Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M61523FP

Elctronic Volume With Scf Type Tone Control To 6 Speakers

REJ03F0009-0100Z Rev.1.00 Sep.04.2003

Description

The M61523FP is a semiconductor integrated circuit using the SCF technology. This IC is no need external parts of Tone and Loudness block. External components for pop-noise were reduced by built-in the offset reduction circuit and several pop-noise improvement circuit.

Features

Dual source type (Main/Sub) Input selector
 Input of single 3ch and the differential 1ch.

Input gain amp.

Main selector and Sub selector can do the setting of gain independently 0dB to +14dB/1dBstep, +14dB to +20dB/2dB step

- Built-in 2ch master volume with soft-changing circuit for pop-noize +6dB to -80dB/1dBstep, -∞dB (L and R independence control)
- FADER

Front, Rear: 0dB to -48dB/2dB step, -56, -∞dB

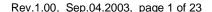
(Front and Rear independence control, L and R are controlled at the same time)

Non FADER: -26dB to +12dB/2dB step, -∞dB (FRONT and REAR are controlled at the same time)

Built in soft-changing circuit for pop-noize.

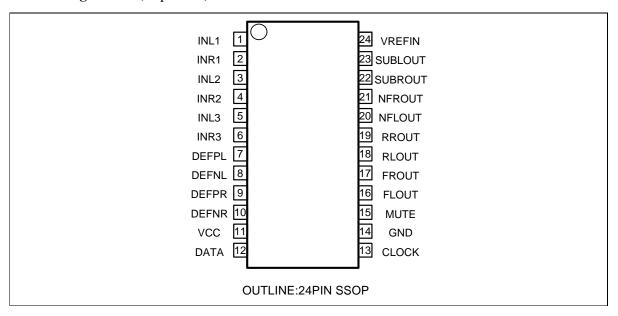
- Built-in Loudness : 0dB to -15dB/1dB step
 - fo: 400Hz, 800Hz
- Built-in 2 band Tone Control

Bass: -14dB to +16dB/2dB step

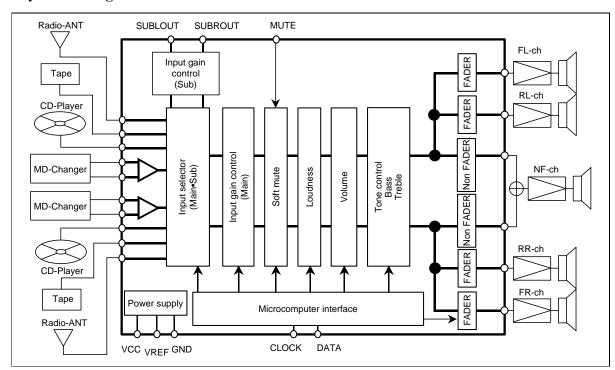

fo: 50Hz, 80Hz, 120Hz Q: 1.0, 1.25, 1.5, 2.0

Treble : -12dB to +12dB/2dB step fo: 8KHz, 12KHz Q: 1.0

- Built-in Soft MUTE by DC voltage control or serial data control
- 2 line serial bus control

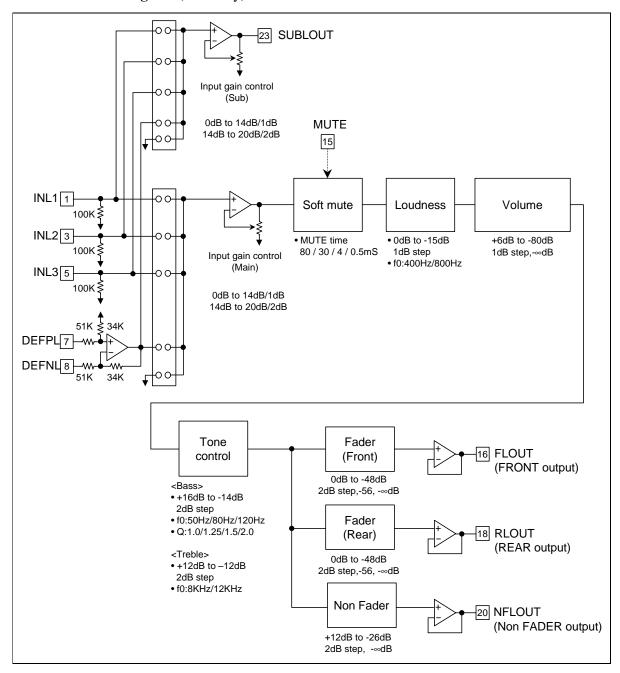

Recommended Operating Conditions

Supply voltage range......7.0 to 10.0V Recommended supply voltage9.0V


Pin Configuration (Top View)

Application

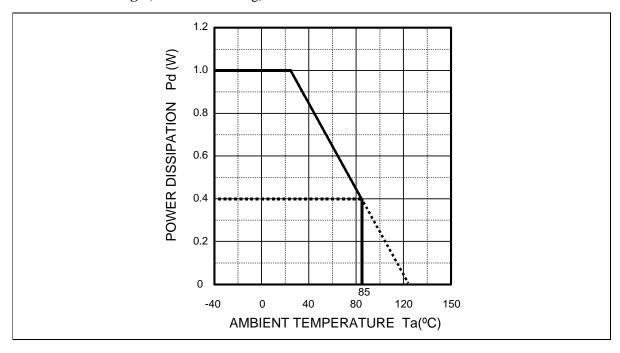
Car Audio


System Configuration

Pin Description

Pin No.	Name	Function
1	INL1	Input pin of L/R channel 1
2	INR1	
3	INL2	Input pin of L/R channel 2
4	INR2	
5	INL3	Input pin of L/R channel 3
6	INR3	
7	DEFPL	Positive input pin of differential amp(L channel)
8	DEFNL	Negative input pin of differential amp (L channel)
9	DEFPR	Positive input pin of differential amp (R channel)
10	DEFNR	Negative input pin of differential amp (R channel)
23	SUBLOUT	Output pin of Sub selector (Lch)
22	SUBROUT	Output pin of Sub selector (Rch)
16	FLOUT	Output pin of FADER volume (FRONT Lch)
17	FROUT	Output pin of FADER volume (FRONT Rch)
18	RLOUT	Output pin of FADER volume (REAR Lch)
19	RROUT	Output pin of FADER volume (REAR Rch)
20	NFLOUT	Output pin of Non FADER volume (REAR Lch)
21	NFROUT	Output pin of Non FADER volume (REAR Rch)
12	DATA	Input pin of Serial DATA
13	CLOCK	Input pin of CLOCK
15	MUTE	Control pin of Soft MUTE
14	GND	Ground pin
11	VCC	Power supply pin
24	VREFIN	Signal ground of IC

Internal Block Diagram (Lch Only)


Absolute Maximum Ratings

Symbol	Parameter	Condition		Unit
V _{cc}	Power supply		10.5	V
Pd	Power dissipation	Ta ≤ 25°C	1.0	W
K	Thermal derating	Ta > 25°C (Circuit board installation)	10.0	mW/°C
Topr	Operating temperature		-30 to +85	°C
Tstg	Storage temperature		-55 to +125	°C

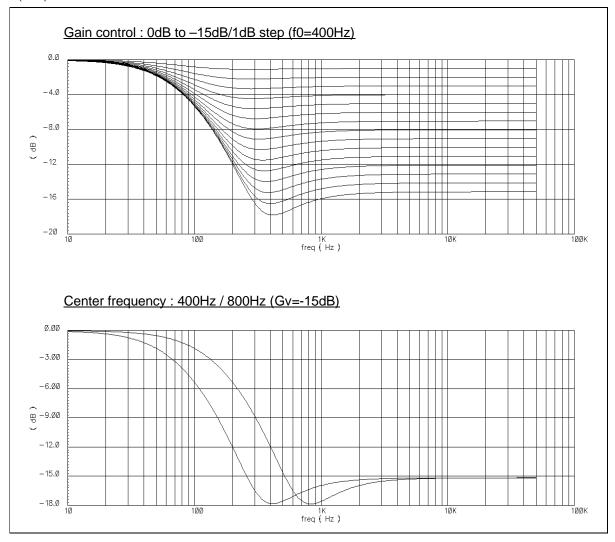
Recommended Operating Conditions

			Ratings	i	
Symbol	Parameter	MIN	TYP	MAX	Unit
V _{cc}	Power supply	7.0	9.0	10.0	V
V _{IH}	Logic "H" level input voltage (12,13,15pin)	2.1	_	5.0	
V _{IL}	Logic "H" level input voltage (12,13,15pin)	GND	_	0.7	

Thermal Deratings (Maximum Rating)

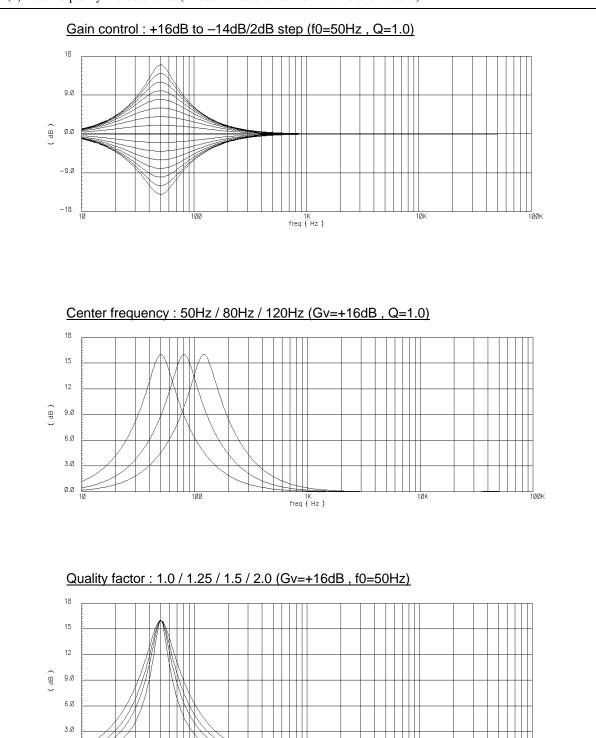
Electical Characteristics

Unless otherwise noted, V_{cc} =9V, Ta=25°C, RL=10K Ω , Input selector : IN1 Vi=1Vrms, f=1KHz, Input gain control/Loudness/Volume/Tone control/FADER/Non FADER=0dB

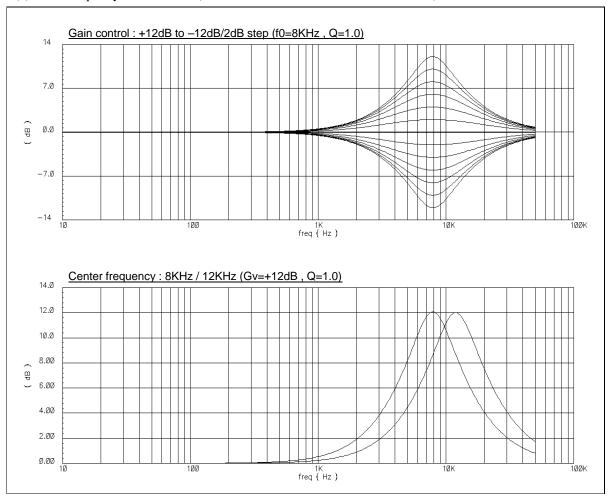

				Limit		_
Symbol	Parameter	Condition	Min	Тур	Max	Unit
Input selector, In	put gain control					
Zin	Input resistance	1,2,3,4,5,6pin	50	100	150	$k\Omega$
Sin	Input selector channel	DIN-AUDIO	65	75	_	dB
	separation	Input pin to GND with the capacitance				
CMRR	Common mode rejection ratio	7,8pin / 9,10pin DIN-AUDIO	40	50	_	dB
		At the time of common mode				
Vo (differential)	Output voltage of differential amplifier	$ \begin{array}{l} \textbf{7,9pin: Vi = 1.5Vrms} \\ \textbf{8,10pin: Vi = 1.5Vrms} \\ \textbf{(Reverse mode of 7,9pin)} \end{array} \} \begin{array}{l} \textbf{When it is} \\ \textbf{inputted} \end{array} $	1.6	2.0	2.4	Vrms
		selector : differential input				
Vi max	Maximum output voltage	400Hz to 30KHz BPF THD=1%	2.0	2.4	_	Vrms
Gv max	Maximum gain	Vi = 0.1Vrms, Gv=20dB	18	20	22	dB
G _{STEP}	Gain step	Gv = 0dB to 14dB	_	1	_	dB
		Gv = 14dB to 20dB	_	2	_	dB
Loudness						
A _{TT} max	Maximum attenuation	$f = 10KHz, A_{TT} = -15dB$	-17	-15	-13	dB
G _{STEP}	Gain step		_	1	_	dB
Volume						
Gv max	Maximum gain	A _{TT} = +6dB DIN-AUDIO	+4	+6	+8	dB
A _{rr} max	Maximum attenuation	$A_{TT} = -\infty dB$ DIN-AUDIO	80	90	_	dB
G _{STEP}	Gain step		_	1	_	dB
ΔA_{TT}	Attenuation error	Gv = 0dB	-2	0	2	dB
Fader						
A _{rr} max	Maximum attenuation	$A_{TT} = -\infty dB$ DIN-AUDIO	80	90	_	dB
G _{STEP}	Gain step		_	2	_	dB
ΔA_{TT}	Attenuation error	Gv = 0dB	-2	0	2	dB
Non Fader						
Gv max	Maximum gain	Gv = +12dB DIN-AUDIO	+10	+12	+14	dB
A _{⊤⊤} max	Maximum attenuation	$A_{TT} = -\infty dB$ DIN-AUDIO	80	90	_	dB
G _{STEP}	Gain step	Gv = +12dB to -26dB		2		dB

Unless otherwise noted, VCC=9V, Ta=25°C, RL=10K Ω , Input selector : IN1 Vi=1Vrms, f=1KHz, Input gain control/Loudness/Volume/Tone control/FADER/Non FADER=0dB

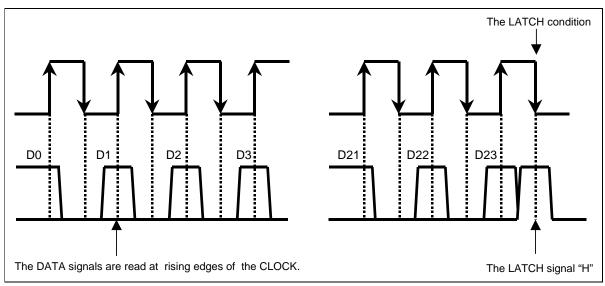
Symbol	Parameter	Condition	Min	Тур	Max	Unit
Bass						
G(Bass)B	Tone control voltage gain (Boost/Bass)	Vi = 0.1Vrms, f = 120Hz	+14	+16	+18	dB
G(Bass)C	Tone control voltage gain (Cut/Bass)	Vi = 0.5Vrms, f = 120Hz	-16	-14	-12	dB
GSTEP	Gain step		_	2	_	dB
f0	Center frequency	f0 = 50Hz	36.5	50	63.5	Hz
		f0 = 80Hz	58.4	80	101.6	Hz
		f0 = 120Hz	87.6	120	152.4	Hz
Treble						
G(Treble)B	Tone control voltage gain (Boost/Treble)	Vi = 0.1Vrms, f = 12KHz	+10	+12	+14	dB
G(Treble)C	Tone control voltage gain (Cut/Treble)	Vi = 0.5Vrms, f = 12KHz	-14	-12	-10	dB
G _{STEP}	Gain step			2	_	dB
f0	Center frequency	f0 = 8KHz	5.8	8	10.2	KHz
		f0 = 12KHz	8.8	12	15.2	KHz
Characteristics						
I _{cc}	Circuit current	No signal	_	40	55	mA
Gv	Pass gain	Vi = 2.0Vrms, 20Hz to 20KHz	-2	0	+2	dB
CS	Channel separation	Input side: Vi = 1Vrms, f = 1KHz Measurement side: Input pin to GND with the capacitance		80	_	dB
Vo max	Maximum output voltage	400Hz to 30KHz BPF THD = 1%	2.0	2.4	_	Vrms
THD	Total harmonic distortion	400Hz to 30KHz BPF Vo = 1Vrms, ALL FLAT	_	0.009	0.04	%
Vno	Output noise voltage	DIN-AUDIO, ALL FLAT Input pin to GND with the capacitance	_	12	24	μVrms
		DIN-AUDIO, FADER = -∞dB Input pin to GND with the capacitance	_	3	10	μVrms


Loudness Frequency Characteristics

(note) These characteristics are the simulation result.


Tone Control Frequency Characteristics

(1) Bass frequency characteristics (These characteristics are the simulation result.)

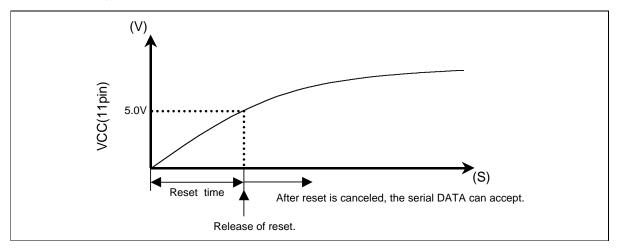


Ø.Ø

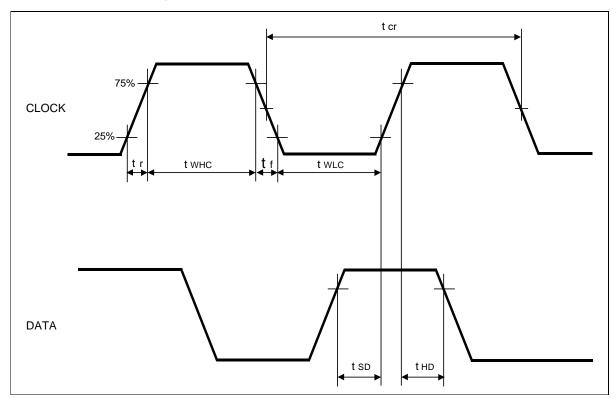
1K freq (Hz) (2) Treble frequency characteristics (These characteristics are the simulation result.)

Relationship between Data and Clock

How to transmit DATA.

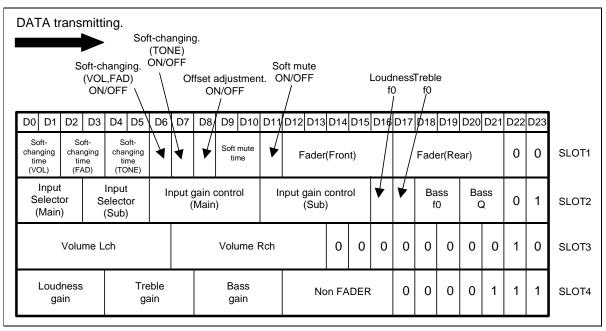

This IC reads DATA signal at the rising edge of the CLOCK.

When DATA are transmitted, setting up the DATA line is always "L" at the falling edge of the CLOCK.


Power on Reset

This IC builds in the power on reset function.

The voltage of $V_{_{\rm CC}}\,(11~\text{pin})$ less than 5.0V, the serial DATA can not accept.


Clock and Data Timing

Timing Definition of Digital Block

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	
t _{cr}	CLOCK cycle time	4.0	_	_	μS	
t _{whc}	CLOCK pulse width ("H" level)	1.6	_	_		
t _{wLC}	CLOCK pulse width ("H" level)	1.6	_	_		
t,	Rising time of CLOCK	_	_	0.4		
t _{sd}	Falling time of CLOCK	_	_	0.4		
t _{HD}	DATA setup time	0.8	_	_		
t,	DATA hold time	0.8	_	_		

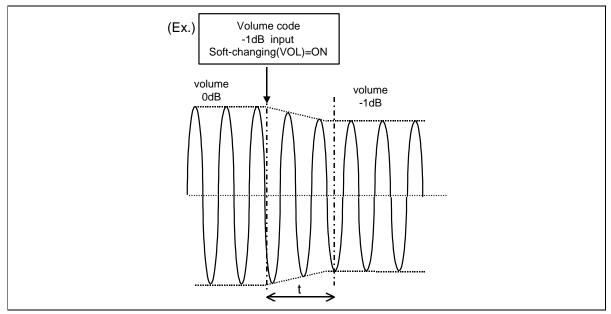
Data Control Specification

Set-up of an inside in each slot switching as follows.

- SLOT1 (D22, D23=0,0): Soft-changing time, Soft-changing ON/OFF, Offset adjustment ON/OFF, Soft mute time
 - → Set-up of an inside switching soon after LATCH condition.
 - Soft mute ON/OFF
 - → After set up at Soft mute time, soft mute 'ON' can work.
 - Fader (Front, Rear)
 - → Set-up of an inside switching slowly at the time when it was set up by Softchanging time (Fad) after LATCH condition.
- SLOT2 (D22, D23=0,1): Set-up of an inside switching soon after LATCH condition.
- SLOT3 (D22, D23=1,0): Set-up of an inside switching slowly at the time when it was set up by Soft-changing time (VOL) of Slot1 After LATCH condition.
 - (When Soft-changing(VOL) of the slot 1 is off, A setup of an inside switching soon after LATCH condition.)
- SLOT4 (D22, D23=1,1): Set-up of an inside switching slowly at the time when it was set up by Soft-changing time (TONE) of Slot1 After LATCH condition.
 - (When Soft-changing (TONE) of the slot 1 is off, A setup of an inside switching soon after LATCH condition.)
- (note) Refer to the next page for Soft mute/Soft-changing (VOL, FAD, TONE) in detail.

Soft-Changing

This IC built in the Soft-changing circuit for reduce the step-noise when internal SW changing.


By this function, Switching noise of no-signal and some signals can be reduced.

At the Time of Volume and Fader Changing

The Soft-changing of Volume and Fader can work as follows,

- (1) At the time of Soft-changing (VOL, FAD) ON
- (2) Volume: At the time of changing in the 1dB or 2dB step. Fader: At the time of changing in the 2dB step.
- (3) After the last Soft-changing (VOL, FAD) is completed.

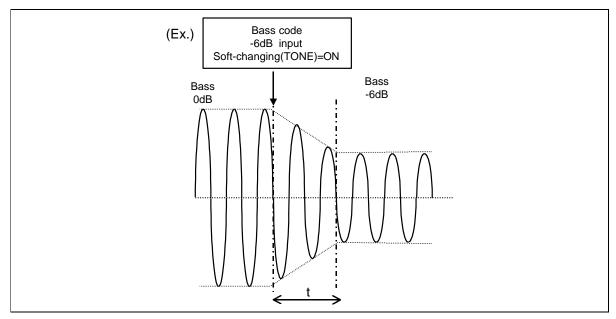
Soft-changing time (VOL, FAD) can be select for four kinds of the bottom table.

t: Soft-changing time (You can changed by serial DATA.) Note) Serial DATA isn't accepted during Soft-changing.

Soft Switching Time (Vol)

Time	D0	D1
60ms	1	1
40ms	1	0
20ms	0	1
5ms	0	0

Soft Switching Time (Fad)


Time	D2	D3
100ms	1	1
80ms	1	0
60ms	0	1
40ms	0	0

At the Time of Loudness, Bass, Treble and Non Fader Changing

The Soft-changing of Loudness, Bass, Treble and Non Fader can work as follows,

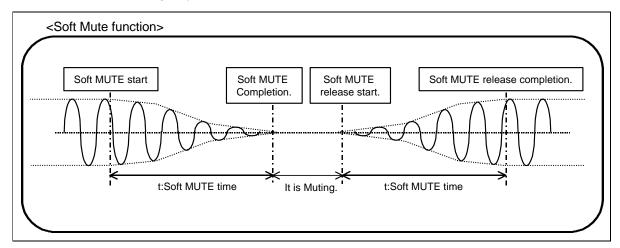
- (1) At the time of Soft-changing (TONE) ON
- (2) At the time of step switching.
- (3) After the last Soft-changing (TONE) is completed.

Soft-changing time (TONE) can be select for four kinds of the bottom table.

t: Soft-changing time (You can changed by serial DATA.) Note) Serial DATA isn't accepted during Soft-changing.

Soft Switching Time (Tone)

Time	D4	D5	
100ms	1	1	
80ms	1	0	
60ms	0	1	
40ms	0	0	

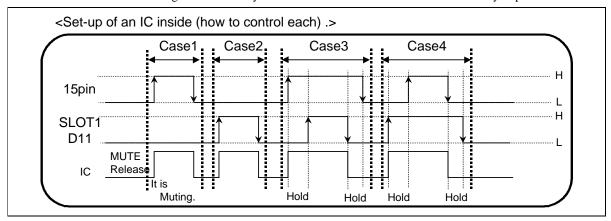

Soft Mute

This IC builds in the Soft Mute function for reduce pop-noise when Mute ON or OFF.

because of pop noise decrease when MUTE/MUTE release moves.

Soft Mute controlled directly with 15 pin (MUTE Pin) or can be controlled by Serial DATA.

Soft Mute time can be changed by Serial DATA as for four kinds (0.5mS/10mS/30mS/80mS) .


Soft Mute controlled by the MUTE pin (15pin).
 Soft Mute → ON: "L level →H level (at the rising edge)"
 Soft Mute → OFF: "H level →L level (at the falling edge)"

MUTE pin (15pin)	IC inside movement
L Soft MUTE release	
L→H	Soft MUTE start
Н	MUTE
H→L	Soft MUTE release start

Note) Refer to (page 5) recommend conditions for the L/H threshold voltage.

Soft Mute controlled by Serial DATA.
 Soft Mute ON/OFF can be controlled by D11 of the slot 1 DATA input format (page 12).

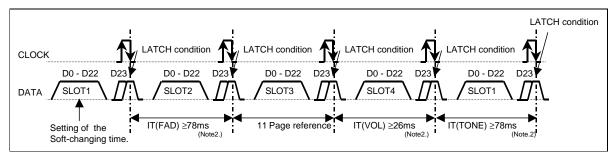

- 3. Relations between the MUTE pin (15pin) control and Serial DATA control.
 - As for the Soft Mute ON/OFF, it is priority that the rising edge and the falling edge are inputted first 15pin control or Serial DATA control as the bottom figure.
 - Case1: Mute ON/OFF controlled by 15pin.
 - Case2 : Mute ON/OFF controlled by Serial DATA.
 - Case3: Mute starting is controlled by 15pin and Mute release is controlled by Serial DATA.
 - Case4: Mute starting is controlled by Serial DATA and Mute release is controlled by 15pin.

Data Transmission and Relation of the Soft-Changing Time

This IC do not accept next DATA (LATCH condition) until the Soft-changing finished.

(Transmission Slot 1, Slot 3 and Slot 4 of the DATA input format.)

(Note) The slot 4 DATA are ineffective as the upper figure.


In to set the Serial DATA transmitting interval: IT from MCU (microcomputer) to M61523FP.

Serial DATA transmitting interval: IT >Soft-changing time: T

(The reading error of the DATA does not occur.)

DATA transmitting example

Serial DATA transmitting interval (IT) setting when Soft-changing time (VOL) = 20mS, (FAD) = 60mS, (TONE) = 60mS.

Note1. Serial DATA transmitting interval (IT) =The interval of LATCH condition and LATCH condition.

Note2. IT(FAD) = 60msec + (60msec X 30%), IT(VOL) = 20msec + (20msec X 30%), IT(TONE) = 60msec + (60msec X 30%)

Slot1 Data Code

Soft-changing time Soft-changing time (VOL) (FAD) FADER												
Time D	0 D	1 Time	D2	D3			FRONT	D12	D13	D14	D15	D16
60ms 1	1	100ms	1	1		ATT	REAR	D17	D18	D19	D20	D21
40ms 1		80ms	1	0	l 1	0d	IB	1	1	0	1	0
20ms () 1	60ms	0	1		-20	dB	1	1	0	0	1
● 5ms 0) (● 40ms	0	0	 	-40	 ::B	1	1	0	0	0
						-60		1	0	1	1	1
Soft-changir						-80		1	0	1	1	0
(TONE)	(VOL	.,FAD)	-	-10		1	0	1	0	1
Time D	4 D			06	-	-12		1	0	1	0	0
100ms ₁	1			4	-	-14		1	0	0	1	1
80ms 1	C	ON OFF		0				1	0	0	1	0
60ms 0	1	U OFF	-1	U		-16dB -18dB		1	0	0	0	1
● 40ms 0) (-	-20dB		1	0	0	0	0
					-				1	1		
Soft-chan (TONE		Offset a	djustr /OFF	nent	-	-22		0		•	1	1
		¬ [7011	_		-24		0	1	1	1	0
Soft changing (TONE)	D7	Offset adjustme		08		-26		0	1	1	0	1
ON	1	ON		1		-28		0	1	1	0	0
● OFF *1	0	● OFF	*2	0	-	-30		0	1	0	1	1
			•			-32		0	1	0	1	0
						-34		0	1	0	0	1
Soft MUTE	time	Soft N ON/	_			-36	dB	0	1	0	0	0
			- 1	_		-38	dB	0	0	1	1	1
Time DS		Soft MUT	TE D	11		-40	dB	0	0	1	1	0
80.0ms 1 30.0ms 1		ON	<u> </u>	1		-42	dB	0	0	1	0	1
10.0ms 0	-	● OFF	(0	-44dB		0	0	1	0	0	
● 0.5ms 0	-	+		_		-46	dB	0	0	0	1	1
0.01110	0	J				-48		0	0	0	1	0
						-56	dB *3	0	0	0	0	1
						● -∞(dB	0	0	0	0	0

- *1 When soft changing is OFF, FADER changing of slot 1 and each setup of slot 3 and 4 can be switching without changing time.
- *2 When Offset adjustment is OFF, an adjustment result right before the front is maintained.
- *3 Soft changing circuit doesn't work at FADER changing $-48dB \longleftrightarrow -56dB$ (Because changing step is beyond 2dB).

Please refer page 13.

Note.) Offset adjustment function is only a main-signal., the sub-signal isn't built in.

• It is initial setting when power supply turn on.

Note) Don't transmit designated outside data.

Slot2 Data Code

1	· -	and a total
Input	gain	control

Gain	Main	D6	D7	D8	D9	D10
Gaiii	Sub	D11	D12	D13	D14	D15
+20)dB	1	0	0	0	1
+18	BdB	1	0	0	0	0
+16	6dB	0	1	1	1	1
+14	ldB	0	1	1	1	0
+13	BdB	0	1	1	0	1
+12	2dB	0	1	1	0	0
+11	dB	0	1	0	1	1
+10)dB	0	1	1 0 1		0
+9	dB	0	1	0	0	1
+8	dB	0	1	0	0	0
+7	dB	0	0	1	1	1
+6	dB	0	0	1	1	0
+5	dB	0	0	1	0	1
+4	dB	0	0	1	0	0
+3	dB	0	0	0	1	1
+2	dB	0	0	0	1	0
+1	dB	0	0	0	0	1
• 0c	IB	0	0	0	0	0

Input selector

Selector	Main	D0	D1	D2		
Selector	Sub	D3	D4	D5		
IN ²	1	1	0	0		
IN	2	0	0 1			
IN:	3	0	1	0		
Differentia	al input	0	0	1		
● MU	ΓE	0	0	0		

Loudness f0

f0	D16
800Hz	1
● 400Hz	0

Treble f0

f0	D17
12KHz	1
● 8KHz	0

Bass f0

fO	D18	D19
120Hz	1	0
80Hz	0	1
● 50Hz	0	0

Bass Q

Q	D20	D21
2.0	1	1
1.5	1	0
1.25	0	1
● 1.0	0	0

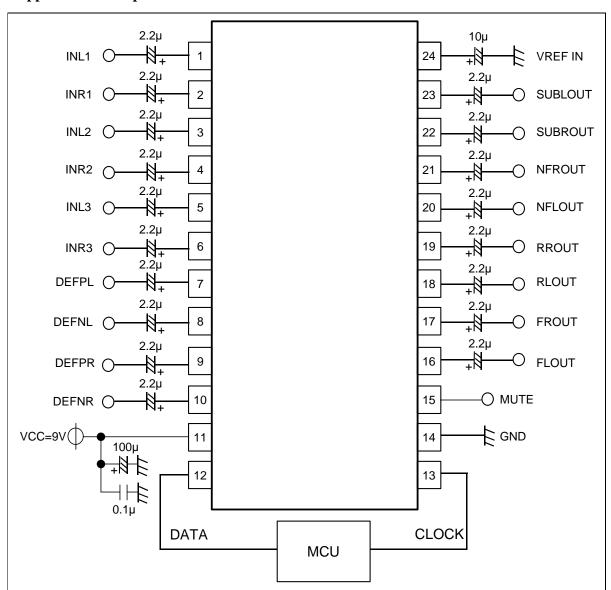
• It is initial setting when power supply turn on.

Slot3 Data Code

Vo	lume						
۸ТТ	Lch	D0	D1	D2	D3	D4	D5
ATT	Rch	D7	D8	D9	D10	D11	D12
+6dB		1	0	1	0	1	1

ATT Lch		D0	D1	D2	D3	D4	D5	D6	
AII	Rch	D7	D8	D9	D10	D11	D12	D13	
+6	idB	1	0	1	0	1	1	1	
+5	dB	1	0	1	0	1	1	0	
+4	ŀdВ	1	0	1	0	1	0	1	
+3	BdB	1	0	1	0	1	0	0	
+2	2dB	1	0	1	0	0	1	1	
+1	dB	1	0	1	0	0	1	0	
00	dB	1	0	1	0	0	0	1	
-1	dB	1	0	1	0	0	0	0	
-2	dB	1	0	0	1	1	1	1	
-3	dB	1	0	0	1	1	1	0	
-4	dB	1	0	0	1	1	0	1	
-5	dB	1	0	0	1	1	0	0	
-6	dB	1	0	0	1	0	1	1	
-7	dB	1	0	0	1	0	1	0	
-8	dB	1	0	0	1	0	0	1	
-9	dB	1	0	0	1	0	0	0	
-10)dB	1	0	0	0	1	1	1	
-1 <i>°</i>	1dB	1	0	0	0	1	1	0	
-12	2dB	1	0	0	0	1	0	1	
-13	3dB	1	0	0	0	1	0	0	
-14	4dB	1	0	0	0	0	1	1	
-15	5dB	1	0	0	0	0	1	0	
-16	6dB	1	0	0	0	0	0	1	
-17	7dB	1	0	0	0	0	0	0	
-18	3dB	0	1	1	1	1	1	1	
-19	9dB	0	1	1	1	1	1	0	
-20)dB	0	1	1	1	1	0	1	
-2°	1dB	0	1	1	1	1	0	0	
-22	2dB	0	1	1	1	0	1	1	
-23	3dB	0	1	1	1	0	1	0	
-24	4dB	0	1	1	1	0	0	1	
-2	5dB	0	1	1	1	0	0	0	
-26	6dB	0	1	1	0	1	1	1	
-27	7dB	0	1	1	0	1	1	0	
-28	BdB	0	1	1	0	1	0	1	
-29	9dB	0	1	1	0	1	0	0	
-30)dB	0	1	1	0	0	1	1	
-3 ⁻	1dB	0	1	1	0	0	1	0	
-32	2dB	0	1	1	0	0	0	1	
-33	3dB	0	1	1	0	0	0	0	
-34	4dB	0	1	0	1	1	1	1	
	5dB	0	1	0	1	1	1	0	
	6dB	0	1	0	1	1	0	1	
-37	7dB	0	1	0	1	1	0	0	

	Lch	D0	D1	D2	D3	D4	D5	D6
ATT	Rch	D7	D8	D9	D10	D11	D12	D13
-38	3dB	0	1	0	1	0	1	1
-39	9dB	0	1	0	1	0	1	0
-40)dB	0	1	0	1	0	0	1
-41	ldB	0	1	0	1	0	0	0
-42	2dB	0	1	0	0	1	1	1
-43	3dB	0	1	0	0	1	1	0
-44	4dB	0	1	0	0	1	0	1
-45	5dB	0	1	0	0	1	0	0
-46	6dB	0	1	0	0	0	1	1
-47	7dB	0	1	0	0	0	1	0
-48	3dB	0	1	0	0	0	0	1
-49	9dB	0	1	0	0	0	0	0
-50)dB	0	0	1	1	1	1	1
-51	1dB	0	0	1	1	1	1	0
-52	2dB	0	0	1	1	1	0	1
-53	BdB	0	0	1	1	1	0	0
-54	4dB	0	0	1	1	0	1	1
-55	5dB	0	0	1	1	0	1	0
-56	6dB	0	0	1	1	0	0	1
-57	7dB	0	0	1	1	0	0	0
-58	3dB	0	0	1	0	1	1	1
-59	9dB	0	0	1	0	1	1	0
-60)dB	0	0	1	0	1	0	1
-61	ldB	0	0	1	0	0 1 0		0
-62	2dB	0	0	1	0	0	1	1
-63	3dB	0	0	1	0	0	1	0
-64	4dB	0	0	1	0	0	0	1
-65	5dB	0	0	1	0	0	0	0
-66	6dB	0	0	0	1	1	1	1
-67	7dB	0	0	0	1	1	1	0
-68	BdB	0	0	0	1	1	0	1
-69	9dB	0	0	0	1	1	0	0
-70)dB	0	0	0	1	0	1	1
-71	1dB	0	0	0	1	0	1	0
-72	2dB	0	0	0	1	0	0	1
-73	3dB	0	0	0	1	0	0	0
-74	4dB	0	0	0	0	1	1	1
-75	5dB	0	0	0	0	1	1	0
-76	6dB	0	0	0	0	1	0	1
-77	7dB	0	0	0	0	1	0	0
-78	3dB	0	0	0	0	0	1	1
-79	9dB	0	0	0	0	0	1	0
-80)dB	0	0	0	0	0	0	1
● -∞	dB	0	0	0	0	0	0	0


• It is initial setting when power supply turn on.

Slot4 Data Code

Loudn	ess g	ain			Treble	Treble gain						Non FADER									
Gv	D0	D1	D2	D3	Gv	D4	D5	D6	D7]	Gv	D12	D13	D14	D15	D16					
0dB	1	1	1	1	+12dB	1	1	1	0	1	+12dB	1	0	1	1	0					
-1dB	1	1	1	0	+10dB	1	1	0	1	1	+10dB	1	0	1	0	1					
-2dB	1	1	0	1	+8dB	1	1	0	0	1	+8dB	1	0	1	0	0					
-3dB	1	1	0	0	+6dB	1	0	1	1	1	+6dB	1	0	0	1	1					
-4dB	1	0	1	1	+4dB	1	0	1	0	1	+4dB	1	0	0	1	0					
-5dB	1	0	1	0	+2dB	1	0	0	1	1	+2dB	1	0	0	0	1					
-6dB	1	0	0	1	● 0dB	0	0	0	0	1	● 0dB	0	0	0	0	0					
-7dB	1	0	0	0	-2dB	0	0	0	1	1	-2dB	0	0	0	0	1					
-8dB	0	1	1	1	-4dB	0	0	1	0	1	-4dB -6dB	0	0	0	1	1					
-9dB	0	1	1	0	-6dB	0	0	1	1	1	-8dB	0	0	1	0	0					
-10dB	0	1	0	1	-8dB	0	1	0	0	1	-10dB	0	0	1	0	1					
-11dB	0	1	0	0	-10dB	0	1	0	1	1	-12dB	0	0	1	1	0					
-12dB	0	0	1	1	-12dB	0	1	1	0	1	-14dB	0	0	1	1	1					
-13dB	0	0	1	0						J	-16dB	0	1	0	0	0					
-14dB	0	0	0	1							-18dB	0	1	0	0	1					
-15dB	0	0	0	0	Bass ga	iin					-20dB	0	1	0	1	0					
					Gv	D8	D9	D10	D11	1	-22dB	0	1	0	1	1					
					+16dB	1	0	0	0	1	-24dB	0	1	1	0	0					
					+14dB	1	1	1	1	1	-26dB	0	1	1	0	1					
					+12dB	1	1	1	0	ł	-∞dB	0	1	1	1	0					
					+10dB	1	1	0	1	ł											
					+8dB	1	1	0	0	ł											
					+6dB	1	0	1	1	ł											
					+4dB	1	0	1	0	ł											
					+2dB	1	0	0	1	ł											
									-	ł											
					● 0dB	0	0	0	0	ł											
					-2dB	0	0	0	1	ł											
					-4dB	0	0	1	0	-											
					-6dB	0	0	1	1	-											
					-8dB	0	1	0	0	ł											
					-10dB	0	1	0	1	-											
					-12dB	0	1	1	0												
					-14dB	0	1	1	1	l											

• It is initial setting when power supply turn on.

Application Example

Detailed Diagram Of Package Outline

Plastic 24pin 300mil SSOP	b2 * *		 		Mount Pad	Dimension in Millimeters	Nom Max	0.1 0.2	1.8	10	+		5.3 5.4	7.8 8.1	0.6 0.8	1.25 –	0.65	- 0.8	- 0.1	°8	0.5	7.62 –	1
ıstic 24pin	O		¦ 		Recommended Mount Pad	Dimension	Min	0	ı	0.3	_		2.5	7.5	0.4	ı	ı	1	I	0°	I	1	1.27
Pla	1	<u> </u>	lθ		Re	4 600	Syllidol A	¥	A 2	q	O	ا ۵	ш	기	_	٦	Z	Z1	>	θ	b 2	e 1	12
	Lead Material Cu Alloy			ц	-		A	, , , ,				A2 × A1			θ	17		}	O	V -	Detail F		
24P2Q-A (MMP)	EIAJ Package Code JEDEC Code Weight(g) SSOP24-P-300-0.80 - 0.2	(24) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		∃ ∃H					\ \ \ \											Z	Z1 ST Detail G	\ \(\lambda\)	

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

The party in a survival circula designs; and the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss resident product product of the responsibility of the information of the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances i

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001