Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

EOL announ

Send any inquiries to http://www.renesas.com/inquiry.

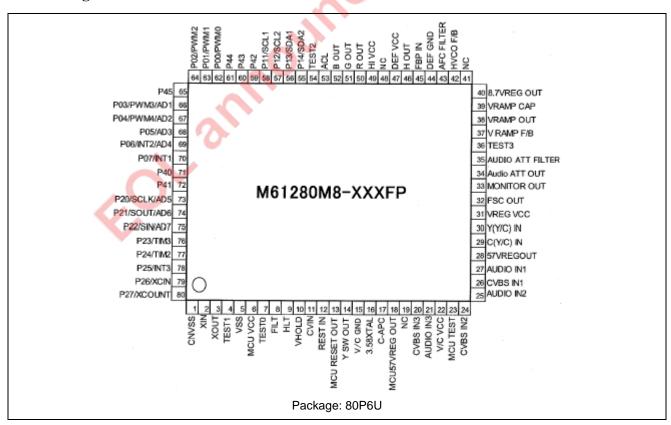
Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

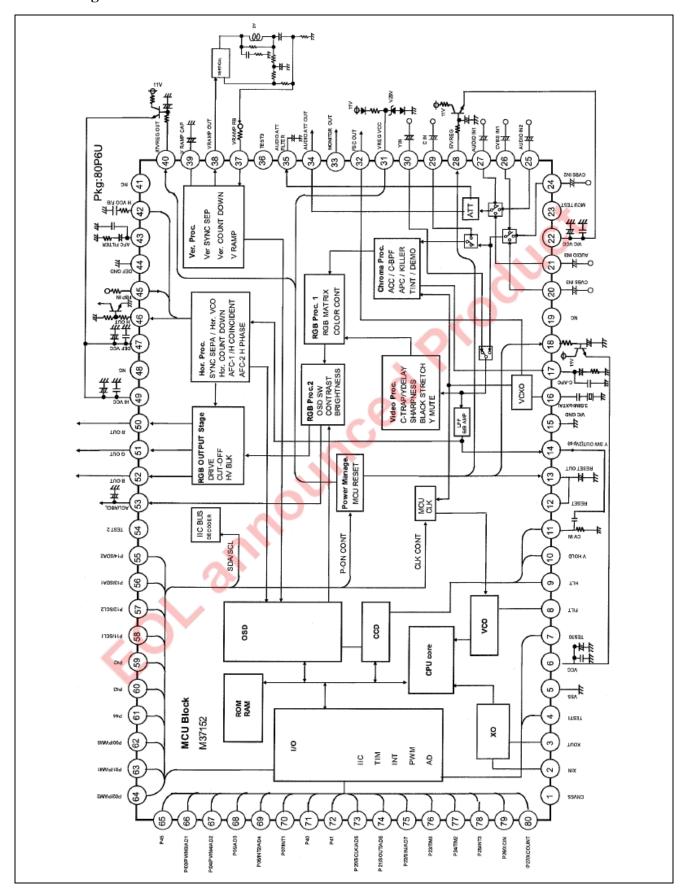
M61280M8-xxxFP

NTSC TV Signal Processor with MCU

REJ03F0053-0100Z Rev.1.0 Sep.23.2003


Features

- 3 line composite video signal inputs and 1 line S video signal input are available
- Built-in 3 input audio switch with ATT output
- Correspond to digital OSD
- d.Product H output of emitter follower type (L at stopping, same as M61250BFP)
- Selectable of ACL/ABCL
- Built-in H OSC resonator
- Built-in vertical saw tooth generator
- Correspond to fsc clock output
- Built-in 5V & 8V regulator
- Built-in MCU reset circuit
- Built-in 8bit MCU
- ROM: 32kByte, RAM: 1152byte


Applications

• NTSC color television receivers

Pin Configuration

Block Diagram

Absolute Maximum Ratings

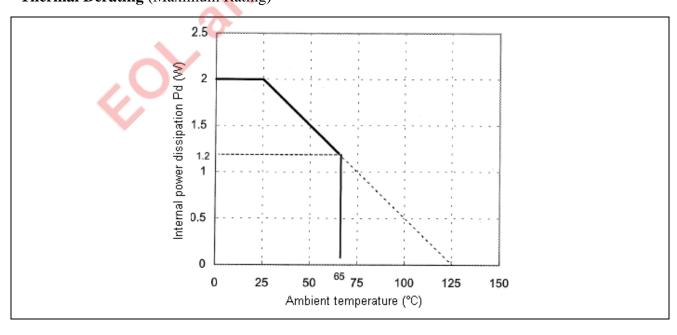
Item	Symbol	Condition	Ratings	Unit
Power supply voltage (ASIC)	Vcc (ASIC)		6.0, 10.0	V
Power supply voltage (MCU)	Vcc (MCU)	Measured with reference	-0.3 to 6	V
Input voltage (MCU: CNVSS)	VI (MCU)	to pin Vss. Output	-0.3 to VCC+0.3	V
Input voltage (MCU: P00 to P07, P11 to P14, P20 to 27, P40 to P45, RESET, CVIN)	V _I (MCU)	transistor in shut-off state.	-0.3 to VCC+0.3	V
Output voltage (MCU: P00 to P07, P11 to P14, P20 to 27, P40, P41)	V _o (MCU)	_	-0.3 to VCC+0.3	V
Circuit current (MCU: P11 to P14, P20 to P27, P40, P41)	I _{OH} (MCU)		0 to 1 (Note 1)	mA
Circuit current (MCU: P00 to P07, P20 to P23, P40, P41)	I _{OL1} (MCU)		0 to 2 (Note 2)	mA
Circuit current (MCU: P11 to P14)	I _{OL2} (MCU)		0 to 6 (Note 2)	mA
Circuit current (MCU: P24 to P27)	I _{OL3} (MCU)		0 to 10 (Note 2)	mA
Power dissipation	Pd	Ta = 25°C	2000	mW
Thermal reduction	Kt		20	mW/°C
Operating ambient temperature	Topr		−10 to 65	°C
Storage temperature	Tstg		-40 to 125	°C

Notes: 1. The sum of currents flowing from the IC should not exceed 20 mA.

- 2. The sum of currents flowing into the IC (IOL1+IOL2) should not exceed 30 mA.
- 3. Pin names for the different quantities are given as follows.
 - (1) Dedicated pins: Dedicated pin name
 - (2) Double/triple-function ports
 - *When standards are the same: I/O port name

Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage (MCU) (Note 1)	VDD(MCU)	4.75	5.0	5.25	V
Power supply voltage1 (ASIC: Pin22)	Vcc1(ASIC)	4.75	5.0	5.25	V
Power supply voltage2 (ASIC: Pin47)	Vcc2(ASIC)	7.6	8.0	8.4	V
Power supply voltage3 (ASIC: Pin49)	Vcc3(ASIC)	7.6	8.0	8.4	V
Power supply voltage4 (ASIC: Pin31)	Vcc4(ASIC)	8.3	8.7	9.1	V
Power supply voltage (MCU)	VSS	0	0	0	V
""H" input voltage (MCU: P00 to P07, P11 to P14, P20 to P27, P40 to P45, RESET)	V _{IH1}	$0.8V_{DD}$	_	V_{DD}	V
"H" input voltage (MCU: SCL1, SCL2, SDA1, SDA2)(using I ² C-BUS)	V _{IH2}	$0.7V_{DD}$	_	V_{DD}	V
"L" input voltage (MCU: P00 to P07, P11 to P14, P20 to P27, P40 to P45)	$V_{\rm IL1}$	0	_	$0.4V_{DD}$	
"L" input voltage (MCU: SCL1, SCL2, SDA1, SDA2)(using I ² C-BUS)	V_{IL2}	0	_	$0.3V_{DD}$	V
"L" input voltage (Note 2) (MCU: RESET, TIM3, INT1, INT2, INT3, S _{IN} , S _{CLK})	V _{IL3}	0	_	0.2V _{DD}	V
"H" output average current (Note 3) (MCU:P10 to P16, P20 to 27)	I _{OH}	_	_	1	mA


^{*}When standard of functions other than the I/O port are different: function pin name

Recommended Operating Conditions (cont.)

Item	Symbol	Min.	Тур.	Max.	Unit
"L" output average current (Note 4) (MCU:P00 to P14, P20 to P23)	I _{OL1}	_	_	2	mA
"L" output average current (Note 4) (MCU:P11 to P14)	I _{OL2}	_	_	6	mA
"L" output average current (Note 5) (MCU:P24 to P27)	I _{OL3}	_	_	10	mA
Oscillation frequency (CPU operation) (Note 6) (MCU: X _{IN})	$f(X_{IN})$	7.9	8.0	8.1	MHz
Oscillation frequency (subclock operation) (MCU: X _{CIN})	$f(X_{CIN})$	29	32	35	kHz
Input frequency (MCU:TIM3, INT1, INT2,.INT3)	fhs 1	_	_	100	kHz
Input frequency (MCU: SCLK)	fhs 2	_	_	1. (1)	MHz
Input frequency (MCU: SCL1,SCL2)	hs 3		-	400	kHz
Input amplitude (MCU: TV video signal CVIN)	VI	1.5	2.0	2.5	V

- Notes: 1. In order to eliminate power supply noise, a 0.1 μ F or greater capacitor should be connected externally across power supply pins VDD and VSS. In addition, a 0.1 μ F or greater capacitor should also be connected across VDD and CNVSS. (The recommended crystal oscillator is Murata model no. CSA8.00MTZ (8.00 MHz), shown in the measurement circuit diagram.)
 - 2. Pin names for the different quantities are given as follows.
 - (1) Dedicated pins: Dedicated pin name
 - (2) Double/triple-function ports
 - *When standards are the same: I/O port name
 - *When standard of functions other than the I/O port are different: function pin name
 - 3. The sum of currents flowing from the IC should not exceed 20 mA.
 - 4. The sum of currents flowing into the IC (IOL1+IOL2) should not exceed 30 mA.
 - 5. The sum of the average currents of ports P24 to P27 flowing into the IC should not exceed 20 mA.
 - 6. When using a CPU oscillation circuit (XIN, XOUT), a crystal oscillator or a ceramic resonator should be used.

Thermal Derating (Maximum Rating)

I²C Bus Table

1. Slave Address = BAH (WRITE), BBH (READ)

A6	A5	A4	A3	A2	A1	A0	R/W
1	0	1	1	1	0	1	1/0

2. Write Table (input bytes)

	DDRESS	DATA								INITIAL	
HEX	BIN	D7	D6	D5	D4	D3	D2	D1	D0	HEX	DEC
		OSD Clip OFF				Contrast Contro	1				1
00H	00000000	V0	V1	V0	VO	V0	VD	V0	V0	40H	64
						Brightness Contr	ol				
01H	00000001	V1	V0	V0	V0	V0	V0	V0	V0 🌭	80H	128
		FORGE MONO				Drive(R)			-		
02H	00000010	0	1.	0	0	0	0	0	. 0	40H	64
		White Back				Drive(B)					
03H	00000011	0	1	0	0	0	1 0	0	0	40H	64
						Cut Off(R)			70		
04H	00000100	1	0	0	0	0	0	0	0	80H	128
						Cut Off(G)					1.1.2
05H	00000101	1	0	0	0	0	0	0	0	80H	128
				•		Cut Off(B)					
06H	00000110	1	0	0	0	0	0	0	0	80H	128
		ACL OFF	Fsc-Free	ABCL	ABCL Gain	TRAP OFF	HTONE	Killer Level	TAKE OFF		1
07H	00000111	0	0	0	0	0	0	0	0	00H	0
		BGP FBP OFF				Tint Control					†
06H	00001000	0	V1	V0	VO	VO	VO	VO	V0	40H	64
		Blue Back				Color Control				1011	1
09H	00001001	V0	V1	VO	VO	VO	VO	VO	V0	40H	64
		Video Mute	HV BLK OFF			Video	Tone			1300	1
0AH	00001010	0	0	V1	Vo	VO	V0	V0	V0	20H	32
		Black Stre. Off	В	lack Stretch COf	NT	FASTBLK H		VIDEO SW			1
0ВН	00001011	0 .	0	0	0	0	V0	VO	V0	00Н	
		V.1Widows	Not As	signed	C.Angle 95	YSW LPF	Y DL Fine Adj	YDLTi	me Adi		_
оан	00001100	0	1	0	0	0	0	0	D	00H	64
		SERVICE	Silce Det Down	S.Slio	e Down	TEST		V Shift			
DDH	00001101	0	1	0	0	0	0	0	0	40H	64
		V Out Stop	V-Free			V-5	Size	-		1411	1
0EH	00001110	1	0	1	0	0	0	0	0	AOH	160
		H Start	H-Free	Not Assigned	AFC2 Gain Down		AFC2 H	Phase	-	7.00.1	1.00
оғн 🛭	00001111	0	0	0	0	1	0	0	0	08H	8
		Audio Mute			1	Audio ATT		-			<u> </u>
10H	00010000	0	0	0	0	0	0	0	0	00H	1 0
				loring	ti	Not Assigned	TEST	AUDIO		0013	T .
11Η	00010001	0	0	0	0	0	0	0	0	08H	0
		TEST	TEST		ST	Vayac Del Tirre		AFC1 GAIN		UOFI	1 0
12H	00010010	0	0	0	0	0	1 1	0	0	04H	4
				-							
- 1		TÉ	ST	TEST	MCU VCOUT	HPMSB		HVCO ADJ			_
1				1001		FIFMOD		.1700700			

		TÉ	ST	TEST	MCU VCOUT	HPMSB		HVCO ADJ			
1CH	00011100	0	0	0	1	0	1	0	0	14H	20
		TEST 1	TEST 0	TEST ON	Not Assigned	Black Discharge2	FORCE COLOR	C-TRA	NP ADJ		
1DH	00011101	0	0	0	0	0	0	0	0	03H	0
				Not Assigned			C-SYNC ADJ.				
1EH	00011110	0	0	0	0	0	0	0	0	00H	0
		HBLK STOP	VBLK STOP	Not Assigned	Not Assigned	OSD BRIGHT	IM MSB	HVCO REF OFF	HVCO OFF		
1FH	00011111	0	0	0	0	0	0	0	0	- H00	0

NOTE: V0V/1->-V-LATCH BIT
If it needs to write any data on TEST bit, the initial data : 0 is requested.

3. Read Table (output byts)

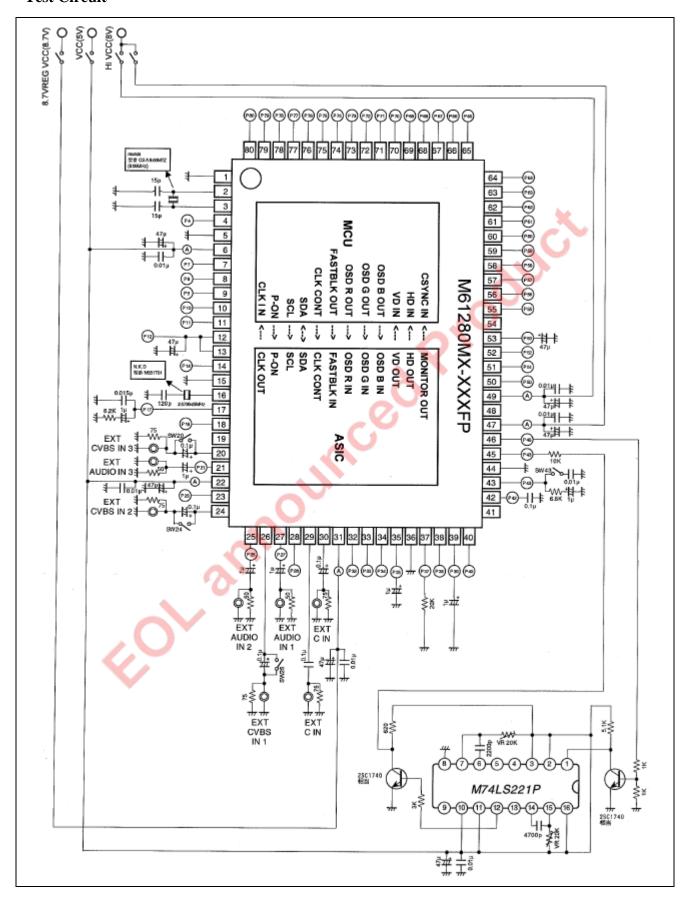
D7	D6	D5	D4	D3	D2	D1	D0
KILLERB	2WIN WIDEB	VFREEB	VCONIB	0	0	HCOINB	1

4. Bus Functions

• Write

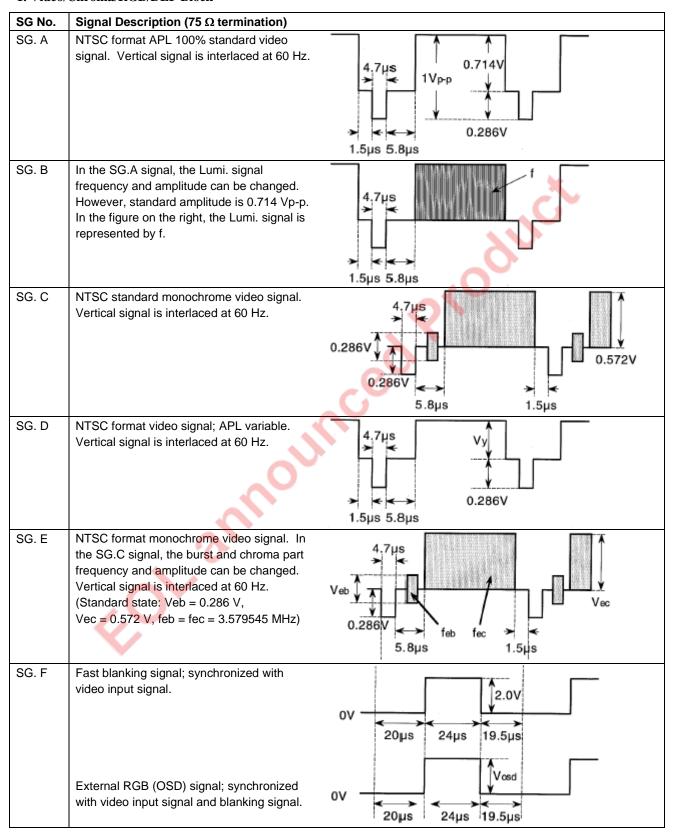
	Function	Bit	Sub Add	DATA	Discription	Initial	Note
Audio	Audio ATT	7	10H	D0-D6	Pin 34 audio output level adjustment	00H	
	Audio SW	2	11H	D0-D1	Audio input switching; 0: Audio 1, 1: Audio 2, 2: Audio 3	X0H	
	Audio Mute	1	10H	D7	Pin 34 audio output on/off (mute) switching;	0	
					0: audio on (non-muted), 1: mute		
Video	Video Tone	6	0AH	D0-D5	Sharpness level control	20H	V Latch
	Contrast Control	7	00H	D0-D6	Contrast level control	40H	V Latch
	OSD Contras Clip	1	00H	D7	OSD (EXT RGB) contrast lower-limit clipping on/off; 0: clipping on, 1: clipping off	0	V Latch
	Y DL Time Adj	2	0CH	D0-D1	Y signal delay adjustment	X0H	
	Y DL Fine Adj	1	0CH	D2	Y signal delay fine adjustment	0	
	Vidio SW	3	0BH	D3	Video input pins 26/24/20/30 switching; 0: pin 26, 1: pin 24, 2: pin 20, 3: pin 30	X0H	V Latch
	Y SW LPF	1	0CH	D3	Pin 14 (Y SW OUT) output f-characteristic switching; 0: flat, 1: LPF (fc = 700 kHz)	0	
	Vidio Mute	1	0AH	D7	Y signal output on/off (mute) switching; 0: mute off, 1: mute	0	
	TRAP Off	1	07H	D3	Y signal chroma trap on/off switching; 0: trap on, 1: trap off	0	
	C-TRAP Adj	2	1DH	D0-D1	Chroma trap frequency fine adjust	X0H	
	Black Stretch Off	1	0BH	D7	Black stretch circuit on/off switching; 0: black stretch on, 1: black stretch off	0	
	Black Stretch Cont	3	0BH	D4-D6	Black stretch charge, discharge time constant adjustment; D4, D5: charge time constant adjustment; D6: discharge time constant adjustment	0XH	
	Black Dicharge2	1	1DH	D3	Black stretch discharge time constant adjustment; discharge time constant adjustment	0XH	
CHROMA	Tint Control	7	08H	D0-D6	Hue control	40H	V Latch
	Color Control	7	09H	D0-D6	Color level control	40H	V Latch
	Take Off	1	07H	D0	Chroma BPF take-off function on/off switching; 0: BPF; 1: take off	0	
	C Angle95	1	0CH	D4	Color demodulation angle switching; 0: 103 deg, 1: 95 deg	0	
	Killer Level	1	07H	D1	Colorkiller sensitivity switching (active shallow direction); 0: 40 dB, 1: 35 dB	0	
	Force Mono	1	02H	D7	Forced b/w mode; 0: normal; 1: b/w	0	
	Force Color	1	1DH	D2	Forced color mode; 0: normal; 1: color	0	
	Fsc Free	1	07H	D6	X'tal oscillation circuit forced free-running mode; 0: off, 1: free-running	0	
RGB	Brightness Control	8	01H	D0-D7	Bright level control	80H	V Latch
	Drive (R)	7	02H	D0-D6	R output level control	40H	
	Drive (B)	7	03H	D0-D6	B output level control	40H	
	Cut Off (R)	8	04H	D0-D7	R output DC level control	80H	
	Cut Off (G)	8	05H	D0-D7	G output DC level control	80H	
	Cut Off (B)	8	06H	D0-D7	B output DC level control	80H	
	Blue Back	1	09H	D7	Blue back screen on/off switching; 0: off, 1: blue back	0	
	WhiteBack	1	03H	D7	White raster on/off switching; 0: off, 1: white back	0	
	ABCL	1	07H	D5	ABCL on/off switching; 0: off, 1: ABCL on	0	
	ABCL Gain	1	07H	D4	ABCL sensitivity low/high switching; 0: low, 1: hi	0	
	OSD Bright	1	1FH	D3	OSD level switching; 0: normal, 1: -8%	0	
	ACL OFF	1	07H	D7	ACL on/off switching; 0: normal, 1: ACL max	0	
	HTONE	1	07H	D2	Halftone on/off switching; 0: normal, 1: halftone	0	
	FASTBLK Hi	1	0BH	D3	FASTBLK switching;	0	
					0: normal, 1: hi (full-screen OSD mode)		

• Write (cont.)


	Function	Bit	Sub Add	DATA	Discription	Initial	Note
DEF	AFC2 H Phase	4	0FH	D0-D3	Screen horizontal position adjustment	X8H	
	V Out Stop	1	0EH	D7	Pin 38 VOUT (ramp) forced stop mode (when stopped, pin 38 at DC GND level); 0: VOUT, 1: STOP	0	
	Service SW	1	0DH	D7	Vertical output on/off switching; 0: vertical output on, 1: vertical output off	0	
	H Start	1	0FH	D7	Horizontal output out/stop switching; 0: stop, 1: H out	0	
	AFC1 Gain	3	12H	D0-D2	Horizontal AFC gain adjustment; 000: low to 111: hi	X4H	
	AFC2 Gain Down	1	0FH	D4	Horizontal AFC2 gain high/low switching; 0: high, 1: low	0	
	H VCO Adj	3	1CH	D0-D2	H VCO free-running frequency adjustment	X4H	
	V Shift	3	0DH	D0-D2	Vertical ramp start timing adjustment	X0H	
	V-Size	6	0EH	D0-D5	Vertical ramp amplitude adjustment	20H	
	H-free	1	0FH	D6	Horizontal output forced free-running mode on/off switching; 0: off, 1: horizontal free-running	0	
	V-free	1	0EH	D6	Vertical output forced free-running mode on/off switching; 0: off, 1: vertical free-running	0	
	S Slice Down	2	0DH	D4-D5	Sync detection slice level switching (0: 50%, 1: 30%, 2: 40%, 3: 25%)	0XH	
	Slice Det Down	1	0DH	D6	0: normal, 1: lower sync detection sensitivity (end of video signal only)	0	
	HV BLK OFF	1	0AH	D6	Horizontal/vertical blanking on/off switching; 0: blanking on, 1: blanking off	0	
	V SYNC DET TIME	1	12H	D3	Vertical minimum sync detection width switching; 0: sync detect width =18 μs, 1: sync detect width =14 μs	0	
	V1 Window	1	0CH	D7	Vertical sync detection switching (1 window/2 windows); 0: 2 windows, 1: 1 window	0	
	BGPFBP OFF	1	08H	D7	Internal BGP on/off switching when no FBP input; 0: BGP on, 1: BGP off	0	
	C-SYNC Adj	3	1EH	D0-D2	C-sync output LPF cutoff frequency adjustment	X0H	
	Monitoring	4	11H	D4-D7	Pin 18 intelligent monitor mode switching	0XH	

• Read

HCONB	1	00H	D1	Horizontal sync detection; "1" when asynchronous
_	1 (00H	D2	0
_	1	00H	D3	0
VCOINB	1	00H	D4	Vertical sync detection; "1" when asynchronous
VFREEB	1	00H	D5	V free-running mode; 0: V free-running, 1: V lock
2WIN WIDEB	1	00H	D6	Vertical 2-window detection;
				0: wide window, 1: narrow window
KILLERB	1	00H	D7	Colorkiller information output; "1" when killer off


Note: Functions not listed in this bus function table are used only in testing, and operation is not guaranteed.

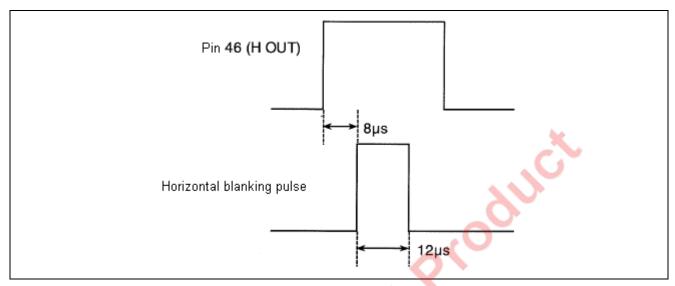
Test Circuit

Input Signals

1. Video/Chroma/RGB/DEF Block

1. Video/Chroma/RGB/DEF Block (cont.)

SG No.	Signal Description (75 Ω termination)
SG.G	NTSC format rainbow color bar video signal. Vertical signal is interlaced at 60 Hz.
SG. H	Duty 90%, variable frequency, variable level. (Standard horizontal frequency = 15.734 kHz, vertical frequency = 60 Hz, 1 Vp-p) At horizontal frequency 6.35µs At vertical frequency 1.67ms At vertical frequency 15.0ms
SG. I	Duty variable (standard 95%), frequency variable, level variable (Standard: horizontal frequency = 15.734 kHz, vertical frequency = 60 Hz, 1 Vp-p) At horizontal frequency 3.157µs At vertical frequency 0.83ms At vertical frequency 15.83ms
SG. J	NTSC format standard color bar video signal; vertical signal is interlaced at 60 Hz.
SG. K	NTSC format, standard 8-step wave signal; vertical signal is interlaced at 60 Hz.
SG. L	NTSC format red raster signal; vertical signal is interlaced at 60 Hz.


2. Audio Block

SG No.	Signal Description (50 Ω termination)	
SG.AU	fo = 400 Hz, 500 mVrms, CW	

Setup Instructions for Evaluation PCB

1. Horizontal Blanking Pulse Adjustment

The horizontal blanking pulse timing and pulse width are adjusted using the variable resistances of a one-shot multivibrator, as shown below.

The timing is adjusted to 8 μs using the pin 15 variable resistance of the M74LS221P TTL IC. Also, the pulse width is adjusted to 12 μs using the pin 7 variable resistance.

2. H VCO Adjustment

Prior to measurement of the M61280Mx-xxxFP, the following method is used for H VCO adjustment.

1. The H VCO control I²C bus data (1 CH D0-D2) is adjusted, and the pin 46 (H OUT) frequency is set to approx. 15.734 kHz.

Electrical Characteristics, ASIC

 $(Ta = 25^{\circ}C)$

		Imput si	ignal	Test	Limits	S			
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
ICC	Standard conditions								Pins 4, 7=0 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
ICC5V	5 V circuit current (pin 22)	_	_	22	40	55	70	mA	MCU/VIDEO/Chroma Vcc
ICC8V	8 V circuit current	_	_	47,48, 49	27	42	57	mA	Deflection/RGB Drive 8 V Vcc
ICC12	Pin 47 circuit current	_	_	47	_	23	_	mA	Reference data; Deflection/Vcc
ICC49	Pin 49 circuit current		_	49	_	19	_	mA	Reference data; RGB Drive/AUDIO 8 V Vcc
ICC31	Pin 31 circuit current	_	_	31	3	6	9	mA	8.7 VREG Vcc

Power	Power supply circuit standard conditions								Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
Vth9	Power on control threshold voltage	_	_	9	2.6	3	3.4	V	25, 65 - 11, pine 11, 10 - 5 t
V40H	8.7 VREG output voltage 1	_	_	40	8.3	8.7	9.1	V	Pin 9 = 5 V
V40L	8.7 VREG output voltage 2	_	_	40	_	0	0.3	V	Pin 9 = 0 V
V28	5.7 VREG output voltage 1	_	_	28	5.55	5.8	6.05	V	Pin 9 = 5 V
V18H1	MCU 5.7 VREG output voltage 1	_	_	18	5.45	5.7.	5.95	V	Pin 9 = 5 V
V18H2	MCU 5.7 VREG output voltage 2	_	_	18	5.45	5.7	5.95	V	Pin 9 = 0 V
Reset	Reset standard conditions								Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
V13H	Maximum reset output voltage	_	-	13	4.5	5	5.5	V	
V13L	Minimum reset output voltage	_		13	_	0	0.5	V	
TH9	Reset threshold voltage			9	4	4.2	4.4	V	

I ² C	I ² C standard	<u> </u>	_	_	_	_	_	_	
	conditions								
IACK	ACK current	_	_		_	1	_	mA	Reference data
VIL	SCL/SDA VTH (L)	_	_	56,58	0.0	0.75	1.5	V	
VIH	SCL/SDA VTH (H)	_	_	56,58	3.5	4.25	5.0	V	
F _{SCL}	Clock frequency	_	_	56	ı	_	100	kHz	

Sym													Sub	ado	lres	В											
bol	00Н	01H	02H	03H	04H	05H	06H	07H	08H	09Н	одн	овн	осн	0DH	0EH	0FH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FI
ICC	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	oc
ICC5V																							-				
ICC8V																											
ICC12																											
ICC49				-																							
ICC31																							4				
	_											L	-														_
Power	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
Vth9				200000				2002 00	000.000	2005000	1002150					0.000000		2000000	-		7		140.992	100,000		0.50000	2023.50
V40H																		4									
V40L																	V										
V28																											
V18H1														.(3												
V18H2												1						-									
Reset	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
V13H	-2222				2000			1000000	_				23300		122.001								100000		200320	20000	
V13L																											
TH9																											
							C																				
ı ² c	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
ACK	norodica e					o435000	m27930	11.900036	100000	ertresión.		0.072.04	C000015	000000		ST 31	01.0000	000006	000101	9.000000		120000			200 (8.6)	1000000	10000
/IL																										\exists	
ЛΗ																						-			\dashv		
FSCL	\dashv	\dashv		\dashv		\dashv		+					\dashv	\dashv	\dashv	\neg						\dashv		\dashv		-	

		Imput si	gnal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
AUDIO	AUDIO standard conditions								Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
GEAu1	Audio gain1	27	SG.AU	34	-3	0	3	dB	Expressed as 20 log (measured value/input amplitude)
GEAu2	Audio gain2	25	SG.AU	34	-3	0	3	dB	Expressed as 20 log (measured value/input amplitude)
GEAu3	Audio gain3	21	SG.AU	34	-3	0	3	dB	Expressed as 20 log (measured value/input amplitude)
VOL-max	Maximum audio output amplitude	27	SG.AU	34	350	500	720	mVms	
VOL-min	Maximum audio output attenuation	27	SG.AU	34		-65	-60	dB	Expressed as 20 log (measured value / input amplitude)

Sym													Sub	ado	lres	s)		J					
bol	оон	01H	02H	озн	04H	05H	06H	07H	08H	09H	ОАН	овн	осн	оDН	0EH	0FH	10H	1 1H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
AUDIO	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
GEAu1			-							-					4		7F										
GEAu2																	7F	01									
GEAu3															3		7F	02									
VOL-max														U			7F										
VOL-min																											

		Imput si	gnal	Test	Limits	;			
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
VIDEO	Video standard conditions	_	_	_	_	_	_	_	Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
2AGV1	Video SW1 output level (CVBS1 input)	26	SG.A	14	1.6	2.0	2.6	Vpp	
2AGV2	Video SW2 output level (CVBS2 input)	24	SG.A	14	1.6	2.0	2.6	Vpp	
2AGV3	Video SW3 output level (CVBS3 input)	20	SG.A	14	1.6	2.0	2.6	Vpp	
2AGVY	Video SWY output level (Y/C input)	30	SG.A	14	1.6	2.0	2.6	Vpp	
Ymax	Maximum video output	26	SG.A	50,51, 52	2.9	4.2	5.6	V	_
GY	Video gain	26	SG.A	50,51, 52	12	15	18	dB	
FBY	Video frequency characteristic	26	SG.B	50,51, 52	-4	-1	_	dB	f = 5 MHz, C-trap: OFF
CRF1	Chroma trap attenuation 1	26	SG.C	50,51, 52	_	_	-18	dB	5
CRF2	Chroma trap attenuation 2	26	SG.L	50,51, 52	_	_	-6.5	dB	
YDL1	YDL time 1	26	SG.A	50,51, 52	190	260	330	ns	
YDL2	YDL time 2	26	SG.A	50,51, 52	100	150	250	Ns	YDL2 = measured value – YDL1 measured value
YDL3	YDL time 3	26	SG.A	50,51, 52	100	150	250	ns	YDL3 = measured value – YDL2 measured value
YDL4	YDL time 4	26	SG.A	50,51, 52	100	150	250	ns	YDL4 = measured value – YDL3 measured value
Gtnor	Video tone control characteristic 1	26	SG.B	50,51, 52	1.0	1.4	1.8	V	f = 2.5 MHz
GTmax	Video tone control characteristic 2	26	SG.B	50,51, 52	7	10	14	dB	f = 2.5 MHz
GTmin	Video tone control characteristic 3	26	SG.B	50,51, 52	- 6	-2	2	dB	f = 2.5 MHz
GT2M	Video tone control characteristic 4	26	SG.B	50,51, 52	-1	2	5	DB	f = 2 MHz
GT5M	Video tone control characteristic 5	26	SG.B	50,51, 52	- 9	- 5	-1	dB	f = 5 MHz
BLS	Black stretch characteristic	26	SG.K	50,51, 52	0.01	0.03	0.05	٧	
VMF	Video mute function	26	SG.A	50,51, 52	_	-45	-35	dB	

Sym bol	Π									_		;	Sub	add	ress	;											
bol	00Н	01H	02H	03H	04H	05H	06H	07H	08H	09H	ОАН	овн	осн	оDН	0EH	оFН	10H	1 1H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
VIDEO	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
2AGV1													04			2415-00-0											
2AGV2												81	04														
2AGV3												82	04														
2AGVY			-									83	04														
Ymax	7F					-				00			04														
GY	7F									00			04									. (
FBY	7F		08							00			04														
ÇRF1										00			04												02		
CRF2	54				50	50	50			40			04					1							02		
YDL1										00			04			4	Q		•								
YDL2										00			05														
YDL3										00			06		3												
YDL4										00			07														
GTnor										00	4		04														
GTmax										00	3F		04														
GTmin								4	0	00	00		04														
GT2M							4			00			04														
GT5M						-	0			00			04														
BLS	adj	adj								00		C0/ 40	04								7						
/MF	7F		-						.	00	80		04				, ,										

		Imput s	ignal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
CHROMA	Chroma standard conditions	_	-	_	_	_	_	_	Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
CnorR	Chroma standard output (R-Y)	26	SG.C	33	390	560	790	mVpp	
CnorB	Chroma standard output (B-Y)	26	SG.C	33	640	920	1290	mVpp	
ACC1	ACC characteristic 1	26	SG.E	33	-3	0	3	dB	Veb, Vec: standard input level +6 dB
ACC2	ACC characteristic 2	26	SG.E	33	-6.5	0	1.5	dB	Veb, Vec: standard input level –18 dB
OV	Chroma overload characteristic	26	SG.E	33	-3	2	5	dB	Vec = 800 mV
VikN	Killer operation input level	26	SG.E	33	_	-40	-35	dB	Veb, Vec: variable
KillP	Color remaining on colorkilling	26	SG.E	33	_	-4 5	-30	dB	Veb = 0 mV
APCU	APC pull-in range (upper)	26	SG.E	33	300	600	_	Hz	feb = fec: variable
APCL	APC pull-in range (lower)	26	SG.E	33	_	-600	-300	Hz	feb = fec: variable
R/BN	Demodulation ratio	26	SG.E	33	0.40	0.57	0.80	-	feb = feb + 50 kHz
R-YN1	Demodulation angle 1	26	SG.E	33	86	103	120	deg	feb = feb + 50 kHz
R-YN2	Demodulation angle 2	26	SG.E	33	78	95	112	deg	feb = feb + 50 kHz
TC1	TINT control characteristic 1	26	SG.E	33	30	45	60	deg	feb = feb + 50 kHz
TC2	TINT control characteristic 2	26	SG.E	33	30	45	60	deg	feb = feb + 50 kHz
Ffsc	fsc output frequency	26	SG.C	32	3.5793	3.5796	3.5799	MHz	
Vfsc	fsc output amplitude	26	SG.C	32	250	500	800	mVpp	
Ffscfree	fsc output frequency in fsc free mode	26	SG.C	32	3.5790	3.5795	3.5810	MHz	
Vfscfree	fsc output amplitude in fsc free mode	26	SG.C	32	250	500	800	mVpp	

Sym												9	Suba	addı	ess	;											
bol	00H	01H	02H	03Н	04H	05H	06H	07H	овн	09Н	оан	овн	осн	оDН	0EH	0FH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
CHROM A	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
CnorR																									E0		04
CnorB																									AO		04
ACC1																									AO		04
ACC2																									AO		04
ov																									AO		04
VikN																								V	A0		04
KillP																						2			AO		04
APCU																									ΑO		04
APCL										-								1							A0		04
R/BN																4	V								E0/ A0		04
R-YN1																									E0/ A0		04
R-YN2													10		3										E0/ A0		04
TC1							,		7F																AO		04
TC2									00		•														AO		04
Ffsc																											
Vfsc								4																			
Ffscfree							_	40																			
/fscfree						1	8	40						4**													

		Imput si	gnal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
RGB	RGB standard conditions	_	_	_	_	_	_	_	Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
VBLK	Output blanking voltage	26	SG.A	50,51, 52	0	0.1	0.3	V	
Gytyp	Contrast control characteristic 1	26	SG.B	50,51, 52	2.2	2.8	3.3	Vpp	f = 100 kHz
GYmin	Contrast control characteristic 2	26	SG.B	50,51, 52	_	200	300	mVpp	f = 100 kHz
GYEnor	Contrast control characteristic 3	26	SG.A	50,51, 52	2.2	2.8	3.3	Vpp	Pin 53 = 2.9 V
GYEmin	Contrast control characteristic 4	26	SG.A	50,51, 52	_	100	200	mVpp	Pin 53 = 0.0 V
GYEclip	Contrast control characteristic 5	59,60, 61	SG.F	50,51, 52	0.50	0.65	0.80	Vpp	Pin 65 = 2.0 V
Lum nor	Brightness control characteristic 1	26	SG.D	50,51, 52	1.7	2.1	2.5	V	Vy = 0.0 V
Lum max	Brightness control characteristic 2	26	SG.D	50,51, 52	2.3	3	_	V	Vy = 0.0 V
Lum min	Brightness control characteristic 3	26	SG.D	50,51, 52	_	1.3	2	V	Vy = 0.0 V
D(R)1	R driving control characteristic 1	26	SG.A	50	2.0	4.0	6.0	dB	
D(B)1	B driving control characteristic 1	26	SG.A	52	2.0	4.0	6.0	dB	
D(R)2	R driving control characteristic 2	26	SG.A	50	-5.0	-3.0	-1.0	dB	
D(B)2	B driving control characteristic 2	26	SG.A	52	-5.0	-3.0	-1.0	dB	
EXD1(R)	Digital OSD (R) I/O characteristic 1	61,65, 26	SG.F, SG.A	50	1.0	1.5	2.0	Vpp	Vosd = 1.0 V, SW61 = ON
EXD1(G)	Digital OSD (G) I/O characteristic 1	61,65, 26	SG.F, SG.A	51	1.0	1.5	2.0	Vpp	Vosd = 1.0 V, SW60 = ON
EXD1(B)	Digital OSD (B) I/O characteristic 1	61,65, 26	SG.F, SG.A	52	1.0	1.5	2.0	Vpp	Vosd = 1.0 V, SW59 = ON
EXD1(R-G)	Digital OSD (R-G) amplitude difference	- 1	-	_	-350	0	350	mV	
EXD1(G-B)	Digital OSD (G-B) amplitude difference		-	_	-350	0	350	mV	
EXD1(B-R)	Digital OSD (B-R) amplitude difference		_	_	-350	0	350	mV	
EXD2(R-G)	Digital OSD black level DC voltage difference (R-G)	_	SG.F	50,51	-250	0	250	mV	
EXD2(G-B)	Digital OSD black level DC voltage difference (G-B)	_	SG.F	51,52	-250	0	250	mV	
OFRG	Offset voltage (R-G)	26	SG.D	50,51	-100	0	100	mV	Vy = 0.0 V
OFBG	Offset voltage (B-G)	26	SG.D	51,52	-100	0	100	mV	Vy = 0.0 V
C(R)1	R cutoff control characteristic 1	26	SG.D	50	2.6	2.9	3.2	V	Vy = 0.0 V
C(G)1	G cutoff control characteristic 1	26	SG.D	51	2.6	2.9	3.2	V	Vy = 0.0 V
C(B)1	B cutoff control characteristic 1	26	SG.D	52	2.6	2.9	3.2	V	Vy = 0.0 V
C(R)2	R cutoff control characteristic 2	26	SG.D	50	1.1	1.4	1.7	V	Vy = 0.0 V
C(G)2	G cutoff control characteristic 2	26	SG.D	51	1.1	1.4	1.7	V	Vy = 0.0 V

Sym													Sub	add	ress												
ból	00H	01H	02H	03Н	04H	05H	06H	07H	08H	09H	0AH	0BH	0CH	оDН	0EH	0FH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
RGB	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
VBLK										00																	
GYtyp										00																	
GYmin	00									00																	
GYEnor										00																	
GYEmin					-					00													_				
GYEclip	00									00																	
Lum nor										00																	
Lum max		FF								00																	
Lum min		00								00								-									
D(R)1		00	7F							00						4											
D(B)1		00		7F						00					. 3												
D(R)2		00	00							00																	
D(B)2		00		00						00																	
EXD1(R)										00																	
EXD1(G)										00																	
EXD1(B)								4		00																-	
EXD1(R- G)																											
EXD1(G- B)																		-									
EXD1(B- R)																											
EXD2(R- G)																											
EXD2(B- G)	4																										
OFRG										00					,		-										
OFBG										00																	
C(R)1					FF					00																	
C(G)1						FF				00																	
G(B)1							FF			00			\neg														
C(R)2					00					00																	
C(G)2						00			\neg	00																	

		Imput si	gnal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
C(B)2		26	SG.D	52	1.1	1.4	1.7	V	Vy = 0.0 V
Ccon1		26	SG.C	51	2	5	8	dB	
Ccon2		26	SG.C	51	_	-15	-10	dB	
Ccon3		26	SG.C	51	_	-4 0	-35	dB	
MTXRB		26	SG.G	50,52	0.81	0.98	1.08	_	
MTXGB		26	SG.G	51,52	0.29	0.37	0.45	_	
DOSD1		61,65,	SG.F,	50	_	0.05	0.13	μS	Vosd = 1.0 V, SW59 = ON
		26	SG.A						
DOSD2		61,65,	SG.F,	50	_	0.05	0.13	μS	Vosd = 1.0 V, SW59 = ON
		26	SG.A						
BB(R)		26	SG.A	50	1.7	2.1	2.5	V	₩
BB(G)		26	SG.A	51	1.7	2.1	2.5	V	
BB(B)		26	SG.A	52	2.7	3.7	4.7	V	
WB		26	SG.A	50,51, 52	2.7	3.7	4.7	V	
WBL-RB		26	SG.A	50,52	-80.0	-20.0	10.0	mV	White level difference with, without
			Y=30%						burst, with reference to pin 52 (Bout)
WBL-GB		26	SG.A	51,52	-	10.0	80.0	mV	White level difference with, without
			Y=30%						burst, with reference to pin 52 (Bout)

Sym bol	Γ												Sub	pado	dres	s											
bol	00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	0BH	осн	0DH	0EH	0FH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
C(B)2							00			00				9													
Coon 1										7F	80																
Ccon 2										01	80																
Ccon 3								•		00	80																
MTXRB							~																				
MTXGB							0																				
DOSD1	7F																										
DOSD2	7F																										
BB(R)										80																	
BB(G)										80																	
BB(B)										80																	
WB				CO																							
WBL-RB		40																									
WBL-GB		40												-													

		Imput si	gnal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
DEF	Deflection system standard conditions	_	_	_	_	_	_	_	Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
fH1	Horizontal free- running frequency 1	_	_	46	15.3	15.7	16.1	kHz	
fH2	Horizontal free- running frequency 2	_	_	46	14.7	15.1	15.5	kHz	
fH3	Horizontal free- running frequency 3	_	_	46	15.8	16.2	16.6	kHz	
Hfree	Forced horizontal free-running operation	26	SG.A	46	15.3	15.7	16.1	kHz	In Hfree operation (0FH: D6 = 1)
FPHU	Horizontal pull-in range (upper)	26	SG.H	46	250	500	_	Hz	Variable input frequency
FPHL	Horizontal pull-in range (lower)	26	SG.H	46	_	-500	-250	Hz	Variable input frequency
HPT1	Horizontal pulse timing 1	26	SG.A	46	4.5	6.0	7.5	μS	9
HPT2	Horizontal pulse timing 2	26	SG.A	46	3.5	5.0	6.5	μЅ	
HPTW	Horizontal pulse width	_	_	46	21	25	29	μS	
VH	Horizontal pulse amplitude	_	_	46	4.7	5.4	-	V	
HSTOP	Horizontal pulse stop operation	_	_	46	_	0.0	0.5	V	When OFH: D7 = 0, confirm that horizontal pulse is stopped
AFCG	AFC gain operation	26	SG.A	43	2.0	3.0	10.0	dB	When 12H is 03, 07, measure and compute amplitude
fV	Vertical free-running frequency	_	_	38	55	60	65	Hz	
Vfree	Forced vertical free- running operation	26	SG.A	38	55	60	65	Hz	In Vfree operation (0EH: D6 = 1)
SVC	Service mode operation	_	-O	38	1.0	1.5	2	V	
FPVU	Vertical pull-in frequency (upper)	26	SG.H	38	63	67	_	Hz	Variable input frequency
FPVL	Vertical pull-in frequency (lower)	26	SG.H	38	_	55	57	Hz	Variable input frequency
VRsi1	Vertical ramp size	26	SG.A	38	1.6	2.0	2.4	Vpp	
VRsc1	Vertical ramp size control range 1	26	SG.A	38	2.0	2.4	2.8	Vpp	
VRsc2	Vertical ramp size control range 2	26	SG.A	38	0.8	1.2	1.6	Vpp	
VRpo1	Vertical ramp position control range 1	26	SG.A	38	18	38	58	μS	
VRpo2	Vertical ramp position control range 2	26	SG.A	38	805	825	845	μS	Measured value – VRpo 1
VBLKW	Vertical blanking width	26	SG.A	50,51, 52	1.32	1.47	1.62	ms	
WVSS	Minimum width in minimum sync operation	26	SG.I	38	14	_	_	μS	Variable input signal duty

Sym bol													Sub	addı	ress												_
bol	00Н	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	овн	осн	0DH	0EH	ofH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1FH
DEF	40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
fH1									20001001							0.002.0		10000000	500000					1000045	2310000		0.2222
fH2																								00			
fH3																								06			
Hfree																C8											
FPHU																							_				
FPHL																						(
HPT1																80			0F			2					
HPT2																8F			0F								
HPTW																		1									
VH								. "							4	4											
HSTOP																08											
AFCG														_(3				Vari able								
fV																											
Vfree											•				64												
svc														СО													
FPVU								. 1																			
FPVL							1																				
VRsi 1						-	0								-												
VRsc 1															30												
VRsc 2															00												
/Rpo 1																											
/Rpo 2														47													
/BLKW										00																	
wvss	T		T							T																	

		Imput si	gnal	Test	Limits				
Symbol	Item	Pin	SG	point	Min	Тур	Max	Unit	Notes
Monitoring	Intelligent monitor system standard conditions	_	_	_	_	_	_	_	Pins 4, 7 = 5 V; pins 9, 10 = 5 V; pins 23, 65 = 0 V; pins 47, 49 = 8 V
MONI1	Intelligent monitor 1 (composite sync)	26	SG.A	33	_	4.9	_	V	Reference data
MONI6	Intelligent monitor 6 (video SW output)	26	SG.A	33	_	0.95	_	Vpp	Reference data
MONI7	Intelligent monitor 7 (G out)	26	SG.A	33	_	2.0	_	Vpp	Reference data. Amplitude measured from blanking level
MONI8	Intelligent monitor 8 (R out)	26	SG.A	33		2.0	_	Vpp	Reference data. Amplitude measured from blanking level
MONI9	Intelligent monitor 9 (B out)	26	SG.A	33		2.0	_	Vpp	Reference data. Amplitude measured from blanking level
MONI10	Intelligent monitor 10 (ACL)	_		33	_	4.3	_	V	Reference data
MONI11	Intelligent monitor 11 (V sync)	26	SG.A	33	_	4.0	_	Vpp	Reference data
MONI12	Intelligent monitor 12 (H out)	26	SG.A	33	_	3.0	_	Vpp	Reference data
MONI14	Intelligent monitor 14 (DEF Vcc)	_	_	33	_	2.90	\prec	V	Reference data
MONI15	Intelligent monitor 15 (video/chroma Vcc)	_	_	33	_	2.70	7	V	Reference data
MONI16	Intelligent monitor 16 (Hi Vcc)	_	_	33	-	2.90		V	Reference data

• Intelligent Monitor Map

1. Sub Address: 11HD4 – D7

2. Output Pin: Pin33

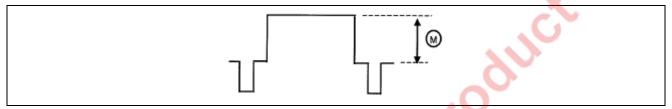
3. Specification

	11H	11H	4			Output
No.	HEX	D7	D6	D5	D4	Signal
1	0	0	0	0	0	Composite Sync
2	1	0	0	0	1	
3	2	0	0	1	0	_
4	3	0	0	1	1	_
5	4	0	1	0	0	
6	5	0	1	0	1	Y SW OUT
7	6	0	1	1	0	G OUT
8	7	0	1	1	1	R OUT
9	8	1	0	0	0	B OUT
10	9	1	0	0	1	ACL/ABCL
11	Α	1	0	1	0	V SYNC
12	В	1	0	1	1	H OUT
13	С	1	1	0	0	DEF VCC
14	D	1	1	0	1	DEF VCC
15	Е	1	1	1	0	V/C VCC
16	F	1	1	1	1	HI VCC

MONIT ORING 40 80 40 40 80 80 80 80 80 00 40 40 20 80 00 40 20 80 00 40 20 88 00 00 04 00 00 00 00 00 14 02 00 00 00 00 00 00 00 00 00 00 00 00	MONIT ORING 240 830 400 80 80 80 80 80 80 80 80 80 80 80 80 8	90H 01H 02H 03H 04H 05H 06H 07H 06H 07H 06H 07H 07H	Sym												9	Sub	addı	ress	3											
ORING 40 90 40 40 80 80 80 00 40 40 20 80 00 40 20 88 00 00 00 00 00 00 14 02 00 00 00 00 00 00 00 00 00 00 00 00	ORING 40 90 40 40 80 80 80 00 40 40 20 80 00 40 20 88 00 00 00 04 00 00 00 14 02 00 00 00 00 00 00 00 00 00 00 00 00	ORING 40 90 40 90 90 90 90 90 90 90 90 90 90 90 90 90	bol	оон	01H	02H	03H	04H	05H	06H	07H	08H	09H	оан	овн	осн	ODH	0EH	OFH	10H	11H	12H	13H	14H	15H	1BH	1CH	1DH	1EH	1Fł
MONI6	MONI6	MONIF		40	80	40	40	80	80	80	00	40	40	20	80	00	40	20	88	00	00	04	00	00	00	00	14	02	00	00
MONI7 00 60 70 MONI8 00 70 MONI11 A0 MONI12 B0 MONI14 D0 MONI15 F0	MONI7 00 60 70 MONI8 00 70 MONI11 A0 MONI12 B0 MONI14 D0 MONI15 F0	MONI7 00 60 60 MONI8 00 70 MONI9 00 80 MONI10 90 MONI11 A0 MONI12 B0 MONI14 D0 MONI15 E0 MONI16 F0	MONI1		-																00									
MONI8 00 70 80 MONI10 90 MONI12 80 MONI14 D0 MONI15 E0	MONI8 00 70 80 MONI10 90 MONI12 80 MONI14 D0 MONI15 F0	MONIB 00 70 80 MONI10 90 MONI11 A0 MONI12 B0 MONI14 D0 MONI15 E0 MONI16 FO	MONI6																		50						-			
MONI10 00 80 90 90 90 90 90 90 90 90 90 90 90 90 90	MONI10 00 80 90 90 90 90 90 90 90 90 90 90 90 90 90	MONI9 00 80 90 MONI10 90 MONI11 A0 MONI12 B0 MONI14 D0 MONI15 E0 MONI16 F0	MONI7										00								60									
MONI10 90 90 90 90 90 90 90 90 90 90 90 90 90	MONI10 90 90 90 90 90 90 90 90 90 90 90 90 90	MONI10 90 90 90 90 90 90 90 90 90 90 90 90 90	MONI8										00								70									
MONI11 A0 B0 B0 MONI14 D0 F0	MONI11 A0 B0 B0 MONI14 D0 F0	MONI12	MONI9										00								80									
MONI12 B0 D0 MONI14 D0 F0	MONI12 B0 D0 MONI14 D0 F0	MONI12	MONI10																		90									
MONI14 D0	MONI14 D0	MONI15 MONI16 FO FO	MONI11					-													Α0									
MONI15	MONI15	MONI16 E0 F0	MONI12																		во									
MONI15 E0 F0 F0	MONI16 E0 F0	MONI16 F0	MONI14																		DO									
MONI16	MONI16 F0	MONI16	MONI15																	V	EΟ	•								
1000	anounce	announce	MONI16																		F0									
															\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\															

Method of Measurement of Electrical Characteristics

Video Clock


2AGTV1-3 video SW output level (CVBS1-3 input)

2AGEVY video SW output level (Y input)

- 1. Input SG.A to pin 26 (CVBS1), or pin 24 (CVBS2), or pin 20 (CVBS3), or pin 30 (Yin).
- 2. The amplitude (p-p) at pin 14 is measured.
- * In order to select TV or external input, use the subaddress 0BH.

Y max maximum video output

- 1. Input SG.A to pin 26.
- 2. Measure the amplitude (p-p) other than the blanking part of the output of pins 50, 51, 52.

FBY video frequency characteristic

- 1. Input SG.B (5 MHz, 0.4 Vp-p) to pin 26.
- 2. Measure the amplitude (p-p) other than the blanking part of the output of pins 50, 51, 52, take the result to be YB.
- 3. FYB is defined as follows.

$$FYB = 20 log \frac{YB (Vp-p)}{GY (Vp-p)} (dB)$$

CRF1 chroma trap attenuation 1 (normal R/G/B output)

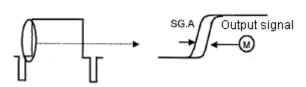
TRF maximum chroma trap attenuation

- 1. Input SG.C to pin 26, measure the 3.58 MHz frequency level with TRAP ON/OFF (07H D3) DATA 1, take his to be N_o.
- 2. Also measure the level with TRAP ON/OFF (07H D3) DATA 0.
- 3. CRF1 is defined as follows.

$$CRF1 = 20 \log \frac{\frac{\text{measured}}{\text{vable}} (\text{mVp-p})}{\frac{\text{Vable}}{\text{No} (\text{mVp-p})}} (\text{dB})$$

4. Take the minimum value of CRF1 when the I²C BUS data of the TRAP fine ADJ (12H D0 / D1) is adjusted to be TRF.

CRF2 chroma trap attenuation 2 (normal R / G / B output)


- 1. Input SG.L to pin 26. The input 3.58 MHz frequency level is N₁.
- 2. Measure the 3.58 MHz frequency level when TRAP ON/OFF (07H D3) DATA 0.
- 3. CRF2 is defined as follows.

CRF2=
$$20 \log \frac{\text{measured } (\text{mVp-p})}{N, (\text{mVp-p})}$$
 (dB)

M61280M8-xxxFP

YDL1: YDL time 1

- 1. Input SG.A to pin 26.
- 2. Measure the delay time relative to the input signal of pins 50, 51, 52.

The delay time at 50% rise level is measured.

YDL2, 3, 4: YDL time 2, 3, 4

- 1. Input SG.A to pin 26.
- 2. Measure the delay time of the input signal and the pin 50, 51, 52 output signals.
- 3. YDL2, YDL3, YDL4 are defined as follows.

YDL2 = measured value (ns) - YDL1 (measured value)

YDL3 = measured value (ns) - YDL2 (measured value)

YDL4 = measured value (ns) – YDL3 (measured value)

GTmax video tone control characteristic 2

- 1. Input SG.B (f = 2.5 MHz) to pin 26.
- 2. The output amplitude of pins 50, 51, 52 when the video tone data is at the center (20 H) is taken to be GTnor.
- 3. The output amplitude of pins 50, 51, 52 when the video tone data is maximum is measured.
- 4. GTmax is defined as follows.

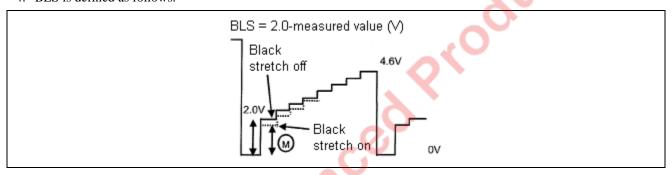
$$GTmax = 20 log \frac{value}{GTnor(V_{D-D})} (dB)$$

GTmin video tone control characteristic 3

- 1. Input SG.B (f = 2.5 MHz) to pin 26.
- 2. The output amplitude of pins 50, 51, 52 when the video tone data is at the center (20 H) is taken to be GTnor.
- 3. The output amplitude of pins 50, 51, 52 when the video tone data is minimum is measured.
- 4. GTmin is defined as follows.

GT2M video tone control characteristic 4

- 1. Take pin 50, 51, 52 output amplitude when input signal frequency is 2.5 MHz to be GTnor.
- 2. Input SG.B (f = 2 MHz) to pin 26.
- 3. Measure pin 50, 51, 52 output amplitude.
- 4. GT2M is defined as follows


GT5M video tone control characteristic 5

- 1. Take pin 50, 51, 52 output amplitude when input signal frequency is 2.5 MHz to be GTnor.
- 2. Input SG.B (f = 2 MHz) to pin 26.
- 3. Measure pin 50, 51, 52 output amplitude.
- 4. GT5M is defined as follows.

measured (Vp-p) value
$$\frac{\text{resourced}}{\text{GT5M} = 20 \log} \frac{\text{(Vp-p)}}{\text{GTnor(Vp-p)}} \text{ (dB)}$$

BLS black stretch characteristic

- 1. Input SG.K to pin 26.
- 2. With black stretch off (0BH D7 = 1), adjust the contrast (00H) and brightness (01H), and set the pin 50, 51, 52 output level of the first stage (lowest stage) to 2.0 V, and the output level of the eighth stage (highest stage) to 4.6 V.
- 3. Change black stretch to on (0BH D7 = 0), and measure the pin 50, 51, 52 first stage output level.
- 4. BLS is defined as follows.

VMF video mute function

- 1. Input SG.A to pin 26.
- 2. With the mute switch (0AH D7) on "VMFon", off "VMFoff", measure the output amplitude.
- 3. VMF is defined as follows.

$$VMF = 20 log \frac{VMFon(Vp-p)}{VMFoff(Vp-p)} (dB$$

Chroma Block

CnorR chroma standard output (R-Y) CnorB Chroma standard output (B-Y)

- 1. Input SG.C to pin 26.
- 2. When "test mode" I²C data is 1FH D2=1, 1DH D5=1, take the pin 33 output amplitude when 1DH D6 = 1, D7 = 1 and D6=0, D7=1 to be the chroma standard output (R-Y) and chroma standard output (B Y), respectively.

ACC1 ACC characteristic 1

- 1. Input SG.E (eb = 570 mV: level + 6 dB) to pin 26.
- 2. Measure the pin 33 output amplitude.
- 3. ACC1 is defined as follows.

ACC2 ACC characteristic 2

- 1. Input SG.E (input level: -18 dB) to pin 26.
- 2. Measure the pin 33 output amplitude.
- 3. ACC2 is defined as follows.

OV chroma overload characteristic

- 1. Input SG.E (eb = 800 mVp-p: chroma + 3 dB) to pin 26.
- 2. Measure the pin 33 output amplitude.
- 3. OV is defined as follows.

VikN killer operation input level

- 1. Input SG.E (variable level) at input level 0 dB to pin 26.
- 2. While monitoring the pin 33 output amplitude, lower the input level, and measure the input level when the output amplitude vanishes.

KillP hue remaining with killer

- 1. Input SG.E (level: -40 dB) to pin 26.
- 2. Measure the pin 33 output amplitude.

APCU APC pull-in range (upper) APCL APC pull-in range (lower)

- 1. Input SG.E (feb-fec-3.579545 MHz) to pin 26.
- 2. After raising the frequency until the output from pin 33 vanishes, lower the frequency, and take the point at which an output appears to be fu.
- 3. After lowering the frequency until the output from pin 33 vanishes, raise the frequency, and take the point at which an output appears to be fl.
- 4. APCU and APCL are defined as follows.

$$APCU = fu - 3579545 Hz$$

 $APCL = fl - 3579545 Hz$

R/BN demodulation ratio R-Y/B-Y

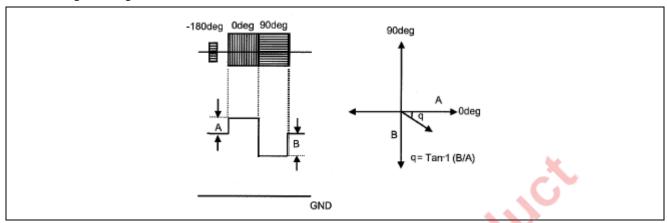
- 1. Input SG.E (eb = single chroma = ec + 50 kHz) to pin 26.
- 2. Take the pin 33 output amplitude when "test mode" I^2C data is 1DH D6 = 1, D7 = 1 to be VRY.
- 3. Take the pin 33 output amplitude when "test mode" I^2C data is 1DH D6 = 0, D7 = 1 to be VBY.
- 4. R/BN is defined as follows.

$$R/BN = \frac{VRY (mVp-p)}{VBY (mVp-p)}$$

R-YN demodulation angle

- 1. Input SG.E (eb = single chroma = ec + 5 kHz) to pin 26.
- 2. Take the pin 33 output amplitude when "test mode" 1^{2} C data is 1DH D6 = 1, D7 = 1 to be VRY.
- 3. Take the pin 33 output amplitude when "test mode" I^2C data is 1DH D6 = 0, D7 = 1 to be VBY.
- 4. R/YN is defined as follows.

R-YN =Tan-1
$$\frac{VRY \times 3.8}{(VBY \times 1.9) + 45}$$
 (deg)


* The vector is determined taking the demodulator gain into account.

TC1 TINT control characteristic 1

TC2 TINT control characteristic 2

1. Input SG.C (see figure below) to pin 26. Measure the absolute angle with reference to the pin 33 output voltage, referring to the figure below.

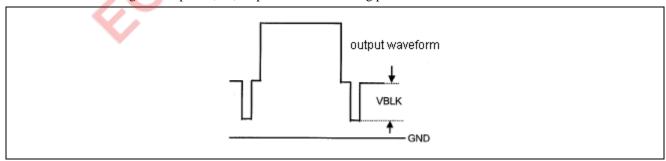
2. Take the TINT data center part (08H data 3CH) to be reference angle "TC", determine the TINT DATA maximum and minimum values. TC1 and TC2 are defined as follows.

$$TC1 = Tcmax - TC(deg)$$

 $TC2 = TC - Tcmin(deg)$

Ffsc fsc output frequency Vfsc fsc output amplitude

- 1. Input SG.C to pin 26.
- 2. Measure the pin 32 output frequency and amplitude.


Ffscfree fsc output frequency in fsc free mode Vfscfree fsc output amplitude in fsc free mode

- 1. Input SG.C to pin 26.
- 2. Measure the pin 32 output frequency and amplitude with fsc free (07H D6) DATA 1.

RGB Interface Block

VBLK output blanking voltage

- 1. Input SG.A to pin 26.
- 2. Measure the voltage of the pin 50, 51, 52 pedestal and blanking parts.

M61280M8-xxxFP

GYmax contrast control characteristic 1

GYmin contrast control characteristic 2

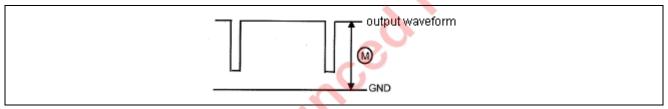
- 1. Input SG.B (f = 100 kHz) to pin 26.
- 2. Measure the pin 50, 51, 52 output amplitude.

GYEnor contrast control characteristic 3

GYEmin contrast control characteristic 4

- 1. Input SG.A to pin 26.
- 2. Measure the pin 50, 51, 52 output amplitude when applying 2.9 V and 0 V to pin 33.

GYEclip contrast control characteristic 5


- 1. Input SG.F to pins 59, 60, 61, 65.
- 2. Minimize the contrast control data, and measure the output amplitude at and above the pedestal part of pins 50, 51, 52. The amplitude of the blanking part is not measured.

Lum nor brightness control characteristic 1

Lum max brightness control characteristic 2

Lum min brightness control characteristic 3

- 1. Input SG.D (Vy = 0 V) to pin 26.
- 2. Measure the DC voltage other than the blanking part of the output of pins 50, 51, 52.

D(R)1 R drive control characteristic 1

- 1. Input SG.A to pin 26.
- 2. Measure the pin 50 output amplitude when the drive control data is at center and is maximum, take the results to beDRnor and DRmax respectively.
- 3. D(R) 1 is defined as follows.

$$D(R)1 = 20 \log \frac{DRmax (Vp-p)}{DRnor (Vp-p)} (dB)$$

D(B)1 B drive control characteristic 1

- 1. Input SG.A to pin 26.
- 2. Measure the pin 52 output amplitude when the drive control data is at center and is maximum, take the results to be DBnor and DBmax respectively.
- 3. D(B)1 is defined as follows.

$$D(B)1 = 20 log \frac{DBmax (Vp-p)}{DBnor (Vp-p)} (dB)$$

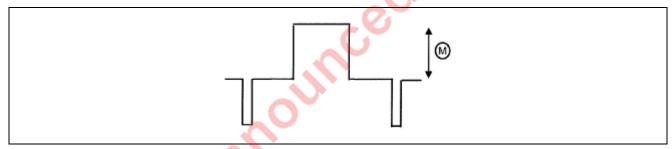
D(R)2 R drive control characteristic 2

- 1. Input SG.A to pin 26.
- 2. Measure the pin 50 output amplitude when the drive control data is at center and is minimum, take the results to be DRnor and DRmin respectively.
- 3. D(R)2 is defined as follows.

$$D(R)2 = 20 log \frac{DRmin (Vp-p)}{DRnor (Vp-p)} (dB)$$

D(B)2 R drive control characteristic 2

- 1. Input SG.A to pin 26.
- 2. Measure the pin 52 output amplitude when the drive control data is at center and is minimum, take the results to be DBnor and DBmin respectively.
- 3. D(B)2 is defined as follows.


$$D(B)2 = 20 log \frac{DBmin (Vp-p)}{DBnor (Vp-p)} (dB)$$

EXD(R) digital OSD(R) input/output characteristic

EXD(G) digital OSD(G) input/output characteristic

EXD(B) digital OSD(B) input/output characteristic

- 1. Input SG.F (Vosd = 1.0 V) to pins 59, 60, 61, 65.
- 2. Measure the output amplitude at and above the pedestal part in pins 50, 51, 52. The amplitude of the blanking part is not measured.

EXD(R-G) digital OSD (R-G) amplitude difference

EXD(G-B) digital OSD (G-B) amplitude difference

EXD(B-R) digital OSD (B-R) amplitude difference

1. EXD (R-G), EXD (G-B) and EXD (B-R) are defined as follows.

EXD(R-G) = EXD(R) - EXD(G)

EXD(G-B) = EXD(G) - EXD(B)

EXD(B-R) = EXD(B) - EXD(R)

C(R) 1 R cutoff characteristic 1

C(G) 1 G cutoff characteristic 1

C(B) 1 B cutoff characteristic 1

C(R) 2 R cutoff characteristic 2

C (G) 2 G cutoff characteristic 2

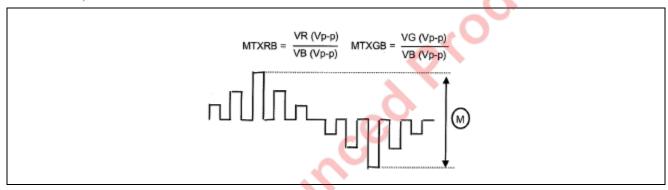
C (B) 2 B cutoff characteristic 2

- 1. Input SG.D (Vy = 0 V) to pin 26.
- 2. Measure the DC voltage of other than the blanking part in the outputs of pins 50, 51, 52.

M61280M8-xxxFP

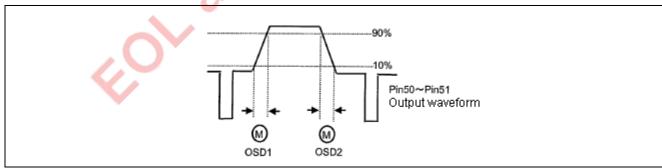
Ccon1 color control characteristic 1

Ccon2 color control characteristic 2


Ccon3 color control characteristic 3

- 1. Input SG.C to pin 26.
- 2. Measure the output amplitudes of pins 50, 51, 52 when IIC DATA 09H = 40h, take this to be Ccon0.
- 3. Measure the output amplitudes of pins 50, 51, 52 under each set of conditions.
- 4. Ccon1, Ccon2, Ccon3 are defined as follows.

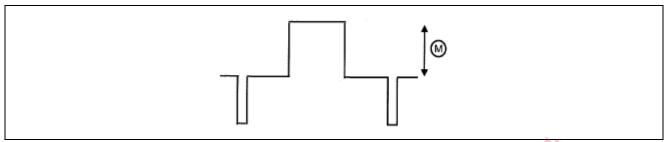
Ccon1,Ccon2,Ccon3


MTXRB matrix ratio R/B MTXGB matrix ratio G/B

- 1. Input SG.G (rainbow color bar) to pin 26.
- 2. Measure the output amplitude when pins 50, 51, 52 are respectively VR, VG, VB.
- 3. MTXRB, MTXGB are defined as follows.

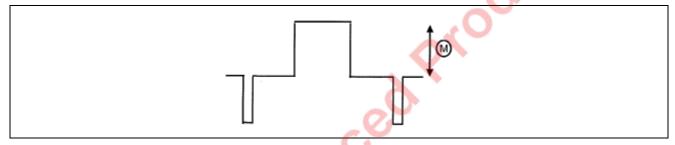
DOSD1 digital OSD switching characteristic 1 DOSD2 digital OSD switching characteristic 2

- 1. Input SG.F (Vosd = 1.0 V) to pins 65, 59, 60, 61.
- 2. Measure the rise time and fall time of the output signals of pins 50, 51, 52 at and above pedestal level. The blanking part is not measured.



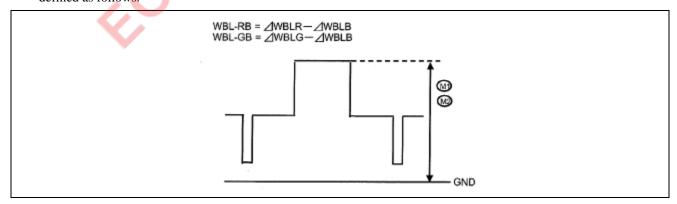
BB(R) blue back function (R)

BB(G) blue back function (G)


BB(B) blue back function (B)

- 1. Input SG.A to pin 26.
- 2. Measure the output amplitude (p-p) of pins 50, 51, 52 other than the blanking part.

WB white raster function


- 1. Input SG.A to pin 26.
- 2. Measure the output amplitude (p-p) of pins 50, 51, 52 other than the blanking part.

WBL-RB white balance difference-RB

WBL-GB white balance difference-GB

- 1. Input SG.A (Y = 30%L with burst) to pin 26.
- 2. Measure the pin 50, 51, 52 output white level potential from GND. Measured values are taken to be M1R, M1G, M1B respectively.
- 3. Input SG.A (Y = 30%: without burst) to pin 26.
- 4. Measure the pin 50, 51, 52 output white level potential from GND. Measured values are taken to be M2R, M2G, M2B respectively.
- 5. Calculate the differences in measured values.
- 6. Calculate the differences between calculated values of Rch and Bch with the Bch measured value as reference, defined as follows.

Deflection Block

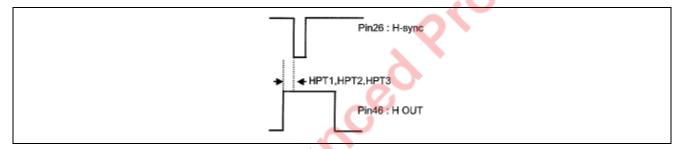
fH1 horizontal free-running frequency 1

fH2 horizontal free-running frequency 2

fH3 horizontal free-running frequency 3

1. Measure the frequency of pin 46 with no input.

Hfree forced horizontal free-running operation

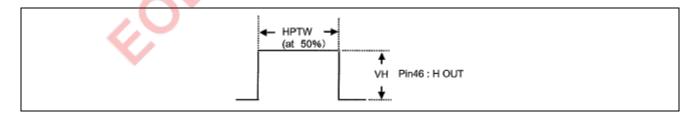

- 1. Input SG.A to pin 26.
- 2. Set H-FREE CONTROL DATA to on, measure the frequency at pin 46.

FPHU horizontal pull-in range (upper)

FPHL horizontal pull-in range (lower)

- 1. Input SG.H to pin 26.
- 2. Change the frequency of SG.H, measure the frequency range for which the pin 46 output signal and pin 26 input signal are pulled in, with respect to the video signal horizontal frequency.

HPT1 horizontal pulse timing 1



HPT2 horizontal pulse timing 2

- 1. Measure the horizontal pulse timing using the method for HPT1.
- 2. Standard

HPT2 = (measured value) - HPT1

HPTW horizontal pulse width VH horizontal pulse amplitude

HSTOP horizontal pulse stop operation

1. Confirm that when H.START SW OFF (0FH:D7 = 0), the horizontal output goes low.

M61280M8-xxxFP

AFCG AFC gain operation

- 1. Measure the pin 43 output amplitude during AFC switching, taking the result when 12HD0 = 1, D1 = 1, D2 = 0 to be AFCtyp, and 12HD0 = 1, D1 = 1, D2 = 1 to be AFCmax.
- 2. AFCG is defined as follows.

AFCG = 20 log
$$\frac{AFCmax (Vp-p)}{AFCtyp (Vp-p)}$$
 (dB)

fV vertical free-running frequency

1. Measure the pin 38 output frequency with no input.

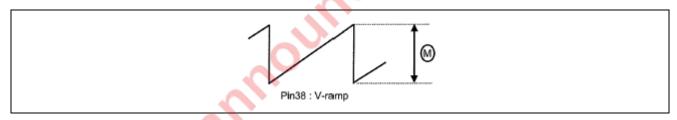
Vfree forced vertical free-running operation

- 1. Input SG.A to pin 26.
- 2. Set V-FREE CONTROL DATA to on, measure the pin 38 output amplitude.

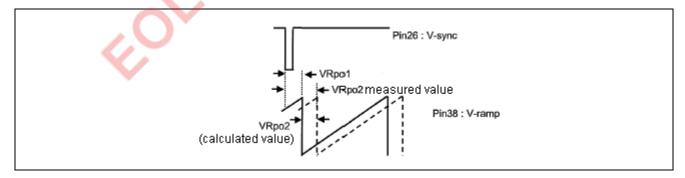
SCV service mode operation

1. Measure the pin 38 output DC voltage with the service switch on.

FPVU vertical pull-in frequency (upper)


FVPL vertical pull-in frequency (lower)

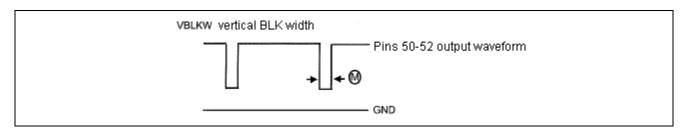
1. Change the SG.H vertical frequency, and measure the frequency when the pin 38 output waveform is pulled in.


VRsi vertical ramp size

VRsc1 vertical ramp size control range 1

VRsc2 vertical ramp size control range 2

VRpo1 vertical ramp position control range 1



Rpo1 vertical ramp position control range 2

- 1. Measure the vertical ramp timing using the same method as for VRpo1.
- 2. VRpo2 is defined as follows.

VRpo2 = (measured value) - VRpo1

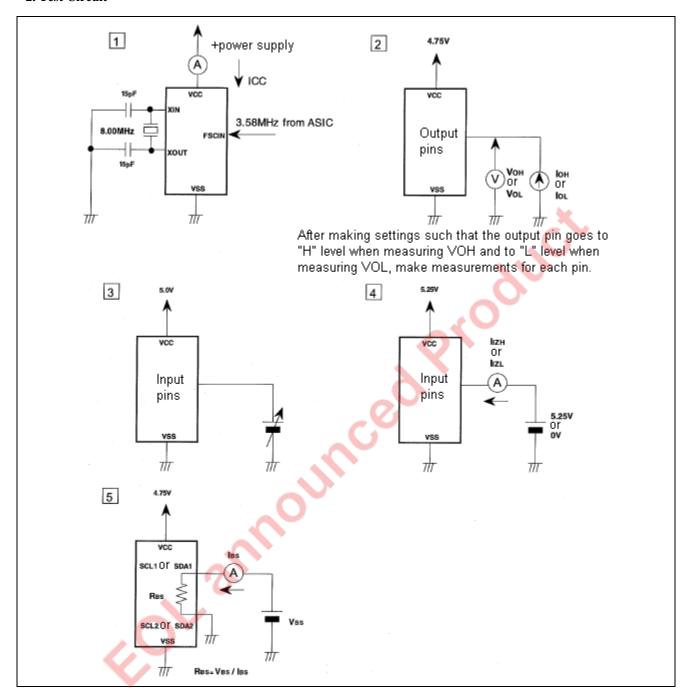
VBLKW vertical BLK width

WVSS minimum width at minimum sync operation

...e pin 38 output 1. Reduce the width of the SG.I signal, and measure the input signal width when the pin 38 output waveform pull-in is

Electrical Characteristics (MCU unit)

1. Electrical characteristics


(unless otherwise noted, VDD = 5 V \pm 5%, Vss = 0 V, f(XIN) = 8.95 MHz, Ta = -10 to 65°C)

					Limits				Measurement
Symbol	Item		Measurement Conditions	S	Min.	Тур.	Max.	Unit	Circuit
I _{cc}	Power supply current	During system operation	Vcc=5.25V, f(X _{IN})=8.95MHz	OSD OFF Data slicer off OSD ON	_	15 30	30 45	mA mA	1
			Vcc=5.25V, f(X _{IN})=0, f(X _{CIN}) Data slicer off, Low power (CM5="0", CM6="1")		_	60	200	μА	
		During wait	Vcc=5.25V, f(X _{IN})=8MHz		_	2	4	mA	
			Vcc=5.25V, f(X _{IN})=0, f(X _{CIN}) Low power dissipation mo		_	60	200	μА]
		When stopped	Vcc=5.25V, f(X _{IN})=0, f(X _{CIN}))=0	_	1	10		
V _{OH}	"H" output voltage	P11~P14, P20~P27, P40, P41	Vcc=4.75V, I _{OH} =-0.5mA		2.4		7	٧	2
V _{OL}	"L" output voltage	P00~P07, P20~P23, P40, P41	Vcc=4.75V, I _{OL} =0.5mA		1	7	0.4	٧	
		P24~P27	Vcc=4.75V, I _{OL} =10.0mA		\exists	_	3.0		
		P11~P14	Vcc=4.75V	I _{ot} =3mA I _{ot} =6mA	_	_	0.4 0.6		
V _{T+} - V _{T-}	Hysteresis (*1) RESET, INT1, INT2, INT3, TIM3,S _{IN} , S _{CLK} , SCL1, SCL2, SDA1, SDA2		Vcc=5.0V	7,	_	0.5	1.3	V	3
I _{IZH}	"H" input leakage current P00~P07, P11~P14, P20~P27, P40~P45, RESET		Vcc=5.25V, V _i =5.25V	0	_	_	5	μА	4
I _{IZL}	"L" input leakage current P00~P07, P11~P14, P20~P27, P40~P45, RESET		Vcc=5.25V, V _i =0V			_	5	μА	4
R _{BS}	I ² C-BUS bus switch (between SCL1 an SDA2)	n connection resistance d SCL2, SDA1 and	Vcc=4.75V		_	_	130	Ω	5

Note: 1. when using P06, P07, P16, P23, P24, P25 as interrupt inputs or external clock inputs for timers, when using P20 to P22 as serial I / O, and when using P11 to P14 as multi-master I2C-BUS interface pins, there is hystersis.

RENESAS

2. Test Circuit

A/D Converter Characteristics

(unless otherwise noted, VDD = 5 V \pm 5%, Vss = 0 V, f(XIN) = 8.95 MHz, Ta = -10 to 65°C)

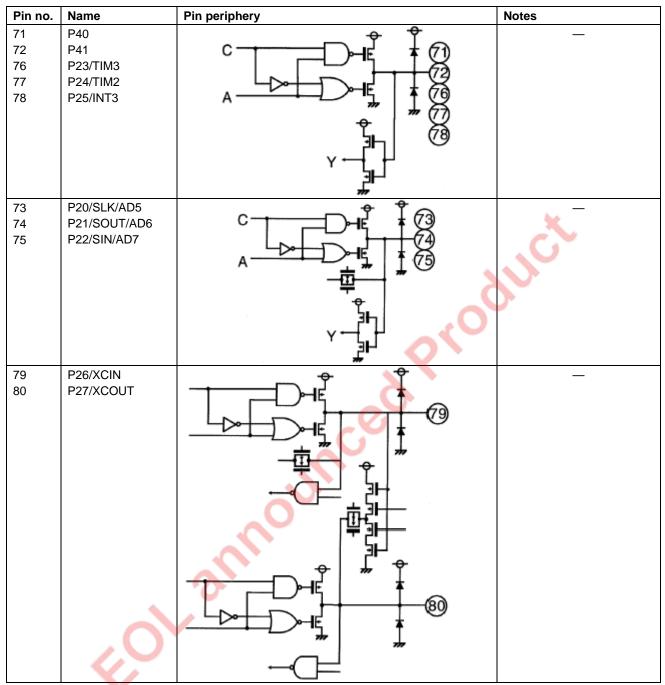
		Measurement	Limits	3		
Symbol	Item	Conditions	Min	Тур	Max	Unit
_	Resolution				7	bits
_	Nonlinear				±1.5	LSB
_	Diffierential Nonlinear error				±0.9	LSB
V _{OT}	Zero-transition error	IOL (SUM) = -0 mA			2	LSB
V _{EST}	Full-scale transition error			•	-2	LSB

Pin Description

Pin no.	Name	Pin periphery	Notes
1	CNVSS	1	0 V
2 3	X IN XOUT		
7	TEST1 TEST0	47	
5	Vss (MCU)	_	Power source for MCU 0 V
6	Vdd (MCU)	_	Power source for MCU 5.0 V ±5%
8	FILT	**************************************	_
9	HLF	9	_

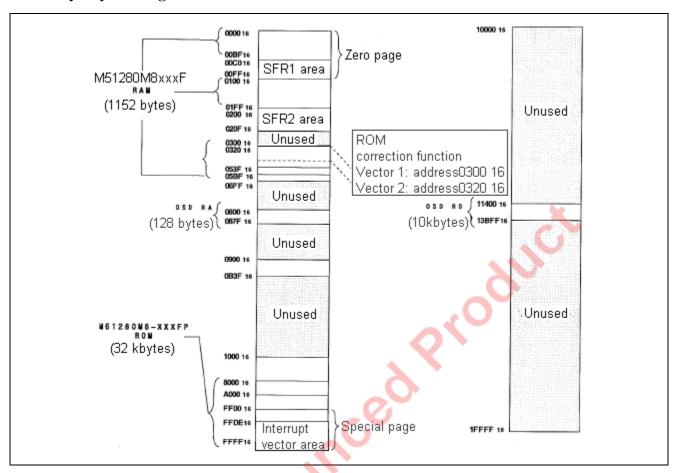
Pin no.	Name	Pin periphery	Notes
10	VHOLD		
11	CVIN		
12	RESET	Y - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
13	MCU RESET OUT	9 5.7V 9 5.7V 9 8.7V 13	H: 5.0 V L: 0.0 V
14	Y SW OUT	SV O	1.7 V
15	Video/Chroma GND		0.0 V

Pin no.	Name	Pin periphery	Notes
16	X-TAL 3.58	8.7V — 100 ·	3.3 V
17	CHROMA APC FILTER	5V —	3.2 V
18	MCU 5.7VREG OUT	8.7V + 8.	5.7 V Maximum outflow current = 2.5 mA
19	NC		_
20 24 26	CVBS IN 3/2/1	5V 0	1.7 V

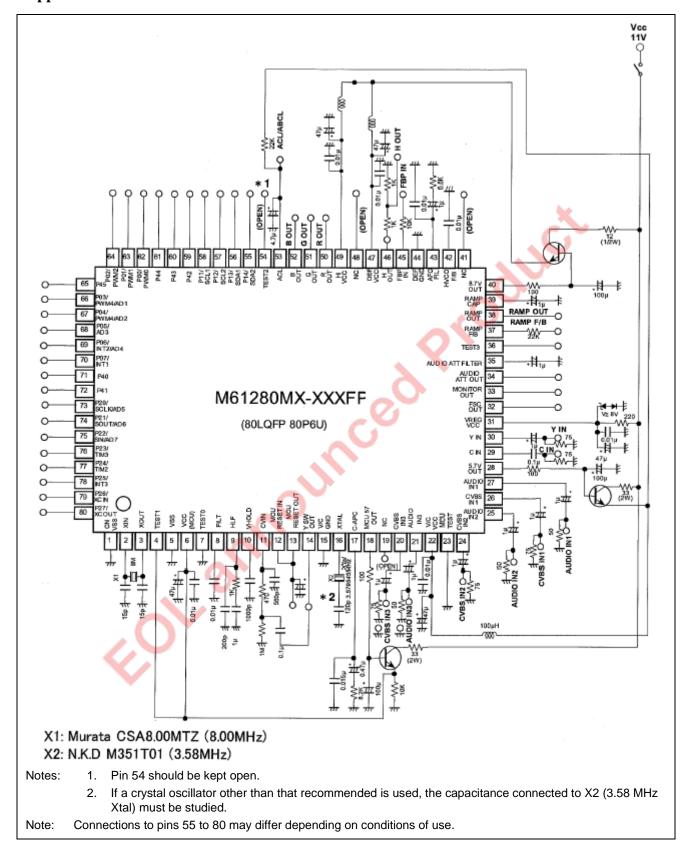

Pin no.	Name	Pin periphery	Notes
21 25 27	AUDIO IN 3/2/1	8V 0 8V 21 25 25 27	2.3 V
22	Video/Chroma Vcc	_	5.0 V
23	MCU TEST	5V	0 V
28	5.7 VREG OUT	5.7V 8V 0 8V	5.7 V Maxim outflow current = 5 mA
29	CIN	5V — 5V — 6V — 6V — 6V — 6V — 6V — 6V —	2.1 V

Pin no.	Name	Pin periphery	Notes
30	YIN	SV —	1.7 V
31	VREG Vcc		8.7 V
32	fsc OUT	32 32	3.0 V
		⁽²⁾ ∮ I=100μA	
33	INTELLIGENT MONITOR	sv +	Maxim outflow current = 100 μA
34	AUDIO ATT OUT	s v y y y y y y y y y y y y y y y y y y	3.5 V
35	AUDIO ATT FILTER	98V 98V 98V 4K 4K 4K 4K 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38	2.75 V to 3.25 V
36	TEST2	_	GND

Pin no.	Name	Pin periphery	Notes
37	V RAMP FEED BACK	39 37	_
38	RAMP OUT	av 0 100 100 38	4.6 V Maxim outflow current = 1 mA
39	V RAMP CAP	8V \$\to\$ 8V	_
40	8.7 VREG OUT	31 W 42	8.7 V Maximum outflow current = 1 mA
41 42	H VCO FEEDBACK	5V + 5V + 8V + 8V + 42	3.0 V


Pin no.	Name	Pin periphery	Notes
43	AFC FILTER	8V	3.5 V
44	DEF GND		_
45	FBP IN	8V 0 5V 45	V _{TH} : 1.0 V
46	H OUT	8V 0	V _{OL} : 0.0 V V _{OH} : 5.4 V Maximum outflow current = 4 mA
47	DEF Vcc	_	8V
48	NC	_	_
49	Hi Vcc		8V
50	R OUT	8V Q 8V Q	_
51 52	G OUT B OUT	So	

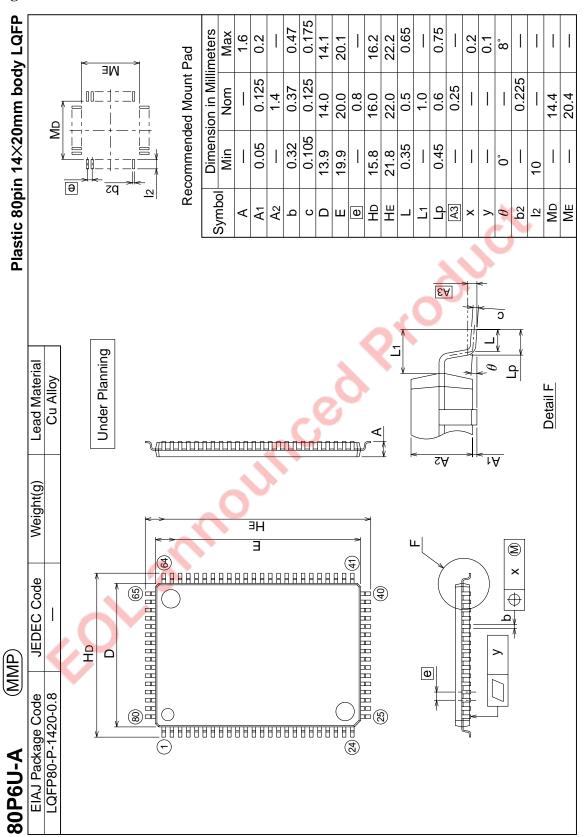
Pin no.	Name	Pin periphery	Notes
53	ACL/ABCL	8V 0 5V 0	
54	TEST2	→ †	Use with only pin 54 open
59 60 61 65	P42 P43 P44 P45		NICK-
55 56 57 58	P14/SDA2 P13/SDA1 P12/SCL1 P11/SCL2		_
62	P00/PWM0	† A	_
63 64	P01/PWM1 P02/PWM2	↑ ©	
70	P02/PWM2 P07/INT1		
66	P03/PWM3/AD1	† ~	_
67 68 69	P04/PWM4/AD2 P05/AD3 P06/INT2/AD4		



Note: Voltage, current and other values appearing in the Notes column are reference values, and are not guaranteed rated values.

Memory Layout Diagram

Application Circuit



Important Information

- Each application should be thoroughly studied and evaluated before making a decision.
- 47 μF and higher electrolytic capacitors and 0.01 μF and higher ceramic capacitors should be connected in parallel between each of the power supply pins (6, 22, 31, 47, 49) and ground. In addition, it is recommended that the connections be made as close to the IC power supply pins as possible.
- When purchasing I²C bus components, a license to use these components within a I²C bus system is provided under the I²C patent rights of Philips Corp.
- However, the bus system must conform to the I²C specifications stipulated by Philips.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss resident product product information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com