

R7F0C901B2, R7F0C902B2

RENESAS MCU

True Low Power Platform (as low as 66 μ A/MHz), 1.6 V to 5.5 V operation, 48 to 64 Kbyte Flash, 41 DMIPS at 32 MHz, for General Purpose Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 1.6 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.23 μ A, (LVD enabled): 0.31 μ A
- Snooze: 0.70 mA (UART), 1.20 mA (ADC)
- Operating: 66 µA/MHz

16-bit RL78 CPU Core

- Delivers 41 DMIPS at maximum operating frequency of 32 MHz
- Instruction Execution: 86% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- 1-wire on-chip debug function

Main Flash Memory

- Density: 48 KB to 64 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data Flash with background operation
- Data flash size: 4 KB
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 5.5 V

RAM

- 4 KB size
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 32 MHz with +/- 1% accuracy over voltage (1.8 V to 5.5 V) and temperature (-20 °C to 85 °C)
- Pre-configured settings: 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz

Reset and Supply Management

- Power-on reset (POR) generator
- Low voltage detection (LVD) with 14 setting options (Interrupt and/or reset function)

Multiple Communication Interfaces

- Up to 3 x simplified I²C
- Up to 3 x simplified SPI (CSI Note) (7-, 8-bit)
- Up to 3 x UART (7-, 8-, 9-bit)

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Interval Timer: 12-bit, 1 channel
 - 15 kHz watchdog timer : 1 channel (window function)

Rich Analog

- ADC: Up to 8 channels, 10-bit resolution, 2.1 µs conversion time
- Supports 1.6 V
- Internal voltage reference (1.45 V)

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM write protection
- SFR write protection
- Illegal memory access detection
- Clock stop/ frequency detection
- ADC self-test

General Purpose I/O

- 5V tolerant, high-current (up to 20 mA per pin)
- Open-Drain, Internal Pull-up support
- Different potential interface support: Can connect to a 1.8/2.5/3 V device

Operating Ambient Temperature

• Standard: -40 °C to +85 °C

Package Type and Pin Count

32-pin HWQFN (5 x 5 mm, 0.5 mm pitch)

<R> Note Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.

R01DS0236EJ0110

Rev.1.10

Jun 20, 2024

O ROM, RAM capacities

	Flash ROM Data flash		R7F0C901B2, R7F0C902B2
Flash ROM			32 pins
64 KB	4 KB	4 KB ^{Note}	R7F0C902B2
48 KB	4 KB	4 KB ^{Note}	R7F0C901B2

Note This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/G13 User's Manual Hardware)

1.2 List of Part Numbers

<R>

Figure 1-1. Part Number, Memory Size, and Package of R7F0C901B2, R7F0C902B2

-Renesas semiconductor product

<R>

Pin	Package	Flash	Data	Packaging specification and	Ordering part	number	RENESAS Code
count		ROM	flash	environmental compliance	Product Name	Packaging	
						specifications	
32	32-pin	64 KB	4 KB	Tray and lead-free (pure Sn)	R7F0C902B2DNP-C	#AA0, #BA0	PWQN0032KD-A
pins	plastic			Tray and lead-free (Pd-PPF)		#AC0, #BC0,	PWQN0032KE-A
	HWQFN					#UC0	PWQN0032KG-A
	(5 x 5 mm,			Embossed tape and lead-free		#HA0	PWQN0032KD-A
	0.5mm			(pure Sn)			
	pitch)			Embossed tape and lead-free		#HC0	PWQN0032KE-A
	piterij			(Pd-PPF)			PWQN0032KG-A
		48 KB		Tray and lead-free (pure Sn)	R7F0C901B2DNP-C	#AA0, #BA0	PWQN0032KD-A
				Tray and lead-free (Pd-PPF)		#AC0, #BC0	PWQN0032KE-A
							PWQN0032KG-A
				Embossed tape and lead-free		#HA0	PWQN0032KD-A
				(pure Sn)			
				Embossed tape and lead-free		#HC0	PWQN0032KE-A
				(Pd-PPF)			PWQN0032KG-A

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of R7F0C901B2, R7F0C902B2

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

- 1.3 Pin Configuration (Top View)
- 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual Hardware.
- 3. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss.}}$

1.4 Pin Identification

ANI0 to ANI3		REGC:	Regulator capacitance
ANI16 to ANI19:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RxD0 to RxD2:	Receive data
	potential (– side) input	SCK00, SCK11, SCK20,	: Serial clock input/output
AVREFP:	A/D converter reference	SCL00, SCL11, SCL20,:	Serial clock output
	potential (+ side) input	SDA00, SDA11, SDA20:	Serial data input/output
EXCLK:	External clock input (Main	SI00, SI11, SI20:	Serial data input
	system clock)	SO00, SO11, SO20:	Serial data output
INTP0 to INTP5:	Interrupt request from	TI00 to TI07:	Timer input
	peripheral	TO00 to TO07:	Timer output
P00, P01:	Port 0	TOOL0:	Data input/output for tool
P10 to P17:	Port 1	TOOLRxD, TOOLTxD:	Data input/output for external device
P20 to P23:	Port 2	TxD0 to TxD2:	Transmit data
P30, P31:	Port 3	VDD:	Power supply
P40:	Port 4	Vss:	Ground
P50, P51:	Port 5	X1, X2:	Crystal oscillator (main system clock)
P60 to P62:	Port 6		
P70:	Port 7		
P120 to P122:	Port 12		
P137:	Port 13		
P147:	Port 14		
PCLBUZ0, PCLBUZ1	: Programmable clock		
	output/buzzer output		

1.5 Block Diagram

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual Hardware.

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	32-pi	n			
		R7F0C901B2	R7F0C902B2			
Code flash me	emory (KB)	48	64			
Data flash memory (KB)		4				
RAM (KB)		4 ^{Note}	1			
Address space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main syste 1 to 20 MHz: V_{DD} = 2.7 to 5.5 V, 1 to 8 MHz: V_{DD} =	,			
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)				
Subsystem cl	ock	_				
Low-speed or	n-chip oscillator	15 kHz (TYP.)				
General-purp	ose registers	(8-bit register × 8) × 4 banks				
Minimum instruction execution time		0.03125 μ s (High-speed on-chip oscillator: fi $_{\rm H}$ = 32	MHz operation)			
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	28				
	CMOS I/O	22 (N-ch O.D. I/O [VDD withstand voltage]: 9)				
	CMOS input	3				
	CMOS output	_				
	N-ch O.D. I/O (withstand voltage: 6 V)	3				
Timer	16-bit timer	8 chanr	nels			
	Watchdog timer	1 chan	nel			
	Real-time clock (RTC)	-				
	12-bit interval timer (IT)	1 chan	nel			
	Timer output	4 channels (PWM outputs: 3 ^{Note 2}),				
		8 channels (PWM outputs: 7 Note 2) Note 3				
	RTC output		flack function are used (Fandataile			

Notes 1. This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/G13 User's Manual Hardware)

The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual Hardware)

3. When setting to PIOR0 = 1

				(2/2)			
Iter	n		32	-pin			
		R7F0	C901B2	R7F0C902B2			
Clock output/buzze	er output			2			
			 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 				
8/10-bit resolution	A/D converter	8 channels					
Serial interface		 Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel Simplified SPI (CSI): 1 channel/simplified I²C: 1 channel/UART: 1 channel 					
	I ² C bus			_			
Multiplier and divider/multiply- accumulator		 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 					
DMA controller				_			
Vectored interrupt	Internal	23					
sources	External	6					
Key interrupt				_			
Reset		 Reset by RESET pin Internal reset by wat Internal reset by pow Internal reset by volt Internal reset by illeg Internal reset by RAI Internal reset by illeg 	ichdog timer ver-on-reset age detector gal instruction execution ^N M parity error	te			
Power-on-reset circ	cuit	Power-on-reset:Power-down-reset:	1.51 V (TYP.) 1.50 V (TYP.)				
Voltage detector		• Rising edge : 1.67 V to 4.06 V (14 stages) • Falling edge : 1.63 V to 3.98 V (14 stages)					
On-chip debug fund	ction	Provided					
Power supply volta	ge	V _{DD} = 1.6 to 5.5 V					
Operating ambient	temperature	T _A = -40 to +85°C (2D:	Consumer applications)				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. PIN FUNCTIONS

Refer to 32-pin of CHAPTER 2 PIN FUNCTIONS in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have IICA0 related pins.

3. CPU ARCHITECTURE

Refer to 48 KB and 64 KB code flash memories of CHAPTER 3 CPU ARCHITECTURE in the RL78/G13 User's Manual Hardware.

FFFFFH OBFFFH Special function registers (SFR) 256 bytes FFF00H FFEFFH General-purpose registers 32 bytes FFEE0H FFEDFH RAM^{Notes 1, 2} 4 KB Program area FEF00H FEEFFH Reserved FC000H FBFFFH Mirror 01FFFH **4** 40 KB F2000H 010CEH F1FFFH Data flash memory 010CDH On-chip debug security F1000H 4 KB ID setting area FOFFFH 010C4H 10 bytes Reserved F0800H 010C3H Option byte areaNote F07FFH 010C0H 4 bytes 010BFH Boot cluster 1 Special function registers (2nd SFR) CALLT table area 2 KB Data memory 64 bytes 01080H F0000H EFFFFH space 0107FH Vector table area 128 bytes 01000 H 00FFFH Program area Reserved 000CE H 000CD H On-chip debug security ID setting area 10 bytes 000C4H 000C3H Option byte areaNote 3 Boot cluster 0Note 4 000C0H 4 bytes 000BFH CALLT table area 64 bytes 00080 H 0007FH Vector table area <u>0C000 H</u> 128 bytes 0BFFFH Program Code flash memory memory 48 KE 00000 H space 00000 H

figure 3-1 Memory Map(R7F0C901)

- Notes1. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing to the area FFE20H to FFEDFH when performing self-programming and rewriting the data flash memory. Also, use of the area FEF00H to FF309H is prohibited, because this area is used for each library.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - 3. When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH. When boot swap is used: Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 25.7 Security Setting in the RL78/G13 User's Manual Hardware).
- Caution : While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area + 10 bytes when instructions are fetched from RAM areas, respectively. Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 22.3.3 RAM parity error detection function in the RL78/G13 User's Manual Hardware.

figure 3-2 Memory Map(R7F0C902)

- Notes1. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing to the area FFE20H to FFEDFH when performing self-programming and rewriting the data flash memory. Also, use of the area FEF00H to FF309H is prohibited, because this area is used for each library.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH. When boot swap is used: Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 010C4Hto 010CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 25.7 Security Setting in the RL78/G13 User's Manual Hardware).
- Caution : While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area + 10 bytes when instructions are fetched from RAM areas, respectively. Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 22.3.3 RAM parity error detection function in the RL78/G13 User's Manual Hardware.

4. PORT FUNCTIONS

Refer to 32-pin of CHAPTER 4 PORT FUNCTIONS in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have IICA0 related pins.

5. CLOCK GENERATOR

Refer to 32-pin of CHAPTER 5 CLOCK GENERATOR in the RL78/G13 User's Manual Hardware.

However, bit 4 is deleted and bit 7 (RTCEN) is changed to TMKAEN in PER0 register of R7F0C901B2, R7F0C902B2.

6. TIMER ARRAY UNIT

Refer to 32-pin of CHAPTER 6 TIMER ARRAY UNIT in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have ISC register.

7. 12-BIT INTERVAL TIMER

Refer to CHAPTER 8 12-BIT INTERVAL TIMER in the RL78/G13 User's Manual Hardware.

8. CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

Refer to CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER in the RL78/G13 User's Manual Hardware.

9. WATCHDOG TIMER

Refer to CHAPTER 10 WATCHDOG TIMER in the RL78/G13 User's Manual Hardware.

10. A/D CONVERTER

Refer to CHAPTER 11 A/D CONVERTER in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have temperature sensor and INTRTC, and hardware trigger can not be selected in ADM1 register.

11. SERIAL ARRAY UNIT

Refer to 32-pin of CHAPTER 12 SERIAL ARRAY UNIT in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have LIN function and ISC register.

12. MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR

Refer to CHAPTER 14 MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR in the RL78/G13 User's

Manual Hardware

13. INTERRUPT FUNCTIONS

Refer to 32-pin of 16 INTERRUPT FUNCTIONS in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have DMA, IICA0 and RTC related interrupt sources.

14. STANDBY FUNCTION

Refer to CHAPTER 18 STANDBY FUNCTION in the RL78/G13 User's Manual Hardware.

However, R7F0C901B2, R7F0C902B2 does not have DMA, IICA0 and RTC related items.

15. RESET FUNCTION

Refer to CHAPTER 19 RESET FUNCTION in the RL78/G13 User's Manual Hardware.

16. POWER-ON-RESET CIRCUIT

Refer to CHAPTER 20 POWER-ON-RESET CIRCUIT in the RL78/G13 User's Manual Hardware.

17. VOLTAGE DETECTOR

Refer to CHAPTER 21 VOLTAGE DETECTOR in the RL78/G13 User's Manual Hardware.

18. SAFETY FUNCTIONS

Refer to CHAPTER 22 SAFETY FUNCTIONS in the RL78/G13 User's Manual Hardware.

19. REGULATOR

Refer to CHAPTER 23 REGULATOR in the RL78/G13 User's Manual Hardware.

20. OPTION BYTE

Refer to CHAPTER 24 OPTION BYTE in the RL78/G13 User's Manual Hardware.

21. FLASH MEMORY

Refer to 32-pin of CHAPTER 25 FLASH MEMORY in the RL78/G13 User's Manual Hardware.

Field name	Description	Number of transmit data	Data (hexadecimal)
Device code	RL78 protocol A	3 bytes	10
			00
			06
Device name	R7F0C901	10 bytes	52 = "R"
			37 = "7"
			46= "F"
			30 = "0"
			43= "C"
			39 = "9"
			30 = "0"
			31 = "1"
			20 = " "
			20 = " "
Code flash memory	Code flash memory area	3 bytes	FF
area last address	00000H to 0BFFFH (48 KB)		BF
			00
Data flash memory	Data flash memory area	3 bytes	FF
area last address	F1000H to F1FFFH (4 KB)		1F
			0F
Firmware version	Ver. 1.23	3 bytes	01
			02
			03

Table 21-1. Example of Signature Data

22. ON-CHIP DEBUG FUNCTION

Refer to CHAPTER 26 ON-CHIP DEBUG FUNCTION in the RL78/G13 User's Manual Hardware.

23. BCD CORRECTION CIRCUIT

Refer to CHAPTER 27 BCD CORRECTION CIRCUIT in the RL78/G13 User's Manual Hardware.

24. INSTRUCTION SET

Refer to CHAPTER 28 INSTRUCTION SET in the RL78/G13 User's Manual Hardware.

25. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to $+85^{\circ}C$)

Cautions The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

25.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
REGC pin input voltage VIREGC REGC		REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₁₂	P60 to P62 (N-ch open-drain)	–0.3 to +6.5	
	V _{I3}	P20 to P23, P121, P122, P137, EXCLK, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P60 to P62, P70, P120, P147	–0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₀₂	P20 to P23	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI19	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V
	Vai2	ANI0 to ANI3	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - **2.** Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF}(+): + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	-40	mA
		Total of all pins	P00, P01, P40, P120	-70	mA
		–170 mA	P10 to P17, P30, P31, P50, P51, P70, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P60 to P62, P70, P120, P147	40	mA
		Total of all pins 170 mA	P00, P01, P40, P120	70	mA
			P10 to P17, P30, P31, P50, P51, P60 to P62, P70, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins		4	mA
Operating ambient	TA	In normal operat	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

25.2 Oscillator Characteristics

25.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G13 User's Manual Hardware.

25.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	,	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

25.3 DC Characteristics

25.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00, P01, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-28.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			-2.5	mA
		Total of P10 to P17, P30, P31,P50, P51,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
		P70, P147	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-108.0	mA
	Іон2	Per pin for P20 to P23	$1.6~V \le V_{\text{DD}} \le 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P10 to P15, P17 and P50 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147				20.0 ^{Note 2}	mA
		Per pin for P60 to P62				15.0 Note 2	mA
		Total of P00, P01, P40, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			56.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P10 to P17, P30, P31, P50,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		P51, P60 to P62, P70, P147 (When duty ≤ 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		$(\text{when duly} \le 70\% \text{ mm}^2)$	$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
			$1.6~V \leq V_{\text{DD}} < 1.8~V$			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				136.0	mA
	IOL2	Per pin for P20 to P23				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			1.6	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (2/5)

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	-		TYP.	MAX.	Unit
Input voltage, high	VIH1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P01, P10, P11, P13 to P17	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
			TTL input buffer $3.3 \ V \leq V_{\text{DD}} < 4.0 \ V$	2.0		Vdd	V
			TTL input buffer 1.6 V \leq VDD < 3.3 V	1.5		Vdd	V
	Vінз	P20 to P23		0.7V _{DD}		Vdd	V
VIH4		P60 to P62		0.7V _{DD}		6.0	V
	VIH5	P121, P122, P137, EXCLK, RESET		0.8VDD		Vdd	V
Input voltage, low	VIL1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	Normal input buffer	0		0.2Vdd	V
	VIL2	P01, P10, P11, P13 to P17	TTL input buffer $4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq VDD $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P23		0		0.3Vdd	V
	V _{IL4} P60 to P62			0		0.3Vdd	V
	VIL5	P121, P122, P137, EXCLK, RESET		0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of P00, P10 to P15, P17 and P50 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items					TYP.	MAX.	Unit
Output voltage, high	Voh1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ \text{mA} \end{array}$	Vdd - 1.5			V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	$V_{\text{DD}} - 0.7$			V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	$V_{\text{DD}} - 0.6$			V
			1.8 V \leq Vdd \leq 5.5 V, Iон1 = -1.5 mA	Vdd - 0.5			V
			1.6 V \leq V _{DD} < 5.5 V, Іон1 = -1.0 mA	Vdd - 0.5			V
	Vон2	P20 to P23	1.6 V \leq V _{DD} \leq 5.5 V, Іон2 = -100 μ А	$V_{\text{DD}} - 0.5$			V
Output voltage, low	Vol1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} eq:delta_del$			1.3	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:VDD}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
			$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 5.5 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 to P23	1.6 V \leq V _{DD} \leq 5.5 V, lol2 = 400 μ A			0.4	V
	Vol3	P60 to P62	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ \\ \text{Iol3} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:VDD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
			$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V},$ Iol3 = 1.0 mA			0.4	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (4/5)

Caution P00, P10 to P15, P17 and P50 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P60 to P62, P70, P120, P147	VI = VDD	Vi = V _{DD}			1	μA
	ILIH2	P20 to P23, P137, RESET	VI = VDD				1	μA
	Іцнз	X1, X2, EXCLK	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P60 to P62, P70, P120, P147	VI = VSS				-1	μA
		P20 to P23, P137, RESET	VI = Vss				-1	μA
	Ililis	X1, X2, EXCLK	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P70, P120, P147	$V_1 = V_{SS}$, In input port		10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

25.3.2 Supply current characteristics

Parameter	Symbol		Conditions					TYP.	MAX.	Unit
Supply		Operating	HS (high-	f⊮ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current Note 1		mode	speed main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				f⊪ = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f⊮ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			`	f⊮ = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 4}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
				f⊪ = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
	main) mode Note 4	operation	V _{DD} = 2.0 V		1.2	1.7	mA			
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	² , Normal	Square wave input		3.0	4.6	mA
			speed main) mode Note 4	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
			speed main) mode ^{Note 4}	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- •The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- 2. When high-speed on-chip oscillator is stopped.
- 3. When high-speed system clock is stopped.
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - $2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency

<R>

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-speed	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.54	1.63	mA
current	Note 2	mode	main) mode Note 5		V _{DD} = 3.0 V		0.54	1.63	mA
Note 1				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-speed	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			main) mode Note 5		V _{DD} = 2.0 V		260	530	μA
			LV (low-voltage	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			main) mode Note 5		V _{DD} = 2.0 V		420	640	μA
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			main) mode Note 5	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			LS (low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		95	330	μA
			main) mode ^{Note 5}	V _{DD} = 3.0 V	Resonator connection		145	380	μA
				$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
	Ірдз	STOP	T _A = -40°C				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	μA
	T _A = +50°C					0.30	1.10	μA	
			T _A = +70°C				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (2/2)

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator is stopped.
- 4. When high-speed system clock is stopped.
- **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- LS (low-speed main) mode: $1.8~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 8~MHz
- LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency

<R>

(1) Peripheral Functions

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	_{FIL} Note 1				0.20		μA
12-bit interval timer operating current	_T Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, AV _{REFP} = V_{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	_{FSP} Notes 1, 8				2.50	12.20	mA
BGO operating current	BGO Notes 1, 7				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		Simplified SPI (CSI)/UART operation		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **4.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 5 Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual Hardware.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fclk: CPU/peripheral hardware clock frequency
- **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

25.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V{\leq}V_{DD}{\leq}5.5V$	0.03125		1	μs
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μs
		In the self	HS (high-	$2.7V{\leq}V_{DD}{\leq}5.5V$	0.03125		1	μs
		programming mode	speed main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
			LS (low-speed main) mode	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	0.125		1	μs
			LV (low- voltage main) mode	1.8V≤V∞≤5.5V	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq V_{\text{DD}}$	1.0		16.0	MHz		
		$1.8 V \le V_{DD}$	1.0		8.0	MHz		
		$1.6 V \le V_{DD}$	< 1.8 V		1.0		4.0	MHz
External system clock input	texH, texL	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V		24			ns
high-level width, low-level width		$2.4 \text{ V} \leq V_{\text{DD}}$	$4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$					ns
		$1.8 V \le V_{DD}$	< 2.4 V		60			ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}}$	< 1.8 V		120			ns
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-spe	eed 4.0 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
		main) mode	2.7 V :	\leq V _{DD} < 4.0 V			8	MHz
			1.8 V :	\leq V _{DD} < 2.7 V			4	MHz
			1.6 V :	≤ V _{DD} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			4	MHz
		main) mode	1.6 V :	≤ V _{DD} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7 V :	\leq V _{DD} < 4.0 V			8	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				4	MHz	
			1.6 V :	≤ V _{DD} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			4	MHz
		main) mode	1.6 V :	\leq V _{DD} < 1.8 V			2	MHz
		LV (low-volta	age 1.8 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$			4	MHz
		main) mode $1.6 V \le V_{DD} < 1.8 V$				2	MHz	
Interrupt input high-level width,	tinth,	INTP0	1.6 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
low-level width	t intl	INTP1 to INT	TP5 1.6 V :	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
RESET low-level width	trsl		•		10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0) n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (LS (low-speed main) mode)

When the high-speed on-chip oscillator clock is selected – – During self programming
 When high-speed system clock is selected

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

RESET Input Timing

25.5 Peripheral Functions Characteristics

AC Timing Test Points

25.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Conditions		h-speed Mode	•	LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.4~V\!\leq V_{\text{DD}}$	$\leq 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ ^{Note 2}		5.3		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}_{\text{DI}}$	$0 \le 5.5 \text{ V}$		f мск/6		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		5.3		1.3		0.6	Mbps
		$1.7 \text{ V} \leq V_{DI}$	$p \leq 5.5 V$		fмск/6		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} N^{ote 2}$		5.3		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DI}}$	o ≤ 5.5 V	-	_		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2	-			1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \end{array}$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(Conditions		h-speed Mode		/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 2/f_{\text{CLK}}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le V_{DD}$:	≤ 5.5 V	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq V_{\text{DD}}$	≤ 5.5 V	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0 V \le V_{DD}$	≤ 5.5 V	23		110		110		ns
Note 1		$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF ^{No}	ote 4		10		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}C)$	$2.7 V \leq V_{DD} \leq$	5.5 V, Vss = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

(3) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	С	conditions	HS (high main)	•		/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		1000		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	500		500		1000		ns
			$1.7~V \leq V_{\text{DD}} \leq 5.5~V$	1000		1000		1000		ns
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			1000		1000		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 V \le V_{DD}$	≤ 5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq V_{\text{DD}}$	≤ 5.5 V	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V			tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le V_{DD}$	≤ 5.5 V	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq V_{\text{DD}}$	≤ 5.5 V	44		110		110		ns
		$2.4 V \le V_{DD}$	≤ 5.5 V	75		110		110		ns
		$1.8 V \le V_{DD}$	≤ 5.5 V	110		110		110		ns
		$1.7 \text{ V} \leq V_{\text{DD}}$	≤ 5.5 V	220		220		220		ns
		$1.6 V \le V_{DD}$	≤ 5.5 V			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq V_{\text{DD}}$	≤ 5.5 V	19		19		19		ns
(from SCKp↑) ^{Note 2}		$1.6 V \le V_{DD}$	≤ 5.5 V			19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{V}_{\text{DD}}$ C = 30 pF ^{Not}			25		25		25	ns
output ^{Note 3}		$1.6 \text{ V} \le \text{V}_{\text{DD}}$: C = 30 pF ^{Not}					25		25	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 5)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10, 11))
- (4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input) (1/2)

Parameter	Symbol	Condi	tions		h-speed Mode		/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		—		—		ns
Note 5			fмск \leq 20 MHz	6/fмск		6/fмск		6/f мск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		_				ns
			$f_{MCK} \le 16 \ MHz$	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	6/fмск and 500		6/fмск and 500		6/fмск and 500		ns	
	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6~V \le V_{\text{DD}} \le 5.5~V$	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 – 18		tксү2/2 - 18		tксү2/2 - 18		ns
	1.7 V≤\			tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6~V \le V_{\text{DD}} \le 5.5~V$		—		tксү2/2 - 66		tксү2/2 - 66		ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input) (2/2)

Parameter	Symbol		Conditions	HS (high main)	•	LS (low-spe Mod		LV (low-vol Mo	- ,	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note}	tsik2	2.7 V ≤ V	$'_{\text{DD}} \leq 5.5 \ V$	1/fмск+2 0		1/fмск+30		1/fмск+3 0		ns
1		1.8 V ≤ V	$'_{\text{DD}} \leq 5.5 \ V$	1/fмск+3 0		1/fмск+30		1/fмск+3 0		ns
		1.7 V ≤ V	$'_{\text{DD}} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+4 0		ns
		1.6 V ≤ \	$I_{\text{DD}} \leq 5.5 \text{ V}$	—		1/fмск+40		1/fмск+4 0		ns
SIp hold time (from SCKp↑)	tksi2	1.8 V ≤ V	$'_{\text{DD}} \leq 5.5 \text{ V}$	1/fмск+3 1		1/fмск+31		1/fмск+3 1		ns
Note 2		1.7 V ≤ V	$'_{\text{DD}} \leq 5.5 \text{ V}$	1/f _{мск} + 250		1/fмск+ 250		1/fмск+ 250		ns
		1.6 V ≤ V	$I_{DD} \le 5.5 \text{ V}$	—		1/fмск+ 250		1/fмск+ 250		ns
Delay time from SCKp↓ to	tĸso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск+ 44		2/fмск+ 110		2/fмск+ 110	ns
SOp output ^{Note} 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns
			$1.8~V \le V_{DD} \le 5.5~V$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns
			$1.7~V \leq V_{DD} \leq 5.5~V$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns
			$1.6~V \leq V_{DD} \leq 5.5~V$		—		2/fмск+ 220		2/fмск+ 220	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - **5.** Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 5)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10, 11))

Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 11, 20)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

(5) During communication at same potential (simplified I²C mode) (1/2)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	•	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		1.7 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V ≤ V _{DD} < 1.8 V, C₀ = 100 pF, R₀ = 5 kΩ		—		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	475		1150		1150		ns
		1.8 V \leq V _{DD} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		1.7 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	—		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		1.6 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ			1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	、 U	h-speed Mode	LS (low main)	/-speed Mode	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ \mbox{ C}_{\mbox{b}} = 50 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 2.7 \mbox{ k}\Omega \end{array}$	1/fмск + 85 Note2		1/fмск + 145 Note2		1/fмск + 145 Note2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 \mbox{ k}\Omega \end{array}$	1/fмск + 145 Note2		1/fмск + 145 Note2		1/fмск + 145 Note2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 230 Note2		1/f _{MCK} + 230 Note2		1/fмск + 230 Note2		ns
		$\begin{array}{l} 1.7 \ V \leq V_{\text{DD}} < 1.8 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{array}$	1/fмск + 290 Note2		1/fмск + 290 Note2		1/fмск + 290 Note2		ns
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ \mbox{ C}_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	_		1/fмск + 290 Note2		1/fмск + 290 Note2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	0	355	0	355	0	355	ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$ C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		1.7 V ≤ V _{DD} < 1.8 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	-	_	0	405	0	405	ns

(5) During communication at same potential (simplified l²C mode) (2/2) (T_A = -40 to +85°C. 1.6 V \leq V_{DD} \leq 5.5 V. V_{SS} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 11, 20), g: PIM number (g = 0, 1, 5),
 h: POM number (g = 0, 1, 5)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss } 0 \text{ V})$

Parameter	Symbol		Conditions			HS (high- speed main) Mode		/-speed Mode	LV (low- voltage main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
			$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.

Remarks 1. Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10, 11)

Parameter	Symbol	Conditions			high- l main) ode	speed	(low- ⊨main) ode	volt	(low- age Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $1.4 \text{ k}\Omega, V_b = 2.7$ V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ 2.7 k Ω , $V_b = 2.3$ V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
		$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using f_{MCK}/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 Remarks 1.
 Rb[Ω]:Communication line (TxDq) pull-up resistance,

 Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2)

Parameter	Symbol		Conditions		h-speed Mode	LS (low main)	•	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fc∟к		200		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \\ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2.3 V \le V_b \le 20 pF, F$	2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2.3 V \le V_b \le 20 pF, F$	2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsikı	$4.0 V \le V_{DD} \le 2.7 V \le V_b \le C_b = 20 \text{ pF, F}$	4.0 V,	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ 2.3 \ V \leq V_b \leq 1 \\ C_b = 20 \ pF, \ F \end{array}$	2.7 V,	121		479		479		ns
Slp hold time (from SCKp↑) ^{Note} 1	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ 2.3 \ V \leq V_b \leq 1 \\ C_b = 20 \ pF, \ F \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$4.0 V \le V_{DD} \le 2.7 V \le V_b \le C_b = 20 \text{ pF, F}$	4.0 V,		60		60		60	ns
		$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2.3 V \le V_b \le 20 pF, F$	< 4.0 V, 2.7 V,		130		130		130	ns

(T_A = -40 to +85°C, 2.7 V \leq V_DD \leq 5.5 V, Vss = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	23		110		110		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	10		10		10		ns
		$\label{eq:cb} \begin{split} & C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \\ & 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tĸso1			10		10		10	ns
		$\label{eq:VD} \begin{split} & 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

- n: Channel number (mn = 00))
- 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions		h-speed Mode	LS (low main)	•	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \end{array}$	300		1150		1150		ns
			$\begin{array}{l} C_{b} = 30 \ pF, \ R_{b} = 1.4 \ k\Omega \\ \\ \hline 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{split} & \frac{1.8}{1.6} V \leq V_{DD} < 3.3 \text{ V}, \\ & 1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}^{\text{Note}}, \\ & \text{C}_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega \end{split}$	1150		1150		1150		ns
SCKp high-level width	tкнı	$4.0 V \le V_{DD} \le 2.7 V \le V_b \le C_b = 30 pF$,	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		$2.7 V \le V_{DD}$ $2.3 V \le V_b \le C_b = 30 pF,$	< 4.0 V, 2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le V_{DD} \le 1.6 V \le V_b \le C_b = 30 pF,$	< 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟ı	$4.0 V \le V_{DD} \le 2.7 V \le V_b \le C_b = 30 pF$,	4.0 V,	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 V \le V_{DD} \le 2.3 V \le V_b \le C_b = 30 pF,$	< 4.0 V, 2.7 V,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} \\ 1.6 \ V \leq V_{b} \leq \\ C_{b} = 30 \ pF, \end{array}$	2.0 V ^{Note} ,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (higl main)	•	``	/-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$	81		479		479		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	177		479		479		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$ \begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array} $	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp \downarrow to	tkso1			100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		483		483		483	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp↓) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$	44		110		110		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↓) ^{Note 1}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array} \end{array} \label{eq:VDD}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number , n: Channel number (mn = 00, 10), g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))
 - **4.** CSI11 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different

potential)

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential)

- **Remarks 1.** p: CSI number (p = 00, 20), m: Unit number , n: Channel number (mn = 00, 10), g: PIM and POM number (g = 1)
 - CSI11 cannot communicate at different potential. Use other CSI for communication at different potential.

RENESAS

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$	24 MHz < fмск	14/ fмск						ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 V \le V_{DD} < 4.0 V,$ $2.3 V \le V_{b} \le 2.7 V$	24 MHz < fмск	20/ fмск		—		—		ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск				—		ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск				—		ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск				—		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск		—		ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$	24 MHz < fмск	48/ fмск		—		—		ns
		Note 2	20 MHz < fмск ≤ 24 MHz	36/ fмск				—		ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск				—		ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		—		—		ns
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		—		ns
			fмск ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol Conditions HS (h Speed Mo		main)	``	/-speed Mode	LV (low main)	Unit		
				MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$ \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array} $	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$ \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}} \end{array} $	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output _{Note 5}	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$ \begin{split} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{\text{b}} &= 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{split} $		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (2/2)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

2. Use it with $V_{DD} \ge V_{b}$.

3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 20), m: Unit number, n: Channel number (mn = 00, 10), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 10))

4. CSI11 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 20), m: Unit number,

n: Channel number (mn = 00, 10), g: PIM and POM number (g = 1)

2. CSI11 cannot communicate at different potential. Use other CSI for communication at different potential.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode		/-speed		-voltage	Unit
			MIN.	Mode MAX.	MIN.	Mode MAX.	MIN.	Mode MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	WIIN.	1000 Note 1	WIIN.	300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} & 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLow		475		1550		1550		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550)	ns
			1150		1550		1550		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} & 1.8 \; \text{V} \leq \text{V}_{\text{DD}} < 3.3 \; \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 5.5 \; \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнigн		245		610		610		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$\begin{split} & 1.8 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; \text{pF}, \; R_b = 5.5 \; k\Omega \end{split}$	610		610		610		ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{мск} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{мск} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
			1/f _{мск} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{мск} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\label{eq:VDD} \begin{split} & 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ & \text{C}_{b} = 100 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split}$	1/f _{мск} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
Data hold time (transmission)	thd:dat		0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
			0	405	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{\mbox{MCK}}/4.$

- **2.** Use it with $V_{DD} \ge V_b$.
- **3.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 20), g: PIM, POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 10)

25.6 Analog Characteristics

25.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) =		
	AVREFP		Reference voltage (+) = VBGR
	Reference voltage (-) =	Reference voltage (+) = VDD	Reference voltage (-) =
Input channel	AVREFM	Reference voltage (-) = Vss	AVREFM
ANI0 to ANI3	Refer to 25.6.1 (1).	Refer to 25.6.1 (3) .	Refer to 25.6.1 (4).
ANI16 to ANI19	Refer to 25.6.1 (2).		
Internal reference voltage	Refer to 25.6.1 (1).		-

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2, ANI3, internal reference voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+) = AV}_{REFP}, \text{Reference voltage (-) = AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution Target pin: Internal reference voltage (HS (high-speed main) mode)	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{dd} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	ro-scale error ^{Notes 1, 2} Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		$AV_{\text{REFP}} = V_{\text{DD}} \text{ Note 3} $ 1.6 V $\leq AV_{\text{REFP}} \leq 5.5 \text{ V Note }$				±0.50	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
			$\begin{array}{l} 1.6 \ V \leq AV \text{REFP} \leq 5.5 \ V \\ ^{\text{Note}} \end{array}$			±0.50	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB
		$AV_{REFP} = V_{DD} Note 3$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
Note 1		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
	Internal reference voltation (2.4 V \leq VDD \leq 5.5 V, H		ge S (high-speed main) mode)		V _{BGR} Note 5		V

(**Notes** are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 25.6.2 Internal reference voltage characteristics.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI19

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP,

Parameter	Symbol	Condi	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$V_{DD} = AV_{REFP} = V_{DD} Notes 3, 4$	$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V \\ \text{Note 5} \end{array}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin : ANI16 to ANI19	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
	$V_{DD} = AV_{REFP} = V_{DD} Notes 3, 4$	$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V \\ \text{Note 5} \end{array}$			±0.60	%FSR	
Full-scale error ^{Notes 1, 2}		10-bit resolution $V_{DD} = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
			$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V \\ \text{Note 5} \end{array}$			±0.60	%FSR
Integral linearity error	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
Note 1		$V_{DD} = AV_{REFP} = V_{DD} Notes 3, 4$	$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V \\ \text{Note 5} \end{array}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error Note 1		$V_{DD} = AV_{REFP} = V_{DD} Notes 3, 4$	$\begin{array}{l} 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V \\ \text{Note 5} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI19	·	0		AVREFP and VDD	V

Reference voltage (–) = AVREFM = 0 V)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin : ANI0 to ANI3, ANI16 to ANI19, internal reference voltage

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI3, ANI16 to ANI19	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V\text{DD} \leq 5.5~V$	57		95	μs
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μs
	re (h	(high-speed main) mode)	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
1			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI3		0		Vdd	V
		ANI16 to ANI19				Vdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi	igh-speed main) mode)	V _{BGR} Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

4. Refer to 25.6.2 Internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2, ANI3, ANI16 to ANI19

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} =0 V, Reference voltage (+) = V_{BGR} ^{Note 3}, Reference voltage (-) = AV_{REFM} = 0 V ^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 25.6.2 Internal reference voltage characteristics.

When reference voltage (-) = Vss, the MAX. values are as follows.
Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AV_{REFM}.
Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.
Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.

25.6.2 Internal reference voltage characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS} (high-s)$	peed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Operation stabilization wait time	tamp		5			μS

25.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

25.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(T_A = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	V	
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V	
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		Vlvd7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μS
Detection d	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(T_A = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1	LVIS1, LVIS0 = 1, 0 Rising release reset voltage	1.74	1.77	1.81	V
		Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2 LVIS1, LV	LVIS1, LVIS0 = 0, 1 Rising release reset voltage	1.84	1.88	1.91	V
		Falling interrupt voltage	1.80	1.84	1.87	V
	V LVDA3	LVIS1, LVIS0 = 0, 0 Rising release reset voltage	2.86	2.92	2.97	V
		Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2, VPOC1, VPOC0 = 0, 0, 1, falling reset voltage	1.80	1.84	1.87	V
	VLVDB1	LVIS1, LVIS0 = 1, 0 Rising release reset voltage	1.94	1.98	2.02	V
		Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1 Rising release reset voltage	2.05	2.09	2.13	V
		Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1, LVIS0 = 0, 0 Rising release reset voltage	3.07	3.13	3.19	V
		Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1	LVIS1, LVIS0 = 1, 0 Rising release reset voltage	2.56	2.61	2.66	V
		Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1 Rising release reset voltage	2.66	2.71	2.76	V
		Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3	LVIS1, LVIS0 = 0, 0 Rising release reset voltage	3.68	3.75	3.82	V
		Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0 Rising release reset voltage	2.86	2.92	2.97	V
		Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1 Rising release reset voltage	2.96	3.02	3.08	V
		Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 = 0, 0 Rising release reset voltage	3.98	4.06	4.14	V
		Falling interrupt voltage	3.90	3.98	4.06	V

25.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 25.4 AC Characteristics.

<R>

25.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

25.8 Flash Memory Programming Characteristics

-40 to +85°C, 1.8 V \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fсıк	$1.8~V \leq V\text{dd} \leq 5.5~V$		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	Ta = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	Ta = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

25.9 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

25.10 Timing Specs for Switching Flash Memory Programming Modes (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - t_{HD}: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

26. PACKAGE DRAWINGS

Max

5.1

5.1

0.8

0.30

0.25

0.45

3.6

<u>3.</u>6

_

3.4

_

E2

_

<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

Dimension in Millimeters				
Min.	Nom.	Max.		
_	_	0.80		
0.00	0.02	0.05		
	0.203 REF	•		
0.18	0.25	0.30		
	5.00 BSC			
5.00 BSC				
0.50 BSC				
0.35	0.40	0.45		
0.20	—	_		
3.15	3.20	3.25		
3.15	3.20	3.25		
	0.15			
	0.10			
	0.10			
	0.05			
	0.08			
	0.10			
	Min. — 0.00 0.18 0.35 0.20 3.15	Min. Nom. — — 0.00 0.02 0.203 REF 0.203 REF 0.18 0.25 5.00 BSC 5.00 BSC 0.50 BSC 0.50 BSC 0.35 0.40 0.20 — 3.15 3.20 3.15 3.20 0.15 0.10 0.10 0.10 0.05 0.08		

0.06

Reference	Dimens	ion in Mil	limeters
Symbol	Min.	Nom.	Max.
А	_	_	0.80
A ₁	0.00	—	0.05
A ₃	0	.20 REF	
b	0.20	0.25	0.30
D	_	5.00	_
Ε	—	5.00	—
е	_	0.50	—
Ν		32	
L	0.30	0.40	0.50
K	0.20	_	—
D ₂	3.10	3.20	3.30
E ₂	3.10	3.20	3.30
aaa	_	_	0.15
bbb	_	_	0.10
CCC	_	_	0.10
ddd	_	_	0.05
eee	_	_	0.08
		-	

Revision History

R7F0C901B2, R7F0C902B2 Data Sheet

			Description
Rev.	Date	Page	Summary
1.00	Jun 24, 2014	-	First Edition issued
1.10	May 31, 2024	All	The module name for CSI was changed to Simplified SPI (CSI)
		1	Addition of Note in 1.1 Features
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of R7F0C901B2, R7F0C902B2
		3	Modification of Table 1-1. List of Ordering Part Numbers
		42	Modification of Note 1 in 25.3.2 Supply current characteristics ($T_A = -40$ to +85°C, 1.6 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V) (1/2)
		43	Modification of Note 1 and deletion of Note 5 in 25.3.2 Supply current characteristics ($T_A = -40$ to $+85^{\circ}$ C, 1.6 V $\leq V_{DD} \leq 5.5$ V, V _{SS} = 0 V) (2/2)
		85	Modification of Title, Note and Figure in 25.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		88, 89	Addition of package drawings in 26. PACKAGE DRAWINGS

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.