RENESAS

RL78/G1H RENESAS MCU

Datasheet

R01DS0256EJ0130 Rev.1.30 Dec 28, 2018

1. OUTLINE

RL78/G1H is a microcontroller equipped with the low-power-consumption RF transceiver compatible with the SubGHzband wireless communication. The wireless communication in the SubGHz band is best for the smart meter communication part, HEMS controller, wireless sensor network, etc.

1.1 Features

Ultra-low power consumption technology

- Standby function of MCU: HALT mode, STOP mode, SNOOZE mode
- Standby function of RF unit: IDLE mode, SLEEP mode
 - Current drawn by the RF transceiver during transmission
 - : 21 mA (typ.) with a transfer rate of 100 kbps, 2GFSK as the modulation method, +10 dBm of power, and the MCU operating at 3.0 V in STOP mode
 - : 36 mA (typ.) with a transfer rate of 100 kbps, 2GFSK as the modulation method, +13 dBm of power, and the MCU operating at 3.0 V in STOP mode
 - Current drawn by the RF transceiver during reception
 - : 6.9 mA (typ.) with a transfer rate of 100 kbps, 2GFSK as the modulation method, and the MCU operating at 3.0 V in STOP mode
 - Current drawn by the RF transceiver in SLEEP mode (POWER DOWN mode)
 - : 0.1 μA (typ.) with the MCU operating at 3.0 V in STOP mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 μs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 24 to 48 KB

On-chip RF transceiver

- IEEE802.15.4g standard specification SubGHzband transceiver
- RF frequency range: 863 to 928 MHz
- Modulation method: 2FSK/GFSK, 4FSK/GFSK
- Data rate: 2FSK/GFSK 10 to 300 kbps, 4FSK/GFSK 200/400 kbps
- Forward error correction (FEC) function

Code flash memory

- Code flash memory: 256 to 512 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 3.6 V

High-speed on-chip oscillator

• Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz

Operating ambient temperature

• TA = -40 to +85°C (A: Consumer applications, D: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 10 levels)

RL78/G1H

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

Event link controller (ELC)

• Event signals of 13 types can be linked to the specified peripheral function.

Serial interface

- CSI: 4 channels (1 channel of 4 channels is used for the internal communication between MCU and RF transceiver.)
- UART: 2 channels
- I²C: 2 channels

Timer

- 16-bit timer: 9 channels
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

- A/D converter
- 10-bit resolution A/D converter (VDD = 1.8 to 3.6
 V)
- Analog input: 6 channels

I/O port

- I/O port: 41
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5 V device
- On-chip clock output/buzzer output controller

Cipher

- AES cipher processing (128-bit key length)
- Random number generator (true random number, complies with AIS31 standard)

Others

On-chip BCD (binary-coded decimal) correction circuit

○ ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G1H
256 KB	8 KB	24 KB	R5F11FLJ
384 KB	8 KB	32 KB	R5F11FLK
512 KB	8 KB	48 KB Note	R5F11FLL

Note This is about 47 KB when the self-programming function is used (For details, see CHAPTER 4 in the User's Manual: Hardware).

1.2 Ordering Information

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1H

Pin count	Package	Fields of Application Note	Ordering Part Number	Code Flash Memory	Data Flash Memory
64 pins	64-pin plastic HVQFN (9 × 9)	A	R5F11FLJANA#20, R5F11FLJANA#40	256 Kbytes	8 Kbytes
		D	R5F11FLJDNA#20, R5F11FLJDNA#40		
		A	R5F11FLKANA#20, R5F11FLKANA#40	384 Kbytes	
		D	R5F11FLKDNA#20, R5F11FLKDNA#40		
		A	R5F11FLLANA#20, R5F11FLLANA#40	512 Kbytes	
		D	R5F11FLLDNA#20, R5F11FLLDNA#40		

Table 1	- 1 Ordering	Part Number List
---------	--------------	------------------

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1H.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

• 64-pin plastic HVQFN (9 × 9)

Remark For pin identification, see 1.4 Pin Identification.

1.4 Pin Identification

<MCU unit>

ANI0 to ANI2, ANI13:	Analog Input	P130, P137:	Port 13
ANI14, ANI19:	Analog Input	P140 to P144:	Port 14
AVREFM:	Analog Reference	P155, P156:	Port 15
	Voltage Minus	PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
AVREFP:	Analog Reference		Buzzer Output
	Voltage Plus	REGC:	Regulator Capacitance
EXCLK:	External Clock Input	RESET:	Reset
	(Main System Clock)	RxD1, RxD3:	Receive Data
EXCLKS:	External Clock Input	SCK10, SCK21,	
	(Subsystem Clock)	SCK30:	Serial Clock Input/Output
INTP0, INTP4:	External Interrupt Input	SCLA0, SCLA1:	Serial Clock Output
INTP6, INTP7:		SDAA0, SDAA1:	Serial Data Input/Output
INTP9 to INTP11:		SI10, SI21, SI30:	Serial Data Input
P02 to P04:	Port 0	SO10, SO21, SO30:	Serial Clock Output
P20 to P22:	Port 2	TI03:	Timer Input
P31:	Port 3	TO03:	Timer Output
P40:	Port 4	TOOL0:	Data Input/Output for Tool
P60 to P63:	Port 6	TxD1, TxD3:	Transmit Data
P70 to P72,	Port 7	Vdd:	Power Supply
P75 to P77:			
P80 to P82:	Port 8	Vss:	Ground
P100:	Port 10	X1, X2:	Crystal Oscillator (Main System Clock)
P120 to P124:	Port 12	XT1, XT2:	Crystal Oscillator (Subsystem Clock)

<RF transceiver unit>

GPIO0-GPIO4	Transceiver I/O port	VREGO1:	Power supply stability
CLKOUT:	Clock output		capacity connection for RF
ANTSELOUT0,	Antenna select	XIN:	Buffer input for the 48 MHz
ANTSELOUT1:			X'tal oscillation
ANTSW:	Antenna switch	XOUT:	48 MHz crystal resonator output
VREGO2:	Power supply stabilization	REFCLKIN:	External clock input
	capacitor connection pin for VCO	REGIN:	Power supply input for the analog, and
VREGO3:	Power supply stability capacity		externally connect with DDCOUT
	connection for PLL	VSSDDC:	DCDC converter GND
MODE1, MODE2:	Mode switch	DDCOUT:	The DCDC converter output, to externally
RFIN:	Transceiver GND		connect with REGIN
RFIP:	RF input	VCCDDC:	DCDC converter power supply
AGNDRF1:	Transceiver GND	STANDBY:	Power down control input of the transceiver,
RFOUT:	RF output		and externally connect with P130
AGNDRF2:	Transceiver GND	INTOUT:	Interrupt output

1.5 Block Diagram

1.6 Outline of Functions

				(1/2)		
	tem	R5F11FLJ	R5F11FLK	R5F11FLL		
Code flash memory	(KB)	256 KB	384 KB	512 KB		
Data flash memory (KB)	8 KB	8 KB	8 KB		
RAM (KB)		24 KB	32 KB	48 KB Note 1		
Address space		1 MB				
Main system clock	High-speed system clock	HS (high-speed main) mode HS (high-speed main) mode LS (low-speed main) mode:	X1 (crystal/ceramic) oscillator, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 3.6 V) HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V) LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V)			
	High-speed on-chip oscillator clock (fiн)	HS (high-speed main) mode HS (high-speed main) mode LS (low-speed main) mode:	: 1 to 16 MHz (VDD = 2.4 to 1 to 8 MHz (VDD = 1.8 to 3	3.6 V), 3.6 V),		
Subsystem clock		XT1 (crystal) oscillator, exter 32.768 kHz (TYP.)	nal subsystem clock input (E	EXCLKS)		
Low-speed on-chip oscillator clock		15 kHz (TYP.)				
RF base clock		48 MHz (TYP.)				
General-purpose register		8 bits × 32 registers (8 bits ×	8 registers × 4 banks)			
Minimum instruction execution time		0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)				
		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and boolean operation), etc. 				
I/O port	Total	41 Note 2				
	CMOS I/O		26			
	CMOS input		5			
	CMOS output		1 Note 2			
	N-ch open-drain I/O (6 V tolerance)	4				
	GPIO (RF unit)		5			
SubGHz RF transceiver		 IEEE802.15.4g standard specification SubGHz-band transceiver RF frequency range: 863 to 928 MHz Modulation method: 2FSK/GFSK, 4FSK/GFSK 				
Timer	16-bit timer	9 channels				
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	1 channel				

		(2/2)
'n	1	

Item		R5F11FLJ	R5F11FLK	R5F11FLL	
Clock output/buzzer outp	out	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 			
10-bit resolution A/D cor	iverter	6 channels			
Serial interface		CSI/UART: 2 channels CSI: 2 channels (1 channel c MCU and RF transceiver.)	f 2 channels is used for the in	nternal communication between	
	I ² C bus	2 channels			
Data transfer controller (DTC)	21 sources			
Vectored interrupt	Internal	26			
sources	External	7			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 3 Internal reset by RAM parity error Internal reset by illegal-memory access 			
Power-on-reset circuit		Power-on-reset: 1.51 (TYP.) Power-down-reset: 1.50 (TYP.)			
Voltage detector		Rising edge: 1.88 V to 3.13 V (10 stages) Falling edge: 1.84 V to 3.06 V (10 stages)			
On-chip debug function		Provided			
Power supply voltage		VDD = 1.8 to 3.6 V			
Operating ambient temp	erature	TA = -40 to +85°C (A: Consumer applications, D: Industrial applications)			
Package		64-pin HVQFN (9 × 9), (0.5 mr	64-pin HVQFN (9 × 9), (0.5 mm pitch)		

Note 1. This is about 47 KB when the self-programming function is used (For details, see **CHAPTER 4** in the User's Manual: Hardware).

Note 2. When using the RF transceiver, pins which a user uses for external connection between the MCU and RF transceiver on the board are included.

Note 3. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

This chapter describes the electrical specifications for the following products

The target products A: Consumer applications (TA = -40 to +85°C) R5F11FLxANA D: Industrial applications (TA = -40 to +85°C) R5F11FLxDNA

Caution The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

(1/2)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd	VDD	-0.5 to +3.8 Note 1	V
	VDDRF	VCCRF, VCCDDC	-0.3 to +3.8 Note 1	V
	Vss	Vss	-0.3 to +0.3	V
	VSSRF	VSSDDC, AGNDRF1, AGNDRF2, RFIN, DIEGND	-0.3 to +0.3	V
Input voltage	VI1	P02 to P04, P20 to P22, P31, P40, P70 to P72, P75 to P77, P80 to P82, P120 to P124, P137, P140 to P144, P155, P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 Note 2	V
	VI2	P100	-0.3 to VDD + 0.3 and	V
			-0.3 to VDDRF + 0.3 Note 2	
	VI3	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VIRF1	STANDBY, GPIO0 to GPIO4, MODE1, MODE2	-0.3 to VDDRF + 0.3 Note 2	V
	VIRF2	XIN, REFCLKIN	-0.3 to +1.25	V
	VIRF3	RFIP	-2.0 to +2.0 Note 3	V
Output voltage	Vo1	P02 to P04, P20 to P22, P31, P40, P60 to P63, P70 to P72, P75 to P77, P80 to P82, P100, P120, P130, P140 to P144, P155, P156	-0.3 to V _{DD} + 0.3 Note 2	V
	Vo2	P100, INTOUT	-0.3 to VDD + 0.3 and -0.3 to VDDRF + 0.3 Note 2	V
	V03	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VORF1	GPIO0 to GPIO4	-0.3 to VDDRF + 0.3 Note 2	V
	VORF2	XOUT	-0.3 to +1.25	V
	VORF3	RFOUT	-2.0 to +2.0 Note 3	V
Analog input voltage	VAI	ANI0 to ANI2, ANI13, ANI14, ANI19	-0.3 to VDD + 0.3 and -0.3 to AVREF(+) + 0.3 Notes 2, 4	V

Note 1. Satisfy the relationship of $VDD \ge VCCRF$ and VCCDDC upon power application.

Note 2. Must be 3.8 V or lower.

Note 3. This value is AC rating. Impression of DC voltage is prohibited to RFIP and RFOUT pins.

Note 4. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. VSS, VSSRF: Reference voltage

Absolute Maximum Ratings

Parameter	Symbols		Conditions	Ratings	Unit
REGC pin input voltage	VIREGC	REGC		–0.3 to +2.8 and	V
				-0.3 to VDD + 0.3 Note	
RF power supply input	VREGIN	REGIN		-0.3 to +3.8	V
RF power supply output	VRFOUT1	DDCOUT		-0.3 to +3.8	V
	Vrfout2	VREGO1,	VREGO2, VREGO3	-0.3 to +1.25	V
Output current, high	Іон1	Per pin	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P130, P140 to P144	-40	mA
		Total of all	P02 to P04, P40, P120, P130, P140 to P144	-70	mA
		pins –170 mA	P31, P70 to P72, P75 to P77, P80 to P82, P100	-100	mA
	Іон2	Per pin	P20 to P22, P155, P156	-0.5	mA
		Total of all pins		-2	mA
	IOHRF	Per pin	GPIO0, GPIO1, GPIO2, GPIO3, GPIO4	-17	mA
Output current, low	IOL1	Per pin	P02 to P04, P31, P40, P60 to P63, P70 to P72, P75 to P77, P80 to P82, P100, P120, P130, P140 to P144	40	mA
		Total of all	P02 to P04, P40, P120, P130, P140 to P144	70	mA
		pins 170 mA	P31, P60 to P63, P70 to P72, P75 to P77, P80 to P82, P100	100	mA
	IOL2	Per pin	P20 to P22, P155, P156	1	mA
		Total of all pins		5	mA
	IOLRF	Per pin	GPIO0, GPIO1, GPIO2, GPIO3, GPIO4	17	mA
Operating ambient	ТА	In normal c	pperation mode	-40 to +85	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			–65 to +150	°C

Note Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ VDD < 2.7 V	1.0		16.0	
		1.8 V ≤ VDD < 2.4 V	1.0		8.0	
XT1 clock oscillation frequency (fxr) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 6.4 System Clock Oscillator in the User's Manual: Hardware.

2.2.2 On-chip oscillator characteristics

ſ	TA = -40 to +8	5°C. 1.8 \	/ ≤ V	′DD ≤ 3.6	iV.	Vss = 0	V)
۰.		• •,		DD = 0.0	· •,	•00 •	•,

Oscillators	Parameters	C	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiн			1		32	MHz
High-speed on-chip oscillator clock frequency		–20 to +85°C	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	-1.0		+1.0	%
accuracy		-40 to -20°C	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(1/5)

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions	6	MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P130, P140 to P144				-10.0 Note 2	mA
		Total of P02 to P04, P40, P120,	2.7 V ≤ VDD ≤ 3.6 V			-10.0	mA
		P130, P140 to P144 (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			-5.0	mA
		Total of P31, P70 to P72,	2.7 V ≤ VDD ≤ 3.6 V			-19.0	mA
		P75 to P77, P80 to P82, P100 (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-29.0	mA
	Іон2	Per pin for P20 to P22, P155, P156				0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-0.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P02 to P04, P71, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1		Per pin for P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P130, P140 to P144				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P02 to P04, P40, P120,	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
		P130, P140 to P144 (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			9.0	mA
		Total of P31, P60 to P63,	2.7 V ≤ VDD ≤ 3.6 V			35.0	mA
		P70 to P72, P75 to P77, P80 to P82, P100 (When duty ≤ 70% ^{Note 3})	1.8 V ≤ VDD < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P20 to P22, P155, P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				2.0	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the VSS pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P140 to P144	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P03, P04, P80, P81, P142, P143	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
			TTL input buffer 1.8 V ≤ VDD < 3.3 V	1.5		Vdd	V
	VIH3	P20 to P22, P155, P156		0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 Vdd		6.0	V
	VIH5	P121 to P124, P137, EXCLK,	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P140 to P144	Normal input buffer	0		0.2 VDD	V
	VIL2	P03, P04, P80, P81, P142, P143	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 1.8 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P20 to P22, P155, P156	0		0.3 Vdd	V	
	VIL4	P60 to P63		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK,	EXCLKS, RESET	0		0.2 Vdd	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/5)

Caution The maximum value of VIH of pins P02 to P04, P71, P80 to P82, and P142 to P144 is VDD, even in the N-ch opendrain mode.

(4/5)

Items	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P02 to P04, P31, P40, P70 to P72, P75 to P77,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOH1 = -2.0 mA	Vdd - 0.6			V
-		P80 to P82, P100, P120, P130, P140 to P144	$1.8 V \le VDD \le 3.6 V$, IOH1 = -1.5 mA	Vdd - 0.5			V
	Vон2	P20 to P22, P155, P156	1.8 V ≤ VDD ≤ 3.6 V, IOH2 = −100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P02 to P04, P31, P40, P70 to P72, P75 to P77,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
		P80 to P82, P100, P120, P130, P140 to P144	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	VOL2	P20 to P22, P155, P156	1.8 V ≤ VDD ≤ 3.6 V, IOL2 = 400 μA			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

P02 to P04, P71, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode. Caution

Items	Symbol	Conc	Conditions			TYP.	MAX.	Unit
	-	-			MIN.			-
Input leakage current, high	ILIH1	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P140 to P144	72, P75 to P77, 32, P100, P120,				1	μA
	ILIH2	P20 to P22, P137, P155, P156, RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2,	VI = VDD In input port or external clock input				1	μA
		EXCLKS)		In resonator connection			10	μA
Input leakage current, low	ILIL1	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P140 to P144	VI = VSS				-1	μA
	ILIL2	P20 to P22, P137, P155, P156, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2,	VI = VSS	In input port or external clock input			-1	μA
		EXCLKS)		In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P02 to P04, P31, P40, P70 to P72, P75 to P77, P80 to P82, P100, P120, P140 to P144	VI = VSS, I	n input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(5/5)

Supply current characteristics 2.3.2

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$	
---	--

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni
Supply current	IDD1	Operating mode	HS (high-speed main) mode ^{Note 5}	fiH = 32 MHz Note 3	Basic operation	Vdd = 3.0 V		2.5		mA
Note 1			HS (high-speed main) mode ^{Note 5}	fiH = 32 MHz Note 3	Normal operation	Vdd = 3.0 V		5.5	10.6	mA
				fiH = 24 MHz Note 3	Normal operation	Vdd = 3.0 V		4.4	8.2	
				fiH = 16 MHz Note 3	Normal operation	Vdd = 3.0 V		3.3	5.9	
			LS (low-speed	fIH = 8 MHz Note 3	Normal	Vdd = 3.0 V		1.5	2.5	mÆ
			main) mode ^{Note 5}		operation	VDD = 2.0 V		1.5	2.5	
	HS (high-speed main) mode ^{Note 5}	fmx = 20 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		3.7	6.8	mA		
				Resonator connection		3.9	7.0			
		fmx = 8 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		2.0	4.1			
				Resonator connection		2.0	4.2			
	LS (low-speed main) mode ^{Note 5}	fmx = 8 MHz ^{Note 2} , VDD = 3.0 V	Normal operation	Square wave input		1.4	2.4	m		
					Resonator connection		1.4	2.5		
			fmx = 8 MHz Note 2 , VDD = 2.0 V	Normal operation	Square wave input		1.4	2.4		
						Resonator connection		1.4	2.5	
			Subsystem clock operation	fsub = 32.768 kHz Note 4 Ta = -40°C	Normal operation	Square wave input		5.2		μA
						Resonator connection		5.2		
				fsub = 32.768 kHz Note 4 Ta = +25°C	Normal operation	Square wave input		5.3	7.7	
					Resonator connection		5.3	7.7	1	
				fsub = 32.768 kHz Note 4 Ta = +50°C	Normal operation	Square wave input		5.5	10.6	
				Resonator connection		5.5	10.6			
				fsub = 32.768 kHz Note 4 Ta = +70°C	Normal operation	Square wave input		5.9	13.2	
					Resonator connection		6.0	13.2		
				fsub = 32.768 kHz Note 4 TA = +85°C	Normal operation	Square wave input		6.8	17.5	
						Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the RF transceiver, A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}@1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}@1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 V \le VDD \le 3.6 V@1 MHz$ to 8 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2		HS (high-speed	fIH = 32 MHz Note 4	VDD = 3.0 V		0.5	2.63	mA
urrent	Note 2		main) mode Note 7	fiH = 24 MHz Note 4	VDD = 3.0 V		0.42	2.03	
lote 1				fiH = 16 MHz Note 4	VDD = 3.0 V		0.39	1.50	
			LS (low-speed	fiH = 8 MHz Note 4	VDD = 3.0 V		270	800	μA
			main) mode Note 7		VDD = 2.0 V		270	800	
			HS (high-speed	f _{MX} = 20 MHz Note 3,	Square wave		0.31	1.69	mA
			main) mode Note 7	VDD = 3.0 V	input				
					Resonator connection		0.41	1.91	
				fMX = 8 MHz Note 3,	Square wave		0.16	0.94	
				VDD = 3.0 V	input		0.04	1.00	
					Resonator connection		0.21	1.02	
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz Note 3, VDD = 3.0 V	Square wave input		110	610	μA
				Resonator connection		150	660		
			f _{MX} = 8 MHz ^{Note 3} , VDD = 2.0 V	Square wave input		110	610		
				Resonator connection		150	660		
		Subsystem clock operation	fsub = 32.768 kHz Note 5 _, TA = -40°C	Square wave input		0.31		μA	
					Resonator connection		0.50		
				fsub = 32.768 kHz Note 5 _, Ta = +25°C	Square wave input		0.38	0.76	
					Resonator connection		0.57	0.95	
				fsub = 32.768 kHz ^{Note 5} , Ta = +50°C	Square wave input		0.47	3.59	
					Resonator connection		0.70	3.78	
				fsub = 32.768 kHz Note 5 , TA = +70°C	Square wave input		0.80	6.20	
					Resonator connection		1.00	6.39	
				fsub = 32.768 kHz ^{Note 5} , Ta = +85°C	Square wave input		1.65	10.56	
					Resonator connection		1.84	10.75	
	IDD3	STOP mode	TA = -40°C	•	•		0.19		μA
	Note 6	Note 8	TA = +25°C				0.30	0.59	
			TA = +50°C				0.41	3.42	-
			TA = +70°C				0.80	6.03]
			TA = +85°C				1.53	10.39	

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the RF transceiver, A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz to } 32 \text{ MHz}$
 - 2.4 V \leq VDD \leq 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 V \le VDD \le 3.6 V@1 MHz$ to 8 MHz
- **Note 8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 3.** fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	∣ _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	T Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AVREFP = VDD = 3.3 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
LVD operating current	I _{LVD} Notes 1, 7				0.08		μA
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	
		DTC operation	•		3.10		1

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **Note 7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ILVD when the LVD circuit is in operation.
- Note 8. Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 20.3.3 SNOOZE mode in the User's Manual: Hardware.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Тсү	Main system	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.03125		1	μs
(minimum instruction		clock (fMAIN)	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
execution time)		operation	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
		Subsystem clo	ock (fSUB) operation	1.8 V ≤ VDD ≤ 3.6 V	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	2.7 V ≤ VDD ≤ 3.6 V	0.03125		1	μs
		programming	mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
External system clock	fEX	2.7 V ≤ VDD ≤	3.6 V		1.0		20.0	MHz
frequency		2.4 V ≤ VDD <	2.7 V		1.0		16.0	MHz
		1.8 V ≤ VDD < 2.4 V			1.0		8.0	MHz
	fEXS				32		35	kHz
External system clock input high-level width,	texн,	2.7 V ≤ VDD ≤	3.6 V		24			ns
	tEXL	$2.4 \text{ V} \leq \text{VDD} <$	2.7 V		30			ns
low-level width		1.8 V ≤ VDD <	2.4 V		60			ns
	texhs, texls				13.7			μs
TI03 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10			ns
TO03 output	fто	HS (high-spee	d main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
frequency				2.4 V ≤ VDD < 2.7 V			4	MHz
		LS (low-speed	l main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
PCLBUZ0, PCLBUZ1	fPCL	HS (high-spee	d main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
output frequency				2.4 V ≤ VDD < 2.7 V			4	MHz
		LS (low-speed	l main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
Interrupt input high- level width, low-level width	tinth, tintl	INTP0, INTP4 INTP9 to INTF	, INTP6, INTP7, 211	1.8 V ≤ VDD ≤ 3.6 V	1			μs
RESET low-level width	tRSL				10			μs

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 3))

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage V_{DD} [V]

When the high-speed on-chip oscillator clock is selected

- — During self-programming
- ----- When high-speed system clock is selected

TCY vs VDD (LS (low-speed main) mode)

- ---- When the high-speed on-chip oscillator clock is selected
- --- During self-programming
- ----- When high-speed system clock is selected

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-sp	Unit	
			MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note		5.3		1.3	Mbps
		1.8 V ≤ VDD ≤ 3.6 V		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note}		5.3		1.3	Mbps

Note The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 3.6 V)

 $16 \text{ MHz} (2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V})$ LS (low-speed main) mode: 8 MHz (1.8 V \le VDD $\le 3.6 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 1, 3), g: PIM and POM number (g = 0, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 02, 03, 12, 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fc∟k	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	125		500		ns
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		500		ns
			1.8 V ≤ VDD ≤ 3.6 V	500		500		ns
SCKp high-/low-level width	tкн1, tкL1	2.7 V ≤ VDD ≤ 3.6 V		tксү1/2 – 18		tKCY1/2 – 50		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tксү1/2 – 38		tKCY1/2 – 50		ns
		1.8 V ≤ VDD ≤ 3	3.6 V	tkcy1/2 – 50		tKCY1/2 – 50		ns
SIp setup time	tsıĸ1	2.7 V ≤ VDD ≤ 3	3.6 V	44		110		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		75		110		ns
		1.8 V ≤ VDD ≤ 3	3.6 V	110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tKSI1	1.8 V ≤ VDD ≤ 3	3.6 V	19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tKSO1	1.8 V ≤ V _{DD} ≤ 3 C = 30 pF Note			25		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supported only for CSI20)

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		500		ns
			1.8 V ≤ VDD ≤ 3.6 V	500		500		ns

Remark p: CSI number (p = 20)

Remark p: CSI number (p = 10, 21, 30), m: Unit number (m = 0, 1), n: Channel number (n = 1, 2), g: PIM and POM number (g = 0, 14)

Parameter	Symbol	Conditions		HS (high-sp mo	-	LS (low-speed main) mode		
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	2.7 V ≤ VDD ≤ 3.6 V	16 MHz < fмск	8/fмск		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
		2.4 V ≤ VDD ≤ 3.6 V		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		6/fмск and 750		6/fмск and 750		ns
SCKp high-/ t	tĸн2,	2.7 V ≤ VDD ≤ 3.6 V		tkcy2/2 – 8		tkcy2/2 – 8		ns
low-level width	tĸL2	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy2/2 – 18		tксү2/2 – 18		ns
SIp setup time	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) Note 1		1.8 V ≤ VDD ≤ 3.6 V		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 2	tĸsı2	1.8 V ≤ VDD ≤ 3.6 V		1/fмск + 31		1/fмск + 31		ns
Delay time from	tKSO2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	C = 30 pF Note 4		2/fмск + 44		2/fмск + 110	ns
SCKp↓ to SOp output Note 3		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		2/fмск + 75		2/fмск + 110	ns
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$]		2/fмск + 100		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 10, 21, 30), m: Unit number (m = 0, 1), n: Channel number (n = 1, 2), g: PIM and POM number (g = 0, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 02, 11, 12))

CSI mode connection diagram (during communication at same potential)

Remark p: CSI number (p = 10, 21, 30)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 10, 21, 30) **Remark 2.** m: Unit number, n: Channel number (mn = 02, 11, 12)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, VSS = 0 V)

(TA = -40 to +	+85°C, 1.8	8 V ≤ VDD ≤	≤ 3.6 V, Vss = 0 V)					(1/2)
Parameter	ameter Symbol		Conditions		HS (high-speed main) mode		LS (low-speed main) mode	
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$2.7 V \le V_{DD} < 3.6 V,$ $2.3 V \le V_{b} \le 2.7 V$		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 2		5.3		1.3	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.8 V \le V_{b} \le 2.0 V$		fMCK/6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 2		5.3		1.3	Mbps

Note 1. Use it with $VDD \ge Vb$.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V ≤ VDD ≤ 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- Remark 2. q: UART number (q = 1, 3), g: PIM and POM number (g = 0, 14)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 02, 03, 12, 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter	Symbol		Conditions		n-speed main) mode	``	-speed main) mode	Unit
				MIN.	MAX.	MIN. MAX.		-
Transfer rate		transmission	$2.7 V \le V_{DD} < 3.6 V,$ $2.3 V \le V_{b} \le 2.7 V$		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_{b} \le 2.0 V$		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 5		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

rate =
$$\frac{1}{\{-C_{b} \times R_{b} \times \ln (1 - \frac{2.0}{V_{b}})\} \times 3}$$
 [bps]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $VDD \ge Vb$.
- **Note 4.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.8 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{(\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 5.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.(Caution and Remarks are listed on the next page.)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 1, 3), g: PIM and POM number (g = 0, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 02, 03, 12, 13))

(1/3)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-spee mode	d main)	LS (low-speed mode	d main)	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fcLk	$2.7 V \le VDD < 3.6 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$	500		1150		ns
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\textbf{Note}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		ns
SCKp high-level width	tкн1	2.7 V \leq VDD < 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 k Ω		tксү1/2 – 170		tксү1/2 – 170		ns
		1.8 V \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note , C _b = 30 pF, R _b = 5.5 kΩ		tксү1/2 – 458		tkcy1/2 – 458		ns
SCKp low-level width	tKL1	2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ		tксү1/2 – 18		tксү1/2 – 50		ns
	1.8 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V Note, C _b = 30 pF, R _b = 5.5 kΩ		0 ∨ Note,	tксү1/2 – 50		tксү1/2 – 50		ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(2/3)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode	-	peed main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$2.7 V \le V_{DD} < 3.6 V,$ $2.3 V \le V_{b} \le 2.7 V,$ $C_{b} = 30 pF, R_{b} = 2.7 k\Omega$	177		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 2}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	479		479		ns
Slp hold time (from SCKp↑) ^{Note 1}	tksi1	2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ	19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 2}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		195		195	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 2}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$		483		483	ns

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(3/3)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode		beed main) bde	Unit	
			MIN.	MAX.	MIN.	MAX.		
SIp setup time (to SCKp↓) ^{Note 1}	tsiĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	44		110		ns	
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		ns	
SIp hold time (from SCKp↓) ^{Note 1}	tĸsi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	19		19		ns	
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		ns	
Delay time from SCKp↑ to SOp output ^{Note 1}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		25		25	ns	
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 2}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ \mbox{k}\Omega \end{array}$		25		25	ns	

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 10, 30), m: Unit number (m = 0, 1), n: Channel number (n = 2), g: PIM and POM number (g = 0, 14)
- **Remark 3.** CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark 1. p: CSI number (p = 10, 30), m: Unit number (m = 0, 1), n: Channel number (n = 2), g: PIM and POM number (g = 0, 14)

Remark 2. CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions			peed main) ode	LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY2	2.7 V ≤ VDD < 3.6 V,	24 MHz < fмск	20/fмск		_		ns
		2.3 V ≤ Vb ≤ 2.7 V	20 MHz < fмск ≤ 24 MHz	16/fмск		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		ns
	1.8 V ≤ VDD < 3.3 V,	24 MHz < fмск	48/fмск		—		ns	
		1.6 V ≤ V _b ≤ 2.0 V Note 1	20 MHz < fмск ≤ 24 MHz	36/fмск		—		ns
		16 MHz < fмск ≤ 20 MHz	32/fмск		_		ns	
			8 MHz < fмск ≤ 16 MHz	26/fмск		—		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/	tKH2,	2.7 V ≤ VDD < 3.6 V, 2.	$3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 – 50		ns
low-level width	tKL2	1.8 V ≤ VDD < 3.3 V, 1.	6 V ≤ Vb ≤ 2.0 V Note 1	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	2.7 V ≤ VDD ≤ 3.6 V, 2.	3 V ≤ Vb ≤ 2.7 V	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) Note 2		1.8 V ≤ VDD ≤ 3.3 V, 1.	6 V ≤ Vb ≤ 2.0 V Note 1	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 3	tKSI2			1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2		2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ		2/fмск + 214		2/fмск + 573	ns
output ^{Note 4}		1.8 V ≤ VDD < 3.3 V, 1. Cb = 30 pF, Rb = 5.5 kΩ	$8 \vee \leq V_b \leq 2.0 \vee \text{Note 1},$		2/fмск + 573		2/fмск + 573	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Use it with $V_{DD} \ge V_b$.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance,
 - Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 10, 30), m: Unit number (m = 0, 1), n: Channel number (n = 2),

g: PIM and POM number (g = 0, 14)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

- n: Channel number (mn = 02, 12))
- **Remark 4.** CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark 1. p: CSI number (p = 10, 30), m: Unit number (m = 0, 1), n: Channel number (n = 2), g: PIM and POM number (g = 0, 14)

Remark 2. CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) mode		LS (low-speed main) mode	
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscl	Standard mode:	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	1.8 V ≤ VDD ≤ 3.6 V	0	100	0	100	kHz
Setup time of restart	tsu: sta	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.7		4.7		μs
condition		1.8 V ≤ VDD ≤ 3.6 V		4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μs
		1.8 V ≤ VDD ≤ 3.6	4.0		4.0		μs	
Hold time when tLOW		$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	$2.7 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$			4.7		μs
SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6	$1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$			4.7		μs
Hold time when	thigh	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.6	V	4.0		4.0		μs
Data setup time	tsu: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	V	250		250		ns
Data hold time	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	0	3.45	0	3.45	μs
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.6	V	0	3.45	0	3.45	μs
Setup time of stop	tsu: sto	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.0		4.0		μs
condition		1.8 V ≤ VDD ≤ 3.6	V	4.0		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	4.7		4.7		μs
		1.8 V ≤ VDD ≤ 3.6	V	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at
that time in each mode are as follows.
Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol				peed main) ode	LS (low-sp mo	Unit	
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fSCL	Fast mode:	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	400	0	400	kHz
Setup time of restart	tsu: sta	$2.7 V \leq VDD \leq 3.6$	S V	0.6		0.6		μs
condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 V \leq VDD \leq 3.6$	$7 V \le VDD \le 3.6 V$ $8 V \le VDD \le 3.6 V$			0.6		μs
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$				0.6		μs
Hold time when	tLOW	$2.7 V \leq VDD \leq 3.6$	8 V	1.3		1.3		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	1.3		1.3		μs
Hold time when	thigh	$2.7 V \leq VDD \leq 3.6$	8 V	0.6		0.6		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	0.6		0.6		μs
Data setup time	tsu: DAT	$2.7 V \leq VDD \leq 3.6$	8 V	100		100		ns
(reception)		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	100		100		ns
Data hold time	thd: dat	$2.7 V \leq VDD \leq 3.6$	8 V	0	0.9	0	0.9	μs
(transmission) Note 2		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	0	0.9	0	0.9	μs
Setup time of stop	tsu: sto	$2.7 V \leq VDD \leq 3.6$	8 V	0.6		0.6		μs
condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	8 V	1.3		1.3		μs
		1.8 V ≤ VDD ≤ 3.6	8 V	1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(3) I²C fast mode plus

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	onditions		peed main) ode	LS (low-sp mo	eed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fcLk ≥ 10 MHz			1000	_		kHz
Setup time of restart condition	tsu: sta	2.7 V ≤ VDD ≤ 3.6	2.7 V ≤ VDD ≤ 3.6 V			_	μs	
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$			-	μs	
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ VDD ≤ 3.6	0.5		-		μs	
Hold time when SCLA0 = "H"	thigh	2.7 V ≤ VDD ≤ 3.6	V	0.26		_		μs
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 3.6	V	50		_		ns
Data hold time (transmission) ^{Note 2}	thd: dat	2.7 V ≤ VDD ≤ 3.6	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0.45	-	_	μs
Setup time of stop condition	tsu: sto	2.7 V ≤ VDD ≤ 3.6	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			—		μs
Bus-free time	tBUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	V	0.5		—		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input	Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (–) = AVREFM	Reference voltage (+) = VDD Reference voltage (–) = Vss
ANI0	o ANI2, ANI13, ANI14, ANI19	Refer to 2.6.1 (1) .	Refer to 2.6.1 (2) .

When reference voltage (+) = AVREFP/ANI0 (ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0 to ANI2, ANI13, ANI14, ANI19

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, 1.8 V \leq AVREFP \leq VDD \leq 3.6 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD Notes 3, 4	1.8 V ≤ AVREFP ≤ 3.6 V		1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	2.7 V ≤ VDD ≤ 3.6 V	3.1875		39	μs
		Target pin: ANI0 to ANI2, ANI13, ANI14, ANI19	1.8 V ≤ VDD ≤ 3.6 V	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVREFP = VDD Notes 3, 4	1.8 V ≤ AVREFP ≤ 3.6 V			±0.35	% FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AVREFP = VDD Notes 3, 4	1.8 V ≤ AVREFP ≤ 3.6 V			±0.35	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Notes 3, 4	1.8 V ≤ AVREFP ≤ 3.6 V			±3.5	LSB
Differential linearity error ^{Note} 1	DLE	10-bit resolution AVREFP = VDD Notes 3, 4	1.8 V ≤ AVREFP ≤ 3.6 V			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI13, ANI14, AN	I19	0		AVREFP	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When AVREFP < VDD, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05% FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < VDD, the MAX. values are as fol	lows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.20% FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(2) When reference voltage (+) = VDD (ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI2, ANI13, ANI14, ANI19

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1.2	±7.0	LSB
Conversion time	onversion time tCONV 10-bit re		$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	3.1875		39	μs
		1.8 V ≤ VDD ≤ 3.6 V	17		39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ VDD ≤ 3.6 V			±0.60	% FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	1.8 V ≤ VDD ≤ 3.6 V			±0.60	% FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$			±4.0	LSB
Differential linearity error ^{Note} 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 3.6 V			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI2, ANI13, ANI14, ANI19		0		Vdd	V

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

2.6.2 POR characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the voltage detection function or external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock (fMAIN) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.3 LVD characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD2	Rising edge	3.07	3.13	3.19	V
detection			Falling edge	3.00	3.06	3.12	V
threshold		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
Minimum pul	se width	tLW		300			μs
Detection de	lay time					300	μs

Parameter	Symbol		Cor	ditions	MIN.	TYP.	MAX.	Unit
Voltage detection	VLVDB0	VPOC2	VPOC1, VPOC0 = 0, 0, 1,	falling reset voltage	1.80	1.84	1.87	V
threshold	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage			2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC2	VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	1	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(2) Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

2.6.4 Power supply voltage rising slope characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RF Transceiver Characteristics

2.7.1 Recommended operating conditions

Parameter	Conditions	MIN.	TYP.	MAX.	Unit	
Power supply voltage		1.8	3.0	3.6	V	
Operating ambient temperature		-40		85	°C	
XIN frequency			48		MHz	
Operating frequency		863		928	MHz	
Channel interval			12.5/200/400/600		kHz	
Data rate	2FSK/GFSK	10/2	10/20/40/50/100/150/200/300			
	4FSK/GFSK		200/400			
Modulation index	2FSK/GFSK		0.5/1.0		—	
	4FSK/GFSK		0.33		—	

2.7.2 XIN Frequency Deviation

2.7.2.1 Compatible with IEEE802.15.4g

XIN frequency accuracy is required according to the table below to satisfy the IEEE802.15.4g standard.

Frequency band [MHz]	Maximum frequency [MHz]	Symbol rate [ksymbol/s]	Variable index	MIN.	TYP.	MAX.	Unit	IEEE standard
863	870	50	1	-31.6	—	31.6	ppm	31.6
	870	100	1	-50.0		50.0	ppm	50.0
	870	100	0.33	-20.9	—	20.9	ppm	20.9
896	901	10	0.5	-3.1	—	3.1	ppm	3.1
	901	20	0.5	-6.1	—	6.1	ppm	6.1
	901	40	0.5	-12.2	—	12.2	ppm	12.2
901	902	10	0.5	-3.1	—	3.1	ppm	3.1
	902	20	0.5	-6.1	—	6.1	ppm	6.1
	902	40	0.5	-12.2	—	12.2	ppm	12.2
915	928	50	1	-29.6	—	29.6	ppm	29.6
	928	150	0.5	-44.4	—	44.4	ppm	44.4
	928	200	0.5	-50.0	—	50.0	ppm	50.0
917	923.5	50	1	-29.8	—	29.8	ppm	29.8
	923.5	150	0.5	-44.6	—	44.6	ppm	44.6
	923.5	200	0.5	-50.0	—	50.0	ppm	50.0
920	928	50	1	-29.6	—	29.6	ppm	29.6
	928	100	1	-50.0	—	50.0	ppm	50.0
	928	200	1	-50.0	—	50.0	ppm	50.0
	928	200	0.33	-39.1	_	39.1	ppm	39.1

2.7.2.2 Compatible with ARIB Standard

XIN frequency accuracy is required according to the table below to satisfy the ARIB standard.

Frequency band [MHz]	Maximum frequency [MHz]	Symbol rate [ksymbols/s]	Variable index	MIN.	TYP.	MAX.	Unit
920	928	50	1	-20	_	+20	ppm
	928	100	1	-20	—	+20	ppm
	928	200	1	-20	—	+20	ppm
	928	200	0.33	-20		+20	ppm

Unit mA

mΑ

٧

V

V

٧

μA

μA

2.7.3 DC characteristics

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.
High-level output current	IOHRF	GPIO0 to GPIO4 INTOUT	1.8V ≤ V _{DDRF} ≤ 3.6 V		-2.0	
Low-level output current	Iolrf	GPIO0 to GPIO4 INTOUT	1.8V ≤ V _{DDRF} ≤ 3.6 V		2.0	
High-level input voltage	Vihrf	STANDBY, GPIO0 to GP	104	0.85 Vddrf		Vddrf
Low-level input voltage	Vilrf	STANDBY, GPIO0 to GP	O4, MODE1, MODE2	0		0.1 Vddrf
High-level output voltage	Vohrf	Іон = –2.0 mA	GPIO0 to GPIO4, INTOUT	Vddrf – 0.3		
Low-level output voltage	Volrf	IOL = 2.0 mA	GPIO0 to GPIO4, INTOUT			0.3
High-level input leak current	Ilihrf	VI = VDDRF	STANDBY, GPIO0 to GPIO4			10
Low-level input leak current	Ililrf	VI = VSSRF	STANDBY, GPIO0 to GPIO4, MODE1, MODE2			-10

(TA = 25°C, VDDRF = 3.0 V, VSSRF = 0 V)

2.7.4 Power supply current

(TA = 25°C, VDDRF = 3.0 V, VSSRF = 0 V)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Transmission current (100 kbps, 2GFSK)	+14.5 dBm		53		mA
	+13 dBm		36		
	+10 dBm		21		
Reception current (100 kbps, 2GFSK)	During reception operation RFIP –95 dBm, CW		6.9		mA
	Signal reception standby RFIP none		6.3		
SLEEP mode			0.1		μA
IDLE mode			1.3		mA

2.7.5 Transceiver reception characteristics

Pa	rameter	Conditions	MIN.	TYP.	MAX.	Unit
Reception ser	nsitivity	2GFSK, BT = 0.5, BER < 0.1%, 10 kbps, m = 0.5	_	-114	-109	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 20 kbps, m = 0.5	_	-111	-106	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 40 kbps, m = 0.5	_	-108	-103	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 50 kbps, m = 1	_	-107	-102	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 100 kbps, m = 0.5	_	-104	-99	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 100 kbps, m = 1	_	-105	-100	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 150 kbps, m = 0.5	_	-102	-97	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 200 kbps, m = 0.5	_	-101	-96	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 200 kbps, m = 1	_	-102	-97	dBm
		2GFSK, BT = 0.5, BER < 0.1%, 300 kbps, m = 0.5	—	-97	-92	dBm
		4GFSK, BT = 0.5, BER < 0.1%, 200 kbps, m = 0.33	—	-102	-97	dBm
		4GFSK, BT = 0.5, BER < 0.1%, 400 kbps, m = 0.33	—	-100	-95	dBm
Maximum inpu	ut level	2GFSK	0	12	_	dBm
Spurious radia	ation	1 GHz or lower	_	—	-57	dBm
		1 GHz or higher			-47	dBm
ED	Input range	2GFSK, BT = 0.5,	-105		-5	dBm
	Total accuracy	100 kbps, m = 1	-6		6	dB
RSSI	Input range	2GFSK, BT = 0.5,	-100	—	-5	dBm
	Total accuracy	100 kbps, m = 1	-6	—	6	dB
	Relative accuracy		-3	—	3	dB
Adjacent CH suppression	±200 kHz (50 kbps, m = 1)	2GFSK, BT = 0.5, Desired signal 3 dB above the input sensitivity	—	35	—	dB
ratio	±400 kHz (100 kbps, m = 1)	level, CW interferer, BER < 0.1%	_	40	_	dB
Next- adjacent CH	±400 kHz (50 kbps, m = 1)	2GFSK, BT = 0.5, Desired signal 3 dB above the input sensitivity	—	45	—	dB
suppression ratio	±800 kHz (100 kbps, m = 1)	level, CW interferer, BER < 0.1%	_	50	—	dB

(TA = 25°C, VDDRF =3.0 V, VSSRF = 0 V) (1/2)

Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Suppression	±2 MHz	Desired signal 3 dB above the input sensitivity	_	48	_	dB
ratio	±10 MHz	evel, CW interferer, BER < 0.1%	_	60	_	dB
	±60 MHz		_	60	_	dB
Image suppression ratio		Desired signal 3 dB above the input sensitivity level, CW interferer, -2* if frequency offset	_	25	_	dB

(TA = 25°C, VDDRF = 3.0 V, VSSRF = 0 V) (2/2)

2.7.6 Transceiver transmission characteristics

Pa	arameter	Conditions	MIN.	TYP.	MAX.	Unit
Maximum transmi	ission output power	3.6 V ≥ VDDRF > 2.4 V	14.5	15.3	—	dBm
		$2.4 \text{ V} \ge \text{V}_{\text{DDRF}} \ge 1.8 \text{ V}$	—	13.0	—	dBm
Minimum transmission output power			—	-14.0	—	dBm
Variable step size		Within 6 dB from maximum output power (3.6 V \geq VDDRF > 2.4 V).	—	0.5	_	dB
Transmission out (Power supply vol temperature varia	-	3.6 V ≥ VDDRF ≥ 1.8 V -40 to 85°C	-1.5	_	1.5	dB
High frequency	2nd order harmonics	At +13 dBm output	—	_	-33.0	dBm
		At +14.5 dBm output	—	_	-31.5	dBm
	3rd order harmonics	At +13 dBm output	—	—	-33.0	dBm
		At +14.5 dBm output	—	—	-31.5	dBm

Caution Variable step size and variable range may vary depending on the maximum transmission output level setting.

<R>

 Remark
 For the characteristics of the RF transceiver, see the following application notes.

 Electrical Characteristics of 920-MHz-Band RF Transceiver (R01AN3752)

 Electrical Characteristics of 860-MHz-Band RF Transceiver (R01AN4027)

 Electrical Characteristics of 915-MHz-Band RF Transceiver (FCC Part 15.247) (R01AN4557)

2.7.7 IEEE802.15.4g frequency/data rate table

Frequency band identifier	РНҮ	Frequency band (MHz)	Operating mode	Modulation	Data rate (kbps)	Symbol rate (ksps)	Modulation index	Channel spacing (kHz)	Total number of channels	Channel 0 frequency (MHz)
4	863 MHz	863 to 870	#1	2FSK/2GFSK	50	50	1	200	34	863.125
	(Europe)		#2		100	100		400	17	863.225
			#3	4FSK/4GFSK	200	100	0.33			
5	896 MHz	896 to 901	#1	2FSK/2GFSK	10	10	0.5	25	399	896.0125
	(US)		#2		20	20		50	397	896.025
			#3		40	40		100	393	896.05
6	901 MHz	901 to 902	#1	2FSK/2GFSK	10	10	0.5	25	79	901.0125
	(US)		#2		20	20		50	77	901.025
			#3		40	40		100	73	901.05
7	915 MHz	902 to 928	#1	2FSK/2GFSK	50	50	1	200	129	902.2
	(US)		#2		150	150	0.5	400	64	902.4
			#3		200	200				
8	917 MHz	917 to 923.5	#1	2FSK/2GFSK	50	50	1	200	32	917.1
	(Korea)		#2		150	150	0.5	400	16	917.3
			#3		200	200				
9	920 MHz	920 to 928	#1	2FSK/2GFSK	50	50	1	200	38	920.6
	(Japan)		#2		100	100		400	18	920.9
			#3		200	200	1	600	12	920.8
			#4	4FSK/4GFSK	400	200	0.33			

<R>

Caution Refer to the latest version of the application note Recommended Settings of Registers (R01AN3410) regarding settings when this product is to be used.

2.7.8 AC Characteristics

($T_{\Delta} = -40^{\circ}C$	to +85°C	2 4 V <	V, VSSRF = 0 V)
1	1A = -400	$, \iota \circ \cdot \circ \circ \circ$, 2 . 4 ¥ <u>-</u>	\mathbf{v}, \mathbf{v} solution $-\mathbf{v} \cdot \mathbf{v}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKL cycle time	tsccyc		250			ns
SEN setup time	tsesu		200			ns
SEN hold time	tsehd		200			ns

(TA = -40°C, to +85°C, 1.8 V \leq VDDRF \leq 3.6 V, VSSRF = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKL cycle time	tsccyc		500			ns
SEN setup time	tsesu		400			ns
SEN hold time	tsehd		400			ns

Figure 2 - 1 Data I/O timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
STANDBYlow-level width	tstbyl		10			μs
OSCDRVSEL setup time (From STANDBY↑)	todssu	Crystal resonator	500			μs
DON setup time (From OSCDRVSEL↑)	tdonsu	Crystal resonator	50			μs
RFRESETB setup time (From DON↑)	trfrstsu	Crystal resonator	450			μs
RFRESETBsetup time (From STANDBY↑)	trfrstsu2	External clock input	450			μs

(TA = -40° C, to $+85^{\circ}$ C, 1.8 V \leq VDDRF \leq 3.6 V, VSSRF = 0 V)

2.8 RAM Data Retention Characteristics

(TA = -40 to +85°C, Vss = 0V)									
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Data retention supply voltage	VDDDR		1.46 Note		3.6	V			

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.9 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.10 Dedicated Flash Memory Programmer Communication (UART)

1	$T_{\Lambda} = -40$	to +85°C	1 8 Vor	< 36V	Vss = 0 V)
1	1440		, I.O VDL	/ <u> </u>	v 33 - U v j

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.11 Timing for Switching Flash Memory Programming Modes

(TA = -40 to +85°C,	$1.8 V \le VDD \le 3.6 V, Vss = 0 V$
---------------------	--------------------------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<R>

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> The baud rate setting by UART reception is completed.

- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends.
 - tHD: How long to keep the TOOL0 pin at the low level from when the external resets end.

(excluding the processing time of the firmware to control the flash memory)

3. PACKAGE DRAWING

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HVQFN64-9x9-0.50	PVQN0064KC-A	_	0.21

Unit: mm

Nom

9.00

9.00

0.25

0.50

0.40

0.75

0.75

0.20

6.90

6.90

Max

9.10

9.10 1.00

0.30

0.50

0.05

0.05

_

© 2015 Renesas Electronics Corporation. All rights reserved.

 D_2

 E_2

REVISION HISTORY	RL78/G1H Datasheet

			Description
Rev.	Date	Page	Summary
1.30 Dec 28, 2018	Dec 28, 2018	p.1	Modification of description in 1.1 Features
	p.7	Modification of 1.5 Block Diagram	
	p.14	Deletion of note 4 in 2.3.1 Pin characteristics	
	p.56	Addition of remark in 2.7.6 Transceiver transmission characteristics	
	p.57	Addition of caution in 2.7.7 IEEE802.15.4g frequency/data rate table	
	p.62	Modification of figure in 2.11 Timing for Switching Flash Memory Programming Modes	
1.20 Dec 22, 2016	p.5	Change of Caution in 1.3 Pin Configuration (Top View)	
		p.8	Change of 1.6 Outline of Functions
		pp.10 to 60	Change expression of conditions
		p.11	Addition of item and Note 3 to 2.1 Absolute Maximum Ratings
		p.57	Change of 2.7.7 IEEE802.15.4g frequency/data rate table
1.10	May 11, 2016	-	Issuing revision in accordance with revised user's manual (no change of the contents)
1.00	Feb 24, 2016	p.1	Change of 1.1 Features
		p.4	Change of Table 1 - 1 Ordering Part Number List
		p.5	Change of 1.3 Pin Configuration (Top View)
		p.6	Change of description in 1.4 Pin Identification
		p.7	Change of 1.5 Block Diagram
		p.8,9	Change of description in 1.6 Outline of Functions
		p.10	Change of the title and description in 2. ELECTRICAL SPECIFICATIONS
		p.11	Change of description in 2.1 Absolute Maximum Ratings
		p.13	Change of 2.2.2 On-chip oscillator characteristics
		p.14, 15, 18	Change of description in 2.3.1 Pin characteristics
		p.19, 21, 23	Change of 2.3.2 Supply current characteristics
		p.31	Change of remark in 2.5.1 (2) During communication at same potential (CSI mode) (master
			mode,SCKp internal clock output)
		p.31	Deletion of remark 1 in 2.5.1 (3) uring communication at same potential (CSI mode)
			(master mode, SCKp internal clock output, supported only for CSI20)
		p.32	Change of remark 1 in 31.5.1 (4) During communication at same potential (CSI mode)
			(slave mode, SCKp external clock input)
		p.43	Change of remark 3 and 4 in CSI mode connection diagram (during communication at
			different potential)
		p.44	Change of remark 2 in Figure CSI mode serial transfer timing (slave mode) (during
			communication at different potential)(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1
			and CKPmn = 0.)
		p.52	Change of description in 2.7.1 Recommended operating conditions
		p.52	Change and addition of description in 2.7.2.1 Compatible with IEEE802.15.4g
		p.52 p.53	Addition of 2.7.2.2 Compatible with ARB Standard
		p.53 p.54	Change of 2.7.3 DC characteristics
		p.54	Change of 2.7.4 Power supply current
		p.54 p.55, 56	Change of 2.7.5 Transceiver reception characteristics
		p.55, 50	Change of 2.7.6 Transceiver transmission characteristics
		p.50 p.57	Change of 2.7.7 IEEE802.15.4g frequency/data rate table
		pp.58 to 60	Addition of 2.7.8 AC Characteristics
		p.61	Change of description in 2.8 RAM Data Retention Characteristics
0.50	Jul 31, 2015		First Edition issued

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
 you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics Corporation

 TOYOSU FORESIA, 3:-2:4 Toyosu, Koto-ku, Tokyo 135-0061, Japan

 Renesas Electronics America Inc.

 1001 Murphy Ranch Road, Miplias, CA 95035, U.S.A.

 Tei: +1:408-432-8086, F.a:v: +1:408-434-5351

 Renesas Electronics Canada Limited

 251 Yongs Evert, Suite Salos Richmond Hill, Ontario Canada L4C 9T3

 Tei: +1:40-62-37-2004

 Renesas Electronics Europe Limited

 Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tei: +4:44-162-651-700

 Renesas Electronics China) Co., Ltd.

 Room 1709 Quantum Plazar, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China

 Tei: +80-12-220-0888, Fax: +48-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709 Quantum Plazar, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China

 Tei: +80-12-220-0888, Fax: +482-206-989

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 301, Tower A., Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China

 Tei: +80-22-220-0889, Fax: +482-220-0899

 Renesas Electronics Taiwan Co., Ltd.

 1031, No, 453, Fu Shing North Road, Taipei 10543, Taiwan

 Tei: +80-24-2175-9600, Fax: +482-2486-9022

 Renesas Electronics Taiwan Co., Ltd.

 104, No, 453, Fu Shing North Roa