable this function the register PROTECT_EN [3663] bit must be set to '1'. Protection options are defined by registers RPR [3657:3656] (Registers Read Protection Register) and WPR [3659:3658] (Registers Write Protection Register).

RPR register options are:

- RPR [3657:3656] = 'b00': Register data is unprotected for read
- RPR [3657:3656] = 'b01': Register data is partly protected for read
- RPR [3657:3656] = 'b10': Register data is fully protected for read
- RPR [3657:3656] = 'b11': Register data is fully protected for read.
 WPR register options are:
- WPR [3659:3658] = 'b00': Register data is unprotected for write
- WPR [3659:3658] = 'b01': Register data is partly protected for write
- WPR [3659:3658] = 'b10': Register data is fully protected for write
- WPR [3659:3658] = 'b11': Register data is fully protected for write.

The user can select one of the following schemes:

- RPR [3657:3656] = 'b00'; WPR [3659:3658] = 'b00': Unlock (all open read/write) (Mode 0)
- RPR [3657:3656] = 'b01'; WPR [3659:3658] = 'b00': Partly Lock Read (Mode 1)
- RPR [3657:3656] = 'b00'; WPR [3659:3658] = 'b01': Partly Lock Write (Mode 2)
- RPR [3657:3656] = 'b01'; WPR [3659:3658] = 'b01': Partly Lock Read/Write (Mode 3)
- RPR [3657:3656] = 'b01'; WPR [3659:3658] = 'b1x': Partly Lock Read and Lock Write (Mode 4)
- RPR [3657:3656] = 'b1x'; WPR [3659:3658] = 'b01': Lock Read and Partly Lock Write (Mode 5)
- RPR [3657:3656] = 'b1x'; WPR [3659:3658] = 'b00': Lock Read (Mode 6)
- RPR [3657:3656] = 'b00'; WPR [3659:3658] = 'b1x': Lock Write (Mode 7)
- RPR [3657:3656] = 'b1x'; WPR [3659:3658] = 'b1x': Lock Read/Write (Mode 8).

For more information see Table 31.

25.5 I²C/SPI Command Register Map

There are seven read/write protect modes for preventing the design sequence from being corrupted or copied. See Table 31 for details.

				on Modes		ration					
Configurations	Unlock	Partly Lock Read	Partly Lock Write	Partly Lock Read/ Write	Partly Lock Read and Lock Write	Lock Read and Partly Lock Write	Lock Read	Lock Write	Lock Read/ Write	Register Address	
	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8		
RPR [3657:3656]	00	01	00	01	01	1x	1x	00	1x		
WPR [3659:3658]	00	00	01	01	1x	01	00	1x	1x		
I ² C/SPI Write Mask Control Register	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0x0060	
I ² C/SPI Output (8-bit) to Matrix (Virtual Input)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0x0061	
Macrocells Output Values (Virtual Output)	R	R	R	R	R	R	R	R	R	0x0062	
I ² C/SPI Reset Control Register	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0x0043, 0x0063	
I ² C/SPI Configuration Register	R/W	R/W	R/W	R/W	R	R/W	R/W	R	R	0x0064~0x0066	
Matrix Output Configuration	R/W	W	R	-	-	-	W	R	-	0x0000~0x001C, 0x0067~0x00D3	
Combination Function Macrocell Configuration	R/W	W	R	-	-	-	W	R	-	0x001D~0x002B, 0x00D4~0x00E8	
Multi-Function Macrocell Configuration	R/W	W	R	-	-	-	W	R	-	0x002C~0x0039, 0x00E9~0x013D	
Misc-function Macrocell Configuration	R/W	W	R	-	-	-	W	R	-	0x003A, 0x013E~0x01A0	
IO Configuration	R/W	W	R	-	-	-	W	R	-	0x003B~0x003F, 0x01A1~0x01AD	
OSC ACMP V _{REF} Configuration	R/W	W	R	-	-	-	W	R	-	0x0040~0x0043, 0x01AE~0x01B0	
Data Buffer Content	R	-	R	-	-	-	-	R	-	0x2200~0x2249	
Memory Table Content	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0x0200~0x21FF	
MathCore Output	R	-	R	-	-	-	-	R	-	0x0169~0x0172	
Protect Mode Configuration (RPR, WPR, NPR, Protection_Enable)	R	R	R	R	R	R	R	R	R	0x01C9	

Table 31	. Read/Write	Protection	Options
----------	--------------	------------	---------

R/W	Allow Read and Write Data
W	Allow Write Data Only
R	Allow Read Data Only
-	The Data is protected for Read and Write

It is possible to read certain data from the macrocells, such as counter current value, Data Buffers content, Memory Table macrocell content and output register, connection matrix inputs, and connection matrix virtual inputs. The I²C/SPI write will not have any impact on data in case data comes from macrocell output, except for connection matrix virtual inputs. The silicon identification service bits are used for identifying silicon family, its revision, and others.

26. I²C Communication Interface

26.1 I²C Communications Device Addressing

Each command sent to the I²C Serial Communications macrocell begins with a Control Byte. The bits of this Control Byte are shown in Figure 204. After the START Bit, the first four bits represent the Control Code. Each bit in the Control Code can be set independently from the register or by value defined externally by GPIO2, GPIO6, GPIO7, or GPIO8. GPIO2 represents the LSB and GPIO8 represents the MSB. The address source (either register bit or pin) for each bit in the Control Code is defined by registers I2C_CONTROL_CODE_SEL [819:816]. This allows for flexibility on the device level addressing of this device and other devices on the same I²C bus. The last bit in the Control Byte is the R/W bit, which selects whether a read command or a write command is requested, with a "1" selecting for a Read command, and a "0" selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.

The user can route I2C_ACK signal to CMI1 [63] (please refer to section 6 Connection Matrix).

In the read and write command address structure, there are a total of 16 address bits (two bytes), resulting in a total address space of 65536 bytes. The valid addresses accessible throuth the I^2C macrocell ranges from 0 (0x0000) to 8777 (0x2249).

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. Figure 204 shows this basic command structure.

Figure 204. Basic Command Structure

26.2 I²C General Timing

The general timing characteristics for the I²C Serial Communications macrocell are shown in Figure 205. Timing specifications can be found in section 3.4.2 I2C Specifications.

Figure 205. I²C General Timing Characteristics

26.3 I²C Communications Commands

26.3.1. Byte Write Command

Following the START Bit from the Master, the IC address [7 bits] and the R/W bit (set to "0") are written to the I²C bus by the Master. After the SLG47011 sends an Acknowledge bit, the Master transmits the next two bytes (the Word Address). After the SLG47011 sends another Acknowledge bit, the Master will transmit the Data Byte to be written into the addressed memory location. The SLG47011 again provides an Acknowledge bit and then the Master generates a STOP Bit. The internal data write cycle will take place at the time that the SLG47011 generates the Acknowledge bit.

It is possible to latch all IOs during an I²C write command, IO_LATCH_EN [3433] = '1' (Enable). It means that IOs will remain their state until the write command is done.

Figure 206. Byte Write Command, R/W = 0

26.3.2. Sequential Write Command

During a Sequential Write Command, the Control Byte, Word Address, and the first Data Byte are transmitted to the SLG47011 in the same way as in a Byte Write command. However, instead of generating the STOP Bit, the Bus Master continues to transmit data bytes to the SLG47011. Each subsequent Data Byte will increment the internal address counter and will be written into the next higher byte in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG47011 generates the Acknowledge bit. See Figure 207.

26.3.3. Current Address Read Command

The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the first STOP Bit following any write Control Byte. For example, if the Sequential Read Command (which contains a write control byte) reads data up to address n, the address pointer will get incremented to n + 1 upon the STOP of that command. Subsequently, the Current Address Read Command that follows will start reading data at n + 1. The Current Address Read Command contains the Control Byte sent by the Master, with the R/W bit = '1'. The SLG47011 will issue the Acknowledge bit and then transmit eight data bits for the requested byte. The Master will not issue the Acknowledge bit and follow immediately with the STOP condition.

Figure 208. Current Address Read Command, R/W = 1

26.3.4. Random Address Read Command

The Random Read Command allows to read data at an arbitrary address. The Random Read Command starts with the Control Byte (with R/W bit set to "0", indicating the write command), followed by a two byte Word Address to set the internal address, followed by a START Bit, and then the Control Byte for the read command (exactly the same as the Byte Write command). The START Bit in the middle of the command will halt the decoding of the Write command, but will set the internal address counter in preparation for the second half of the command. After the START Bit, the Bus Master issues a second Control Byte with the R/W bit set to '1', after which the SLG47011 issues the Acknowledge bit, followed by the requested eight data bits.

Figure 209. Random Address Read Command

26.3.5. Sequential Read Command

The Sequential Read Command is initiated in the same way as the Random Read Command, except that when the SLG47011 transmits the first data byte, the Bus Master issues the Acknowledge bit as opposed to the STOP Bit condition in a random read. The Bus Master continues reading sequential bytes of data and will terminate the command with the STOP Bit.

Figure 210. Sequential Read Command

26.3.6. I²C Serial Reset Command

If I²C serial communication is established with the device, it is possible to reset the device to its initial power-up conditions, including configuration of all macrocells, and all connections provided by the connection matrices. This is implemented by setting registers SW_RESET [536] and PAK_SW_RESET [792] I²C reset bit to '1', which causes the device to re-enable the Power-on Reset (POR) sequence, including the reloading of all register data from the NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset is finished, the contents of registers SW_RESET [536] and PAK_SW_RESET [792] will be set to "0" automatically. Figure 211 illustrates the sequence of events for this reset function.

Figure 211. Reset Command Timing

26.3.7. I²C Additional Options

When latching output during I²C write, IO_LATCH_EN [3433] = '1', which allows the output value of all pins to be latched until I²C write is done. This protects the output from changing due to the configuration process during I²C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I²C write.

If GPIO0 and GPIO1 functions are set to a selection other than SDA and SCL, all access via I²C will be disabled.

Note: Any write commands that are sent to the device via I²C that are not blocked based on the protection bits, will change the contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and a POR event will restore the register bits to their original programmed contents within the NVM.

27. SPI Communication Interface

The SPI macrocell uses the nCS, CLK, MOSI, and MISO signas.

- **nCS:** Inverted chip select line
- CLK: Clock signal from the SPI master
- MOSI: Master Output, Slave Input
- MISO: Master Input, Slave Output.

If the nCS signal is LOW, the SLG47011 will be selected for operation and will take control of the data bus. The maximum clock frequencies of the SPI are 19 MHz (write only) and 11 MHz (read and write). If the SPI is used to acces or program OTP memory, its clock speed will be limited to 400 kHz.

The SPI operates in Slave mode. If nCS is HIGH, the SPI is not active and both MOSI and MISO lines will be in the Hi-Z state.

All of the I²C functions are available via SPI: accessing internal control registers, NVM memory, and Data Buffers.

SPI can work in one of four combinations of clock and phase polarities CPOL = '1,0', CPHA = '1,0', and are configured by a register.

If CPOL = '0' the base value of the clock will be zero.

- For CPHA = '0', data is captured on the clock rising edge (LOW → HIGH transition) and is propagated on the falling edge (HIGH → LOW transition).
- For CPHA = '1', data is captured on the clock falling edge and is propagated on the rising edge.

If CPOL = '1' the base value of the clock will be one (inversion of CPOL = '0').

- For CPHA = '0', data is captured on the clock falling edge and is propagated on the rising edge.
- For CPHA = '1', data is captured on the clock rising edge and is propagated on the falling edge.

CPHA = '0' results in sampling on the leading (first) clock edge, while CPHA = '1' results in sampling on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling. Note that with CPHA = '0' the data must be stable for a half cycle before the first clock cycle.

SPI Mode	CPOL	СРНА	Clock Polarity at Idle State	Clock Phase Used to Sample and/or Shift Data
0	0	0	Logic Low	Data sampled on the rising edge and shifted out on the falling edge
1	0	1	Logic Low	Data sampled on the falling edge and shifted out on the rising edge
2	1	0	Logic High	Data sampled on the falling edge and shifted out on the rising edge
3	1	1	Logic High	Data sampled on the rising edge and shifted out on the falling edge

Table 32. SPI Modes

The read procedure from the SLG47011 starts with a Chip Select (nCS) signal that goes LOW, and the master sending a clock signal to CLK. The first bit at the MOSI line is the R/nW bit and it must be HIGH for the read procedure. Next, the master sends 15 bits of address data starting with the most significant bit (MSB).

The slave device outputs a dummy byte (8-bits) on the MOSI line after an address is acquired.

After the dummy byte is received, the master receives 8 bits of data and keeps transmitting the next 8 bits while nCS stays LOW. Transmission of the data bits is completed when the nCS (Chip Select) line transitions HIGH. The master controls how many serial bits it receives from the slave by controlling the nCS signal. The clock can be active on the CLK line at this time. If nCS goes HIGH, the MOSI and MISO inputs of the SLG47011 will go into the Hi-Z state.

SPI Read Transaction: when reading data from the Memory Table macrocell, 12-bit words from the Memory Table will be sent as 16-bit words, as shown in Figure 213, with the last four MSB set to zero. If the nCS line stays LOW, the next data bytes will be sent to the MISO bus. When accessing registers, data will be sent as one byte, as shown in Figure 214.

SPI Write Transaction: when the master writes data to the SLG47011 by sending a logic LOW write bit followed by an address on the MOSI line. The slave is ready to receive data on the MISO line without a dummy byte (see Figure 215).

Figure 213. Reading Memory Table Data in 16-bit Words from SLG47011 via SPI (CPOL = 0, CPHA = 1)

Figure 214. Reading Register 8-bit Data from SLG47011 via SPI (CPOL = 0, CPHA = 1)

Figure 215. Writing Configuration Register 8-bit Data to SLG47011 via SPI (CPOL = 0, CPHA = 1)

Figure 216. SPI Timing Diagram (CPHA = 0)

28. Analog Temperature Sensor

The SLG47011 features an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the die temperature in degree Celsius (°C). The TS output can be selected as a signal source for the ADC or ACMP positive input. The TS is rated to operate over a -40 °C to 85 °C temperature range with error in the entire temperature range not exceeding ±4.8 °C. For more details refer to section 3.12 Analog Temperature Sensor Characteristics.

The equation below calculates the typical analog voltage passed from the TS to the ADC or ACMPs' IN+ source input.

where:

V_{TS_OUT}: TS Output Voltage in mV

T_J: Junction temperature in °C.

Figure 217. Analog Temperature Sensor Structure Diagram

29. Package Information

29.1 Package Outline Drawings

29.1.1. STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package

Note 1: JEDEC compatible.

Note 2: All dimensions are in mm and angles are in degrees.

Note 3: Use ± 0.05 mm for the non-toleranced dimensions.

Note 4: Numbers in () are for references only.

Figure 219. Package Outline Drawing

29.2 Package Top Marking

29.2.1. STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package

29.3 Junction-to-Ambient Thermal Resistance (θ_{JA})

Table 33. Junction-to-Ambient Thermal Resistance

Package Option	Thermal Resistance (θ _{JA})
STQFN 16L (SLG47011V)	60.0 °C/W

29.4 Moisture Sensitivity Level

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 34.

For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from http://www.jedec.org.

The STQFN 16L package is qualified for MSL 1.

MSL Level	Floor Lifetime	Conditions
MSL 4	72 hours	30 °C / 60 % RH
MSL 3	168 hours	30 °C / 60 % RH
MSL 2A	4 weeks	30 °C / 60 % RH
MSL 2	1 year	30 °C / 60 % RH
MSL 1	Unlimited	30 °C / 85 % RH

29.5 Soldering Information

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org.

30. PCB Layout Guidelines

30.1 STQFN 16L (2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm Pitch) FC Package

31. Ordering Information

Part Number	Package	Size (mm)	Shipment Form	
SLG47011V	16-pin STQFN	2.0 mm x 2.0 mm x 0.55 mm, 0.4 mm pitch	Tape and Reel (3k units)	

31.1 Tape and Reel Specifications

Package	# of	Nominal	Max Units	Reel Dia.	Leader	' (min)	Trailer	(min)	Таре	Part
Туре	# or Pins	Package Size (mm)	Per Reel	(mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width (mm)	Pitch (mm)
STQFN 16L 2 mm x 2 mm 0.4P FC Green	16	2 x 2 x 0.55	3000	178	100	400	100	400	8	4

31.2 Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	В0	K0	P0	P1	D0	Е	F	w
STQFN 16L 2 mm x 2 mm 0.4P FC Green	2.30	2.30	0.80	4.00	4.00	1.5	1.75	3.5	8

<u>SECTION A - A</u>

Glossary Α ACK Acknowledge Bit В ΒG Bandgap С CLK Clock CMI **Connection Matrix Input** CMI0 **Connection Matrix 0 Input** CMI1 **Connection Matrix 1 Input** CMO **Connection Matrix Output** CMO0 Connection Matrix 0 Output CMO1 **Connection Matrix 1 Output** CNT Counter D DFF D Flip-Flop DI **Digital Input** DILV Low Voltage Digital Input DLY Delay DNL **Differential Non-Linearity** Е ESD Electrostatic Discharge ΕV End Value F FSM Finite State Machine FS Full Scale G GPI General Purpose Input GPIO General Purpose Input/Output

SLG47011 Datasheet

I	
IN	Input
INL	Integral Non-Linearity
IO	Input/Output
L	
LPF	Low Pass Filter
LSB	Least Significant Bit
LUT	Look Up Table
LV	Low Voltage
М	
MS DCMP	Multichannel Sampling Digital Comparator
MSB	Most Significant Bit
MUX	Multiplexer
Ν	
NPR	Non-Volatile Memory Read/Write/Erase Protection
nRST	Reset
NVM	Non-Volatile Memory
0	
OD	Open-Drain
OE	Output Enable
OSC	Oscillator
OTP	One Time Programmable
OUT	Output
Р	
PD	Power-Down
POR	Power-on Reset
PP	Push-Pull
PWR	Power
P DLY	Programmable Delay

R	
R/W	Read/Write
S	
SCL	I ² C Clock Input
SDA	I ² C Data Input/Output
SLA	Slave Address
SMT	With Schmitt Trigger
SPI	Serial Peripheral Interface
SR	Shift Register
SV	nSET Value
т	
TS	Temperature Sensor
V	
V _{REF}	Voltage Reference
W	
WCN	Width Converter
WOSMT	Without Schmitt Trigger

Revision History

Revision	Date	Description
1.01	Oct. 14, 2024	Section Features: updated SAR ADC features Section 3.1. Absolute Maximum Ratings: added Continuous Power Dissipation parameter. Section 3.13. Internal V _{REF} Specifications: added 'ADC V _{REF} Error' and 'DAC V _{REF} Error' at T _A = -20 °C to +85 °C Section 29. Package Information, section 30. PCB Layout Guidelines, section 31. Ordering Information: updated package height from 0.6 mm to 0.55 mm Added section 29.3. Junction-to-Ambient Thermal Resistance (θ_{JA}) Updated document formatting. Fixed typos.
1.00	Sep. 04, 2024	Initial release

