RENESAS

RL78/F12 RENESAS MCU

Datasheet

R01DS0462EJ0111 Rev.1.11 Dec 27, 2024

RL78/F12 microcontrollers are available in a 20 to 64-pin, 8 to 64 KB flash memory lineup, and realize the industry's lowest level of consumption current. They have a built-in LIN module as an automotive interface. With various built-in functions for realizing functional safety including flash memory CRC calculation, illegal memory access detection, RAM guard, A/D converter testing, and SFR guard, a highly reliable system can be built, so these microcontrollers can be used for industrial applications and of course automotive applications.

1. OUTLINE

1.1 Features

- O Minimum instruction execution time can be changed from high speed (0.03125 μ s: @ 32 MHz operation with high-speed on-chip oscillator) to ultra low-speed (30.5 μ s: @ 32.768 kHz operation with subsystem clock)
- O General-purpose register: 8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)
- O ROM: 8 to 64 KB, RAM: 0.5 to 4 KB, Data flash memory: 4 KB
- O High-speed on-chip oscillator Select from 32 MHz (TYP.), 24 MHz (TYP.), 16 MHz (TYP.), 12 MHz (TYP.), 8 MHz (TYP.), 4 MHz (TYP.), and 1 MHz (TYP.)
- O On-chip single-power-supply flash memory (with prohibition of block erase/writing function)
- O Self-programming (with boot swap function/flash shield window function)
- O On-chip debug function
- O On-chip power-on-reset (POR) circuit and voltage detector (LVD)
- O On-chip watchdog timer (operable with the dedicated internal low-speed on-chip oscillator)
- O On-chip multiplier and divider/multiply-accumulator 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned)
 - 16 bits \times 16 bits + 32 bits = 32 bits (Unsigned or signed)
- O On-chip key interrupt function
- O On-chip clock output/buzzer output controller
- O On-chip BCD adjustment
- O I/O ports: 16 to 44 (N-ch open drain: 0 to 4)
- O Timer
 - 16-bit timer: 8 channels
 - Watchdog timer: 1 channel
 - Real-time clock: 1 channel

O ROM, RAM	capacities
------------	------------

- Interval timer: 1 channel
- Wakeup timer: 1 channel
- O Serial interface
 - CSI: 0 to 8 channels
 - UART/UART (LIN-bus supported): 1 to 5 channels
 - I²C/Simplified I²C communication: 0 to 7 channels
- O 8/10-bit resolution A/D converter (V_{DD} = 1.8 to 5.5 V): 4 to 12 channels
- O Power supply voltage:
 - V_{DD} = 1.8 to 5.5 V (J version)
 - VDD = 2.7 to 5.5 V (K version)
- O Operating ambient temperature:
 - $T_A = -40$ to +85°C (J version)
 - $T_A = -40$ to +125°C (K version)

RL78/F12 Block Diagram (Outline)

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

Flash ROM	Data flash	RAM	RL78/F12				
			20 pins	30 pins	32 pins	48 pins	64 pins
64 KB	4 KB	4 KB ^{Note}	R5F1096E	R5F109AE	R5F109BE	R5F109GE	R5F109LE
48 KB		3 KB	R5F1096D	R5F109AD	R5F109BD	R5F109GD	R5F109LD
32 KB		2 KB	R5F1096C	R5F109AC	R5F109BC	R5F109GC	R5F109LC
24 KB		1.5 KB	R5F1096B	R5F109AB	R5F109BB	R5F109GB	R5F109LB
16 KB		1 KB	R5F1096A	R5F109AA	R5F109BA	R5F109GA	R5F109LA
8 KB		0.5 KB	R5F10968	_	_	_	-

Note This is 3 KB when the self-programming function is used.

1.2 Ordering Information

Pin count	Package	Device	Part Number
20 pins	20-pin plastic SSOP	J version	R5F10968JSP, R5F1096AJSP, R5F1096BJSP, R5F1096CJSP,
	(7.62 mm (300))		R5F1096DJSP, R5F1096EJSP
		K version	R5F10968KSP, R5F1096AKSP, R5F1096BKSP, R5F1096CKSP,
			R5F1096DKSP, R5F1096EKSP
30 pins	30-pin plastic SSOP	J version	R5F109AAJSP, R5F109ABJSP, R5F109ACJSP, R5F109ADJSP,
(7.62 mm (300)) K version			R5F109AEJSP
		K version	R5F109AAKSP, R5F109ABKSP, R5F109ACKSP, R5F109ADKSP,
			R5F109AEKSP
32 pins	32-pin plastic WQFN	J version	R5F109BAJNA, R5F109BBJNA, R5F109BCJNA, 5F109BDJNA,
(fine pitch) (5 × 5)			R5F109BEJNA
		K version	R5F109BAKNA, R5F109BBKNA, R5F109BCKNA, 5F109BDKNA,
			R5F109BEKNA
48 pins	48-pin plastic LQFP	J version	R5F109GACJFB, R5F109GBCJFB, R5F109GCCJFB,
	(fine pitch) (7×7)		R5F109GDCJFB, R5F109GECJFB
		K version	R5F109GACKFB, R5F109GBCKFB, R5F109GCCKFB,
			R5F109GDCKFB, R5F109GECKFB
	48-pin plastic WQFN (7 \times 7) ^{Note}	J version	R5F109GAJNA, R5F109GBJNA, R5F109GCJNA,
			R5F109GDJNA, R5F109GEJNA
		K version	R5F109GAKNA, R5F109GBKNA, R5F109GCKNA,
			R5F109GDKNA, R5F109GEKNA
64 pins	64-pin plastic LQFP	J version	R5F109LACJFB, R5F109LBCJFB, R5F109LCCJFB,
	(fine pitch) (10×10)		R5F109LDCJFB, R5F109LECJFB
		K version	R5F109LACKFB, R5F109LBCKFB, R5F109LCCKFB,
			R5F109LDCKFB, R5F109LECKFB

Note Contact Renesas local sales office or sales representative for further details on this package.

Caution The RL78/F12 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic SSOP (7.62 mm (300))

Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- 2. For the following each port, complete the following software processings before performing the operation that reads the port latch Pm having the target port latch Pm.n within 50ms after releasing reset (after staring CPU operation)
 - Set P00, P13, P14, P15, P30, P60, P61, and P147 to low level output mode by the software (clear the PMm.n and Pm.n bits for the target ports).
 - Set P23 to digital port and low level output mode by the software (set P23 to digital mode with the ADPC register and clear the PM2.3 and P2.3 bits).

Remarks 1. For pin identification, see 1.4 Pin Identification.

1.3.2 30-pin products

• 30-pin plastic SSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

1.3.3 32-pin products

• 32-pin plastic WQFN (fine pitch) (5 \times 5)

- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.4 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see **1.4 Pin Identification**.

• 48-pin plastic WQFN (7 × 7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. Contact Renesas local sales office or sales representative for further details on this package.

1.3.5 64-pin products

64-pin plastic LQFP

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

1.4 Pin Identification

ANI0 to ANI7,		PCLBUZ0, PCLBUZ1:	Programmable clock output/buzzer
ANI16 to ANI19:	Analog input		output
AVREFM:	A/D converter reference	REGC:	Regulator capacitance
	potential (– side) input	RESET:	Reset
AVREFP:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (+ side) input		(1 Hz) output
EXCLK:	External clock input (main	RxD0 to RxD2, RxDS0:	Receive data
	system clock)	SCK00, SCK01, SCK10,	
EXCLKS:	External clock input (sub	SCK11, SCK20, SCK21,	
	system clock)	SCKS0, SCKS1:	Serial clock input/output
INTP0 to INTP11:	External interrupt input	SCL00, SCL01, SCL10,	
KR0 to KR7:	Key return	SCL11, SCL20, SCL21,	
LRxD0:	Receive Data	SCLA0:	Serial clock input/output
LTxD0:	Transmit Data	SDA00, SDA01, SDA10,	
P00 to P06:	Port 0	SDA11,SDA20, SDA21,	
P10 to P17:	Port 1	SDAA0:	Serial data input/output
P20 to P27:	Port 2	SI00, SI01, SI10, SI11,	
P30, P31:	Port 3	SI20, SI21, SIS0, SIS1:	Serial data input
P40 to P43:	Port 4	SO00, SO01, SO10,	
P50 to P55:	Port 5	SO11, SO20, SO21,	
P60 to P63:	Port 6	SOS0, SOS1:	Serial data output
P70 to P77:	Port 7	TI00 to TI07:	Timer input
P120 to P124:	Port 12	TO00 to TO07:	Timer output
P130, P137:	Port 13	TOOL0:	Data input/output for tool
P140, P141, P146	3	TOOLRxD, TOOLTxD:	Data input/output for external device
P147:	Port 14	TxD0 to TxD2, TxDS0:	Transmit data
		EVDD, VDD:	Power supply
		EVss, Vss:	Ground
		X1, X2:	Crystal oscillator (main system clock)
		XT1, XT2:	Crystal oscillator (subsystem clock)

1.5 Block Diagram

1.5.1 20-pin products

1.5.2 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.5.4 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RENESAS

1.5.5 64-pin products

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

						(1/2	
	Item	20-pin	30-pin	32-pin	48-pin	64-pin	
		R5F1096x	R5F109Ax	R5F109Bx	R5F109Gx	R5F109Lx	
Code flash m	emory (KB)	8 to 64	16 to 64	16 to 64	16 to 64	16 to 64	
Data flash me	emory (KB)	4	4	4	4	4	
RAM (KB)		0.5 to 4 Note1	1 to 4 Note1	1 to 4 Note1	1 to 4 Note1	1 to 4 Note1	
Memory spac	e	1 MB					
Main system High-speed system clock clock			,	al main system cloc MHz: V _{DD} = 1.8 to 2	• • •		
	High-speed on-chip oscillator clock		,	MHz (V _{DD} = 2.7 to 5. Hz (V _{DD} = 1.8 to 5.5)	,		
Subsystem cl	ock		_			al) oscillation): V _{DD} = 1.8 to 5.5 \	
Low-speed or	n-chip oscillator clock	15 kHz (TYP.): VDD	= 1.8 to 5.5 V				
General-purp	ose register	8 bits \times 32 registers	s (8 bits $ imes$ 8 register	rs × 4 banks)			
Minimum inst	ruction execution time	0.03125 <i>μ</i> s (high-s	peed on-chip oscilla	ator clock: fiн = 32 N	IHz operation)		
		0.05 μs (High-spee	d system clock: fмx	= 20 MHz operation	ו)		
		30.5 <i>µ</i> s (Subsyster	n clock: fsuв = 32.76	68 kHz operation) ^{No}	ote3		
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	16	26	28	44	58	
	CMOS I/O	13	21	22	34	48	
	CMOS input	3	3	3	5	5	
	CMOS output	-	_	-	1	1	
	N-ch open-drain I/O (6 V tolerance)	-	2	3	4	4	
Timer	16-bit timer			8 channels			
	Watchdog timer			1 channel			
	Real-time clock (RTC)	1 channel					
	Interval timer			1 channel			
	Wakeup timer			1 channel			
	Timer output	4 channels (PWM o	utputs: 3 ^{Note2})	5 channels (PWM outputs: 4 Note2)	8 channels (PWM outputs: 4 Note2)		
	RTC output	- 1 1 Hz (subsystem clock: f _{SUB} = 32.768 kHz)					
Clock output/l	buzzer output	1	2	2	2	2	
		(Peripheral hard)256 Hz, 512 Hz,	ware clock: fmain = 2	Hz, 4.096 kHz, 8.19	Hz, 10 MHz 12 kHz, 16.384 kHz,	32.768 kHz	

Notes 1. In the case of the 4 KB, this is 3 KB when the self-programming function is used.

- 2. The number of outputs varies, depending on the setting.
- 3. Available only in 48- and 64-pin products.

(2/2)

		-				(2/2)
Ite	m	20-pin	30-pin	32-pin	48-pin	64-pin
		R5F1096x	R5F109Ax	R5F109Bx	R5F109Gx	R5F109Lx
8/10-bit resolution	A/D converter	4 channels (VDD: 3 channels) (EVDD: 1 channels)	8 channels (VDD: 4 channels) (EVDD: 4 channels)	8 channels (VDD: 4 channels) (EVDD: 4 channels)	10 channels (VDD: 8 channels) (EVDD: 2 channels)	12 channels (VDD: 8 channels) (EVDD: 4 channels)
Serial interface		(EVbb: 1 channels)(EVbb: 4 channels)(EVbb: 4 channels)(EVbb: 2 channels)(EVbb: 4 channels)[20-pin products]• CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel• CSI: 1 channel/UART: 1 channel[30-pin, 32-pin products]• CSI: 2 channels/UART: 2 channels/simplified I²C: 2 channels• CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel• CSI: 7 to 16 bits): 1 channel/UART (7 to 9, 16 bits): 1 channel• LIN-UART: 1 channel[48-pin products]• CSI: 3 channels/UART: 2 channels/simplified I²C: 3 channels• CSI: 3 channels/UART: 2 channel/Simplified I²C: 3 channels• CSI: 3 channels/UART: 2 channel/Simplified I²C: 3 channels• CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels• CSI: 3 channels/UART (UART supporting LIN-bus): 1 channel• CSI: 4 channels/UART (7 to 9, 16 bits): 1 channel• LIN-UART: 1 channel[64-pin products]• CSI: 4 channels/UART: 2 channels/simplified I²C: 4 channels• CSI: 4 channels/UART: 2 channels/simplified I²C: 4 channels• CSI: 4 channels/UART: 2 channels/simplified I²C: 4 channels• CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel• CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel• CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel• CSI: 7 to 16 bits): 2 channels/UART (7 to 9, 16 bits): 1 channel				
l l	I ² C bus	– 1 channel				
Multiplier and divid	ler/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 				
DMA controller		2 channels				
Vectored interrupt	Internal	28	34	34	34 Note1	34 Note1
sources	External	5	6	6	10 Note1	12 Note1
Key interrupt		-			6	8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note2} Internal reset by RAM parity error Internal reset by illegal-memory access 				
Power-on-reset cir	cuit	 Power-on-reset: 1.51 ±0.03 V Power-down-reset: 1.50 ±0.03 V 				
Voltage detector		 Rising edge : 1.88 V to 4.06 V (12 stages) Falling edge : 1.84 V to 3.98 V (12 stages) 				
On-chip debug fun	oction	Provided				
Power supply volta	age	V _{DD} = 1.8 to 5.5 V	(J GRADE), VDD = 2.	7 to 5.5 V (K GRAD	E)	
Operating ambient	t temperature	T _A = -40 to +85 °C	(J GRADE), T _A = -4	40 to +125 °C (K GR	ADE)	

Notes 1. INTP8, INTLR, INTP9, and INTLS are counted as one interrupt source in both an internal and external interrupt, respectively.

 The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

2. PIN FUNCTIONS

2.1 Pin Function List

2.1.1 20-pin products

Function Name	I/O	Function	After Reset	Alternate Function
P01	I/O	Port 0. 1-bit I/O port. Input of P01 can be set to TTL input buffer. P01 can be set to analog input. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Analog input port	ANI16/TO00
P10	I/O	Port 1. 5-bit I/O port.	Input port	SCK00/SCKS0/ SCL00/(TI07)/(TO07)
P11		Input of P16 and P17 can be set to TTL input buffer. Output of P10 to P12, and P17 can be set to N-ch open-drain output (V _{DD} tolerance). Input/output can be specified in 1-bit units.		SI00/RxD0/ SIS0/RxDS0/ TOOLRxD/SDA00/ (TI06)/(T006)
P12		Use of an on-chip pull-up resistor can be specified by a software setting.		SO00/TxD0/SOS0/ TxDS0/TOOLTxD/ (TI05)/(TO05)
P16				TI01/TO01/INTP5/ (RXD0)
P17				TI02/TO02/(TXD0)
P20	I/O	/O Port 2. 3-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANI0/AVREFP
P21			port	ANI1/AVREFM
P22				ANI2
P31	I/O	Port 3. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO03/INTP4 PCLBUZ0
P40	I/O	Port 4. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOL0
P50	I/O	Port 5.	Input port	INTP1/LRxD0
P51		 2-bit I/O port. Output of P50 can be set to N-ch open-drain output (V_{DD} tolerance). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting. 		INTP2/LTxD0
P121	Input	Port 12.	Input port	X1
P122	1	2-bit input port.		X2/EXCLK
P137	Input	Port 13. 1-bit input port.	Input port	INTP0

2.1.2 30-pin products

Function Name	I/O	Function	After Reset	Alternate Function					
P00	I/O	Port 0.	Analog input	ANI17/TI00/TxD1					
P01		2-bit I/O port.	port	ANI16/TO00/RxD1					
		Input of P01 can be set to TTL input buffer.							
		Output of P00 can be set to N-ch open-drain output (V _{DD} tolerance).							
		P00 and P01 can be set to analog input.							
		Input/output can be specified in 1-bit units.							
		Use of an on-chip pull-up resistor can be specified by a software setting.							
P10	I/O	Port 1. 8-bit I/O port.	Input port	SCK00/SCKS0/ SCL00/(TI07)/(TO07)					
P11		Input of P13 to P17 can be set to TTL input buffer. Output of P10 to P15, and P17 can be set to N-ch open-drain		SI00/RxD0/					
		output (V_{DD} tolerance).		SIS0/RxDS0/ TOOLRxD/SDA00/					
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		(TI06)/(TO06)					
P12		software setting.		SO00/TxD0/SOS0/					
				TxDS0/TOOLTxD/ (TI05)/(TO05)					
P13				TxD2/SO20/(SDAA0)/ (TI04)/(TO04)					
P14				RxD2/SI20/SDA20/ (SCLA0)/(TI03)/					
				(TO03)					
P15					PCLBUZ1/SCK20/ SCL20/(TI02)/(TO02)				
P16									TI01/TO01/INTP5/ (RXD0)
P17				TI02/TO02/(TXD0)					
P20	I/O	Port 2.	Analog input	ANI0/AVREFP					
P21							4-bit I/O port.	port	ANI1/AVREFM
P22		Input/output can be specified in 1-bit units.		ANI2					
P23				ANI3					
P30	I/O	Port 3.	Input port	INTP3/					
		2-bit I/O port. Input/output can be specified in 1-bit units.		SCK11/SCL11					
P31		Use of an on-chip pull-up resistor can be specified by a software setting.		TI03/TO03/INTP4					
P40	I/O	Port 4. 1-bit I/O port.	Input port	TOOL0					
		Input/output can be specified in 1-bit units.							
		Use of an on-chip pull-up resistor can be specified by a software setting.							
P50	I/O	Port 5. 2-bit I/O port.	Input port	INTP1/SI11/SDA11/ LRxD0					
P51		Output of P50 can be set to N-ch open-drain output (V_{DD}		INTP2/SO11/LTxD0					
		tolerance).							
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a							
		software setting.							

				(2/2)
Function Name	I/O	Function	After Reset	Alternate Function
P60	I/O	Port 6.	Input port	SCLA0
P61		2-bit I/O port. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.		SDAA0
P120	I/O	Port 12. 1-bit I/O port and 2-bit input port.	Analog input port	ANI19
P121	Input		Input port	X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.		X2/EXCLK
P137	Input	Port 13. 1-bit input port.	Input port	INTP0
P147	I/O	Port 14. 1-bit I/O port. P147 can be set to analog input. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Analog input port	ANI18

2.1.3 32-pin products

Function Name	I/O	Function	After Reset	Alternate Function	
P00	I/O	Port 0.	Analog input	ANI17/TI00/TxD1	
P01		2-bit I/O port.	port	ANI16/TO00/RxD1	
		Input of P01 can be set to TTL input buffer.			
		Output of P00 can be set to N-ch open-drain output (V _{DD} tolerance)			
		P00 and P01 can be set to analog input.			
		Input/output can be specified in 1-bit units.			
		Use of an on-chip pull-up resistor can be specified by a software setting.			
P10	I/O	Port 1.	Input port	SCK00/SCKS0/	
PIU		8-bit I/O port.		SCL00/(TI07)/(TO07)	
P11		Input of P13 to P17 can be set to TTL input buffer. Output of P10 to P15, and P17 can be set to N-ch open-drain output (Vpp tolerance).		SI00/RxD0/	
				SIS0/RxDS0/ TOOLRxD/SDA00/	
		Input/output can be specified in 1-bit units.		(TI06)/(TO06)	
P12		Use of an on-chip pull-up resistor can be specified by a software setting.		SO00/TxD0/SOS0/	
				TxDS0/TOOLTxD/ (TI05)/(TO05)	
P13				TxD2/SO20/(SDAA0) (TI04)/(TO04)	
P14				RxD2/SI20/SDA20/	
				(SCLA0)/(TI03)/ (TO03)	
P15				PCLBUZ1/SCK20/ SCL20/(TI02)/(TO02)	
P16				TI01/TO01/INTP5/	
				(RXD0)	
P17				TI02/TO02/(TXD0)	
P20	I/O	Port 2.	Analog input	ANI0/AVREFP	
P21			4-bit I/O port. Input/output can be specified in 1-bit units.	port	ANI1/AVREFM
P22				ANI2	
P23				ANI3	
P30	I/O	Port 3. 2-bit I/O port.	Input port	INTP3/SCK11/ SCL11	
P31		Input/output can be specified in 1-bit units.		TI03/TO03/INTP4	
		Use of an on-chip pull-up resistor can be specified by a software setting.			
P40	I/O	Port 4.	Input port	TOOL0	
		1-bit I/O port. Input/output can be specified in 1-bit units.			
		Use of an on-chip pull-up resistor can be specified by a			
		software setting.			
P50	I/O	Port 5. 2-bit I/O port.	Input port	INTP1/SI11/SDA11/ LRxD0	
P51		Output of P50 can be set to N-ch open-drain output (V_DD $$		INTP2/SO11/LTxD0	
		tolerance).			
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a			
		software setting.			

				(2/2)
Function Name	I/O	Function	After Reset	Alternate Function
P60	I/O	O Port 6.	Input port	SCLA0
P61		3-bit I/O port.		SDAA0
P62		Output of P60 to P62 can be set to N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.		_
P70	I/O	Port 7. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	_
P120	I/O	Port 12. 1-bit I/O port and 2-bit input port. P120 can be set to analog input.	Analog input port	ANI19
P121	Input		Input port	X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.		X2/EXCLK
P137	Input	Port 13. 1-bit input port.	Input port	INTP0
P147	I/O	Port 14. 1-bit I/O port. P147 can be set to analog input. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Analog input port	ANI18

2.1.4 48-pin products

Function Name	I/O	Function	After Reset	Alternate Function		
P00	I/O	Port 0.	Input port	TI00/TxD1		
P01		2-bit I/O port.		TO00/RxD1		
		Input of P01 can be set to TTL input buffer.				
		Output of P00 can be set to N-ch open-drain output (V _{DD} tolerance)				
		Input/output can be specified in 1-bit units.				
		Use of an on-chip pull-up resistor can be specified by a				
	1/0	software setting.	In most mont			
P10	I/O	Port 1. 8-bit I/O port.	Input port	SCK00/SCKS0/ SCL00/(TI07)/(TO07)		
P11		Input of P13 to P17 can be set to TTL input buffer. Output of P10 to P15, and P17 can be set to N-ch open-drain		SI00/RxD0/		
		output (VDD tolerance).		SIS0/RxDS0/ TOOLRxD/SDA00/		
		Input/output can be specified in 1-bit units.		(TI06)/(TO06)		
P12		Use of an on-chip pull-up resistor can be specified by a software setting.		SO00/TxD0/SOS0/		
				TxDS0/TOOLTxD/ (TI05)/(TO05)		
P13				TxD2/SO20/(SDAA0)/		
				(TI04)/(TO04)		
P14				RxD2/SI20/SDA20/		
				(SCLA0)/(TI03)/ (TO03)		
P15				PCLBUZ1/SCK20/		
1 10				SCL20/(TI02)/		
				(TO02)		
P16						TI01/TO01/INTP5/ (RXD0)
P17			TI02/TO02/(TXD0)			
P20	I/O	Port 2.	Analog input	ANI0/AVREFP		
P21		8-bit I/O port. Input/output can be specified in 1-bit units.	port	ANI1/AVREFM		
P22				ANI2		
P23				ANI3		
P24				ANI4		
P25				ANI5		
P26				ANI6		
P27				ANI7		
P30	I/O	Port 3.	Input port	INTP3/RTC1HZ/		
	-	2-bit I/O port. Input/output can be specified in 1-bit units.		SCK11/SCL11		
P31		Use of an on-chip pull-up resistor can be specified by a software setting.		TI03/TO03/INTP4/ (PCLBUZ0)		
P40	I/O	Port 4.	Input port	TOOL0		
P41		2-bit I/O port.		TI07/TO07		
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		_		

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 2-bit I/O port.	INTP1/SI11/SDA11/ LRxD0	
P51		Output of P50 can be set to N-ch open-drain output (V _{DD} tolerance). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		INTP2/SO11/LTxD0
P60	I/O	Port 6.	Input port	SCLA0
P61		4-bit I/O port.		SDAA0
P62		Output of P60 to P63 can be set to N-ch open-drain output (6 V tolerance).		-
P63		Input/output can be specified in 1-bit units.		-
P70	I/O	Port 7.	Input port	KR0/SCK21/SCL21
P71		6-bit I/O port. Output of P71 and P74 can be set to N-ch open-drain output (V _{DD} tolerance). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		KR1/SI21/SDA21
P72				KR2/SO21
P73				KR3/SO01
P74				KR4/INTP8/SI01/
		software setting.		SDA01
P75				KR5/INTP9/SCK01/ SCL01
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port.	Analog input port	ANI19
P121	Input	P120 can be set to analog input.	Input port	X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be		X2/EXCLK
P123		specified by a software setting.		XT1
P124				XT2/EXCLKS
P130	Output	Port 13.	Output port	-
P137	Input	1-bit output port and 1-bit input port.	Input port	INTP0
P140	I/O	Port 14.	Input port	PCLBUZ0/INTP6
P146		3-bit I/O port.		-
P147		P147 can be set to analog input. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Analog input port	ANI18

2.1.5 64-pin products

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input port	TI00
P01		7-bit I/O port.		ТО00
P02		Input of P01, P03 and P04 can be set to TTL input buffer.		ANI17/SO10/TXD1
P03		Output of P00, P02, P03 and P04 can be set to N-ch open- drain output (Vod tolerance)		ANI16/SI10/RXD1/ SDA10
P04		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SCK10/SCL10
P05		software setting.		TI05/TO05
P06				TI06/TO06
P10	I/O	Port 1. 8-bit I/O port.	Input port	SCK00/SCL00/SCKS0/ (TI07)/(TO07)
P11		Input of P13 to P17 can be set to TTL input buffer. Output of P10 to P15, and P17 can be set to N-ch open-drain output (Vod tolerance).		SI00/RXD0/SDA00/ TOOLRXD/SIS0/ RXDS0/(TI06)/(TO06)
P12		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		SO00/TXD0/ TOOLTXD/SOS0/ TXDS0/(INTP5)/(TI05)/ (TO05)
P13				TXD2/SO20/(SDAA0)/ (TI04)/(TO04)
P14			RXD2/SI20/SDA20/ (SCLA0)/(TI03)/ (TO03)	
P15				SCK20/SCL20/(TI02)/ (TO02)
P16				TI01/TO01/INTP5/ (RXD0)/(SI00)
P17				TI02/TO02/(TXD0)/ (SO00)
P20	I/O	Port 2.	Analog input	ANI0/AVREFP
P21		8-bit I/O port.	port	ANI1/AVREFM
P22		Input/output can be specified in 1-bit units.		ANI2
P23				ANI3
P24				ANI4
P25				ANI5
P26				ANI6
P27				ANI7
P30	I/O	Port 3. 2-bit I/O port.	Input port	INTP3/RTC1HZ/ SCK11/SCL11
P31		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		TI03/TO03/INTP4/ (PCLBUZ0)
P40	I/O	Port 4.	Input port	TOOL0
P41		4-bit I/O port.		TI07/TO07
P42		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		TI04/TO04
P43		software setting.		_

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 6-bit I/O port.	Input port	INTP1/SI11/SDA11/ LRXD
P51		Input of P55 can be set to TTL input buffer.		INTP2/SO11/LTXD
P52		Output of P50 and P55 can be set to N-ch open-drain output $(V_{DD} \text{ tolerance})$.		(INTP10)
P53		Input/output can be specified in 1-bit units.		SOS1/(INTP11)
P54		Use of an on-chip pull-up resistor can be specified by a		SIS1
P55		software setting.		SCKS1/(PCLBUZ1)/ (SCK00)
P60	I/O	Port 6.	Input port	SCLA0
P61		4-bit I/O port.		SDAA0
P62		Output of P60 to P63 can be set to N-ch open-drain output (6 V tolerance).		-
P63		Input/output can be specified in 1-bit units.		-
P70	I/O	Port 7.	Input port	KR0/SCK21/SCL21
P71		 8-bit I/O port. Output of P71 and P74 can be set to N-ch open-drain output (Vbb tolerance). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting. 		KR1/SI21/SDA21
P72				KR2/SO21
P73				KR3/SO01
P74				KR4/INTP8/SI01/ SDA01
P75				KR5/INTP9/SCK01/ SCL01
P76				KR6/INTP10/(RXD2)
P77				KR7/INTP11/(TXD2)
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port.	Analog input port	ANI19
P121	Input	P120 can be set to analog input.	Input port	X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be		X2/EXCLKS
P123		specified by a software setting.		XT1
P124				XT2/EXCLKS
P130	Output	Port 13.	Output port	_
P137	Input	1-bit output port and 1-bit input port.	Input port	INTP0
P140	I/O	Port 14.	Input port	PCLBUZ0/INTP6
P141		4-bit I/O port.		PCLBUZ1/INTP7
P146		P147 can be set to analog input.		_
P147		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		ANI18

2.1.6 Pins for each product (pins other than port pins)

Function Name	I/O	Function	64-pin	48-pin	32-pin	30-pin	(1/3) 20-pin
ANIO	Input	A/D converter analog input	√	√	√	v v	p
ANI1	mput		V	√	V	√	√
ANI2			√	√	√	√	√
ANI3	_		1	√	√	√	_
ANI4	_		~	√	_	_	_
ANI5	_		V	√	_	_	_
ANI6	-			√	_	_	_
ANI7	-			\checkmark	_	_	_
ANI16	-			_			V
ANI17	-		1	_	√	√	_
ANI18	_		V	\checkmark	√	√	_
ANI19	-		V	√	√	√	_
INTP0	Input	External interrupt request input	1	√	√	√	V
INTP1			V	√		√	V
INTP2	-			√	√	√	√
INTP3					V		_
INTP4							V
INTP5							V
INTP6	-			\checkmark	_	_	-
INTP8					_	_	_
INTP9	-			\checkmark	_	_	-
INTP10	-			_	_	_	_
INTP11	-			_	_	_	-
KR0	Input	Key interrupt input		\checkmark	_	_	_
KR1				\checkmark	_	_	-
KR2				\checkmark	_	_	_
KR3				\checkmark	_	_	_
KR4				\checkmark	_	_	-
KR5				\checkmark	_	_	_
KR6	_			_	_	_	-
KR7	_			_	_	_	-
LRxD0	Input	Serial data input to LIN-UART0		\checkmark	\checkmark	\checkmark	\checkmark
LTxD0	Output	Serial data output from LIN-UART0	\checkmark				\checkmark
PCLBUZ0	Output	Clock output/buzzer output		\checkmark		\checkmark	\checkmark
PCLBUZ1	1		\checkmark	\checkmark		\checkmark	_
REGC	_	Connecting regulator output stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to 1 μ F).	V	\checkmark	\checkmark	\checkmark	\checkmark
RESET	Input	System reset input		\checkmark	\checkmark	\checkmark	\checkmark

		l .	[(2/3)
Function Name	I/O	Function	64-pin	48-pin	32-pin	30-pin	20-pin
RxD0	Input	Serial data input to UART0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RxD1		Serial data input to UART1	\checkmark	\checkmark	\checkmark	\checkmark	-
RxD2		Serial data input to UART2	\checkmark	\checkmark	\checkmark	\checkmark	_
RxDS0		Serial data input to UARTS0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SCK00	I/O	Clock input/output for CSI00, CSI01, CSI10, CSI11,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SCK01		CSI20, CSI21,CSIS0 and CSIS1	\checkmark	\checkmark	-	-	-
SCK10			\checkmark	-	-	-	-
SCK11			\checkmark	\checkmark	\checkmark	\checkmark	-
SCK20			\checkmark	\checkmark	\checkmark	\checkmark	-
SCK21			\checkmark	\checkmark	-	-	_
SCKS0			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SCKS1			\checkmark	-	-	-	-
SCLA0	I/O	Clock input/output for I ² C	\checkmark	\checkmark	\checkmark	\checkmark	-
SCL00	I/O	Clock input/output for simplified I ² C	\checkmark	\checkmark		\checkmark	
SCL01			\checkmark	\checkmark	_	-	_
SCL10			\checkmark	=	=	_	_
SCL11			\checkmark	\checkmark	\checkmark	\checkmark	-
SCL20			\checkmark	\checkmark	\checkmark	\checkmark	-
SCL21			\checkmark	\checkmark	_	_	_
SDAA0	I/O	Serial data I/O for I ² C	\checkmark	\checkmark	\checkmark	\checkmark	_
SDA00	I/O	Serial data I/O for simplified I ² C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SDA01			\checkmark	\checkmark	_	_	_
SDA10			\checkmark			_	_
SDA11			\checkmark	\checkmark	\checkmark	\checkmark	_
SDA20			\checkmark	\checkmark		\checkmark	_
SDA21			\checkmark	\checkmark		_	_
SI00	Input	Serial data input to CSI00, CSI01, CSI10, CSI11,		\checkmark	\checkmark	\checkmark	\checkmark
SI01		CSI20, CSI21, CSIS0, and CSIS1	\checkmark	\checkmark	_	_	_
SI10			\checkmark			_	_
SI11			\checkmark	\checkmark	\checkmark	\checkmark	_
SI20			\checkmark	\checkmark	\checkmark	\checkmark	_
SI21				\checkmark			
SIS0			\checkmark				\checkmark
SIS1			V	-	_	_	_
SO00	Output	Serial data output from CSI00, CSI01, CSI10, CSI11,	V				\checkmark
SO01		CSI20, CSI21, CSIS0, and CSIS1	\checkmark		_	_	_
SO10			\checkmark	_	_	_	_
SO11			V				_
SO20			\checkmark				_
SO21			V		_	_	_
SOS0			1	√		\checkmark	\checkmark
SOS1			1				

	1	r	1		r		(3/3
Function Name	I/O	Function	64-pin	48-pin	32-pin	30-pin	20-pin
TI00	Input	External count clock input to 16-bit timer 00	\checkmark	\checkmark	\checkmark	\checkmark	-
TI01		External count clock input to 16-bit timer 01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TI02		External count clock input to 16-bit timer 02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TI03		External count clock input to 16-bit timer 03	\checkmark	\checkmark	\checkmark	\checkmark	
TI04		External count clock input to 16-bit timer 04	\checkmark	(√)	(√)	(√)	-
TI05		External count clock input to 16-bit timer 05	\checkmark	(√)	(√)	(√)	(√)
TI06		External count clock input to 16-bit timer 06	\checkmark	(√)	(√)	(√)	(√)
TI07		External count clock input to 16-bit timer 07	\checkmark	\checkmark	(√)	(√)	(√)
ТО00	Output	16-bit timer 00 output	\checkmark	\checkmark	\checkmark	\checkmark	
TO01		16-bit timer 01 output	\checkmark	\checkmark	\checkmark	\checkmark	
TO02		16-bit timer 02 output	\checkmark	\checkmark	\checkmark	\checkmark	
TO03		16-bit timer 03 output	\checkmark	\checkmark	\checkmark	\checkmark	
TO04		16-bit timer 04 output	\checkmark	(√)	(√)	(√)	_
TO05		16-bit timer 05 output	\checkmark	(√)	(√)	(√)	(√)
TO06		16-bit timer 06 output	\checkmark	(√)	(√)	(√)	(√)
TO07		16-bit timer 07 output	\checkmark	\checkmark	(√)	(√)	(√)
TxD0	Output	Serial data output from UART0	\checkmark	\checkmark	√	√	1
TxD1		Serial data output from UART1	\checkmark	\checkmark	\checkmark	\checkmark	_
TxD2	-	Serial data output from UART2	\checkmark	\checkmark	\checkmark	\checkmark	_
TxDS0	-	Serial data output from UARTS0	\checkmark	\checkmark	\checkmark	\checkmark	
X1	Input	Resonator connection for main system clock	\checkmark	\checkmark	\checkmark	\checkmark	
X2	Output		\checkmark	\checkmark	\checkmark	\checkmark	
EXCLK	Input	External clock input for main system clock	\checkmark	\checkmark	\checkmark	\checkmark	
EXCLKS	Input	External clock input for subsystem clock	\checkmark	\checkmark	_	_	_
XT1	Input	Resonator connection for subsystem clock	\checkmark	\checkmark	_	_	_
XT2	Output		\checkmark	\checkmark	_	_	_
Vdd	_	Positive power supply for all pins	\checkmark	\checkmark	\checkmark	\checkmark	
EVDD	-	Positive power supply for pins other than above- mentioned Vod connected pins	\checkmark	1	_	1	_
AVREFP	Input	A/D converter reference potential (+ side) input	\checkmark	\checkmark	\checkmark	\checkmark	
AVREFM	Input	A/D converter reference potential (– side) input	\checkmark	\checkmark	\checkmark	\checkmark	
Vss	_	Ground potential for all pins	\checkmark	\checkmark	\checkmark	\checkmark	
EVss	-	Ground potential for pins other than above-mentioned Vss connected pins	V	_	_	_	_
TOOLRxD	Input	UART reception pin for the external device connection used during flash memory programming		\checkmark		\checkmark	V
TOOLTxD	Output	UART transmission pin for the external device connection used during flash memory programming					V
TOOL0	I/O	Data I/O for flash memory programmer/debugger	\checkmark				

Remark The checked function is available only when the bit corresponding to the function in the peripheral I/O redirection register (PIOR) is set to 1.

3. ELECTRICAL SPECIFICATIONS (J GRADE)

- Cautions 1. RL78/F12 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. Pins mounted are as follows according to product.

3.1 Pins Mounted According to Product

3.1.1 Port functions

Refer to 2.1.1 20-pin products to 2.1.5 64-pin products.

3.1.2 Non-port functions

Refer to 2.1.6 Pins for each product (pins other than port pins).

(1/2)

Caution The pins mounted depend on the product.

3.2 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
	EVDD		-0.5 to +6.5	V
	Vss		–0.5 to +0.3	V
	EVss		–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_DD +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	-0.3 to EV_DD+0.3 and -0.3 to V_DD+0.3 $^{\text{Note 2}}$	V
	VI2	P60 to P63 (N-ch open-drain)	–0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, RESET	-0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
Output voltage	V ₀₁	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EV _{DD} +0.3 ^{Note 2}	V
	V ₀₂	P20 to P27	-0.3 to V _{DD} +0.3	V
Analog input voltage	VAI1	ANI0 to ANI7	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	VAI2	ANI16 to ANI19	-0.3 to EV _{DD} +0.3 Note 2	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2)2)

Caution The pins mounted depend on the product.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all pins	P00 to P04, P40 to P43, P120, P130, P140, P141	-70	mA
		–170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all pins	P00 to P04, P40 to P43, P120, P130, P140, P141	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation mode		-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3 Oscillator Characteristics

3.3.1 Main system clock oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 X2 Rd C1 C2 777	X1 clock oscillation frequency (fx) ^{Note}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	1.0		20.0 8.0	MHz MHz
Crystal resonator	V ₅₅ X1 X2 Rd C1 C2 m	X1 clock oscillation frequency (fx) ^{Note}	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	1.0		20.0	MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.3.2 On-chip oscillator characteristics

(TA = -20 to $+85^{\circ}$ C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock	fiн	32 MHz selected	31.52	32.00	32.48	MHz
		24 MHz selected	23.64	24.00	24.36	MHz
frequency Note		16 MHz selected	15.76	16.00	16.24	MHz
		8 MHz selected	7.88	8.00	8.12	MHz
		4 MHz selected	3.94	4.00	4.06	MHz
		1 MHz selected	0.985	1.00	1.015	MHz

Note This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip	fін	32 MHz selected	31.36	32.00	32.64	MHz
oscillator clock frequency ^{Note}		24 MHz selected	23.52	24.00	24.48	MHz
		16 MHz selected	15.68	16.00	16.32	MHz
		8 MHz selected	7.84	8.00	8.16	MHz
		4 MHz selected	3.92	4.00	4.08	MHz
		1 MHz selected	0.98	1.00	1.02	MHz
Low-speed on-chip oscillator clock frequency	fı∟		12.75	15	17.25	kHz

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Note This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3.3 Subsystem clock oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1 Rd C4 C4 T77	XT1 clock oscillation frequency (fx⊤) ^{Note}		29.0	32.768	35.0	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

3.4 DC Characteristics

3.4.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-5.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-3.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-0.5	mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty = 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-20.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147 (When duty = 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-19.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty = 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-50.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-29.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-15.0	mA
	Іон2	Per pin for P20 to P27			-0.		mA
		Total of all pins (When duty = 70% Note 2)				-0.8	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD} pin to an output pin.

2. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n% (the duty before change < n)).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and Iон = -10.0 mA

Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) = -8.75 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P10 to P15, P17, P50, P71, P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
IOW Note 1	Iol1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			8.5	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			4.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			0.6	mA
		Per pin for P60 to P63	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			15.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			4.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			2.0	mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty = 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			20.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			9.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			45.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
		P146, P147 (When duty = 70% ^{Note 2})	$1.8~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA
		Total of all pins (When duty = 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			65.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			50.0	mA
			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			29.0	mA
	Iol2	Per pin for P20 to P27				0.4	mA
		Total of all pins (When duty = 70% Note 2)				3.2	mA

(TA = -40 to $+85^{\circ}$ C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pin.

2. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n% (the duty before change < n)).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) = 8.75 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 1)	0.8 EVDD		EVdd	V
	VIH2	P01, P03, P04, P13 to P17, P55	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 4.0 \text{ V}$	2.0		EVDD	V
			TTL input buffer $1.8 \text{ V} \le \text{EV}_{\text{DD}} \le 2.7 \text{ V}$	0		0.3EVDD	V
	VIH3	P20 to P27		0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EV _{DD}		6.0	V
	VIH5	P121 to P124, P137, RESET		0.8 VDD		Vdd	V
	VIH6	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 0)	0.8 EV _{DD}		EVdd	V
Input voltage, Iow	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 1)	0		0.2 EV _{DD}	V
	VIL2	P01, P03, P04, P13 to P17, P55	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$	0		0.3EVDD	V
	VIL3	P20 to P27		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD	V
	VIL5	P121 to P124, P137, RESET		0		0.2 VDD	V
	VIL6	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 0) $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	0		0.5 EV _{DD}	V
			Normal input buffer (ITHL = 0) $2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.4 EV _{DD}	V
			Normal input buffer 1.8 V ≤ EV _{DD} < 2.7 V	0		0.3 EV _{DD}	V

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Cautions The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P50, P55, P71, P74 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. The input pins of alternate-functions: CSIS0, CSIS1, UARTS, and UARTF, do not support TTL inputs.

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output voltage,	V _{OH1}	P00 to P06, P10 to P17,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	Iон1 = -5.0 mA	$EV_{\text{DD}} - 0.9$			V
high		P30, P31, P40 to P43,		Іон1 = -3.0 mA	EV _{DD} - 0.7			
		P50 to P55, P70 to P77, P120, P130, P140,		Іон1 = -1.0 mA	EV _{DD} - 0.5			
		P141, P146, P147	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	Iон1 = -3.0 mA	$EV_{\text{DD}} - 0.7$			V
				Іон1 = -1.0 mA	EV _{DD} - 0.5			
Vона			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ Ioh1 = -0.5 mA		EV _{DD} - 0.5			V
	Voh2	P20 to P27	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ Ioh2 = -0.1 mA		Vdd - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P43,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$				0.7	V
		P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:optimal_states}$				0.4	V
			$\label{eq:local_states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array}$				0.7	V
			$\label{eq:local_states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array}$				0.4	V
			$eq:local_$				0.4	V
	Vol2	P20 to P27	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL2}} = 0.4 \text{ mA}$				0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$				2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$				0.4	V
			$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	IoL3 = 4.0 mA			0.5	V
				Iol3 = 3.0 mA			0.4	
			$1.8 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V},$ Iol3 = 2.0 mA				0.4	V

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Caution P00, P02 to P04, P10 to P15, P17, P43, P50, P52 to P55, P71, P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Cond	litions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P140, P141, P146, P147	VI = EVDD				1	μA
	Ilih2	P20 to P27, P137, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P140, P141, P146, P147	VI = EVss				-1	μA
	ILIL2	P20 to P27, P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147			10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

Caution The pins mounted depend on the product.

3.4.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Co	onditions	MIN.	TYP.	MAX.	Unit
Supply IDD1 Note 1	Operating	U .	f⊪ = 32 MHz ^{Note 2}		5.6	8.2	mA	
current	current n	mode	operation Note 5	f _{IH} = 24 MHz ^{Note 2}		4.5	6.5	mA
			f⊮ = 16 MHz ^{Note 2}		3.3	4.8	mA	
				f _{MX} = 20 MHz ^{Note 3}		4.0	5.5	mA
				f _{MX} = 10 MHz ^{Note 3}		2.4	3.1	mA
				f⊪ = 8 MHz ^{Note 2}		1.6	2.3	mA
				f _{MX} = 8 MHz ^{Note 3}		1.5	2.3	mA
			Subsystem clock operation	fs∪B = 32.768 kHz ^{Note 4}		4.9	13.0	μA

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values in the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors (when high-speed on-chip oscillator or subsystem clock, not including the current flowing into the BGO too).
 - 2. When high-speed system clock and subsystem clock are stopped.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 High speed operation: V_{DD} = 2.7 to 5.5 V@1 MHz to 32 MHz
 Low speed operation: V_{DD} = 1.8 to 5.5 V@1 MHz to 8 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Caution 7	The pins mounted depend on the product.
-----------	---

(T _A = -40	to +85°C	;, 1.8 V ≤	$V_{DD} = EV_{DD} \leq 8$	5.5 V, Vss = EVss = 0) V)				(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	High-speed	f⊪ = 32 MHz ^{Note 3}			0.55	3.2	mA
current		mode	operation Note 7	f⊪ = 24 MHz ^{Note 3}			0.48	2.42	
				f⊪ = 16 MHz ^{Note 3}			0.40	1.75	
				f _{MX} = 20 MHz ^{Note 4}	f _{MX} = 20 MHz ^{Note 4}		0.43	1.80	
				f _{MX} = 10 MHz ^{Note 4}			0.28	0.97	
			Low-speed operation ^{Note 7}	fiн = 8 MHz ^{Note 3}			0.30	0.84	mA
				f _{MX} = 8 MHz ^{Note 4}		0.18	0.60		
			Subsystem	fsub = 32.768 kHz ^{Note 5}	T _A ≤+50°C		0.52	2.15	μA
			clock operation		T _A ≤+70°C			3.05	
-					T₄ ≤+85°C			4.24	
	DD3 Note 6	STOP	T _A ≤+50°C				0.22	2.05	μA
		mode	T _A ≤+70°C					2.95	
			T _A ≤+85°C					4.16	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values in the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and subsystem clock are stopped.
- 5. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When highspeed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped.
- 6. When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped.

7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. High speed operation: VDD = 2.7 to 5.5 V@1 MHz to 32 MHz Low speed operation: VDD = 1.8 to 5.5 V@1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Temperature condition of the TYP. value is T_A = 25°C

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RTC operating	IRTC Notes 1, 2	fsuв = 32.768 kHz	Real-time clock operation		0.02	0.13	μA
current			Interval timer operation		0.02	0.33	μA
WUTM operating current	Іwuтм	fı∟ = 15 kHz			0.25	0.4	μA
Watchdog timer operating current	WDT Notes 2, 3	f∟ = 15 kHz	-			0.4	μA
A/D converter	ADC Note 4	at maximum speed	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.7	mA
operating current			Low voltage mode, AV _{REFP} = V_{DD} = 3.0 V		0.5	0.7	mA
		Internal reference voltage selected Note 7			75		μA
LVD operating current	I _{LVI} Note 5				0.08	0.20	μA
Temperature sensor operating current	Itmps				75		μA
BGO operating current	BGO Note 6				2.50	12.20	mA

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

- **Notes 1.** Current flowing only to the real-time clock (excluding the operating current of the XT1 oscillator). The TYP. value of the current value of the RL78/F12 is the sum of the TYP. values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. The IDD1 and IDD2 MAX. values also include the real-time clock operating current. When the real-time clock operates during fcLK = fsUB, the TYP. value of IDD2 includes the real-time clock operating current.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - **3.** Current flowing only to the watchdog timer (including the operating current of the 15 kHz on-chip oscillator). The current value of the RL78/F12 is the sum of IDD1, IDD2 or IDD3 and IWDT when fcLK = fsUB when the watchdog timer operates in STOP mode.
 - **4.** Current flowing only to the A/D converter. The current value of the RL78/F12 is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - **5.** Current flowing only to the LVD circuit. The current value of the RL78/F12 is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
 - **6.** Current flowing only to the BGO. The current value of the RL78/F12 is the sum of IDD1 or IDD2 and IBG0 when the BGO operates in an operation mode or the HALT mode.
 - **7.** This indicates operating current which increases when the internal reference voltage is selected. The Current flows even if the conversion is stopped.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.5 AC Characteristics

3.5.1 Basic operation

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain)	High-speed main mode	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.03125		1	μs
		operation	Low-speed main mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μs
		Subsystem cl	ock (fsuв) operatio	n SDIV=0	28.5	30.5	31.3	μs
External main system clock	fex	EXCLK	$2.7~V \le V_{\text{DD}} \le 5.5$	ν	1		20	MHz
frequency			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7$	V V	1		8	MHz
	fexs	EXCLKS			29		35	kHz
External main system clock input	texh, texl	EXCLK	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5$	5 V	24			ns
high-level width, low-level width			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$		60			ns
	texns, texls	EXCLKS			13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊫							ns
TO00 to TO07 output frequency	fто	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$					16	MHz
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$					8	MHz
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} \le 2.7 \text{ V}$					4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	$4.0~V \leq EV_{\text{DD}}$	≤ 5.5 V				16	MHz
frequency		$2.7~V \leq EV_{\text{DD}}$	< 4.0 V				8	MHz
		$1.8 \ V \leq EV_{\text{DD}}$	< 2.7 V				4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP11			1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	KR0 to KR7				_	ns
RESET low-level width	trsl				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock set by the CKS0n bit of Timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

3.6 Peripheral Functions Characteristics

3.6.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) (TA = -40 to +85°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		Other than SNOOZE mode	fмск/256		fмск/6	bps
		Theoretical value of the maximum transfer rate			5.3	Mbps
		Receivable baud rate at SNOOZE mode	4800		4800	bps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Remarks 1. q: UART number (q = 0 to 2, S0), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11, S0, S1))

Parameter	Symbol		Conditions	М	IN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tkcy1	CS100	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	125	Besides			ns
			$1.8~V \le EV_{\text{DD}} \le 2.7~V$	500	2/ f мск ≤			ns
		Other than	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	125	Besides			ns
		CSI00	$1.8~V \le EV_{\text{DD}} \le 2.7~V$	500	4/ f мск ≤			ns
SCKp high-/low-level width	tкн1,	$4.0 \text{ V} \leq \text{EV}_{\text{D}}$	$.0 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$		tксү1/2 – 12			ns
	tĸ∟1	$2.7~V \leq EV_{\text{DD}} \leq 4.0~V$		tксү1/	2 – 18			ns
		$1.8~V \leq EV_{\text{DD}} \leq 2.7~V$		tkcy1/2 - 50				ns
SIp setup time	tsik1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		44				ns
(to SCKp↑) Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		110				ns
SIp hold time (from SCKp ↑) ^{Note 2}	tksi1				19			ns
SOp output delay time (from SCKp↓) ^{Note 3}	tkso1	C = 30 pF ^N	ote 4				25	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp: internal clock output) (TA = -40 to +85°C, 1.8 V ≤ VDD = EVDD ≤ 5.5 V, VSS = EVSS = 0 V)

Notes 1. The value must also be 2/fcLK (CS100) or 4/fcLK (other than CS100).

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the $\overline{\text{SCKp}}$ and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Remark p: CSI number (p = 00, 01, 10, 11, 20, 21, S0, S1), m: Unit number (m = 0, 1, S), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү2	$4.0~\text{V} \leq \text{EV}_{\text{DD}} < 5.5~\text{V}$	20 MHz < fмск	8/fмск			ns
			fмск ≤ 20 MHz	6/fмск			ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	16 MHz < fмск	8/fмск			ns
			fмск ≤ 16 MHz	6/fмск			ns
SCKp high-/low-level width	t кн2,			tксү2/2			ns
	tĸL2						
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск+20			ns
(to SCKp↑) Note 1		$1.8~V \leq EV_{\text{DD}} < 2.7~V$		1/fмск+30			
SIp hold time (from SCKp↑) ^{Note 1}	tksi2	$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск+31			ns
SOp output delay time	tĸso2	C = 30 pF Note 3	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$			2/fмск+44	ns
(from $\overline{\text{SCKp}}\downarrow$) Note 2			$1.8~V \leq EV_{\text{DD}} < 2.7~V$			2/fмск+110	ns

(3) During communication at same potential (CSI mode) (slave mode, \overline{SCKp} : external clock input) (TA = -40 to +85°C, 1.8 V ≤ VDD = EVDD ≤ 5.5 V, Vss = EVss = 0 V)

- **Notes 1.** This applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time is "to $\overline{\text{SCKp}}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. This applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output is "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** C is the load capacitance of the SOp output lines.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register h (POMh).

- **Remarks** 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, S0 ,S1), m: Unit number (m = 0, 1, S), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11, S0, S1))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, S0, S1)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11, S0, S1)

(4)	During communication at same potential (simplified I ² C mode)	
	$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$1.8 \text{ V} \leq \text{EV}\text{DD} \leq 5.5 \text{ V},$		400	kHz
		C_{b} = 100 pF, R_{b} = 3 k Ω			
Hold time when SCLr = "L"	tLOW	$1.8 \text{ V} \leq \text{EV}\text{DD} \leq 5.5 \text{ V},$	1150		ns
		C _b = 100 pF, R _b = 3 kΩ			
Hold time when SCLr = "H"	tніgн	$1.8 \text{ V} \leq \text{EV}\text{DD} \leq 5.5 \text{ V},$	1150		ns
		C _b = 100 pF, R _b = 3 kΩ			
Data setup time (reception)	tsu:dat	$1.8 \text{ V} \leq \text{EV}\text{DD} \leq 5.5 \text{ V},$	1/fмск + 145 Note		ns
		C_b = 100 pF, R_b = 3 k Ω	NOte		
Data hold time (transmission)	thd:dat	$1.8 \text{ V} \leq \text{EV}\text{DD} \leq 5.5 \text{ V},$	0	355	ns
		C_b = 100 pF, R_b = 3 k Ω			

Note The value of fMCK must be such that this does not exceed the hold time for SCLr = L or the hold time for SCLr = H.

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).
- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1, 2), n: Channel number (n = 0, 1), mn = 00, 01, 10, 11, 20, 21)

3.6.2 Serial interface IICA

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} = \text{EVDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	Standard Mode		Fast Mode		Fast Mode Plus		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟k≥ 10 MHz	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$					0	1000	kHz
		Fast mode: fc∟κ≥ 3.5 MHz	$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	400			kHz
		Normal mode: fc∟κ≥ 1 MHz	$1.8~V \le EV_{DD} \le 5.5~V$	0	100					kHz
Setup time of restart condition Note 1	tsu:sta			4.7		0.6		0.26		μs
Hold time	t hd:sta			4.0		0.6		0.26		μs
Hold time when SCLA0 = "L"	t LOW			4.7		1.3		0.5		μs
Hold time when SCLA0 = "H"	t high			4.0		0.6		0.26		μS
Data setup time (reception)	tsu:dat			250		100		50		ns
Data hold time (transmission) Note 2	thd:dat			0	3.45	0	0.9	0		μs
Setup time of stop condition	tsu:sto			4.0		0.6		0.26		μS
Bus-free time	t BUF			4.7		1.3		0.5		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

IICA serial transfer timing

3.6.3 LIN-UART

(TA = -40 to $+85^{\circ}$ C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate	1/T			1 ^{Note}	Mbps

Note However, the upper limit is fclk/8.

3.7 Analog Characteristics

3.7.1 A/D converter characteristics

(1) When the setting of AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1) and AVREF (-) = AVREFM/ANI1 (ADREFM = 1), this applies to the following ANI pins: ANI2 to ANI7 (the ANI pins for which VDD is the power-supply voltage).

(TA = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V\text{DD} \leq 5.5~V$		1.2	±3.0	LSB
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V\text{dd} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V\text{dd} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$			±0.25	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8~V \leq V\text{dd} \leq 5.5~V$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V\text{dd} \leq 5.5~V$			±1.5	LSB
Reference voltage (+)	AVREFP			1.8		VDD	V
Reference voltage (-)	AVREFM				0		
Analog input voltage	VAIN			AVREFM		AVREFP	V
	VBGR	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	/	1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(2) When the setting of AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1) and AVREF (-) = AVREFM/ANI1 (ADREFM = 1), this applies to the following ANI pins: ANI16 to ANI19 (the ANI pins for which EVDD is the power-supply voltage).

(TA = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$		1.2	±4.5	LSB
		AV _{REFP} = VDD AV _{REFM} = VSS	$1.8 \text{ V} \leq \text{Vdd} < 4.0 \text{ V}$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$4.0~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±2.0	LSB
Reference voltage (+)	AVREFP			1.8		Vdd	V
Reference voltage (-)	AVREFM				0	•	V
Analog input voltage	VAIN			AVREFM		AVREFP	V
	VBGR	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	/	1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(3) When the setting of AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0) and AVREF (-) = VSS (ADREFM = 0), this applies to the following ANI pins: ANI0 to ANI7.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$	ANI0-ANI7		1.2	±5.0	LSB
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	ANI0-ANI7		1.2	±5.5	LSB
Conversion time	t _{CONV}	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$		2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$		3.1875		39	μs
			$1.8~V \le V \text{DD} \le 5.5~V$		17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$				±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$				±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$				±2.0	LSB
Reference voltage (+)	AVREFP					Vdd		V
Reference voltage (-)	AVREFM					Vss		V
Analog input voltage	VAIN	ANI0-ANI7			Vss		Vdd	V
	Vbgr	$2.7~V \le V_{\text{DD}} \le 5.5$	V		1.38	1.45	1.5	V

(TA = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = VDD, reference voltage (-) = Vss)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(4) When the setting of AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0) and AVREF (-) = VSS (ADREFM = 0), this applies to the following ANI pins: ANI16 to ANI19.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		10	Bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$	ANI16-ANI19		1.2	±6.5	LSB
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	ANI16-ANI19		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$		2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$		3.1875		39	μs
			$1.8~V \le V \text{DD} \le 5.5~V$		17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$				±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$				±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$				±2.0	LSB
Reference voltage (+)	AVREFP					Vdd		V
Reference voltage (-)	AVREFM					Vss		V
Analog input voltage	VAIN	ANI16-ANI19			Vss		Vdd	V
	VBGR	$2.7~V \leq V_{\text{DD}} \leq 5.5$	V		1.38	1.45	1.5	V

(TA = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = VDD, reference voltage (-) = Vss)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

3.7.2 Temperature sensor characteristics

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = EVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Reference output voltage	VCONST	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp				5	μs

3.7.3 POR circuit characteristics

(T_A = -40 to +85°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.46	1.51	1.59	V
	VPDR	Power supply fall time	1.45	1.50	1.58	V
Minimum pulse width	TPW		300			μs
Detection delay time	Tpd				350	μS

3.7.4 LVD circuit characteristics

(a) Characteristics for LVD Detection at Reset and Interrupt modes (TA = -40 to $+85^{\circ}$ C, VPDR \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO	Power supply rise time	3.96	4.06	4.25	V
voltage			Power supply fall time	3.89	3.98	4.15	V
		VLVI1	Power supply rise time	3.66	3.75	3.93	V
			Power supply fall time	3.58	3.67	3.83	V
		VLVI2	Power supply rise time	3.06	3.13	3.28	V
			Power supply fall time	2.99	3.06	3.20	V
		V _{LVI3}	Power supply rise time	2.95	3.02	3.17	V
			Power supply fall time	2.89	2.96	3.09	V
		VLVI4	Power supply rise time	2.85	2.92	3.07	V
			Power supply fall time	2.79	2.86	2.99	V
		VLVI5	Power supply rise time	2.74	2.81	2.95	V
		VLVI6	Power supply fall time	2.68	2.75	2.88	V
			Power supply rise time	2.64	2.71	2.85	V
			Power supply fall time	2.59	2.65	2.77	V
		VLVI7	Power supply rise time	2.55	2.61	2.74	V
			Power supply fall time	2.49	2.55	2.67	V
		VLVI8	Power supply rise time	2.44	2.50	2.63	V
			Power supply fall time	2.39	2.45	2.57	V
		VLVI9	Power supply rise time	2.04	2.09	2.21	V
			Power supply fall time	1.99	2.04	2.14	V
		VLVI10	Power supply rise time	1.93	1.98	2.09	V
			Power supply fall time	1.89	1.94	2.04	V
		VLVI11	Power supply rise time	1.83	1.88	1.99	V
			Power supply fall time	1.79 ^{Note}	1.84	1.94	V
Minimum pu	Ilse width	t∟w		300			μs
Detection d	elay time					300	μs

Note The minimum value lowers the minimum guaranteed voltage for operation (1.8 V). However, LVD detection performs in the same way as in normal mode (operation according to the same specification when V_{DD} is 1.8 V) until it is reset at reset mode.

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 11

The following relationship is formed under the same temperature conditions: the detection voltage at power supply rise time > the detection voltage at power supply fall time.

TYP.

1.84

MAX

1.94

Unit

V

Caution The pins mounted depend on the product.

 (b) LVD Detection Voltage of Interrupt & Reset Mode

 (TA = -40 to +85°C, VPDR \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

 Parameter
 Symbol
 Conditions
 MIN.

 Interrupt and reset
 VLVI11
 VPOC2, VPOC1, VPOC0 = 0, 0, 1, falling reset voltage: 1.8 V
 1.79^{Note}

 mode
 VLVI10
 VLVIS1, LVIS0 = 1, 0
 Rising release reset voltage
 1.93

 VLVI9
 VLVIS1, LVIS0 = 0, 1
 Rising release reset voltage
 2.04

mode	VLVI10		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.93	1.98	2.09	V
				Falling interrupt voltage	1.89	1.94	2.04	V
	VLV19		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.04	2.09	2.21	V
				Falling interrupt voltage	1.99	2.04	2.14	V
	VLVI2		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.06	3.13	3.28	V
				Falling interrupt voltage	2.99	3.06	3.20	V
	VLVI8	VPOC2	, VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage: 2.4 V	2.39	2.45	2.57	V
	VLVI7		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.55	2.61	2.74	V
	VLVI6			Falling interrupt voltage	2.49	2.55	2.67	V
			LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.64	2.71	2.85	V
				Falling interrupt voltage	2.59	2.65	2.77	V
	VLVI1		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.66	3.75	3.93	V
				Falling interrupt voltage	3.58	3.67	3.83	V
	VLVI5	VPOC2	, VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage: 2.7 V	2.68	2.75	2.88	V
	VLVI4		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	3.07	V
				Falling interrupt voltage	2.79	2.86	2.99	V
	VLVI3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.17	V
				Falling interrupt voltage	2.89	2.96	3.09	V
	VLVI0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.96	4.06	4.25	V
				Falling interrupt voltage	3.89	3.98	4.15	V

- **Note** The minimum value lowers the minimum guaranteed voltage for operation (1.8 V). However, LVD detection performs in the same way as in normal mode (operation according to the same specification when V_{DD} is 1.8 V) until it is reset at reset mode.
- **Remark** The following relationship is formed under the same temperature conditions: the rising release reset voltage > the falling interrupt voltage > the falling reset voltage
- Caution The pins mounted depend on the product.

3.7.5 Power supply rise time

(TA = -40 to +85°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum slew rate for the supply voltage to rise	Svrmax	$0 \text{ V} \rightarrow \text{V}_{\text{DD}} \text{ (MIN.) }^{\text{Note 2}} \text{ (VPOC2 = 0 or 1)}$			50 ^{Note 1}	V/ms
Minimum slew rate for the supply	Svrmin	$0V \rightarrow 1.8 \text{ V} (\text{CMODE0} = 0)$	3.5 Note 1			V/ms
voltage to rise Note 3		$0V \rightarrow 2.7 V (CMODE0 = 1)$	6.5 Note 1			V/ms

- **Notes 1.** In case the supply voltage falls to a level of VPDR or below and a power-on reset is generated, the slew rate must not exceed the value S_{VTMax} even if the supply voltage does not go down to 0 V.
 - VDD (MIN.) varies depending on the setting of the flash operation mode in the option byte (CMODE0 bit).
 LS (low speed main) mode (CMODE0 = 0): VDD (MIN.) = 1.8 V
 HS (high speed main) mode (CMODE0 = 1): VDD (MIN.) = 2.7 V
 - The minimum slew rate for the supply voltage (Svmin) must be met when the voltage detector (LVD) is not used (option byte bit VPOC2 = 1) and an external reset circuit releases before the supply voltage reaches V_{DD} (MIN.) (as specified in Note 2).

3.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

(T _A = -40	to +85°C	Vss =	EVss = 0 V)	
-----------------------	----------	-------	-------------	--

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.45 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

3.9 Flash Memory Programming Characteristics

Param	eter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequ	iency	fclĸ		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3		Cerwr	20 years retention (after rewrite) TA = +85°C	1000			Times
Number of data flash rewrites Notes 1, 2, 3			20 years retention (after rewrite) TA = +85°C	10000			
			5 years retention (after rewrite) TA = +85°C	100000			
Erase time	Block erase	Terasa		5			ms
write time		Twrwa		10			μs

Notes 1. Retention years indicate a period between time for a rewrite and the next.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas.

4. ELECTRICAL SPECIFICATIONS (K GRADE)

- Cautions 1. RL78/F12 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. Pins mounted are as follows according to product.

4.1 Pins Mounted According to Product

4.1.1 Port functions

Refer to 2.1.1 20-pin products to 2.1.5 64-pin products.

4.1.2 Non-port functions

Refer to 2.1.6 Pins for each product (pins other than port pins).

(1/2)

Caution The pins mounted depend on the product.

4.2 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
	EVDD		–0.5 to +6.5	V
	Vss		–0.5 to +0.3	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	=0.3 to +2.8 and =0.3 to V_DD +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	-0.3 to EV_DD+0.3 and -0.3 to V_DD+0.3 $^{\hbox{Note 2}}$	V
	VI2	P60 to P63 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, RESET	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
Output voltage	V ₀₁	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EV _{DD} +0.3 ^{Note 2}	V
	V ₀₂	P20 to P27	-0.3 to V _{DD} +0.3	V
Analog input voltage	VAI1	ANI16 to ANI19	-0.3 to EV _{DD} +0.3 ^{Note 2}	V
	VAI2	ANI0 to ANI7	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Absolute Maximum	Ratings (TA =	= 25°C)				(2/2)
Parameter	Symbols		Condition	าร	Ratings	Unit
Output current, high	Іон1	Per pin	,	P17, P30, P31, P40 to P43, P77, P120, P130, P140, P141,	-40	mA
		Total of all pins	P00 to P04, P40 to	P43, P120, P130, P140, P141	-70	mA
		–170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147		-100	mA
	Іон2	Per pin	P20 to P27		-0.5	mA
	Total of all pins				-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147		40	mA
		Total of all pins	P00 to P04, P40 to	P43, P120, P130, P140, P141	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77, P146, P147		100	mA
	IOL2	Per pin	P20 to P27		1	mA
		Total of all pins			5	mA
Operating ambient	TA	In normal operati	ion mode		-40 to +125	°C
temperature		In flash memory	programming mode	Data	-40 to +125	
				Code	-40 to +105	
Storage temperature	Tstg				–65 to +150	°C

Absolute Maximum Ratings (TA = 25°C)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

4.3 Oscillator Characteristics

4.3.1 Main system clock oscillator characteristics

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 X2 Rd C1 C2 777	X1 clock oscillation frequency (fx) ^{Note}	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
Crystal resonator	V ₅₅ X1 X2 Rd C1 C2 777	X1 clock oscillation frequency (fx) ^{Note}	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

4.3.2 On-chip oscillator characteristics

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Note}	fін	24 MHz selected	23.52	24.00	24.48	MHz
		16 MHz selected	15.68	16.00	16.32	MHz
		8 MHz selected	7.84	8.00	8.16	MHz
		4 MHz selected	3.92	4.00	4.08	MHz
		1 MHz selected	0.98	1.00	1.02	MHz
Low-speed on-chip oscillator clock frequency	f∟		12.75	15	17.25	kHz

Note This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

4.3.3 Subsystem clock oscillator characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1 Rd C4 C4 TT7	XT1 clock oscillation frequency (fxr) ^{Note}		29.0	32.768	35.0	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

4.4 DC Characteristics

4.4.1 Pin characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	Per pin for P00 to P06, P10 to P17, P30,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$			-5.0	mA
high ^{Note 1}	P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-3.0	mA	
	Total of P00 to P04, P40 to P43, P120,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-20.0	mA	
		P130, P140, P141 (When duty = 70% ^{Note 2})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-10.0	mA
		Total of P05, P06, P10 to P17, P30, P31,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P50 to P55, P70 to P77, P146, P147 (When duty = 70% ^{Note 2})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-19.0	mA
		Total of all pins	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-42.0	mA
		(When duty = 70% ^{Note 2})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-29.0	mA
	Іон2	Per pin for P20 to P27				-0.1	mA
		Total of all pins (When duty = 70% Note 2)				-0.8	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD} pin to an output pin.
 - 2. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n% (the duty before change < n)).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and Iон = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) = -8.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P10 to P15, P17, P50, P71, P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	IOL1	Per pin for P00 to P06, P10 to P17, P30,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			8.5	mA
IOW Note 1		P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 4.0 \text{ V}$			4.0	mA
		Per pin for P60 to P63	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			15.0	mA
		2	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			4.0	mA
		D120 D140 D141	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			20.0	mA
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		Total of P05, P06, P10 to P17, P30, P31,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			45.0	mA
		P50 to P55, P60 to P63, P70 to P77, P146, P147 (When duty = 70% ^{Note 2})	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 4.0 \text{ V}$			35.0	mA
		Total of all pins	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			65.0	mA
Iol2		(When duty = 70% ^{Note 2})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			50.0	mA
	IOL2	Per pin for P20 to P27				0.4	mA
		Total of all pins (When duty = 70% Note 2)				3.2	mA

 $(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pin.
 - 2. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n% (the duty before change < n)).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) = 8.75 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 1)	0.8 EVDD		EVDD	V
	VIH2	P01, P03, P04, P13 to P17, P55	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		EVDD	V
	Vінз	P20 to P27		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVDD		6.0	V
	VIH5	P121 to P124, P137, RESET		0.8 Vdd		VDD	V
	VIH6	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 0)	0.8 EV _{DD}		EVDD	V
Input voltage, Iow	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 1)	0		0.2 EV _{DD}	V
	VIL2	P01, P03, P04, P13 to P17, P55	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	0		0.8	V
	VIL3	P20 to P27		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2 VDD	V
V	VIL6	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer (ITHL = 0) $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	0		0.5 EV _{DD}	V
			Normal input buffer (ITHL = 0) $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.4 EV _{DD}	V

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Cautions The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P50, P55, P71, P74 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. The input pins of alternate-functions: CSIS0, CSIS1, UARTS, and UARTF, do not support TTL inputs.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -5.0 \ mA \end{array}$	EV _{DD} - 0.9			V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD} - 0.7			V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -1.0 \ \text{mA} \end{array}$	EV _{DD} - 0.5			V
	V _{OH2}	P20 to P27	2.7 V \leq Vdd \leq 5.5 V, Іон2 = -100 μ А	EV _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
	Vol2	P20 to P27	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 4.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.5	V
			$\begin{array}{l} 2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \\ \text{I}_{\text{OL3}} = 3.0 \text{ mA} \end{array}$			0.4	V

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

- Caution P00, P02 to P04, P10 to P15, P17, P50, P55, P71, P74 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Cond	Conditions			TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P140, P141, P146, P147	VI = EVDD				1	μA
	Ілна	P20 to P27, P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2)	$V_{I} = V_{DD}$	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P140, P141, P146, P147	VI = EVss				-1	μA
	ILIL2	P20 to P27, P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147			10	20	100	kΩ

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

Caution The pins mounted depend on the product.

4.4.2 Supply current characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter MIN. TYP. MAX. Unit Symbol Conditions DD1 Note 1 fill = 24 MHz Note 2 4.5 6.9 Supply Operating High-speed mΑ operation Note 5 current mode f⊪ = 16 MHz ^{Note 2} 3.3 5.2 mΑ f_{MX} = 20 MHz Note 3 5.9 4.0 mΑ f_{MX} = 10 MHz ^{Note 3} 2.4 3.5 mΑ Subsystem clock fsuв = 32.768 kHz $T_A \le + 85^{\circ}C$ 49 13.0 μA Note 4 operation $T_A \le + 105^{\circ}C$ 25.0 T_A≤ + 125°C 59.0

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values in the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors (when high-speed on-chip oscillator or subsystem clock, not including the current flowing into the BGO too).
 - 2. When high-speed system clock and subsystem clock are stopped.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 High speed operation: V_{DD} = 2.7 to 5.5 V@1 MHz to 24 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2)2)

(1 = -40	to +125°	°C, 2.7	$V \leq VDD = EVDD \leq 5.5$	\leq VDD = EVDD \leq 5.5 V, VSS = EVSS = 0 V)					(2/2)
Parameter	Symbol		Co	Conditions					Unit
Supply	DD2 Note 2	HALT	High-speed operation Note 7	f _{IH} = 24 MHz ^{Note 3}			0.48	5.58	mA
current Note 1		mode	le	f _{IH} = 16 MHz ^{Note 3}			0.40	3.90	mA
Note 1	f _{MX} = 20 MHz ^{Note 4}			0.43	1.88	mA			
				f _{MX} = 10 MHz ^{Note 4}			0.28	1.02	mA
	Subsystem clock operation fsu	fsub = 32.768 kHz Note 5	$T_A \leq \text{+}~50^\circ C$		0.52	2.15	μA		
			$T_A \leq \text{+ }70^\circ C$			3.05			
					$T_A \leq \textbf{+}~85^\circ C$			4.24	
					$T_A \leq \text{+ } 105^\circ C$			15.0	
					$T_A \leq \textbf{+ 125^{\circ}C}$			35.0	
	DD3 Note 6	STOP	$T_A \le + 50^{\circ}C$				0.22	2.05	μA
n	$\begin{array}{c} mode \\ \hline T_A \leq + \ 70^{\circ}C \\ \hline T_A \leq + \ 85^{\circ}C \end{array}$				3.05				
		Ta ≤ + 85°C					4.24		
		$T_A \leq +105^{\circ}C$					15.0		
			Ta ≤ + 125°C					35.0	

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values in the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and subsystem clock are stopped.
- **5.** When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped.
- **6.** When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped.
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 High speed operation: V_{DD} = 2.7 to 5.5 V@1 MHz to 24 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RTC operating	IRTC Notes 1, 2	fsuв = 32.768 kHz	Real-time clock operation		0.02	0.17	μA
current			Interval timer operation		0.02	0.37	μA
WUTM operating current	Іwuтм	f⊩ = 15 kHz			0.25	0.6	μA
Watchdog timer operating current	WDT Notes 2, 3	fı∟ = 15 kHz			0.22	0.6	μA
A/D converter	ADC Note 4	at maximum	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current		conversion speed	Low voltage mode, AV _{REFP} = V_{DD} = 3.0 V		0.5	0.7	mA
		Internal reference vo	Itage selected Note 7		75		μA
LVD operating current	I _{LVI} Note 5				0.08	0.26	μA
Temperature sensor operating current	Itmps				75		μA
BGO operating current	BGO Note 6				2.5	12.2	mA

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

- **Notes 1.** Current flowing only to the real-time clock (excluding the operating current of the XT1 oscillator). The TYP. value of the current value of the RL78/F12 is the sum of the TYP. values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. The IDD1 and IDD2 MAX. values also include the real-time clock operating current. When the real-time clock operates during fcLK = fsUB, the TYP. value of IDD2 includes the real-time clock operating current.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - **3.** Current flowing only to the watchdog timer (including the operating current of the 15 kHz on-chip oscillator). The current value of the RL78/F12 is the sum of IDD1, IDD2 or IDD3 and IWDT when fcLK = fsUB when the watchdog timer operates in STOP mode.
 - **4.** Current flowing only to the A/D converter. The current value of the RL78/F12 is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - **5.** Current flowing only to the LVD circuit. The current value of the RL78/F12 is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
 - **6.** Current flowing only to the BGO. The current value of the RL78/F12 is the sum of IDD1 or IDD2 and IBG0 when the BGO operates in an operation mode or the HALT mode.
 - **7.** This indicates operating current which increases when the internal reference voltage is selected. The Current flows even if the conversion is stopped.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fcLK: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

4.5 AC Characteristics

4.5.1 Basic operation

$(T_A = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain) operation High-speed main mode	0.04		1	μs
		Subsystem clock (fsub) operation	28.5	30.5	34.5	μs
External main system clock	fex		1		20	MHz
frequency	fexs		29		35	kHz
External main system clock input	texн, texL		24			ns
high-level width, low-level width	texhs, texls		13.7			μs
TI00 to TI07 input high-level width, low-level width	tт⊪, tт⊾		2/fмск +10			ns
TO00 to TO07 output frequency	fто	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V$			16	MHz
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			16	MHz
frequency		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
Interrupt input high-level width, low-level width	tілтн, tintl	INTP0 to INTP11	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	250			ns
RESET low-level width	trsl		10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock set by the CKS0n bit of Timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

4.6 Peripheral Functions Characteristics

4.6.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) (TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		Other than SNOOZE mode			fмск/6	bps
		Theoretical value of the maximum transfer rate			4.0	Mbps
		Receivable baud rate at SNOOZE mode	4800		4800	bps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Remarks 1. q: UART number (q = 0 to 2, S0), g: PIM number (g = 0, 1, 5, 7), h: POM number (h = 0, 1, 5, 7)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 11, S0, S1))

(2) During communication at same potential (CSI mode) (master mode, SCKp: internal clock output) (TA = -40 to +125°C, 2.7 V ≤ VDD = EVDD ≤ 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tксүı	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V} CSI00^{\text{ Note 1}}$		125			ns
			Other than CSI00 ^{Note 2}	166.6			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	•	tксү1/2 – 12			ns
	tĸ∟1	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		tксү1/2 – 18			ns
SIp setup time (to $\overline{\text{SCKp}}\uparrow)^{\text{Note 3}}$	tsik1			44			ns
SIp hold time (from $\overline{\text{SCKp}}\uparrow$) Note 3	tksii			19			ns
SOp output delay time Note 4	tkso1	C = 30 pF ^{Note 5}				25	ns
(from SCKp↓)							

Notes 1. The value must also be 2/fcLK or more.

- 2. The value must also be 4/fclk or more.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the $\overline{\text{SCKp}}$ and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register h (POMh).
- **Remark** p: CSI number (p = 00, 01, 10, 11, 20, 21, S0, S1), m: Unit number (m = 0, 1, S), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 5, 7), h: POM number (h = 0, 1, 5, 7)

Parameter	Symbol	Con	Conditions		TYP.	MAX.	Unit
SCKp cycle time	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$	fмск > 20 MHz	8/fмск			ns
			fмск ≤ 20 MHz	6/fмск			
		$2.7~V \leq EV_{\text{DD}} < 4.0~V$	fмск > 16 MHz	8/fмск			ns
			fмск≤ 16 MHz	6/fмск			ns
SCKp high-/low-level width	tkh2, tkl2			tксү2/2			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{DD} \leq 5.5~V$		1/fмск+20			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск+31			ns
SOp output Delay time (from SCKp↓) ^{Note 2}	tkso2	C = 30 pF Note 3	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$			2/fмск+44	ns

(3) During communication at same potential (CSI mode) (slave mode, \overline{SCKp} : external clock input) (TA = -40 to +125°C, 2.7 V ≤ VDD = EVDD ≤ 5.5 V, Vss = EVss = 0 V)

- **Notes 1.** This applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time is "to $\overline{\text{SCKp}}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** This applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output is "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SOp output lines.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register h (POMh).

- **Remarks** 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, S0, S1), m: Unit number (m = 0, 1, S),
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11, S0, S1))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, S0, S1)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11, S0, S1)

(4)	During communication at	same potential	(simplified I ² C mode)
-----	-------------------------	----------------	------------------------------------

$(TA = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le \text{VDD} = \text{EVDD} \le 5.5 \text{ V},$	Vss = EVss = 0 V)
--	-------------------

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		400	kHz
		C_{b} = 100 pF, R_{b} = 3 k Ω			
Hold time when SCLr = "L"	tLOW	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	1150		ns
		C_{b} = 100 pF, R_{b} = 3 k Ω			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	1/fмск + 145		ns
		C _b = 100 pF, R _b = 3 kΩ	Note		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	355	ns
		C_b = 100 pF, R_b = 3 k Ω			

Note The value of fMCK must be such that this does not exceed the hold time for SCLr = L or the hold time for SCLr = H.

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).
- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01, 11, 20, 21), g: PIM number (g = 0, 1, 5), h: POM number (h = 0, 1, 5, 7)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11, S0, S1)

4.6.2 Serial interface IICA

$(TA = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le \text{VDD} = \text{EVDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss} = 0 \text{ V})$

Parameter	Parameter Symbol Conditions Stand				Fast Mode Plus		Unit		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fclk \geq 10 MHz					0	1000	kHz
		Fast mode:fc∟κ ≥ 3.5 MHz			0	400			kHz
		Normal mode:fclĸ ≥ 1 MHz	0	100					kHz
Setup time of restart condition Note 1	tsu:sta		4.7		0.6		0.26		μs
Hold time	t hd:sta		4.0		0.6		0.26		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		0.5		μs
Hold time when SCLA0 = "H"	t high		4.0		0.6		0.26		μs
Data setup time (reception)	tsu:dat		250		100		50		ns
Data hold time (transmission) Note 2	thd:dat		0	3.45	0	0.9	0		μs
Setup time of stop condition	tsu:sto		4.0		0.6		0.26		μs
Bus-free time	t BUF		4.7		1.3		0.5		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

IICA serial transfer timing

4.6.3 LIN-UART

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX. ^{Note}	Unit
Transfer rate	1/T			1	Mbps

Note However, the upper limit is fcLK/8.

4.7 Analog Characteristics

4.7.1 A/D converter characteristics

(1) When the setting of AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1) and AVREF (-) = AVREFM/ANI1 (ADREFM = 1), this applies to the following ANI pins: ANI2 to ANI7 (the ANI pins for which VDD is the power-supply voltage).

(TA = -40 to +125°C, 2.7 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$		1.2	±3.0	LSB
			$2.7~V \leq V_{DD} < 4.0~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7~V \leq V \text{dd} \leq 5.5~V$			±0.25	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7~V \le V \text{DD} \le 5.5~V$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7~V \leq V\text{DD} \leq 5.5~V$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7~V \leq V \text{dd} \leq 5.5~V$			±1.5	LSB
Reference voltage (+)	AVREFP			2.7		VDD	V
Reference voltage (-)	AVREFM				0		V
Analog input voltage	VAIN			AVREFM		AVREFP	V
	VBGR	$2.7~V \leq V_{\text{DD}} \leq 5.5~V_{\text{DD}}$	/	1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(2) When the setting of AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1) and AVREF (-) = AVREFM/ANI1 (ADREFM = 1), this applies to the following ANI pins: ANI16 to ANI19 (the ANI pins for which EVDD0 is the power-supply voltage).

(TA = -40 to +125°C, 2.7 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = AVREFP, reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V \text{DD} \leq 5.5~V$		1.2	±4.5	LSB
			$2.7~V \leq V_{DD} < 4.0~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7~V \leq V\text{DD} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Reference voltage (+)	AVREFP			2.7		Vdd	V
Reference voltage (-)	AVREFM				0		V
Analog input voltage	VAIN			AVREFM		AVREFP	V
	VBGR	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	/	1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(3) When the setting of AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0) and AVREF (-) = VSS (ADREFM = 0), this applies to the following ANI pins: ANI0 to ANI7.

(TA = -40 to +125°C, 2.7 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = VDD, reference voltage (-) = Vss)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$	ANI0-ANI7		1.2	±5.0	LSB
			$2.7~V \leq V_{DD} < 5.5~V$	ANI0-ANI7		1.2	±5.5	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$		2.125		39	μs
			$2.7~V \le V \text{DD} \le 5.5~V$		3.1875		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±0.5	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±0.5	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±2.0	LSB
Reference voltage (+)	AVREFP					Vdd		V
Reference voltage (-)	AVREFM					Vss		V
Analog input voltage	VAIN	ANIO-ANI7			Vss		Vdd	V
	VBGR	$2.7~V \le V_{\text{DD}} \le 5.5$	V		1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

(4) When the setting of AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0) and AVREF (-) = VSS (ADREFM = 0), this applies to the following ANI pins: ANI16 to ANI19.

(TA = -40 to +125°C, 2.7 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V, reference voltage (+) = VDD, reference voltage (-) = Vss)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		10	bit
Overall error Note 1	AINL	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$	ANI16-ANI19		1.2	±6.5	LSB
			$2.7~V \leq V_{DD} < 5.5~V$	ANI16-ANI19		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$4.0~V \leq V_{DD} \leq 5.5~V$		2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$		3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$				±2.0	LSB
Reference voltage (+)	AVREFP					Vdd		V
Reference voltage (-)	AVREFM					Vss		V
Analog input voltage	VAIN	ANI16-ANI19			Vss		Vdd	V
	VBGR	$2.7~V \le V_{\text{DD}} \le 5.5$	V		1.38	1.45	1.5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- Caution The pins mounted depend on the product. Refer to 2.1.1, 20-pin products to 2.1.5, 64-pin products, and 2.1.6, Pins for each product (pins other than port pins).

4.7.2 Temperature sensor characteristics

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Reference output voltage	VCONST	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp				5	μs

4.7.3 POR circuit characteristics

(T_A = -40 to +125°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.46	1.51	1.59	V
	VPDR	Power supply fall time	1.45	1.50	1.58	V
Minimum pulse width	TPW		300			μs
Detection delay time	Tpd				350	μs

4.7.4 LVD circuit characteristics

(a) Characteristics for LVD Detection at Reset and Interrupt modes

(TA = -40 to +125°C, VPDR \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO	Power supply rise time	3.96	4.06	4.25	V
voltage			Power supply fall time	3.89	3.98	4.15	V
		VLVI1	Power supply rise time	3.66	3.75	3.93	V
			Power supply fall time	3.58	3.67	3.83	V
		Vlvi2	Power supply rise time	3.06	3.13	3.28	V
			Power supply fall time	2.99	3.06	3.20	V
		V LVI3	Power supply rise time	2.95	3.02	3.17	V
			Power supply fall time	2.89	2.96	3.09	V
		VLVI4	Power supply rise time	2.85	2.92	3.07	V
			Power supply fall time	2.79	2.86	2.99	V
		VLVI5	Power supply rise time	2.74	2.81	2.95	V
			Power supply fall time	2.68 ^{Note}	2.75	2.88	V
Minimum pu	Ilse width	tLw		300			μs
Detection de	elay time	tld				300	μs

Note The minimum value lowers the minimum guaranteed voltage for operation (2.7 V). However, LVD detection performs in the same way as in normal mode (operation according to the same specification when V_{DD} is 2.7 V) until it is reset at reset mode.

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 5

The following relationship is formed under the same temperature conditions: the detection voltage at power supply rise time > the detection voltage at power supply fall time.

Parameter	Symbol		Co	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVI5	VPOC0,	VPOC1, VPOC2 = 0, 1, 1,	falling reset voltage: 2.7 V	2.68 ^{Note}	2.75	2.88	V
node V _{LVI4}	1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	3.07	V	
				Falling interrupt voltage	2.79	2.86	2.99	V
	VLVI3			Rising release reset voltage	2.95	3.02	3.17	V
		Falling interrupt voltage		2.89	2.96	3.09	V	
	VLVI0	1	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.96	4.06	4.25	V
				Falling interrupt voltage	3.89	3.98	4.15	V

(b) LVD Detection Voltage of Interrupt & Reset Mode (TA = -40 to $+125^{\circ}$ C, VPDR \leq VDD = EVDD \leq 5.5 V, Vss = EVss = 0 V)

- **Note** The minimum value lowers the minimum guaranteed voltage for operation (2.7 V). However, LVD detection performs in the same way as in normal mode (operation according to the same specification when V_{DD} is 2.7 V) until it is reset at reset mode.
- **Remark** The following relationship is formed under the same temperature conditions: the rising release reset voltage > the falling interrupt voltage > the falling reset voltage

4.7.5 Power supply rise time

(TA = -40 to +125°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum slew rate for the supply voltage to rise	Svrmax	$0 \text{ V} \rightarrow 2.7 \text{ V} \text{ (CMODE0 = 1)} \text{ (VPOC2 = 0 or 1)}$			50 ^{Note 1}	V/ms
Minimum slew rate for the supply voltage to rise Note 2	Svrmin	$0 \text{ V} \rightarrow 2.7 \text{ V} \text{ (CMODE0 = 1)}$	6.5 Note 1			V/ms

- **Notes 1.** In case the supply voltage falls to a level of VPDR or below and a power-on reset is generated, the slew rate must not exceed the value S_{VTMax} even if the supply voltage does not go down to 0 V.
 - The minimum slew rate for the supply voltage (Svrmin) must be met when the voltage detector (LVD) is not used (option byte bit VPOC2 = 1) and an external reset circuit releases before the supply voltage reaches VDD (MIN.) (here 2.7 V).

4.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C Vss} = \text{EVss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR	STOP mode	1.45 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

4.9 Flash Memory Programming Characteristics

Parame	eter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequ	System clock frequency fc			1		24	MHz
Number of code flash rewrites Notes 1, 2, 3		Cerwr	20 years retention (after rewrite) TA = +85°C ^{Note 4}	1000			Times
Number of data flash rewrites Notes 1, 2, 3			20 years retention (after rewrite) TA = +85°C ^{Note 4}	10000			
			5 years retention (after rewrite) TA = +85°C ^{Note 4}	100000			
Erase time	Block erase	Terasa		5			ms
write time		Twrwa		10			μs

Notes 1. Retention years indicate a period between time for a rewrite and the next.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas.
- 4. The specified data retention time is given under the condition that the average temperature (T_A) is 85°C or below.

5. PACKAGE DRAWING

5.1 20-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-0300-0.65	PLSP0020JC-A	S20MC-65-5A4-3	0.12

20-PIN PLASTIC SSOP (7.62 mm (300))

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	6.65±0.15
В	0.475 MAX.
С	0.65 (T.P.)
D	$0.24\substack{+0.08\\-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} 3°
Т	0.25
U	0.6±0.15
	S20MC-65-5A4-2

5.2 30-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

30-PIN PLASTIC SSOP (7.62 mm (300))

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	$3^{\circ}^{+5^{\circ}}_{-3^{\circ}}$
Т	0.25
U	0.6±0.15
	S30MC-65-5A4-2

5.3 32-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06	

32-PIN PLASTIC WQFN(5x5)

ITEM	DIMENSIONS
D	5.00 ± 0.05
Е	$5.00\pm\!0.05$
Α	0.75 ± 0.05
b	$0.25^{+0.05}_{-0.07}$
е	0.50
Lp	0.40 ± 0.10
х	0.05
У	0.05
	P32K8-50-3B4-2

(UNIT:mm)

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	А	3.45	3.50	3.55	3.45	3.50	3.55

5.4 48-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

48-PIN PLASTIC LQFP (FINE PITCH)(7x7)

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

х

у

ZD

ΖE

0.08

0.08

0.75

0.75 P48GA-50-8EU

5.5 64-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

64-PIN PLASTIC LQFP(FINE PITCH)(10x10)

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

ZE

1.25

P64GB-50-UEU-1

REVISION HISTORY

RL78/F12 Datasheet

Rev	Date	Description		
		Page	Summary	
1.11	Dec 27, 2024	_	First edition issued.	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{H} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
- (Note)) Refease Electronics as used in this document means Refease Electronics Corporation and also includes its directly of indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.