RENESAS

RAA730300 Monolithic Programmable Analog IC

R02DS0011EJ0110 Rev.1.10 May. 31, 2014

Overview

The RAA730300 is a monolithic programmable analog IC that supports low voltages and features a range of on-chip circuits such as configurable amplifiers, general-purpose operational amplifiers, D/A converters, and a temperature sensor, allowing the RAA730300 to be used as an analog front-end device for processing minute sensor signals. The RAA730300 uses a Serial Peripheral Interface (SPI) to allow external devices to control each on-chip circuit, enabling a more compact package and a reduction in the number of control pins. The compact package used by the RAA730300—a 48-pin LQFP—in turns enables a more compact set design.

Features

- On-chip configurable amplifier × 3 ch
- On-chip general-purpose operational amplifier \times 2 ch
- On-chip low-pass filter × 1 ch
- On-chip high-pass filter \times 1 ch
- On-chip D/A converter \times 7 ch
- On-chip variable output voltage regulator × 1 ch
- On-chip temperature sensor × 1 ch
- On-chip SPI \times 1 ch
- Includes a low-current mode.
- Operating voltage range: $2.2 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$
- Operating temperature range: $-40^{\circ}C \le T_A \le 105^{\circ}C$
- Package: 48-pin plastic LQFP (fine pitch) (7×7)

Applications

- Home appliances
- Industrial equipment
- Healthcare equipment

Ordering Information

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, electronic circuits.

- To gain a general understanding of functions:
 - \rightarrow Read this manual in the order of the CONTENTS.
- To check the revised points :
 - →The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what: " field.

Conventions

- Data significance: Higher digits on the left and lower digits on the rightActive low representations: xxx (overscore over pin and signal name)Note: Footnote for item marked with Note in the textCaution: Information requiring particular attentionRemark: Supplementary informationNumerical representations: Binary ...xxxx or xxxxBDecimal ...xxxx
 - Hexadecimal ...xxxH

Contents

1. Pin	Configuration	5
1.1	Pin Layout	5
1.2	Block Diagram	6
1.3	Pin Functions	7
1.4	Connection of Unused Pins	9
1.5	Pin I/O Circuits	
2. Co	nfigurable Amplifiers	14
2.1	Overview of Configurable Amplifier Features	
2.2	Block Diagram	
2.3	Registers Controlling the Configurable Amplifiers	
2.4	Procedure for Operating the Configurable Amplifiers	
3. Gei	neral-Purpose Operational Amplifier	
3.1	Overview of General-Purpose Operational Amplifier Features	
3.2	Block Diagram	
3.3	Registers Controlling the General-Purpose Operational Amplifier	
3.4	Procedure for Operating the General-Purpose Operational Amplifier	
4. D/A	A Converters	
4.1	Overview of D/A Converter Features	59
4.2	Block Diagram	
4.3	Registers Controlling the D/A Converters	
4.4	Procedure for Operating the D/A Converters	
4.5	Notes on Using D/A Converters	
5. Lov	w-Pass Filter	
5.1	Overview of Low-Pass Filter Features	
5.2	Block Diagram	
5.3	Registers Controlling the Low-Pass Filter	
5.4	Procedure for Operating the Low-Pass Filter	69
6. Hig	gh-Pass Filter	
6.1	Overview of High-Pass Filter Features	
6.2	Block Diagram	
6.3	Registers Controlling the High-Pass Filter	
6.4	Procedure for Operating the High-Pass Filter	
7. Ter	mperature Sensor	74
7.1	Overview of Temperature Sensor Features	
7.2	Block Diagram	
7.3	Registers Controlling the Temperature Sensor	
7.4	Procedure for Operating the Temperature Sensor	
8. Vai	riable Output Voltage Regulator	77
8.1	Overview of Variable Output Voltage Regulator Features	
8.2	Block Diagram	
8.3	Registers Controlling the Variable Output Voltage Regulator	
8.4	Procedure for Operating the Variable Output Voltage Regulator	

RENESAS

RAA730300

9. SPI		
9.1	Overview of SPI Features	81
9.2	SPI Communication	
10. Res	set	
10.1	Overview of Reset Feature	
10.2	Registers Controlling the Reset Feature	
11. Ele	ctrical Specifications	
11.1	Absolute Maximum Ratings Operating Condition	88
11.2	-	
11.2	Operating Condition	89
11.2	Supply Current Characteristics	
	Operating Condition Supply Current Characteristics Electrical Specifications of Each Block	

1. Pin Configuration

1.1 Pin Layout

48-pin plastic LQFP (fine pitch) (7 \times 7)

Cautions 1. Make the potential of AGND1, AGND2, AGND3, AGND4, and DGND the same.

- 2. Make the potential of AVDD1, AVDD2, AVDD3, and DVDD the same.
- 3. Connect the LDO_OUT pin to AGND3 via a capacitor (1.0 $\mu F:$ recommended).
- 4. Connect the DAC4_OUT/VREFIN4 pin to AGND4 via a capacitor (470 pF: recommended).
- 5. Connect the I.C pin to AGND3.
- 6. Connect the TEST pin to AGND4.

1.2 Block Diagram

1.3 Pin Functions

Table 1-1.	Pin Functions	(1/2)
------------	----------------------	-------

Pin No.	p. Pin Name I/O Pin Function		Pin Functions	
1	AV _{DD3}	_	Power supply pin for low-pass filter, high-pass filter and D/A converter Ch4	
2	SC_IN	Input	Input pin for filter signal processing	
3	TEST	_	TEST pin	
4	AMP5_OUT	Output	General-purpose operational amplifier Ch2 output pin	
5	AGND2	-	GND pin for configurable amplifier channels Ch1 to Ch3,general-purpose operational amplifiers channels Ch1 to Ch2, D/A converter channels Ch1 to Ch3, Ch5 to Ch7, variable output voltage regulator and temperature sensor	
6	AMP5_INN	Input	Pin for inputting inverted signal to general-purpose operational amplifier Ch2	
7	AMP5_INP	Input	Pin for inputting non-inverted signal to general-purpose operational amplifier Ch2	
8	MPXIN61	Input	Multiplexer 6 input pin 1	
9	MPXIN51	Input	Multiplexer 5 input pin 1	
10	MPXIN60	Input	Multiplexer 6 input pin 0	
11	MPXIN50	Input	Multiplexer 5 input pin 0	
12	AMP3_OUT	Output	Configurable amplifier Ch3 output pin	
13	DAC3_OUT/ VREFIN3	Output/ input	D/A converter Ch3 output pin/ configurable amplifier Ch3 reference voltage input pin	
14	AMP2_OUT	Output	Configurable amplifier Ch2 output pin	
15	AGND1	-	GND pin for configurable amplifier channels Ch1 to Ch3, general-purpose operational amplifiers channels Ch1 to Ch2, D/A converter channels Ch1 to Ch3, Ch5 to Ch7, variable output voltage regulator and temperature sensor	
16	AMP1_OUT	Output	Configurable amplifier Ch1 output pin	
17	AVdd1	-	Power supply pin for configurable amplifier channels Ch1 to Ch3, general-purpose operational amplifiers channels Ch1 to Ch2, D/A converter channels Ch1 to Ch3, Ch5 to Ch7, variable output voltage regulator and temperature sensor.	
18	DAC2_OUT/ VREFIN2	Output/ input	D/A converter Ch2 output pin/ configurable amplifier Ch2 reference voltage input pin	
19	DAC1_OUT/ VREFIN1	Output/ input	D/A converter Ch1 output pin/ configurable amplifier Ch1 reference voltage input pin	
20	MPXIN41	Input	Multiplexer 4 input pin 1	
21	MPXIN31	Input	Multiplexer 3 input pin 1	
22	MPXIN40	Input	Multiplexer 4 input pin 0	
23	MPXIN30	Input	Multiplexer 3 input pin 0	
24	MPXIN21	Input	Multiplexer 2 input pin 1	
25	MPXIN11	Input	Multiplexer 1 input pin 1	
26	MPXIN20	Input	Multiplexer 2 input pin 0	
27	MPXIN10	Input	Multiplexer 1 input pin 0	
28	AGND3	-	GND pin for configurable amplifier channels Ch1 to Ch3, general-purpose operational amplifiers channels Ch1 to Ch2, D/A converter channels Ch1 to Ch3, Ch5 to Ch7, variable output voltage regulator and temperature sensor	
29	I.C	_	-	
30	AVdd2	-	Power supply pin for configurable amplifier channels Ch1 to Ch3, general-purpose operational amplifiers channels Ch1 to Ch2, D/A converter channels Ch1 to Ch3, Ch5 to Ch7, variable output voltage regulator and temperature sensor	

Table 1-1. Pin Functions (2/

Pin No.	Pin Name	I/O	Pin Functions	
31	LDO_OUT	Output	Variable output voltage regulator output pin	
32	AMP4_OUT	Output	General-purpose operational amplifier Ch1 output pin	
33	AMP4_INN	Input	Pin for inputting inverted signal to general-purpose operational amplifier Ch1	
34	AMP4_INP	Input	Pin for inputting non-inverted signal to general-purpose operational amplifier Ch1	
35	TEMP_OUT	Output	Temperature sensor output pin	
36	RESET	Input	External reset input pin	
37	DVdd	-	Power supply pin for SPI	
38	SCLK	Input	Serial clock input pin for SPI	
39	SDO	Output	Serial data output pin for SPI	
40	SDI	Input	Serial data input pin for SPI	
41	CS	Input	Chip select input pin for SPI	
42	DGND	-	GND pin for SPI	
43	DAC4_OUT/ VREFIN4	Output/ input	D/A converter Ch4 output pin and pin for inputting reference voltage to low-pass filter, high-pass filter, and general-purpose operational amplifier Ch2	
44	HPF_OUT	Output	High-pass filter output pin	
45	CLK_HPF	Input	Pin for inputting high-pass filter control clock	
46	CLK_LPF	Input	Pin for inputting low-pass filter control clock	
47	AGND4	-	GND pin for low-pass filter, high-pass filter and D/A converter Ch4	
48	LPF_OUT	Output	Low-pass filter output pin	

1.4 Connection of Unused Pins

Table 1-2.	Connection of Unused Pins
	connection of chasta i ms

Pin Name	I/O	Recommended Connection of Unused Pins
SC_IN	Input	Directly connect to AGND4.
AMP5_OUT	Output	Leave open.
AMP5_INN	Input	Directly connect to AGND1.
AMP5_INP	Input	
MPXIN61	Input	
MPXIN51	Input	
MPXIN60	Input	
MPXIN50	Input	
AMP3_OUT	Output	Leave open.
DAC3_OUT/VREFIN3	Output/input	
AMP2_OUT	Output	
AMP1_OUT	Output	
DAC2_OUT/VREFIN2	Output/input	
DAC1_OUT/VREFIN1	Output/input	
MPXIN41	Input	Directly connect to AGND1.
MPXIN31	Input	
MPXIN40	Input	
MPXIN30	Input	
MPXIN21	Input	
MPXIN11	Input	
MPXIN20	Input	
MPXIN10	Input	
AMP4_OUT	Output	Leave open.
AMP4_INN	Input	Directly connect to AGND1.
AMP4_INP	Input	
TEMP_OUT	Output	Leave open.
SCLK	Input	Connect to Ground. ^{Note}
SDO	Output	Leave open.
SDI	Input	Connect to Ground. ^{Note}
CS	Input	
DAC4_OUT/VREFIN4	Output/input	Leave open.
HPF_OUT	Output	
CLK_HPF	Input	
CLK_LPF	Input	
LPF_OUT	Output	
LDO_OUT	Output	
RESET	Input	Connect to DV _{DD} directly or via a resistor.

Note Ground means the same electrical potential as AGND1, AGND2, AGND3, AGND4 and DGND.

1.5 Pin I/O Circuits

Pin Name	Equivalent Circuit	Pin Name	Equivalent Circuit
RESET		MPXIN10	
		MPXIN11	
		MPXIN20	
		MPXIN21	1
		MPXIN30	
		MPXIN31	
		MPXIN40	IN
		MPXIN41	
	Schmitt-triggered input with hysteresis characteristics	MPXIN50	
		MPXIN51	
		MPXIN60	
		MPXIN61	
		SC_IN	
CLK_LPF		SCLK	
CLK_HPF		SDI	
		CS	DVdd
	Schmitt-triggered input with hysteresis characteristics		
	IN O		IN O Schmitt-triggered input with hysteresis characteristics

Figure 1-1. Pin I/O Circuit Type (1/4)

Pin Name	Equivalent Circuit	Pin Name	Equivalent Circuit
LPF_OUT HPF_OUT	AVDD3 AVDD3 COUT AGND4	DAC1_OUT/ VREFIN1 DAC2_OUT/ VREFIN2 DAC3_OUT/ VREFIN3	AV _{DD1} AV _{DD1} O IN/OUT AGND1
LDO_OUT	AVooz OUTO AGND3 AGND3	DAC4_OUT/ VREFIN4	AV _{DD3} AV _{DD3} OIN/OUT AGND4 AGND4

Figure 1-1.	Pin I/O Circuit Type (2/4)
-------------	----------------------------

Figure 1-1. Pin I/O Circuit Type (3/4)

Pin Name	Equivalent Circuit	Pin Name	Equivalent Circuit
SDO	DVoo UVoo UVoo UVoo UVoo UVoo UVoo UVoo	AMP4_INP	AVDD2 AVDD2 INO INO INO AGND1
AMP4_INN AMP5_INN	AVDD1 INO+IF INO	AMP5_INP	AVDD1

Figure 1-1. Pin I/O Circuit Type (4/4)

2. Configurable Amplifiers

The RAA730300 has three on-chip configurable amplifier channels.

2.1 Overview of Configurable Amplifier Features

By specifying settings in the SPI control registers, the configurable amplifiers can be used to realize the following features:

- Single-channel operation
 - Non-inverting amplifier
 - The gain can be specified between 9.5 dB and 40.1 dB in 18 steps
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
 - Inverting amplifier
 - The gain can be specified between 6 dB and 40 dB in 18 steps
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
 - Differential amplifier
 - The gain can be specified between 6 dB and 40 dB in 18 steps
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
 - Transimpedance amplifier
 - The feedback resistance can be specified between 20 k Ω and 640 k Ω in 6 steps
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
 - General-purpose operational amplifier
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
- Multiple-channel operation
 - Instrumentation amplifier
 - The gain can be specified between 15.5 dB and 33.5 dB in 10 steps
 - Four operating modes are available
 - Includes an input mode switching function
 - Includes a power-off function
- <R> And also, the output signal from D/A converter Ch n (n = 1 to 3, 5 to 7) can be used as the reference voltage for each configurable amplifier. If D/A converters are powered off, the external reference voltage is to be input to DACn_OUT/VREFINn (n = 1 to 3) pin. For details about use of D/A converter, see **4.** D/A Converter.

2.2 Block Diagram

Figure 2-1. Block Diagram of Configurable Amplifier Ch1

<R>

Figure 2-2. Block Diagram of Configurable Amplifier Ch2

Figure 2-3. Block Diagram of Configurable Amplifier Ch3

2.3 Registers Controlling the Configurable Amplifiers

The configurable amplifiers are controlled by the following 10 registers:

- Configuration register 1 (CONFIG1)
- Configuration register 2 (CONFIG2)
- MPX setting register 1 (MPX1)
- MPX setting register 2 (MPX2)
- Gain control register 1 (GC1)
- Gain control register 2 (GC2)
- Gain control register 3 (GC3)
- AMP operation mode control register (AOMC)
- Power control register 1 (PC1)
- Input mode control register (IMS)

(1) Configuration register 1 (CONFIG1)

This register is used to turn on or off each switch of configurable amplifier channels Ch1 and Ch2. Reset signal input sets this register to 88H.

Address: 00H After reset: 88H R/W

	7	6	5	4	3	2	1	0
CONFIG1	SW10	SW11	SW12	SW13	SW20	SW21	SW22	SW23
	SW10	Control of SW10						
	0	Turn off SW1	0.					
	1	Turn on SW1	0.					

SW11	Control of SW11
0	Turn off SW11.
1	Turn on SW11.

SW12	Control of SW12
0	Turn off SW12.
1	Turn on SW12.

SW13	Control of SW13
0	Turn off SW13.
1	Turn on SW13.

SW20	Control of SW20
0	Turn off SW20.
1	Turn on SW20.

SW21	Control of SW21
0	Turn off SW21.
1	Turn on SW21.

SW22	Control of SW22
0	Turn off SW22.
1	Turn on SW22.

SW23	Control of SW23
0	Turn off SW23.
1	Turn on SW23.

(2) Configuration register 2 (CONFIG2)

This register is used to turn on or off each switch of configurable amplifier channels Ch1 to Ch3. Reset signal input sets this register to 80H.

Address: 01H After reset: 80H R/W

	7	6	5	4	3	2	1	0
CONFIG2	SW30	SW31	SW32	SW33	0	SW02	SW01	SW00

SW30	Control of SW30
0	Turn off SW30.
1	Turn on SW30.

SW31	Control of SW31
0	Turn off SW31.
1	Turn on SW31.

SW32	Control of SW32
0	Turn off SW32.
1	Turn on SW32.

SW33	Control of SW33
0	Turn off SW33.
1	Turn on SW33.

SW02	Control of SW02
0	Turn off SW02.
1	Turn on SW02.

SW01	Control of SW01
0	Turn off SW01.
1	Turn on SW01.

SW00	Control of SW00			
0	Turn off SW00.			
1	Turn on SW00.			
1	Turn on SW00.			

Remark Bit 3 can be set to 1, but this has no effect on the function.

(3) MPX setting register 1 (MPX1)

This register is used to control MPX1, MPX2, MPX3, and MPX4. This register is used to select the signal input to configurable amplifier channels Ch1 and Ch2. Reset signal input clears this register to 00H.

Address: 03H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX1	MPX11	MPX10	MPX21	MPX20	MPX31	MPX30	MPX41	MPX40

MPX11	MPX10	Source of configurable amplifier Ch1 inverted input	
0	0	MPXIN10 pin	
0	1	MPXIN11 pin	
1	0	D/A converter Ch5 output signal	
1	1	Open pin	

MPX21	MPX20	Source of configurable amplifier Ch1 non-inverted input	
0	0	MPXIN20 pin	
0	1	MPXIN21 pin	
1	0	/A converter Ch5 output signal	
1	1	Open pin	

MPX31	MPX30	Source of configurable amplifier Ch2 inverted input
0	0	MPXIN30 pin
0	1	MPXIN31 pin
1	0	D/A converter Ch6 output signal
1	1	Open pin

MPX41	MPX40	Source of configurable amplifier Ch2 non-inverted input		
0	0	MPXIN40 pin		
0	1	IPXIN41 pin		
1	0	/A converter Ch6 output signal		
1	1	Open pin		

(4) MPX setting register 2 (MPX2)

This register is used to control MPX5 and MPX6. This register is used to select the signal input to configurable amplifier Ch3. Reset signal input clears this register to 00H.

Address: 04H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX2	0	MPX52	MPX51	MPX50	0	MPX62	MPX61	MPX60

MPX52	MPX51	MPX50	Source of configurable amplifier Ch3 inverted input	
0	0	0	MPXIN50 pin	
0	0	1	MPXIN51 pin	
0	1	0	Configurable amplifier Ch1 output signal	
0	1	1	Configurable amplifier Ch2 output signal	
1	0	0	D/A converter Ch7 output signal	
Other than a	Other than above		Setting prohibited	

MPX62	MPX61	MPX60	Source of configurable amplifier Ch3 non-inverted input
0	0	0	MPXIN60 pin
0	0	1	MPXIN61 pin
0	1	0	Output signal of configurable amplifier Ch1
0	1	1	Configurable amplifier Ch2 output signal
1	0	0	D/A converter Ch7 output signal
Other than a	bove		Setting prohibited

Remark Bits 7 and 3 can be set to 1, but this has no effect on the function.

(5) Gain control register 1 (GC1)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch1.

The value to specify depends on the configuration of configurable amplifier Ch1.

When using configurable amplifier channels Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) to 00H.

Reset signal input clears this register to 00H.

Address: 06H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC1	0	0	0	AMPG14	AMPG13	AMPG12	AMPG11	AMPG10

Table 2-1	Gain of Configurable Amplifier Ch1 (Non-Inverting Amplifier)
1 abic 2-1.	Gain of Configurable Amplifier Chi (100-myerting Amplifier)

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Gain of Configurable Amplifier Ch1 (Typ.)
0	0	0	0	0	9.5 dB
0	0	0	0	1	10.9 dB
0	0	0	1	0	12.4 dB
0	0	0	1	1	14.0 dB
0	0	1	0	0	15.6 dB
0	0	1	0	1	17.3 dB
0	0	1	1	0	19.0 dB
0	0	1	1	1	20.8 dB
0	1	0	0	0	22.7 dB
0	1	0	0	1	24.5 dB
0	1	0	1	0	26.4 dB
0	1	0	1	1	28.3 dB
0	1	1	0	0	30.3 dB
0	1	1	0	1	32.2 dB
0	1	1	1	0	34.2 dB
0	1	1	1	1	36.1 dB
1	0	0	0	0	38.1 dB
1	0	0	0	1	40.1 dB
Other than a	bove				Setting prohibited

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Gain of Configurable Amplifier Ch1 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
Other than a	bove				Setting prohibited

 Table 2-2.
 Gain of Configurable Amplifier Ch1 (Inverting Amplifier and Differential Amplifier)

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Feedback Resistance of Configurable Amplifier Ch1 (Typ.)	
0	0	0	0	0	20 kΩ	
0	0	0	0	1		
0	0	0	1	0		
0	0	0	1	1	40 kΩ	
0	0	1	0	0		
0	0	1	0	1		
0	0	1	1	0	80 kΩ	
0	0	1	1	1		
0	1	0	0	0		
0	1	0	0	1	160 kΩ	
0	1	0	1	0		
0	1	0	1	1		
0	1	1	0	0	320 kΩ	
0	1	1	0	1		
0	1	1	1	0		
0	1	1	1	1	640 kΩ	
1	0	0	0	0		
1	0	0	0	1		
Other than a	bove				Setting prohibited	

 Table 2-3.
 Feedback Resistance of Configurable Amplifier Ch1 (Transimpedance Amplifier)

(6) Gain control register 2 (GC2)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch2.

The value to specify depends on the configuration of configurable amplifier Ch2.

When using configurable amplifier channels Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 2 (GC2) to 00H.

Reset signal input clears this register to 00H.

Address: 07H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC2	0	0	0	AMPG24	AMPG23	AMPG22	AMPG21	AMPG20

 Table 2-4.
 Gain of Configurable Amplifier Ch2 (Non-Inverting Amplifier)

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Gain of Configurable Amplifier Ch2 (Typ.)
0	0	0	0	0	9.5 dB
0	0	0	0	1	10.9 dB
0	0	0	1	0	12.4 dB
0	0	0	1	1	14.0 dB
0	0	1	0	0	15.6 dB
0	0	1	0	1	17.3 dB
0	0	1	1	0	19.0 dB
0	0	1	1	1	20.8 dB
0	1	0	0	0	22.7 dB
0	1	0	0	1	24.5 dB
0	1	0	1	0	26.4 dB
0	1	0	1	1	28.3 dB
0	1	1	0	0	30.3 dB
0	1	1	0	1	32.2 dB
0	1	1	1	0	34.2 dB
0	1	1	1	1	36.1 dB
1	0	0	0	0	38.1 dB
1	0	0	0	1	40.1 dB
Other than a	bove				Setting prohibited

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Gain of Configurable Amplifier Ch2 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
Other than a	bove				Setting prohibited

 Table 2-5.
 Gain of Configurable Amplifier Ch2 (Inverting Amplifier and Differential Amplifier)

AMPG24	AMPG23	AMPG22	AMPG21	AMPG20	Feedback Resistance of Configurable Amplifier Ch2 (Typ.)	
0	0	0	0	0	20 kΩ	
0	0	0	0	1		
0	0	0	1	0		
0	0	0	1	1	40 kΩ	
0	0	1	0	0		
0	0	1	0	1		
0	0	1	1	0	80 kΩ	
0	0	1	1	1		
0	1	0	0	0		
0	1	0	0	1	160 kΩ	
0	1	0	1	0		
0	1	0	1	1		
0	1	1	0	0	320 kΩ	
0	1	1	0	1		
0	1	1	1	0		
0	1	1	1	1	640 kΩ	
1	0	0	0	0]	
1	0	0	0	1		
Other than a	bove		·		Setting prohibited	

 Table 2-6.
 Feedback Resistance of Configurable Amplifier Ch2 (Transimpedance Amplifier)

(7) Gain control register 3 (GC3)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch3.

The value to specify depends on the configuration of configurable amplifier Ch3.

When using configurable amplifier channels Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) and gain control register 2 (GC2) to 00H, respectively.

Reset signal input clears this register to 00H.

Address: 08H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC3	0	0	0	AMPG34	AMPG33	AMPG32	AMPG31	AMPG30

Table 2-7.	Gain of Configurable Amplifier	Ch3 (Non-Inverting Amplifier)
------------	--------------------------------	-------------------------------

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Gain of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	9.5 dB
0	0	0	0	1	10.9 dB
0	0	0	1	0	12.4 dB
0	0	0	1	1	14.0 dB
0	0	1	0	0	15.6 dB
0	0	1	0	1	17.3 dB
0	0	1	1	0	19.0 dB
0	0	1	1	1	20.8 dB
0	1	0	0	0	22.7 dB
0	1	0	0	1	24.5 dB
0	1	0	1	0	26.4 dB
0	1	0	1	1	28.3 dB
0	1	1	0	0	30.3 dB
0	1	1	0	1	32.2 dB
0	1	1	1	0	34.2 dB
0	1	1	1	1	36.1 dB
1	0	0	0	0	38.1 dB
1	0	0	0	1	40.1 dB
Other than a	bove				Setting prohibited

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Gain of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	6 dB
0	0	0	0	1	8 dB
0	0	0	1	0	10 dB
0	0	0	1	1	12 dB
0	0	1	0	0	14 dB
0	0	1	0	1	16 dB
0	0	1	1	0	18 dB
0	0	1	1	1	20 dB
0	1	0	0	0	22 dB
0	1	0	0	1	24 dB
0	1	0	1	0	26 dB
0	1	0	1	1	28 dB
0	1	1	0	0	30 dB
0	1	1	0	1	32 dB
0	1	1	1	0	34 dB
0	1	1	1	1	36 dB
1	0	0	0	0	38 dB
1	0	0	0	1	40 dB
Other than a	bove				Setting prohibited

 Table 2-8.
 Gain of Configurable Amplifier Ch3 (Inverting Amplifier and Differential Amplifier)

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Feedback Resistance of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	20 kΩ
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	40 kΩ
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	80 kΩ
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	160 kΩ
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	320 kΩ
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	640 kΩ
1	0	0	0	0	1
1	0	0	0	1]
Other than a	bove				Setting prohibited

 Table 2-9.
 Feedback Resistance of Configurable Amplifier Ch3 (Transimpedance Amplifier)

AMPG34	AMPG33	AMPG32	AMPG31	AMPG30	Gain of Configurable Amplifier Ch3 (Typ.)
0	0	0	0	0	15.5 dB
0	0	0	0	1	17.5 dB
0	0	0	1	0	19.5 dB
0	0	0	1	1	21.5 dB
0	0	1	0	0	23.5 dB
0	0	1	0	1	25.5 dB
0	0	1	1	0	27.5 dB
0	0	1	1	1	29.5 dB
0	1	0	0	0	31.5 dB
0	1	0	0	1	33.5 dB
Other than a	bove				Setting prohibited

 Table 2-10. Gain of Configurable Amplifier Ch3 (Instrumentation Amplifier)

(8) AMP operation mode control register (AOMC)

This register is used to specify the operating mode of configurable amplifiers Ch1 to Ch3. Reset signal input clears this register to 00H.

Address: 09H After reset: 00H R/W

	7	6	5	4	3	2	1	0
AOMC	0	0	CC31	CC30	CC21	CC20	CC11	CC10

CC31	CC30	Operating mode of configurable amplifier Ch3
0	0	High-speed mode
0	1	Mid-speed mode 2
1	0	Mid-speed mode 1
1	1	Low-speed mode

CC21	CC20	Operating mode of configurable amplifier Ch2
0	0	High-speed mode
0	1	Mid-speed mode 2
1	0	Mid-speed mode 1
1	1	Low-speed mode

CC11	CC10	Operating mode of configurable amplifier Ch1
0	0	High-speed mode
0	1	Mid-speed mode 2
1	0	Mid-speed mode 1
1	1	Low-speed mode

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

RAA730300

<R> (9) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers, general-purpose operational amplifiers, and the D/A converters.

Use this register to stop unused functions to reduce power consumption and noise.

When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 2 to 0) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC1	DAC4OF	DAC3OF	DAC2OF	DAC1OF	AMP4OF	AMP3OF	AMP2OF	AMP1OF

AMP3OF	Operation of configurable amplifier Ch3
0	Stop operation of configurable amplifier Ch3.
1	Enable operation of configurable amplifier Ch3.

AMP2OF	Operation of configurable amplifier Ch2
0	Stop operation of configurable amplifier Ch2.
1	Enable operation of configurable amplifier Ch2.

AMP10F	Operation of configurable amplifier Ch1
0	Stop operation of configurable amplifier Ch1.
1	Enable operation of configurable amplifier Ch1.

(10) Input mode control register (IMS)

This register is used to specify the input mode of the configurable amplifiers, general-purpose operational amplifiers, the low-pass filter, and high-pass filter.

When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 2 to 0).

Address: 14H After reset: 00H R/W

IMS3	Input mode of configurable amplifier Ch3			
0	Rail-to-rail input mode			
1	P-ch single-ended input mode			

IMS2	Input mode of configurable amplifier Ch2
0	Rail-to-rail input mode
1	P-ch single-ended input mode

IMS1	Input mode of configurable amplifier Ch1
0	Rail-to-rail input mode
1	P-ch single-ended input mode
Remark	Bits 7 and 6 can be set to 1, but this has no effect on the function.

2.4 Procedure for Operating the Configurable Amplifiers

(1) **Procedure when using the amplifiers as non-inverting amplifiers**

When using the configurable amplifiers as non-inverting amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (non-inverting amplifier)

Example of procedure for stopping configurable amplifier Ch1 (non-inverting amplifier)

Example of procedure for starting configurable amplifier Ch2 (non-inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (non-inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch3 (non-inverting amplifier)

(2) Procedure when using the amplifiers as inverting amplifiers

When using the configurable amplifiers as inverting amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch1 (inverting amplifier)

Example of procedure for starting configurable amplifier Ch2 (inverting amplifier)

Example of procedure for stopping configurable amplifier Ch2 (inverting amplifier)

Example of procedure for starting configurable amplifier Ch3 (inverting amplifier)

Example of procedure for stopping configurable amplifier Ch3 (inverting amplifier)

(3) Procedure when using the amplifiers as differential amplifiers

When using the configurable amplifiers together as a differential amplifier, follow the procedures below to start and stop the amplifier.

Example of procedure for starting configurable amplifier Ch1 (differential amplifier)

Example of procedure for stopping configurable amplifier Ch1 (differential amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (differential amplifier)

Example of procedure for starting configurable amplifier Ch3 (differential amplifier)

Example of procedure for stopping configurable amplifier Ch3 (differential amplifier)

(4) Procedure when using the amplifiers as a transimpedance amplifier

When using the configurable amplifiers as transimpedance amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (transimpedance amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch1 (transimpedance amplifier)

Example of procedure for starting configurable amplifier Ch2 (transimpedance amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (transimpedance amplifier)

Example of procedure for starting configurable amplifier Ch3 (transimpedance amplifier)

Example of procedure for stopping configurable amplifier Ch3 (transimpedance amplifier)

(5) Procedure when using the amplifiers as a general-purpose operational amplifier

When using the configurable amplifiers as general-purpose operational amplifiers, follow the procedures below to start and stop the amplifiers.

Example of procedure for starting configurable amplifier Ch1 (general-purpose operational amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch1 (general-purpose operational amplifier)

Example of procedure for starting configurable amplifier Ch2 (general-purpose operational amplifier)

Example of procedure for stopping configurable amplifier Ch2 (general-purpose operational amplifier)

Start Specify the circuit configuration of Set CONFIG2 register configurable amplifier Ch3. (SW30, SW31, SW32, SW33 = 0, 1, 1, 0) Set the input pins. Set MPX2 register (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 0, 0, *, 0, 0, *) Specify the input mode. (IMS3 = *) Set IMS register Specify the amplifier operation Set AOMC register mode. (CC31, CC30 = *, *) Start operation of configurable Set PC1 register amplifier Ch3. (AMP3OF = 1) **Operation starts** Remark *: don't care

Example of procedure for starting configurable amplifier Ch3 (general-purpose operational amplifier)

Example of procedure for stopping configurable amplifier Ch3 (general-purpose operational amplifier)

(6) Procedure when using the amplifiers as an instrumentation amplifier

When using the configurable amplifiers together as an instrumentation amplifier, follow the procedures below to start and stop the amplifier.

Example of procedure for starting configurable amplifiers (instrumentation amplifier)

Star	t	
Set CONFIG	1 register	Specify the circuit configuration of configurable amplifier channels Ch1 and Ch2. (SW10, SW11, SW12, SW13, SW20, SW21, SW22, SW23 = 1, 0, 1, 0, 1, 0, 1, 0)
Set CONFIG:	2 register	Specify the circuit configuration and switches of configurable amplifier Ch3. (SW30, SW31, SW32, SW33, SW02, SW01, SW00 = 1, 0, 0, 1, 0, 0, 1)
Set MPX1	register	Set the input pins. of configurable amplifier channels Ch1 and Ch2. (MPX11, MPX10, MPX21, MPX20, MPX31, MPX30, MPX41, MPX40 = 1, 1, 0, *, 1, 1, 0, *)
Set MPX2	register	Set the input pins. of configurable amplifier Ch3. (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 0, 1, 0, 0, 1, 1)
Set IMS r	egister	Specify the input mode. (IMS3, IMS2, IMS1 = $*, *, *$)
Set AOMC	register	Specify the amplifier operation mode. (CC31, CC30, CC21, CC20, CC11, CC10 = *, *, *, *, *, *, *)
Set GC1 rd	egister	Specify the gain of configurable amplifier Ch1. (GC1 = 00H)
Set GC2 r	egister	Specify the gain of configurable amplifier Ch2. (GC2 = 00H)
Set GC3 r	egister	Specify the gain of configurable amplifier Ch3 (GC3 =**H)
Set PC1 re	egister	Start operation of configurable amplifier channels Ch1 to Ch3. (AMP1OF, AMP2OF, AMP3OF = 1, 1, 1)
Operation	starts	

Example of procedure for stopping configurable amplifiers (instrumentation amplifier)

3. General-Purpose Operational Amplifier

The RAA730300 has two on-chip general-purpose operational amplifier channels.

<R> 3.1 Overview of General-Purpose Operational Amplifier Features

The general-purpose operational amplifiers have the following features:

- Includes an input mode switching function
- Includes a power-off function.

And also, the output signal from D/A converter Ch4 can be used as the reference voltage for a general-purpose operational amplifier Ch2. If D/A converter Ch4 is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4. D/A Converter**.

3.2 Block Diagram

Figure 3-1. Block Diagram of General-Purpose Operational Amplifier Ch1

<R>

Figure 3-2.

2. Block Diagram of General-Purpose Operational Amplifier Ch2

<R> 3.3 Registers Controlling the General-Purpose Operational Amplifier

The general-purpose operational amplifier is controlled by the following 4 registers:

- Power control register 1 (PC1)
- Power control register 2 (PC2)
- MPX setting register 3 (MPX3)
- Input mode control register (IMS)

(1) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers, general-purpose operational amplifiers, and D/A converters. Use this register to stop unused functions to reduce power consumption and noise.

When using a general-purpose operational amplifier Ch1, be sure to set the control bit that corresponds to the channel (bit 3) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

AMP4OF	Operation of general-purpose operational amplifier Ch1			
0	Stop operation of general-purpose operational amplifier Ch1.			
1	Enable operation of general-purpose operational amplifier Ch1.			

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, general-purpose operational amplifiers, the low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using general-purpose operational amplifier Ch2, be sure to set the control bit that corresponds to the channel (bit 4) to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

AMP5OF	Operation of general-purpose operational amplifier Ch2			
0	Stop operation of general-purpose operational amplifier Ch2.			
1	Enable operation of general-purpose operational amplifier Ch2.			

(3) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX8, MPX9, and MPX10.

This register is used to turn on or off the reference voltage input to general-purpose operational amplifier Ch2. Reset signal input clears this register to 00H.

Address: 05H After reset: 00H R/W 7 6 0 5 4 3 2 1 MPX3 MPX70 0 0 SCF2 SCF1 SCF0 SW53 MPX71 Γ SW53 Control of SW53

50055	Control of SW35
0	Turn off SW53.
1	Turn on SW53.
D a sea a sela	Dite 7 and 0 and be not to 4, but this has no offert on the function

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

Input mode control register (IMS) (4)

This register is used to specify the input mode of the configurable amplifiers, general-purpose operational amplifiers, the low-pass filter, and high-pass filter.

When using one of general-purpose operational amplifier channels Ch1 and Ch2, be sure to set the control bit that corresponds to the channel (bits 4 and 3).

Address: 14H After reset: 00H R/W

IMS5	Input mode of general-purpose operational amplifier Ch2	
0	Rail-to-rail input mode	
1	P-ch single-ended input mode	

IMS4	Input mode of general-purpose operational amplifier Ch1	
0	Rail-to-rail input mode	
1	1 P-ch single-ended input mode	
Remark	Bits 7 and 6 can be set to 1, but this has no effect on the function	

Remark and 6 can be set to 1, but this has no effect on the function.

3.4 Procedure for Operating the General-Purpose Operational Amplifier

Follow the procedures below to start and stop the general-purpose operational amplifier.

Example of procedure for starting the general-purpose operational amplifier Ch1

Example of procedure for stopping the general-purpose operational amplifier Ch1

Example of procedure for starting the general-purpose operational amplifier Ch2

Example of procedure for stopping the general-purpose operational amplifier Ch2

4. D/A Converters

The RAA730300 has seven on-chip D/A converter channels.

Channel	D/A Converter Output Pins
1 to 4	Provided
5 to 7	Not provided Note

Note Output pins are not provided although the channels are incorporated.

<R> 4.1 Overview of D/A Converter Features

The D/A converters are 8-bit resolution converters that convert digital input signals into analog signals. The D/A converters have the following features:

- 8-bit resolution (× 7 ch: Ch1 to Ch7)
- R-2R ladder method
- Analog output voltage: Output voltage can be calculated with the equation shown below.
 Output voltage = {(Reference voltage upper limit Reference voltage lower limit) × m/256}

+ Reference voltage lower limit (m = 0 to 255: Value set to DACnC register)

- Controls the reference voltage for the configurable amplifier channels, general-purpose operational amplifier Ch2, low-pass filter, and high-pass filter
- Includes a power-off function.

Remark n = 1 to 7

4.2 Block Diagram

Figure 4-2. Block Diagram of D/A Converter Channels Ch5 to Ch7

Remark n = 5 to 7

4.3 Registers Controlling the D/A Converters

The D/A converters are controlled by the following 4 registers:

- DAC reference voltage control register (DACRC)
- DAC control registers 1, 2, 3, 4, 5, 6, 7 (DAC1C, DAC2C, DAC3C, DAC4C, DAC5C, DAC6C, DAC7C)
- Power control register 1 (PC1)
- Power control register 2 (PC2)

<R> (1) DAC reference voltage control register (DACRC)

This register is used to specify the upper (VRT) and lower (VRB) limits of the reference voltage for D/A converter channels Ch1 to Ch7.

When selecting the upper limit of the reference voltage, use bits 3 and 2.

When selecting the lower limit of the reference voltage, use bits 1 and 0.

Reset signal input clears this register to 00H.

Address: 0CH After reset: 00H R/W

VRT1	VRT0	Reference voltage upper limit (Typ.)
0	0	AVDD1
0	1	$AV_{DD1} imes 4/5$
1	0	$AV_{DD1} imes 3/5$
1	1	AVDD1

VRB1	VRB0	Reference voltage lower limit (Typ.)
0	0	AGND1
0	1	$AV_{DD1} imes 1/5$
1	0	$AV_{DD1} \times 2/5$
1	1	AGND1

Remark Bits 7 to 4 can be set to 1, but this has no effect on the function.

(2) DAC control registers 1, 2, 3, 4, 5, 6, 7 (DAC1C, DAC2C, DAC3C, DAC4C, DAC5C, DAC6C, DAC7C)

This register is used to specify the analog voltage output from each D/A converter. The output signal from D/A converter can be used as the reference voltage for the configurable amplifier channels, general-purpose operational amplifier Ch2, low-pass filter, and high-pass filter. Reset signal input sets this register to 80H.

Address: 0DH (n = 1), 0EH (n = 2), 0FH (n = 3), 10H (n = 4), 15H (n = 5), 16H (n = 6), 17H (n = 7) After reset: 80H R/W

_	7	6	5	4	3	2	1	0
DACnC	DACn7	DACn6	DACn5	DACn4	DACn3	DACn2	DACn1	DACn0
Dama and d	4 + 7							

Remark1. n = 1 to 7

2. To calculate the output voltage, see 4. 1 Overview of D/A converter features.

(3) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers, the general-purpose operational amplifier, and the D/A converters.

Use this register to stop unused functions to reduce power consumption and noise.

When using one of D/A converter channels Ch1 to Ch4, be sure to set the control bit that corresponds to the channel (bits 7 to 4) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

6 5 2 0 7 4 3 1 DAC4OF DAC3OF DAC2OF DAC10F AMP4OF AMP3OF AMP2OF AMP1OF PC1 DAC4OF **Operation of D/A converter Ch4** . _

DACOOF	Operation of D/A converter Ch2
1	Enable operation of D/A converter Ch4.
0	Stop operation of D/A converter Ch4.

DAC3OF	Operation of D/A converter Ch3	
0	Stop operation of D/A converter Ch3.	
1	Enable operation of D/A converter Ch3.	

DAC2OF	Operation of D/A converter Ch2				
0	top operation of D/A converter Ch2.				
1	Enable operation of D/A converter Ch2.				

DAC10F	Operation of D/A converter Ch1				
0	top operation of D/A converter Ch1.				
1	Enable operation of D/A converter Ch1.				

R02DS0011EJ0110 Rev.1.10 May. 31, 2014

(4) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, the general-purpose operational amplifier, low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using one of D/A converter channels Ch5 to Ch7, be sure to set the control bit that corresponds to the channel (bits 7 to 5) to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	DAC7OF	DAC6OF	DAC5OF	AMP5OF	LPFOF	HPFOF	LDOOF	TEMPOF

DAC7OF	Operation of D/A converter Ch7					
0	Stop operation of D/A converter Ch7.					
1	Enable operation of D/A converter Ch7.					

DAC6OF	Operation of D/A converter Ch6				
0	top operation of D/A converter Ch6.				
1	Enable operation of D/A converter Ch6.				

DAC5OF	Operation of D/A converter Ch5					
0	Stop operation of D/A converter Ch5.					
1	Enable operation of D/A converter Ch5.					

4.4 **Procedure for Operating the D/A Converters**

Follow the procedures below to start and stop the D/A converters.

Example of procedure for starting the D/A converters

Example of procedure for stopping the D/A converters

Remark *: don't care n = 1 to 7

4.5 Notes on Using D/A Converters

Observe the following points when using the D/A converters:

- (1) Only a very small current can flow from the DACn_OUT pin because the output impedance of the D/A converters is high. If the load input impedance is low, insert a follower amplifier between the load and the DACn_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern.
- (2) If inputting an external reference power supply to the VREFINn pin, be sure to set the DACnOF bit to 0.

Remark n = 1 to 4

5. Low-Pass Filter

The RAA730300 has one on-chip switched-capacitor low-pass filter channel.

<R> 5.1 Overview of Low-Pass Filter Features

The low-pass filter has the following features:

- Butterworth characteristics (Q value = 0.702)
- Cutoff frequency (fc) range: 9 Hz to 900 Hz
- External input clock frequency (fclk_LPF) range: $2 \times fc/0.0087 = 2$ kHz to 200 kHz
- Includes a power-off function.

And also, the output signal from D/A converter Ch4 can be used as the reference voltage for low-pass filter. If D/A converter Ch4 is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4. D/A Converter**.

- **Remarks 1.** The internal control clock (fs) of the low-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fs) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_LPF pin.
 - 2. The phase of the signal input to the low-pass filter inverts after passing through the low-pass filter.

5.2 Block Diagram

5.3 Registers Controlling the Low-Pass Filter

The low-pass filter is controlled by the following 3 registers:

- MPX setting register 3 (MPX3)
- Power control register 2 (PC2)
- Input mode control register (IMS)

(1) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX8, MPX9, and MPX10.

When selecting the signal to be input to the filter circuits, use bits 5 and 4.

When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3.

When switching the output signal from MPX7, use bits 1 and 0.

Reset signal input clears this register to 00H.

Address: 05H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	SW53	MPX71	MPX70

SCF2	SCF1	Source of input to filter circuits			
0	0	SC_IN pin			
0	1	MPX7 output signal			
1	0	General-purpose operational amplifier Ch2 output signal			
1	1	Setting prohibited			

SCF0	Specification of the order of filter signal processing					
0	The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter.					
1	The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter.					

MPX71	MPX70	Specification of MPX7 output signal
0	0	Open pin
0	1	Configurable amplifier Ch1 output signal
1	0	Configurable amplifier Ch2 output signal
1	1	Configurable amplifier Ch3 output signal

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, general-purpose operational amplifiers, the low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using the low-pass filter, be sure to set bit 3 to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	DAC7OF	DAC6OF	DAC5OF	AMP5OF	LPFOF	HPFOF	LDOOF	TEMPOF

LPFOF	Operation of low-pass filter				
0	Stop operation of the low-pass filter.				
1	Enable operation of the low-pass filter.				

(3) Input mode control register (IMS)

This register is used to specify the input mode of the configurable amplifiers, general-purpose operational amplifiers, the low-pass filter, and high-pass filter.

When using the low-pass filter or the high-pass filter, be sure to set the control bit that corresponds to the channel (bit 5). Reset signal input clears this register to 00H.

Address: 14H After reset: 00H R/W

	7	6	5	4	3	2	1	0
IMS	0	0	IMS6	IMS5	IMS4	IMS3	IMS2	IMS1

Input mode of low-pass filter and high-pass filter			
Rail-to-rail input mode			
P-ch single-ended input mode			

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

5.4 **Procedure for Operating the Low-Pass Filter**

Follow the procedures below to start and stop the low-pass filter.

Example of procedure for starting the low-pass filter

Remark *: don't care

Example of procedure for stopping the low-pass filter

6. High-Pass Filter

The RAA730300 has one on-chip switched-capacitor high-pass filter channel.

<R> 6.1 Overview of High-Pass Filter Features

The high-pass filter has the following features:

- Butterworth characteristics (Q value = 0.702)
- Cutoff frequency (fc) range: 8 Hz to 800 Hz
- External input clock frequency (fcLK_HPF) range: $2 \times \text{fc} / 0.0074 = 2 \text{ kHz to } 200 \text{ kHz}$
- Includes a power-off function.

And also, the output signal from D/A converter Ch4 can be used as the reference voltage for high-pass filter. If D/A converter Ch4 is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see **4. D/A Converter**.

- **Remarks1.** The internal control clock (fs) of the high-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fs) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_HPF pin.
 - 2. The phase of the signal input to the high-pass filter inverts after passing through the low-pass filter.

6.2 Block Diagram

6.3 Registers Controlling the High-Pass Filter

The high-pass filter is controlled by the following 3 registers:

- MPX setting register 3 (MPX3)
- Power control register 2 (PC2)
- Input mode control register (IMS)

<R> (1) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX8, MPX9, and MPX10.

When selecting the signal to be input to the filter circuits, use bits 5 and 4.

When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3.

When switching the output signal from MPX7, use bits 1 and 0.

Reset signal input clears this register to 00H.

Address: 05H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	SW53	MPX71	MPX70

SCF2	SCF1	Source of input to filter circuits			
0	0	SC_IN pin			
0	1	MPX7 output signal			
1	0	General-purpose operational amplifier Ch2 output signal			
1	1	Setting prohibited			

SCF0	Specification of the order of filter signal processing				
0	The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter.				
1	The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter.				

MPX71	MPX70	Specification of MPX7 output signal			
0	0	Open pin			
0	1	Configurable amplifier Ch1 output signal			
1	0	Configurable amplifier Ch2 output signal			
1	1	Configurable amplifier Ch3 output signal			

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, general-purpose operational amplifiers, the low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using the high-pass filter, be sure to set bit 2 to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	DAC7OF	DAC6OF	DAC5OF	AMP5OF	LPFOF	HPFOF	LDOOF	TEMPOF

HPFOF	Operation of high-pass filter			
0	Stop operation of the high-pass filter.			
1	Enable operation of the high-pass filter.			

(3) Input mode control register (IMS)

This register is used to specify the input mode of the configurable amplifiers, general-purpose operational amplifiers, the low-pass filter, and high-pass filter.

When using the low-pass filter or the high-pass filter, be sure to set the control bit that corresponds to the channel (bit 5). Reset signal input clears this register to 00H.

Address: 14H After reset: 00H R/W

IMS6 Input mode of low-pass filter and high-pass filter				
0	Rail-to-rail input mode			
1	1 P-ch single-ended input mode			
Domark	Pite 7 and 6 can be get to 1, but this has no offect on the function			

Remark Bits 7 and 6 can be set to 1, but this has no effect on the function.

6.4 **Procedure for Operating the High-Pass Filter**

Follow the procedures below to start and stop the high-pass filter.

Example of procedure for starting the high-pass filter

Remark *: don't care

Example of procedure for stopping the high-pass filter

Stop operation of the high-pass filter. (HPFOF = 0)

7. Temperature Sensor

The RAA730300 has one on-chip temperature sensor channel.

7.1 Overview of Temperature Sensor Features

The temperature sensor has the following features:

- Output voltage temperature coefficient: -4 mV/°C (Typ.)
- Includes a power-off function.

7.2 Block Diagram

7.3 Registers Controlling the Temperature Sensor

The temperature sensor is controlled by power control register 2 (PC2).

(1) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, general-purpose operational amplifiers, the low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When selecting the signal to be input to the temperature sensor, be sure to set bit 0 to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	DAC7OF	DAC6OF	DAC5OF	AMP5OF	LPFOF	HPFOF	LDOOF	TEMPOF

TEMPOF	Operation of temperature sensor				
0	Stop operation of the temperature sensor.				
1	Enable operation of the temperature sensor.				

7.4 **Procedure for Operating the Temperature Sensor**

Follow the procedures below to start and stop the temperature sensor.

Example of procedure for starting the temperature sensor

Example of procedure for stopping the temperature sensor

8. Variable Output Voltage Regulator

The RAA730300 has one on-chip variable output voltage regulator channel. This is a series regulator that generates a voltage of 1.8 V (default) from a supplied voltage of 3 V.

8.1 Overview of Variable Output Voltage Regulator Features

The variable output voltage regulator has the following features:

- Output voltage range: 1.8 to 3.1 V (Typ.)
- Output current: 15 mA (Max.)
- Includes a power-off function.

8.2 Block Diagram

8.3 Registers Controlling the Variable Output Voltage Regulator

The variable output voltage regulator is controlled by the following 2 registers:

- LDO control register (LDOC)
- Power control register 2 (PC2)

(1) LDO control register (LDOC)

This register is used to specify the output voltage of the variable output voltage regulator. Reset signal input clears this register to 00H.

Address: 0BH After reset: 00H R/W

	7	6	5	4	3	2	1	0
LDOC	0	0	0	0	LDO3	LDO2	LDO1	LDO0

LDO3	LDO2	LDO1	LDO0	Output Voltage of Variable Output Voltage Regulator (Typ.) ^{Note}
0	0	0	0	1.8 V
0	0	0	1	1.9 V
0	0	1	0	2.0 V
0	0	1	1	2.1 V
0	1	0	0	2.2 V
0	1	0	1	2.3 V
0	1	1	0	2.4 V
0	1	1	1	2.5 V
1	0	0	0	2.6 V
1	0	0	1	2.7 V
1	0	1	0	2.8 V
1	0	1	1	2.9 V
1	1	0	0	3.0 V
1	1	0	1	3.1 V
ther than a	bove	•		Setting prohibited

Note Output voltage is determined in consideration of dropout voltage. **Remark** Bits 7 to 4 can be set to 1, but this has no effect on the function.

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the D/A converters, general-purpose operational amplifiers, the low-pass filter, high-pass filter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using the variable output voltage regulator, be sure to set bit 1 to 1.

Reset signal input clears this register to 00H.

Address: 12H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC2	DAC7OF	DAC6OF	DAC5OF	AMP5OF	LPFOF	HPFOF	LDOOF	TEMPOF

LDOOF	Operation of variable output voltage regulator
0	Stop operation of the variable output voltage regulator.
1	Enable operation of the variable output voltage regulator.

8.4 **Procedure for Operating the Variable Output Voltage Regulator**

Follow the procedures below to start and stop the variable output voltage regulator.

Example of procedure for starting the variable output voltage regulator

Remark *: don't care

Example of procedure for stopping the variable output voltage regulator

9. SPI

9.1 Overview of SPI Features

The SPI is used to allow control from external devices by using clocked communication via four lines: a serial clock line (\overline{SCLK}) , two serial data lines (SDI and SDO), and a chip select input line (\overline{CS}) .

Data transmission/reception:

- 16-bit data unit
- MSB first

Figure 9-1. SPI Configuration Example

<R> Caution After turning on DVDD, be sure to generate external reset by inputting a reset signal to RESET pin before starting SPI communication. For details, see 10 Reset.

9. SPI

9.2 SPI Communication

The SPI transmits and receives data in 16-bit units. Data can be transmitted and received when \overline{CS} is low. Data is transmitted one bit at a time in synchronization with the falling edge of the serial clock, and is received one bit at a time in synchronization with the rising edge of the serial clock. When the R/W bit is 1, data is written to the SPI control register in accordance with the address/data setting after the 16th rising edge of \overline{SCLK} has been detected following the fall of \overline{CS} . The operation specified by the data is then executed. When the R/W bit is 0, the data is output from the register in accordance with the address/data setting in synchronization with the 9th and later falling edges of \overline{SCLK} following the fall of \overline{CS} .

Figure 9-2. SPI Communication Timing

Address	SPI Control Register	R/W	After Reset
00H	Configuration register 1 (CONFIG1)	R/W	88H
01H	Configuration register 2 (CONFIG2)	R/W	80H
03H	MPX setting register 1 (MPX1)	R/W	00H
04H	MPX setting register 2 (MPX2)	R/W	00H
05H	MPX setting register 3 (MPX3)	R/W	00H
06H	Gain control register 1 (GC1)	R/W	00H
07H	Gain control register 2 (GC2)	R/W	00H
08H	Gain control register 3 (GC3)	R/W	00H
09H	9H AMP operation mode control register (AOMC)		00H
0BH	LDO control register (LDOC)	R/W	00H
0CH	DAC reference voltage control register (DACRC)	R/W	00H
0DH	DAC control register 1 (DAC1C)	R/W	80H
0EH	DAC control register 2 (DAC2C)	R/W	80H
0FH	DAC control register 3 (DAC3C)	R/W	80H
10H	DAC control register 4 (DAC4C)	R/W	80H
11H	Power control register 1 (PC1)	R/W	00H
12H	Power control register 2 (PC2)	R/W	00H
13H	Reset control register (RC)	R/W	00H ^{Note}
14H	Input mode control register (IMS)	R/W	00H
15H	DAC control register 5 (DAC5C)	R/W	80H
16H	DAC control register 6 (DAC6C)	R/W	80H
17H	DAC control register 7 (DAC7C)	R/W	80H

Table 9-1. SPI Control Registers

Note The reset control register (RC) is not initialized to 00H by generating internal reset of the reset control register (RC). For details, see **10.** Reset.

<R> 10. Reset

10.1 Overview of Reset Feature

The RAA730300 has an on-chip reset function. The SPI control registers are initialized by reset. A reset can be generated in the following two ways:

- External reset by inputting an external reset signal to the $\overline{\text{RESET}}$ pin
- Internal reset by writing 1 to the RESET bit of the reset control register (RC)

The functions of the external reset and the internal reset are described below.

- After turning on DV_{DD}, be sure to generate external reset by inputting a reset signal to RESET pin before starting SPI communication.
- During reset, each function is shifted to the status shown in Table 10-1. The status of each SPI control register after reset has been acknowledged is shown in Table 10-2. After reset, the status of each pin is shown in Table 10-3.
- External reset is generated when a low-level signal is input to the **RESET** pin. On the other hand, internal reset is generated when 1 is written to the **RESET** bit of the reset control register (**RC**).
- External reset is subsequently cancelled by inputting a high-level signal to **RESET** pin after a low-level signal is input to this pin. On the other hand, internal reset is subsequently cancelled by writing 0 to the RESET bit of the reset control register (RC) after 1 is written to the same bit of this register.

Caution When generating an external reset, input a low-level signal to the **RESET** pin for at least 10 µs.

Function Block	External Reset from RESET Pin	Internal Reset by Reset Control Register (RC)			
Configurable amplifier	Operat	Operation stops.			
General-purpose operational amplifier	Operation stops.				
D/A converter	Operation stops.				
Low-pass filter	Operation stops.				
High-pass filter	Operation stops.				
Temperature sensor	Operation stops.				
Variable output voltage regulator	Operation stops.				
SPI	Operation stops.	Operation is enabled.			

Table 10-2. Statuses of SPI Control Registers After a Reset Is Acknowledged

Address	SPI Control Register	Status After a Res	Status After a Reset Is Acknowledged			
		External Reset	Internal Reset			
00H	Configuration register 1 (CONFIG1)	88H	88H			
01H	Configuration register 2 (CONFIG2)	80H	80H			
03H	MPX setting register 1 (MPX1)	00H	00H			
04H	MPX setting register 2 (MPX2)	00H	00H			
05H	MPX setting register 3 (MPX3)	00H	00H			
06H	Gain control register 1 (GC1)	00H	00H			
07H	Gain control register 2 (GC2)	00H	00H			
08H	Gain control register 3 (GC3)	00H	00H			
09H	AMP operation mode control register (AOMC)	00H	00H			
0BH	LDO control register (LDOC)	00H	00H			
0CH	DAC reference voltage control register (DACRC)	00H	00H			
0DH	DAC control register 1 (DAC1C)	80H	80H			
0EH	DAC control register 2 (DAC2C)	80H	80H			
0FH	DAC control register 3 (DAC3C)	80H	80H			
10H	DAC control register 4 (DAC4C)	80H	80H			
11H	Power control register 1 (PC1)	00H	00H			
12H	Power control register 2 (PC2)	00H	00H			
13H	Reset control register (RC)	00H	01H ^{Note}			
14H	Input mode control register (IMS)	00H	00H			
15H	DAC control register 5 (DAC5C)	80H	80H			
16H	DAC control register 6 (DAC6C)	80H	80H			
17H	DAC control register 7 (DAC7C)	80H	80H			

Note The reset control register (RC) is not initialized by generating internal reset of the reset control register (RC), but it can be done to 00H by generating external reset from RESET pin or by writing 0 to the RESET bit of the reset control register (RC).

Pin Name	External Reset from RESET Pin	Internal Reset
		by Reset Control Register (RC)
SC_IN	Hi-Z	Hi-Z
AMP5_OUT	Hi-Z	Hi-Z
AMP5_INN	Hi-Z	Hi-Z
AMP5_INP	Hi-Z	Hi-Z
MPXIN61	Hi-Z	Hi-Z
MPXIN51	Hi-Z	Hi-Z
MPXIN60	Hi-Z	Hi-Z
MPXIN50	Hi-Z	Hi-Z
AMP3_OUT	Hi-Z	Hi-Z
DAC3_OUT/VREFIN3	Hi-Z	Hi-Z
AMP2_OUT	Hi-Z	Hi-Z
AMP1_OUT	Hi-Z	Hi-Z
DAC2_OUT/VREFIN2	Hi-Z	Hi-Z
DAC1_OUT/VREFIN1	Hi-Z	Hi-Z
MPXIN41	Hi-Z	Hi-Z
MPXIN31	Hi-Z	Hi-Z
MPXIN40	Hi-Z	Hi-Z
MPXIN30	Hi-Z	Hi-Z
MPXIN21	Hi-Z	Hi-Z
MPXIN11	Hi-Z	Hi-Z
MPXIN20	Hi-Z	Hi-Z
MPXIN10	Hi-Z	Hi-Z
LDO_OUT	Pull-down	Pull-down
AMP4_OUT	Hi-Z	Hi-Z
AMP4_INN	Hi-Z	Hi-Z
AMP4_INP	Hi-Z	Hi-Z
TEMP_OUT	Pull down	Pull down
SCLK	Pull-up input	Hi-Z
SDO	Pull-up	Hi-Z
SDI	Pull-up input	Hi-Z
CS	Pull-up input	Hi-Z
DAC4_OUT/VREFIN4	Hi-Z	Hi-Z
HPF_OUT	Hi-Z	Hi-Z
 CLK_HPF	Pull-down input	Pull-down input
CLK_LPF	Pull-down input	Pull-down input
LPF_OUT	Hi-Z	Hi-Z

Table 10-3. Pin Statuses After a Reset

10.2 Registers Controlling the Reset Feature

(1) Reset control register (RC)

This register is used to control the reset feature.

An internal reset can be generated by writing 1 to the RESET bit. The reset control register (RC) is initialized to 00H by generating external reset from RESET pin or by writing 0 to the RESET bit of the reset control register (RC).

Address: 13H After reset: 00H^{Note} R/W

	7	6	5	4	3	2	1	0
RC	0	0	0	0	0	0	0	RESET

RESET	Reset request by internal reset signal
0	Do not make a reset request by using the internal reset signal, or cancel the reset.
1	Make a reset request by using the internal reset signal, or the reset signal is currently being input.

Note The reset control register (RC) is not initialized by generating internal reset of the reset control register (RC), but it can be done to 00H by generating external reset from RESET pin or by writing 0 to the RESET bit of the reset control register (RC).

Caution When the RESET bit is 1, writing to any register other than the reset control register (RC) is ignored. Initializing the reset control register (RC) to 00H by external reset, or writing 0 to the RESET bit enable writing to all the registers.

Remark Bits 7 to 1 are fixed at 0 of read only.

11. Electrical Specifications

11.1 Absolute Maximum Ratings

$(TA = 25^{\circ}C)$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	AVdd	AVdd1, AVdd2, AVdd3	–0.3 to +4.0	V
	DVdd	DVDD	-0.3 to +4.0	V
	AGND	AGND1, AGND2, AGND3, AGND4	–0.3 to +0.3	V
	DGND	DGND	-0.3 to +0.3	V
Input voltage	VI1	MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41, MPXIN50, MPXIN51, MPXIN60, MPXIN61, SC_IN, VREFIN1, VREFIN2, VREFIN3, VREFIN4, AMP4_INN, AMP4_INP, AMP5_INN, AMP5_INP, CLK_LPF, CLK_HPF, RESET	–0.3 to AV _{DD} + 0.3 ^{Note}	V
	Vı2	SCLK, SDI, CS	-0.3 to DVpd + 0.3 ^{Note}	V
Output voltage	Vo1	LDO_OUT, BGR_OUT, AMP1_OUT, AMP2_OUT, AMP3_OUT, AMP4_OUT, AMP5_OUT, LPF_OUT, HPF_OUT, DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT, TEMP_OUT, LDO_OUT	–0.3 to AV _{DD} + 0.3 ^{Note}	V
	V ₀₂	SDO	-0.3 to DVpd + 0.3 ^{Note}	V
Output current	lo1	AMP1_OUT, AMP2_OUT, AMP3_OUT, AMP4_OUT, AMP5_OUT, LPF_OUT, HPF_OUT, DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT, TEMP_OUT	1	mA
	lo2	SDO	±4	mA
	Ildoout	LDO_OUT	15	mA
Operating ambient temperature	TA		-40 to +105	°C
Storage temperature	Tstg		-40 to +125	°C

<R>

Note Must be 4.0 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

<R> 11.2 Operating Condition

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	ТҮР	МАХ	
Power supply voltage Range	Vddop	AVdd1, AVdd2, AVdd3, DVdd	2.2	-	3.6	V
Operating temperature Range	Тор		-40	-	+105	°C

11.3 Supply Current Characteristics

$(-40^{\circ}C \le T_A \le 105^{\circ}C)$	AVDD1 = AVDD2 =	AVDD3 = DVDD = 3.0 V
(100 = 10 = 1000)		II D D D D D D D D D D

Parameter	Symbol	Conditio	ons		Ratings		Unit
				MIN	TYP	MAX	
Supply current	Istby11 ^{Note}	PC1 = 00H, PC2 = 00H	TA = 25°C	-	0.11	0.35	μA
			TA = 85°C	-	0.75	5	μA
			TA = 105°C	-	1.80	10	μA
	lm111 ^{Note}	PC1 = 47H, PC2 = 03H (configu Ch1 to Ch3, D/A converter Ch3 amplifier), variable output voltag temperature sensor are operatir	(instrumentation ge regulator, and	_	1.25	1.90	mA
	Im112 ^{Note}	PC1 = 7FH, PC2 = 13H (configu Ch1 to Ch3, general-purpose op channels Ch1 to Ch2, D/A conv Ch7, variable output voltage reg sensor are operating), CCn1, C	perational amplifier erter channels Ch5 to gulator, and temperature	-	2.10	3.15	mA
	Im113 ^{Note}	PC1 = FFH, PC2 = 1FH (configuent Ch1 to Ch3, general-purpose op channels Ch1 to Ch2, D/A conv Ch7, low-pass filter, high-pass f voltage regulator, and temperate CCn1, CCn0 = 0, 0	perational amplifier erter channels Ch4 to ilter, variable output	-	3.70	5.60	mA
	Im114 ^{Note}	PC1 = FFH, PC2 = FFH (config Ch1 to Ch3, general-purpose or channels Ch1 to Ch2, D/A conv Ch7, low-pass filter, high-pass f voltage regulator, and temperati CCn1, CCn0 = 0, 0	perational amplifier erter channels Ch1 to ilter, variable output	_	4.15	6.25	mA
	Im121 ^{Note}	PC1 = 47H, PC2 = 03H (configu Ch1 to Ch3, D/A converter Ch3 amplifier), variable output voltag temperature sensor are operatir	(instrumentation ge regulator, and	-	0.60	0.90	mA
	Im122 ^{Note}	PC1 = 7FH, PC2 = 13H (configuent Ch1 to Ch3, general-purpose of channels Ch1 to Ch2, D/A conv Ch7, variable output voltage reg sensor are operating), CCn1, Co	perational amplifier erter channels Ch5 to gulator, and temperature	-	1.45	2.20	mA
	Im123 ^{Note}	PC1 = FFH, PC2 = 1FH (configuent Ch1 to Ch3, general-purpose op channels Ch1 to Ch2, D/A conv Ch7, low-pass filter, high-pass f voltage regulator, and temperate CCn1, CCn0 = 1, 1	perational amplifier erter channels Ch4 to ilter, variable output	_	3.10	4.65	mA
	Im124 ^{Note}	PC1 = FFH, PC2 = FFH (config Ch1 to Ch3, general-purpose of channels Ch1 to Ch2, D/A conv Ch7, low-pass filter, high-pass f voltage regulator, and temperati CCn1, CCn0 = 1, 1	perational amplifier erter channels Ch1 to ilter, variable output	_	3.50	5.25	mA

Note Total current flowing to internal power supply pins AV_{DD1}, AV_{DD2}, AV_{DD3}, and DV_{DD}. Current flowing through the pull-up resistor is not included. The input leakage current flowing when the level of the input pin is fixed to AV_{DD1}, AV_{DD2}, AV_{DD3} or DV_{DD}, or AGND1, AGND2, AGND3, AGND4, or DGND is included. See the table below to check the definition of those symbols of the current flowing.

									Analo	g func	tion w	ith po	wer o	า			
Parameter	Symbol	Configurable amplifier		purp opera		D/A converter				Low- pass filter	High- pass filter	Temperature sensor	voltage				
		Ch1	Ch2	Ch3	Ch1	Ch2	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7				regulator
	Im111 ^{Note1}	ON	ON	ON	-	_	-	١	ON	١	١	1	_	I	_	ON	ON
	Im112 ^{Note1}	ON	ON	ON	ON	ON	-	Ι	Ι	Ι	ON	ON	ON	١	-	ON	ON
	Im113 ^{Note1}	ON	ON	ON	ON	ON	-	-	-	ON	ON	ON	ON	ON	ON	ON	ON
Supply	Im114 ^{Note1}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
current	Im121 Note2	ON	ON	ON	-	-	-	-	ON	-	-	-	-	-	_	ON	ON
	Im122 ^{Note2}	ON	ON	ON	ON	ON	-	-	-	-	ON	ON	ON	-	-	ON	ON
	Im123 ^{Note2}	ON	ON	ON	ON	ON	-	-	-	ON	ON	ON	ON	ON	ON	ON	ON
	Im124 ^{Note2}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON

Note1. CCn1, CCn0 = 0, 0

2. CCn1, CCn0 = 1, 1

11.4 Electrical Specifications of Each Block

(1) Configurable amplifier block characteristics

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.5 V, AMP10F = AMP20F = AMP30F = 1, DAC10F = DAC20F = DAC30F = 0, non-inverting amplifier)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	ТҮР	MAX	
Current	Icc00	CCn1, CCn0 = 0, 0	_	330	500	μA
consumption Note	Icc01	CCn1, CCn0 = 0, 1	_	250	380	μA
	lcc10	CCn1, CCn0 = 1, 0	-	170	260	μΑ
	lcc11	CCn1, CCn0 = 1, 1	-	90	150	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	-	-	V
	VINH1	IMSn = 0	-	-	AV _{DD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	-	-	V
	VINH2	IMSn = 1	-	-	AVDD1 - 1.4	V
Output voltage	VOUTL	IOL = -200 μA	-	_	AGND1 + 0.1	V
	VOUTH	IOH = 200 μA	AVDD1 - 0.1	-	-	V
Settling time	tset_ampoo	$\label{eq:GCn} \begin{array}{l} \text{GCn} = 00\text{H} \mbox{ (9.5 dB)}, \\ \text{CCn1, CCn0} = 0, 0, \text{CL} = 30 \mbox{ pF}, \\ \text{output voltage} = 1 \mbox{ V}_{\text{PP}}, \mbox{ output} \\ \text{convergence voltage } \mbox{ V}_{\text{PP}} = 999 \mbox{ mV} \end{array}$	-	-	8	μs
	tset_ampo1	GCn = 00H (9.5 dB), CCn1, CCn0 = 0, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	10	μs
	tset_amp10	$ \begin{array}{l} GCn = 00H \ (9.5 \ dB), \\ CCn1, \ CCn0 = 1, \ 0, \ CL = 30 \ pF, \\ output \ voltage = 1 \\ V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array} $	-	-	16	μs
	tset_amp11	GCn = 00H (9.5 dB), CCn1, CCn0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	42	μs
Gain bandwidth	GBW00	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 0 GCn = 11H (40.1 dB)	-	1.35	_	MHz
	GBW01	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 1 GCn = 11H (40.1 dB)	-	1.1	-	MHz
	GBW10	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 0 GCn = 11H (40.1 dB)	-	0.75	-	MHz
	GBW11	CL _{MAX} = 30 pF, CCn1, CC0 = 1, 1 GCn = 11H (40.1 dB)	-	0.4	-	MHz
Equivalent input noise	En00	CCn1, CCn0 = 0, 0 f = 1 kHz, GCn = 11H (40.1 dB)	-	67	-	nV/√ Hz
	En01	CCn1, CCn0 = 0, 1 f = 1 kHz, GCn = 11H (40.1 dB)	_	75	_	nV/√ Hz
	En10	CCn1, CCn0 = 1, 0 f = 1 kHz, GCn = 11H (40.1 dB)	-	110	-	nV/√ Hz
	En11	CCn1, CCn0 = 1, 1 f = 1 kHz, GCn = 11H (40.1 dB)	-	145	_	nV/√ Hz

Note These are the values for one channel of configurable amplifier.

Remark n = 1 to 3

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF1	CCn1, CCn0 = 0, 0, T _A = 25°C GCn = 0AH (26.4 dB)	-7	-	7	mV
	VOFF2	CCn1, CCn0 = 0, 1, T _A = 25°C GCn = 0AH (26.4 dB)	-10	-	10	mV
	VOFF3	CCn1, CCn0 = 1, 0, T _A = 25°C GCn = 0AH (26.4 dB)	-10	-	10	mV
	VOFF4	CCn1, CCn0 = 1, 1, T _A = 25°C GCn = 0AH (26.4 dB)	-12	-	12	mV
Input conversion offset voltage temperature coefficient	VOTC00	CCn1, CCn0 = 0, 0	-	±3.5	-	μV/℃
	VOTC01	CCn1, CCn0 = 0, 1	_	±3.5	-	μV/°C
	VOTC10	CCn1, CCn0 = 1, 0	-	±4.0	-	μV/℃
	VOTC11	CCn1, CCn0 = 1, 1	-	±4.5	-	μV/°C
Slew rate	SR00	CCn1, CCn0 = 0, 0, CL = 30 pF GCn = 00H (9.5 dB)	-	1.1	_	V/µs
	SR01	CCn1, CCn0 = 0, 1, CL = 30 pF GCn = 00H (9.5 dB)	_	0.8	_	V/µs
	SR10	CCn1, CCn0 = 1, 0, CL = 30 pF GCn = 00H (9.5 dB)	_	0.5	-	V/µs
	SR11	CCn1, CCn0 = 1, 1, CL = 30 pF GCn = 00H (9.5 dB)	_	0.25	-	V/µs
Power supply rejection ratio	PSRR00	CCn1, CCn0 = 0, 0, GCn = 00H (9.5 dB) , f = 1 KHz	-	80	-	dB
	PSRR01	CCn1, CCn0 = 0, 1, GCn = 00H (9.5 dB) , f = 1 KHz	-	80	_	dB
	PSRR10	CCn1, CCn0 = 1, 0, GCn = 00H (9.5 dB) , f = 1 KHz	-	75	_	dB
	PSRR11	CCn1, CCn0 = 1, 1, GCn = 00H (9.5 dB) , f = 1 KHz	-	75	_	dB
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
	GAIN_Accu2	T _A = −40 to 105°C	-1.0	_	1.0	dB

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.5 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF, inverting amplifier)$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	МАХ	
Current	lcc100	CCn1, CCn0 = 0, 0	-	330	500	μA
consumption Note	lcc101	CCn1, CCn0 = 0, 1	-	250	380	μA
	lcc110	CCn1, CCn0 = 1, 0	-	170	260	μA
	lcc111	CCn1, CCn0 = 1, 1	-	90	150	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	_	_	V
	VINH1	IMSn = 0	_	_	A _{VDD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	_	_	V
	VINH2	IMSn = 1	_	_	A _{VDD1} - 1.4	V
Output voltage	VOUTL	IOL = -200 μA	_	_	AGND1 + 0.1	V
	VOUTH	ΙΟΗ = 200 μΑ	A _{VDD1} - 0.1	_	_	V
Settling time	tset_ampoo	GCn = 00H (6 dB), CCn1, CCn0 = 0, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	8	μs
	tset_ampo1	GCn = 00H (6 dB), CCn1, CCn0 = 0, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	10	μs
	tset_amp10	$ \begin{array}{l} GCn = 00H \ (6 \ dB), \\ CCn1, \ CCn0 = 1, \ 0, \ CL = 30 \ pF, \\ output \ voltage = 1V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array} $	-	-	16	μs
	tset_amp11	GCn = 00H (6 dB), CCn1, CCn0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	42	μs
Gain bandwidth	GBW100	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 0 GCn = 11H (40 dB)	-	1.0	_	MHz
	GBW101	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 1 GCn = 11H (40 dB)	-	0.85	-	MHz
	GBW110	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 0 GCn = 11H (40 dB)	-	0.60	-	MHz
	GBW111	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 1 GCn = 11H (40 dB)	-	0.30	_	MHz
Equivalent input noise	En100	CCn1, CCn0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB)	_	67	-	nV/√ H
	En101	CCn1, CCn0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB)	-	75	-	nV/√ H
	En110	CCn1, CCn0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB)	-	110	-	nV/√ H
	En111	CCn1, CCn0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB)	-	145	-	nV/√ H

Note These are the values for one channel of configurable amplifier.

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF1	CCn1, CCn0 = 0, 0, T _A = 25°C GCn = 0AH (26 dB)	-7	-	7	mV
	VOFF2	CCn1, CCn0 = 0, 1, T _A = 25°C GCn = 0AH (26 dB)	-10	-	10	mV
	VOFF3	CCn1, CCn0 = 1, 0, T _A = 25°C GCn = 0AH (26 dB)	-10	-	10	mV
	VOFF4	CCn1, CCn0 = 1, 1, T _A = 25°C GCn = 0AH (26 dB)	-12	-	12	mV
Input conversion offset voltage temperature	VOTC00	CCn1, CCn0 = 0, 0	-	±3.5	-	μV/℃
	VOTC01	CCn1, CCn0 = 0, 1	-	±3.5	-	μV/℃
coefficient	VOTC10	CCn1, CCn0 = 1, 0	-	±4.0	-	µV/℃
	VOTC11	CCn1, CCn0 = 1, 1	-	±4.5	-	µV/℃
Slew rate	SR100	CCn1, CCn0 = 0, 0, CL = 30 pF GCn = 00H (6 dB)	-	1.2	_	V/µs
	SR101	CCn1, CCn0 = 0, 1, CL = 30 pF GCn = 00H (6 dB)	_	0.9	_	V/µs
	SR110	CCn1, CCn0 = 1, 0, CL = 30 pF GCn = 00H (6 dB)	-	0.6	-	V/µs
	SR111	CCn1, CCn0 = 1, 1, CL = 30 pF GCn = 00H (6 dB)	-	0.3	-	V/µs
Power supply rejection ratio	PSRR100	CCn1, CCn0 = 0, 0, GCn = 00H (6 dB), f = 1 kHz	-	80	-	dB
	PSRR101	CCn1, CCn0 = 0, 1, GCn = 00H (6 dB) , f = 1 kHz	-	80	-	dB
	PSRR110	CCn1, CCn0 = 1, 0, GCn = 00H (6 dB) , f = 1 kHz	-	80	-	dB
	PSRR111	CCn1, CCn0 = 1, 1, GCn = 00H (6 dB) , f = 1 kHz	-	80	-	dB
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
	GAIN_Accu2	T _A = -40 to 105°C	-1.0	_	1.0	dB

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 3.0 V, VREFIN = VREFIN2 = VREFIN3 = 1.5 V,$ AMP1OF = AMP2OF = AMP3OF = 1 DAC1OF = DAC2OF = DAC3OF = 0 differential amplifier)

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	МАХ	
Current	lcc00	CCn1, CCn0 = 0, 0	-	330	500	μA
consumption ^{Note}	lcc01	CCn1, CCn0 = 0, 1	-	250	380	μA
	lcc10	CCn1, CCn0 = 1, 0	-	170	260	μA
	lcc11	CCn1, CCn0 = 1, 1	-	90	150	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	-	-	V
	VINH1	IMSn = 0	-	-	AV _{DD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	-	_	V
	VINH2	IMSn = 1	-	-	AV _{DD1} - 1.4	V
Output voltage	VOUTL	IOL = -200 μA	_	-	AGND1 + 0.1	V
	VOUTH	ΙΟΗ = 200 μΑ	AV _{DD1} – 0.1	_	_	V
Settling time	tset_ampoo	$\label{eq:GCn} \begin{array}{l} \text{GCn} = 00\text{H} \mbox{ (6 dB)}, \\ \text{CCn1}, \mbox{ CCn0} = 0, \mbox{ 0, CL} = 30 \mbox{ pF}, \\ \text{output voltage} = 1 \mbox{ V}_{\text{PP}}, \mbox{ output} \\ \text{convergence voltage } \mbox{ V}_{\text{PP}} = 999 \mbox{ mV} \end{array}$	-	-	8	μs
	tset_ampo1	$ GCn = 00H (6 dB), \\ CCn1, CCn0 = 0, 1, CL = 30 pF, \\ output voltage = 1V_{PP}, output \\ convergence voltage V_{PP} = 999 mV $	-	-	10	μs
	tset_amp10	GCn = 00H (6 dB), CCn1, CCn0 = 1, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	16	μs
	tset_amp11	GCn = 00H (6 dB), CCn1, CCn0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	-	42	μs
Gain bandwidth	GBW00	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 0	-	1.0	_	MHz
		GCn = 11H (40 dB)				
	GBW01	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 1 GCn = 11H (40 dB)	-	0.85	-	MHz
	GBW10	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 0 GCn = 11H (40 dB)	-	0.60	-	MHz
	GBW11	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 1 GCn = 11H (40 dB)	-	0.30	-	MHz
Equivalent input noise	En00	CCn1, CCn0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB)	-	67	-	nV/√ ⊦
	En01	CCn1, CCn0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB)	-	75	-	nV/√ ⊦
	En10	CCn1, CCn0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB)	-	110	_	nV/√ ⊦
	En11	CCn1, CCn0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB)	-	145	-	nV/√ ⊦

Note These are the values for one channel of configurable amplifier.

Remark n = 1 to 3

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOFF1	CCn1, CCn0 = 0, 0, T _A = 25°C GCn = 0AH (26 dB)	-7	-	7	mV
	VOFF2	CCn1, CCn0 = 0, 1, T _A = 25°C GCn = 0AH (26 dB)	-10	-	10	mV
	VOFF3	CCn1, CCn0 = 1, 0, T _A = 25°C GCn = 0AH (26 dB)	-10	-	10	mV
	VOFF4	CCn1, CCn0 = 1, 1, T _A = 25°C GCn = 0AH (26 dB)	-12	-	12	mV
Input conversion	VOTC00	CCn1, CCn0 = 0, 0	-	±3.5	-	µV/℃
offset voltage	VOTC01	CCn1, CCn0 = 0, 1	-	±3.5	-	μV/℃
temperature coefficient	VOTC10	CCn1, CCn0 = 1, 0	-	±4.0	-	μV/℃
	VOTC11	CCn1, CCn0 = 1, 1	-	±4.5	-	μV/℃
Slew rate	SR00	CCn1, CCn0 = 0, 0, CL = 30 pF GCn = 00H (6 dB)	-	1.15	_	V/µs
	SR01	CCn1, CCn0 = 0, 1, CL = 30 pF GCn = 00H (6 dB)	-	0.85	_	V/µs
	SR10	CCn1, CCn0 = 1, 0, CL = 30 pF GCn = 00H (6 dB)	-	0.6	_	V/µs
	SR11	CCn1, CCn0 = 1, 1, CL = 30 pF GCn = 00H (6 dB)	-	0.3	_	V/µs
Common mode rejection ratio	CMRR00	CCn1, CCn0 = 0, 0, GCn = 11H (40 dB), f = 1 kHz	-	80	_	dB
	CMRR01	CCn1, CCn0 = 0, 1, GCn = 11H (40 dB), f = 1 kHz	-	80	_	dB
	CMRR10	CCn1, CCn0 = 1, 0, GCn = 11H (40 dB), f = 1 kHz	-	80	_	dB
	CMRR11	CCn1, CCn0 = 1, 1, GCn = 11H (40 dB), f = 1 kHz	-	80	_	dB
Power supply rejection ratio	PSRR00	CCn1, CCn0 = 0, 0, GCn = 00H (6 dB), f = 1 kHz	-	80	_	dB
	PSRR01	CCn1, CCn0 = 0, 1, GCn = 00H (6 dB), f = 1 kHz	-	80	_	dB
	PSRR10	CCn1, CCn0 = 1, 0, GCn = 00H (6 dB), f = 1 kHz	-	80	_	dB
	PSRR11	CCn1, CCn0 = 1, 1, GCn = 00H (6 dB), f = 1 kHz	-	80	_	dB
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
	GAIN_Accu2	T _A = -40 to 105°C	-1.0	-	1.0	dB

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.5 V, AMP1OF = AMP2OF = AMP3OF = 1 DAC1OF = DAC2OF = DAC3OF = 0 transimpedance amplifier)$

Parameter	Symbol	Conditions	Ratings			
			MIN	TYP	MAX	
Current	Icc00	CCn1, CCn0 = 0, 0	-	330	500	μA
consumption Note	lcc01	CCn1, CCn0 = 0, 1	-	250	380	μA
	lcc10	CCn1, CCn0 = 1, 0	-	170	260	μA
	lcc11	CCn1, CCn0 = 1, 1	-	90	150	μA
Input voltage1	VINL1	IMSn = 0	AGND1 – 0.05	_	-	V
	VINH1	IMSn = 0	-	-	AV _{DD1} + 0.1	V
Input voltage2	VINL2	IMSn = 1	AGND1 – 0.05	_	-	V
	VINH2	IMSn = 1	-	-	AV _{DD1} - 1.4	V
Output voltage	VOUTL	IOL = -200 μA	-	_	AGND1 + 0.1	V
	VOUTH	IOH = 200 μA	AV _{DD1} - 0.1	-	-	V
Settling time	tset_ampoo	$ \begin{array}{l} GCn = 00H \ (20 \ k\Omega), \\ CCn1, \ CCn0 = 0, \ 0, \ CL = 30 \ pF, \\ output \ voltage = 1 \\ V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array} $	-	-	8	μs
	tset_ampo1	$ \begin{array}{l} GCn = 00H \ (20 \ k\Omega), \\ CCn1, \ CCn0 = 0, \ 1, \ CL = 30 \ pF, \\ output \ voltage = 1 \\ V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array} $	-	_	10	μs
	tset_amp10	$ \begin{array}{l} GCn = 00H \ (20 \ k\Omega), \\ CCn1, \ CCn0 = 1, \ 0, \ CL = 30 \ pF, \\ output \ voltage = 1 \\ V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array} $	-	_	16	μs
	tset_amp11	$\label{eq:GCn} \begin{array}{l} {\rm GCn} = 00H \; (20 \; k\Omega), \\ {\rm CCn1}, \; {\rm CCn0} = 1, \; 1, \; {\rm CL} = 30 \; pF, \\ {\rm output} \; {\rm voltage} = 1 \\ {\rm V}_{\rm PP}, \; {\rm output} \\ {\rm convergence} \; {\rm voltage} \; {\rm V}_{\rm PP} = 999 \; mV \end{array}$	_	_	42	μs
Current-to-voltage conversion gain	GBW00_0	$\label{eq:CLMAX} \begin{array}{l} CL_{MAX} = 30 \mbox{ pF}, \mbox{ CCn1}, \mbox{ CCn0} = 0, \mbox{ 0}, \\ GCn = 00H \mbox{ (Rfb} = 20 \Omega) \end{array}$	-	0.75	-	MHz
bandwidth	GBW00_1	$\label{eq:CLMAX} \begin{array}{l} CL_{MAX} = 30 \mbox{ pF}, \mbox{ CCn1}, \mbox{ CCn0} = 0, \mbox{ 0}, \\ GCn = 0FH \mbox{ (Rfb} = 640 \mbox{ k}\Omega) \end{array}$	-	0.75	-	MHz
	GBW01_0	$\label{eq:CLMAX} \begin{array}{l} CL_{MAX} = 30 \mbox{ pF}, \mbox{ CCn1}, \mbox{ CCn0} = 0, \mbox{ 1}, \\ GCn = 00H \mbox{ (Rfb} = 20 \Omega) \end{array}$	-	0.65	-	MHz
	GBW01_1	$\label{eq:CLMAX} \begin{array}{l} CL_{MAX} = 30 \mbox{ pF}, \mbox{ CCn1}, \mbox{ CCn0} = 0, \mbox{ 1}, \\ GCn = 0FH \mbox{ (Rfb} = 640 \mbox$	-	0.7	-	MHz
	GBW10_0	$\label{eq:clmax} \begin{array}{l} CL_{\text{MAX}} = 30 \text{ pF}, \text{ CCn1}, \text{ CCn0} = 1, 0, \\ \text{GCn} = 00 \text{H} \ (\text{Rfb} = 20 \text{ k}\Omega) \end{array}$	-	0.45	-	MHz
	GBW10_1	$\label{eq:CLMAX} \begin{array}{l} CL_{MAX} = 30 \mbox{ pF}, \mbox{ CCn1}, \mbox{ CCn0} = 1, \mbox{ 0}, \\ GCn = 0FH \mbox{ (Rfb} = 640 \mbox$	-	0.5	_	MHz
	GBW11_0	$\label{eq:clmax} \begin{array}{l} CL_{\text{MAX}} = 30 \text{ pF}, \text{ CCn1}, \text{ CCn0} = 1, 1, \\ \text{GCn} = 00 \text{H} \ (\text{Rfb} = 20 \text{ k}\Omega) \end{array}$	-	0.25	-	MHz
	GBW11_1	$CL_{MAX} = 30 \text{ pF}, CCn1, CCn0 = 1, 1, GCn = 0FH (Rfb = 640 \Omega)$	-	0.3	-	MH

Note These are the values for one channel of configurable amplifier.

11. Electrical Specifications

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Equivalent input noise	En00	CCn1, CCn0 = 0, 0 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ)	-	3	-	pA/√Hz
	En01	CCn1, CCn0 = 0, 1 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ)	-	4	-	pA/√Hz
	En10	CCn1, CCn0 = 1, 0 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ)	-	5	-	pA/√Hz
	En11	CCn1, CCn0 = 1, 1 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ)	-	7	-	pA/√Hz
Input conversion offset voltage	VOFF1	CCn1, CCn0 = 0, 0, $T_A = 25^{\circ}C$ GCn = 0AH (Rfb = 160 k Ω)	-7	-	7	mV
	VOFF2	CCn1, CCn0 = 0, 1, $T_A = 25^{\circ}C$ GCn = 0AH (Rfb = 160 k Ω)	-10	-	10	mV
	VOFF3	CCn1, CCn0 = 1, 0, $T_A = 25^{\circ}C$ GCn = 0AH (Rfb = 160 k Ω)	-10	-	10	mV
	VOFF4	$\begin{array}{l} CCn1, CCn0 = 1, 1, T_{\text{A}} = 25^{\circ}\text{C} \\ GCn = 0\text{AH} \; (\text{Rfb} = 160 \; \text{k}\Omega) \end{array}$	-12	-	12	mV
Input conversion	VOTC00	CCn1, CCn0 = 0, 0	-	±3.5	-	μV/℃
offset voltage	VOTC01	CCn1, CCn0 = 0, 1	-	±3.5	-	μV/℃
temperature coefficient	VOTC10	CCn1, CCn0 = 1, 0	_	±4.0	-	μV/℃
	VOTC11	CCn1, CCn0 = 1, 1	-	±4.5	-	μV/℃
Slew rate	SR00	CCn1, CCn0 = 0, 0, GCn = 00H (Rfb = 20 kΩ)	-	1.15	-	V/µs
	SR01	CCn1, CCn0 = 0, 1, GCn = 00H (Rfb = 20 k Ω)	-	0.85	-	V/µs
	SR10	CCn1, CCn0 = 1, 0, GCn = 00H (Rfb = 20 kΩ)	-	0.6	-	V/µs
	SR11	$\begin{array}{l} CCn1, CCn0 = 1, 1, \\ GCn = 00H \ (Rfb = 20 \ k\Omega) \end{array}$	-	0.3	-	V/µs
Power supply rejection ratio	PSRR00	CCn1, CCn0 = 0, 0, GCn = 00H (Rfb = 20 kΩ), f = 1 kHz	-	60	-	dB
	PSRR01	CCn1, CCn0 = 0, 1, GCn = 00H (Rfb = 20 k Ω), f = 1 kHz	-	60	-	dB
	PSRR10	CCn1, CCn0 = 1, 0, GCn = 00H (Rfb = 20 kΩ), f = 1 kHz	-	60	-	dB
	PSRR11	CCn1, CCn0 = 1, 1, GCn = 00H (Rfb = 20 kΩ), f = 1 kHz	-	60	-	dB
Rfb setting error	Rfb_Accu1	$T_A = 25^{\circ}C$	-25	-	25	%
	Rfb_Accu2	T _A = -40 to 105°C	-35	-	35	%

$(-40^{\circ}\text{C} \le \text{TA} \le 105^{\circ}\text{C}, \text{AV}_{\text{DD1}} = \text{AV}_{\text{DD2}} = \text{AV}_{\text{DD3}} = \text{DV}_{\text{DD}} = 3.0 \text{ V}, \text{VREFIN1} = \text{VREFIN2} = \text{VREFIN3} = 1.5 \text{ V}, \text{AMP1OF} = 1.5 \text$
AMP2OF = AMP3OF = 1, $DAC1OF = DAC2OF = DAC3OF = 0$, $GC1 = GC2 = 00H$, instrumentation amplifier)

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Current consumption	lcc00	AMP1OF = AMP2OF = AMP3OF = 1, CCn1, CCn0 = 0, 0	-	960	1400	μA
	lcc01	AMP1OF = AMP2OF = AMP3OF = 1, CCn1, CCn0 = 0, 1	-	750	1100	μA
	lcc10	AMP1OF = AMP2OF = AMP3OF = 1, CCn1, CCn0 = 1, 0	-	520	750	μA
	lcc11	AMP1OF = AMP2OF = AMP3OF = 1, CCn1, CCn0 = 1, 1	-	310	450	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	-	-	V
	VINH1	IMSn = 0	-	-	AV _{DD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	_	-	V
	VINH2	IMSn = 1	-	_	AVDD1 - 1.4	V
Dutput voltage	VOUTL	IOL = -200 μA	-	-	AGND1 + 0.05	V
	VOUTH	IOH = 200 μA	AVDD1 - 0.05	-	-	V
Settling time	tset_ampoo	$\label{eq:GCn} \begin{array}{l} \text{GCn} = 00\text{H} \ (15.5 \ \text{dB}), \\ \text{CCn1}, \ \text{CCn0} = 0, \ 0, \ \text{CL} = 30 \ \text{pF}, \\ \text{output voltage} = 1 \ \text{V}_{\text{PP}}, \ \text{output} \\ \text{convergence voltage} \ \text{V}_{\text{PP}} = 999 \ \text{mV} \end{array}$	-	-	9	μs
	tset_ampo1	$\label{eq:GCn} \begin{array}{l} GCn = 00H \ (15.5 \ dB), \\ CCn1, \ CCn0 = 0, \ 1, \ CL = 30 \ pF, \\ output \ voltage = 1 \\ V_{PP}, \ output \\ convergence \ voltage \ V_{PP} = 999 \ mV \end{array}$	-	_	12	μs
	tset_AMP10	$\label{eq:GCn} \begin{array}{l} \text{GCn} = 00\text{H} \ (15.5 \ \text{dB}), \\ \text{CCn1}, \ \text{CCn0} = 1, \ 0, \ \text{CL} = 30 \ \text{pF}, \\ \text{output voltage} = 1\text{V}_{\text{PP}}, \ \text{output} \\ \text{convergence voltage} \ \text{V}_{\text{PP}} = 999 \ \text{mV} \end{array}$	-	-	20	μs
	tset_amp11	$\label{eq:GCn} \begin{array}{l} \text{GCn} = 00\text{H} \ (15.5 \ \text{dB}), \\ \text{CCn1}, \ \text{CCn0} = 1, \ 1, \ \text{CL} = 30 \ \text{pF}, \\ \text{output voltage} = 1 \ \text{V}_{\text{PP}}, \ \text{output} \\ \text{convergence voltage} \ \text{V}_{\text{PP}} = 999 \ \text{mV} \end{array}$	-	-	56	μs
Gain bandwidth	GBW00	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 0 GC3 = 09H (33.5 dB)	-	1.0	-	MHz
	GBW01	CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 1 GC3 = 09H (33.5 dB)	-	0.9	-	MHz
	GBW10	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 0 GC3 = 09H (33.5 dB)	-	0.65	_	MHz
	GBW11	CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 1 GC3 = 09H (33.5 dB)	-	0.35	-	MHz
Equivalent input noise	En00	CCn1, CCn0 = 0, 0 GC3 = 09H (33.5 dB), f = 1 kHz	-	95	-	nV/√ H
	En01	CCn1, CCn0 = 0, 1 GC3 = 09H (33.5 dB), f = 1 kHz	-	110	-	nV/√ H
	En10	CCn1, CCn0 = 1, 0 GC3 = 09H (33.5 dB), f = 1 kHz	-	135	-	nV/√ H
	En11	CCn1, CCn0 = 1, 1 GC3 = 09H (33.5 dB), f = 1 kHz	-	200	-	nV/√ H

Remark n = 1 to 3

Parameter	Symbol	bol Conditions		Ratings			
			MIN	ТҮР	MAX		
Input conversion offset voltage	VOFF1	CCn1, CCn0 = 0, 0, T _A = 25°C GC3 = 05H (25.5 dB)	-7	-	7	mV	
	VOFF2	CCn1, CCn0 = 0, 1, T _A = 25°C GC3 = 05H (25.5 dB)	-10	_	10	mV	
	VOFF3	CCn1, CCn0 = 1, 0, T _A = 25°C GC3 = 05H (25.5 dB)	-10	-	10	mV	
	VOFF4	CCn1, CCn0 = 1, 1, T _A = 25°C GC3 = 05H (25.5 dB)	-12	-	12	mV	
Input conversion	VOTC00	CCn1, CCn0 = 0, 0	-	±2.5	_	μV/℃	
offset voltage	VOTC01	CCn1, CCn0 = 0, 1	_	±2.5	-	μV/℃	
temperature coefficient	VOTC10	CCn1, CCn0 = 1, 0	_	±3.0	-	μV/℃	
	VOTC11	CCn1, CCn0 = 1, 1	-	±4.5	-	μV/℃	
Slew rate	SR00	CCn1, CCn0 = 0, 0, CL = 30 pF GC3 = 00H (15.5 dB)	-	1.1	_	V/µs	
	SR01	CCn1, CCn0 = 0, 1, CL = 30 pF GC3 = 00H (15.5 dB)	-	0.8	_	V/µs	
	SR10	CCn1, CCn0 = 1, 0, CL = 30 pF GC3 = 00H (15.5 dB)	-	0.5	_	V/µs	
	SR11	CCn1, CCn0 = 1, 1, CL = 30 pF GC3 = 00H (15.5 dB)	-	0.25	-	V/µs	
Common mode rejection ratio	CMRR00	CCn1, CCn0 = 0, 0 GC3 = 09H (33.5 dB), f = 1 kHz	-	70	-	dB	
	CMRR01	CCn1, CCn0 = 0, 1 GC3 = 09H (33.5 dB), f = 1 kHz	-	70	-	dB	
	CMRR10	CCn1, CCn0 = 1, 0 GC3 = 09H (33.5 dB), f = 1 kHz	-	70	_	dB	
	CMRR11	CCn1, CCn0 = 1, 1 GC3 = 09H (33.5 dB), f = 1 kHz	-	70	_	dB	
Power supply rejection ratio	PSRR00	CCn1, CCn0 = 0, 0 GC3 = 00H (15.5 dB), f = 1 kHz	-	75	_	dB	
	PSRR01	CCn1, CCn0 = 0, 1 GC3 = 00H (15.5 dB), f = 1 kHz	-	70	_	dB	
	PSRR10	CCn1, CCn0 = 1, 0 GC3 = 00H (15.5 dB), f = 1 kHz	-	70	_	dB	
	PSRR11	CCn1, CCn0 = 1, 1 GC3 = 00H (15.5 dB), f = 1 kHz	-	65	_	dB	
Gain setting error	GAIN_Accu	T _A = 25°C	-0.8		0.8	dB	
		T _A = -40 to 105°C	-1.2		1.2	dB	

$(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.5 V,$

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	МАХ	
Current	lcc00	CCn1, CCn0 = 0, 0		330	500	μA
consumption Note	lcc01	CCn1, CCn0 = 0, 1		250	380	μA
	lcc10	CCn1, CCn0 = 1, 0		170	260	μA
	lcc11	CCn1, CCn0 = 1, 1		90	500 380	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	_	500 380 260 150 - AVDD1 + 0.1 - AVDD1 - 1.4 AGND1 + 0.1 - <	V
	VINH1	IMSn = 0	-	_	AV _{DD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	_	_	V
	VINH2	IMSn = 1	-	_	AV _{DD1} – 1.4	V
Output voltage	VOUTL	IOL = -200 μA	-	_	AGND1 + 0.1	V
	VOUTH	ΙΟΗ = 200 μΑ	AVDD1 - 0.1	_	_	V
Gain bandwidth	GBW00	Configured as an inverting amplifier with 20 dB gain, CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 0	-	1.6	_	MHz
	GBW01	Configured as an inverting amplifier with 20 dB gain, CL _{MAX} = 30 pF, CCn1, CCn0 = 0, 1	-	1.1	_	MHz
	GBW10	Configured as an inverting amplifier with 20 dB gain, $CL_{MAX} = 30 \text{ pF}$, $CC1n$, $CCn0 = 1$, 0	-	0.65	-	MHz
	GBW11	Configured as an inverting amplifier with 20 dB gain, CL _{MAX} = 30 pF, CCn1, CCn0 = 1, 1	-	0.25	_	MHz
Equivalent input noise	En00	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 0, f = 1 kHz	-	76	-	nV/√ Hz
	En01	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 1, f = 1 kHz	-	90	-	nV/√ Hz
	En10	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 0, f = 1 kHz	-	110	-	nV/√ Hz
	En11	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 1, f = 1 kHz	-	165	-	nV/√ Hz
Input conversion offset voltage	VOFF1	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 0, $T_A = 25^{\circ}C$	-7	_	7	mV
	VOFF2	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 1, $T_A = 25^{\circ}C$	-10	_	10	mV
	VOFF3	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 0, $T_A = 25^{\circ}C$	-10	_	10	mV
	VOFF4	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 1, $T_A = 25^{\circ}C$	-12	_	12	mV

Note These are the values for one channel of configurable amplifier.

Parameter	Symbol	bol Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion offset voltage	VOTC00	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 0	-	±3.5	-	µV/℃
temperature coefficient	VOTC01	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 0, 1	-	±3.5	-	μV/°C
	VOTC10	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 0	-	±4.0	-	μV/℃
	VOTC11	Configured as an inverting amplifier with 20 dB gain, CCn1, CCn0 = 1, 1	-	±4.5	-	μV/°C
Slew rate	SR00	Configured as a voltage follower, CCn1, CCn0 = 0, 0, CL = 30 pF	-	0.98	-	V/µs
	SR01	Configured as a voltage follower, CCn1, CCn0 = 0, 1, CL = 30 pF	-	0.74	_	V/µs
	SR10	Configured as a voltage follower, CCn1, CCn0 = 1, 0, CL = 30 pF	-	0.49	-	V/µs
	SR11	Configured as a voltage follower, CCn1, CCn0 = 1, 1, CL = 30 pF	-	0.22	_	V/µs
Common mode rejection ratio	CMRR00	Configured as a differential amplifier with 20 dB gain, CCn1, CCn0 = 0, 0, f = 1 kHz	-	85	_	dB
	CMRR01	Configured as a differential amplifier with 20 dB gain, CCn1, CCn0 = 0, 1, f = 1 kHz	-	85	-	dB
	CMRR10	Configured as a differential amplifier with 20 dB gain, CCn1, CCn0 = 1, 0, f = 1 kHz	-	85	-	dB
	CMRR11	Configured as a differential amplifier with 20 dB gain, CCn1, CCn0 = 1, 1, f = 1 kHz	-	85	-	dB
Power supply rejection ratio	PSRR00	Configured as a voltage follower, CCn1, CCn0 = 0, 0, f = 1 kHz	-	80	-	dB
	PSRR01	Configured as a voltage follower, CCn1, CCn0 = 0, 1, f = 1 kHz	-	80	_	dB
	PSRR10	Configured as a voltage follower, CCn1, CCn0 = 1, 0, f = 1 kHz	-	80	_	dB
	PSRR11	Configured as a voltage follower, CCn1, CCn0 = 1, 1, f = 1 kHz	-	80	-	dB

(2) General-purpose operational amplifier

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 \text{ V}, AMP4OF = AMP5OF = 1)$

Parameter	Symbol	Conditions		Unit		
			MIN	TYP	MAX	
Current consumption	IccA			320	450	μA
Input voltage 1	VINL1	IMSn = 0	AGND1 – 0.05	-	-	V
	VINH1	IMSn = 0	-	_	AV _{DD1} + 0.1	V
Input voltage 2	VINL2	IMSn = 1	AGND1 – 0.05	_	-	V
	VINH2	IMSn = 1	-	-	AVDD1 - 1.4	V
Output voltage	VOUTL	IOL = -200 μA	-	-	AGND1 + 0.05	V
	VOUTH	ΙΟΗ = 200 μΑ	AV _{DD1} - 0.05	_	-	V
Gain bandwidth	GBW	Configured as an inverting amplifier with 20 dB gain, CL _{MAX} = 30 pF	-	2.0	-	MHz
Input conversion offset voltage	VOFF	Configured as an inverting amplifier with 20 dB gain, $T_A = 25^{\circ}C$, AMP4_INP = AMP5_INP = 1.5 V	-7	_	7	mV
Input conversion offset voltage temperature coefficient	VOTC	Configured as an inverting amplifier with 20 dB gain	-	±2.0	-	μV/°C
Slew rate	SR	Configured as a voltage follower, CL = 30 pF	-	0.9	-	V/µs
Equivalent input noise	En_Gain	Configured as an inverting amplifier with 20 dB gain, f = 1 kHz	-	77	-	nV/√ Hz
Common mode rejection ratio	CMRR	Configured as a differential amplifier with 20 dB gain, f = 1 kHz	-	75	-	dB
Power supply rejection ratio	PSRR	Configured as an inverting amplifier with 20 dB gain, f = 1 kHz	-	55	-	dB

Remark n = 4, 5

(3) D/A converter

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 V, DAC1OF = DAC2OF = DAC3OF = DAC4OF = DAC5OF = DAC6OF = DAC7OF = 1)$

Parameter	Symbol	Conditions		Unit		
			MIN	TYP	MAX	
DAC ALL ON current consumption 1	I_DAC_ON1	DAC1OF = DAC2OF = DAC3OF = DAC4OF = DAC5OF = DAC6OF =	-	1.10	1.65	mA
DAC ALL ON current consumption 2	I_dac_on2	DAC7OF = 1, VRB1, VRB0 = 0, 0 DAC1OF = DAC2OF = DAC3OF = DAC4OF = DAC5OF = DAC6OF = DAC7OF = 1, VRB1, VRB0 = 0, 1		1.25	1.85	mA
Buffer AMP ON current consumption 1 Note1	I_DAC_Buff1	DACxOF = 1, VRB1, VRB0 = 0, 1 DACxOF = 1, VRB1, VRB0 = 0, 0 (x = 1, 2, 3, 4, 5, 6, 7)	-	180	220	μA
Buffer AMP ON current consumption 2 Note1	I_DAC_Buff2	DACxOF = 1, VRB1, VRB0 = 0, 1 (x = 1, 2, 3, 4, 5, 6, 7)	_	330	400	μA
DACx GAMP ON current consumption (x = 1, 2, 3, 5, 6, 7)	I_DAC_AMP1 I_DAC_AMP2 I_DAC_AMP3 I_DAC_AMP5 I_DAC_AMP6 I_DAC_AMP7	DACxOF = 1 (x = 1, 2, 3, 5, 6, 7)	_	110	180	μA
DAC4 GAMP ON current consumption	I_DAC_AMP4	DAC4OF = 1	-	260	350	μA
Resolution	Res		-	-	8	bit
Settling time	tse⊤		-	-	50	μs
Differential non- linearity error Note2	DNL	VRT1 = VRT0 = 0, VRB1 = VRB0 = 0	-2	-	2	LSE
Integral non- linearity error	INL	VRT1 = VRT0 = 0, VRB1 = VRB0 = 0	-2	-	2	LSE

Note1. Buffer amplifier is powered on when one of DACx (x = 1, 2, 3, 4, 5, 6, 7) is powered on at least. For example, the current consumption (I_EXAMPLE) is shown as a following equation when "DAC1OF=DAC2OF=1", and "VRB1, VRB0=0, 0". I_EXAMPLE = I_DAC_Buff1 + I_DAC_AMP1 + I_DAC_AMP2

2. Guaranteed monotonic.

(4) Low-pass filter

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 \text{ V}, LPFOF = 1)$

Parameter	Symbol	Conditions		Ratings			
			MIN	TYP	MAX		
Current consumption	IccA		_	800	1200	μA	
Input voltage 1	V _{ILLPF1}	IMSn = 0	AGND4 + 0.2	_	-	V	
	V _{IHLPF1}	IMSn = 0	_	_	AV _{DD3} - 0.2	V	
Input voltage 2	V _{ILLPF2}	IMSn = 1	AGND4 + 0.2	_	_	V	
	V _{IHLPF2}	IMSn = 1	_	-	AVDD3 - 1.4	V	
Output voltage	VOLLPF	IOL = -200 μA	_	-	AGND4 – 0.2	V	
	V _{OHLPF}	IOH = 200 μA	AVDD3 - 0.2	-	_	V	
Input conversion offset voltage	VOFF	DAC4OF = 1, DAC4C = 80H	-100	-	100	mV	
Cutoff frequency	fc1	fclk_lpf = 2 kHz	-	8.7	-	Hz	
	fc2	fclk_lpf = 200 kHz	-	870		Hz	
CLK_LPF	VILCLK_LPF				$0.3\times AV_{\text{DD3}}$	V	
low-level							
input voltage							
CLK_LPF	V _{IHCLK_LPF}		$0.7 \times AV_{DD3}$			V	
high-level							
input voltage							
CLK_LPF	f _{CLK_LPF}		2	_	200	kHz	
Input frequency							
CLK_LPF	t _{ILW_LPF}		200	-	-	ns	
Input low-level-width Input high-level-width	$t_{\text{IHW}_\text{LPF}}$						

Remark n = 6

Clock Timing

(5) High-pass filter

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 \text{ V}, \text{HPFOF} = 1)$

Parameter	Symbol	Conditions		Ratings			
			MIN	TYP	MAX		
Current consumption	IccA		_	800	1200	μA	
Input voltage 1	V _{ILHPF1}	IMSn = 0	AGND4 + 0.2	_	-	V	
	VIHHPF1	IMSn = 0	_	_	AV _{DD3} - 0.2	V	
Input voltage 2	V _{ILHPF2}	IMSn = 1	AGND4 + 0.2	_	-	V	
	V _{IHHPF2}	IMSn = 1	-	-	AVDD3 - 1.4	V	
Output voltage	VOLHPF	IOL = -200 μA	-	-	AGND4 – 0.2	V	
Output Voltage	V _{OHHPF}	IOH = 200 μA	AVDD3 - 0.2	-	_	V	
Input conversion offset voltage	VOFF	DAC4OF = 1, DAC4C = 80H	-100	-	100	mV	
Cutoff frequency	fc1	fclk_hpf = 2 kHz	-	7.4	-	Hz	
	fc2	fclk_hpf = 200 kHz	-	740	-	Hz	
CLK_HPF	$V_{\text{ILCLK}_\text{HPF}}$				$0.3\times AV_{\text{DD3}}$	V	
low-level							
input voltage							
CLK_HPF	V _{IHCLK_HPF}		$0.7 \times AV_{DD3}$			V	
high-level							
input voltage							
CLK_HPF	f _{CLK_HPF}		2	_	200	kHz	
Input frequency							
CLK_HPF	t _{ILW_HPF}		200	-	-	ns	
Input low-level-width Input high-level-width	t _{IHW_HPF}						

Remark n = 6

Clock Timing

(6) Temperature sensor

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 3.0 V, TEMPOF = 1)$

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	ТҮР	MAX	
Current consumption	IccA		-	90	140	μA
Output voltage	Vo	$T_A = 25^{\circ}C$	-	1.28	-	V
Temperature sensitivity	T _{SE}		-	-4.0	-	mV/°C

(7) Variable output voltage regulator

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = AV_{DD3} = DV_{DD} = 3.0 \text{ V}, LDOOF = 1)$

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	TYP	MAX	1
Current consumption	IccON	lout = 0 mA	-	80	120	μΑ
Output voltage accuracy	V_Accu	lout = 0 mA	-10	-	10	%
Load current characteristics	Vout_load	lout = 0 to 5 mA	-	15	30	mV
Output current	lout		-	_	15	mA
Dropout voltage Note1	Vd	lout = 15 mA	-	-	0.4	V
Power supply rejection ratio	PSRR	$ f = 1 \text{ kHz}, \text{ CL} = 1.0 \ \mu\text{F}, \text{ lout} = 5 \text{ mA}, \\ \text{AV}_{\text{DD2}} = 3.0 \text{ V}, \text{ LDOC} = 08\text{H} (2.6 \text{ V}) $	-	45	-	dB
Discharge resistance	Rs	LDOOF = 0	-	1.0	1.5	kΩ
Settling time	Tset_rise Note2	CL = 1.0 μF, lout = 0 mA, LDOC = 08H (2.6 V)	-	_	200	μs
	Tset_fall Note2	CL = 1.0 μF, lout = 0 mA, LDOC = 08H (2.6 V)	-	-	5	ms

Note1. The output voltage range is determined not only by dropout voltage but also by output voltage accuracy.

- 2. Tset_rise is defined as the time between operation enabled by power control register PC2 to output voltage being at 90% of its nominal value.
- **3.** Tset_fall is defined as the time between operation disabled by power control register PC2 to output voltage being at 10% of its nominal value.

11. Electrical Specifications

RAA730300

(8) SPI

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	ТҮР	MAX	
Input voltage, high	V _{IH}	CS pin, SDI pin, SCLK pin, RESET pin	$DV_{DD} imes 0.7$	_	DV _{DD} + 0.1	V
Input voltage, low	V _{IL}	CS pin, SDI pin, SCLK pin, RESET pin	DGND - 0.1	_	$\text{DV}_{\text{DD}} \times 0.3$	V
Leakage current during high level input	I _{leak_Hi1}	CS pin, SDI pin, SCLK pin	-2	-	2	μΑ
	I _{leak_Hi2}	RESET pin	-2	-	2	μΑ
Leakage current during low level input	I _{leak_Lo1}	CS pin, SDI pin, SCLK pin	-2	-	2	μΑ
	I _{leak_Lo2}	RESET pin	-2	-	2	μΑ
Low-level output voltage at SDO pin	V _{SDO_Lo}	lo = -4 mA	-	250	400	mV
Leakage current when SDO pin is off	I _{leak_SDO}		-2	_	2	μΑ
Pull-up resistance	R _{SPI}	CS pin, SDI pin, SCLK pin RESET = L	-	50	75	kΩ
SCLK cycle time	t _{KCYA}		100	-	-	ns
SCLK high-level width low-level width	t _{KHA} , t _{KLA}		0.8t _{KCYA} /2	-	-	ns
SDI setup time (to SCLK ↑)	t _{sika}		40	-	-	ns
SDI hold time (from SCLK ↑)	t _{KSIA}		10	-	-	ns
$\frac{\text{Delay time from}}{\text{SCLK}}\downarrow\text{ to SDO output}$	t _{KSOAR}	CL = 5 pF, VSDO = 3 V	-	-	40	ns
	t _{KSOAF}	CL = 5 pF, VSDO = 3 V	-	-	40	ns
CS high-level width	t _{SHA}		200	-	-	ns
Delay time from $\overline{CS}\downarrow$ to $\overline{SCLK}\downarrow$	t _{SKA}		200	-	-	ns
Delay time from SCLK ↑ to CS ↑	t _{KSA}		200	-	-	ns

SPI transfer clock timing

12. Package Drawing

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

ZE

0.75

Characteristics Curve ($T_A = 25^{\circ}C$, TYP.) (reference value)

• Configurable amplifier

Output response (Non-inverting amplifier)

Output response (Instrumentation amplifier)

Output response (Non-inverting amplifier)

Output response (Instrumentation amplifier)

Temperature sensor

Low-pass filter and high-pass filter

• Variable output voltage regulator

RAA730300 Monolithic Programmable Analog IC

Rev.	Date	Description		
		Page	Summary	
1.00	Mar. 29, 2013	1	First edition issued.	
1.10	May. 31, 2014	14	Change of description about reference voltage in 2. 1 Configurable Amplifiers	
		16	Correction of the register name controlling SW02 in Figure 2-2.	
		34	Change of description in 2. 3 (9) Power control register 1 (PC1)	
		53	Change of description about reference voltage in 3. 1 General-Purpose Operational Amplifier	
		54	Addition of the register controlling SW53 to Figure 3-2.	
		55	Change of description in 3. 3 (1) Power control register 1 (PC1)	
		59	Change of the calculating formula about output voltage in 4. 1 D/A Converters	
		61	Change of description in 4. 3 (1) DAC reference voltage control register (DACRC)	
		66	Change of description about reference voltage in 5. 1 Low-pass Filter	
		70	Change of description about reference voltage in 6. 1 High-Pass Filter	
		71	Change of description in 6. 3 (1) MPX setting register3 (MPX3)	
		81	Addition of Caution about external reset to 9. SPI	
		84	Change of description in 10. Reset	
		88	Deletion of Junction temperature from 11. 1 Absolute Maximum Ratings	
		89	Change of the title to Operation condition in 11.2	
		105	Correction of the units of DAC ALL ON current consumption 1 and DAC ALL ON current consumption 2 in <i>11. 4 (3)</i>	

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1628-585-900 Renesas Electronics (China) Co., Ltd. Romon 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-235-1155, Fax: +862-10-235-7679 Renesas Electronics (Shanghal) Co., Ltd. Romon 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +86-10-235-1155, Fax: +862-10-2226-0989 Renesas Electronics (Shanghal) Co., Ltd. Unit 301, Tover A, Contral Tovers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-08989 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2255-6688, Fax: +858-29022/9044 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-205-6088, Fax: +858-24702 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +656-213-0200, Fax: +656-213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Bloch B, Menara Amorp, Amorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Konea Co., Ltd. 12F, 224 Teheran-ro, Gangama-Ku, Seoul, 135-920, Korea Tel: +60-3-7955-9390, Fax: +60-3-7955-9510