Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

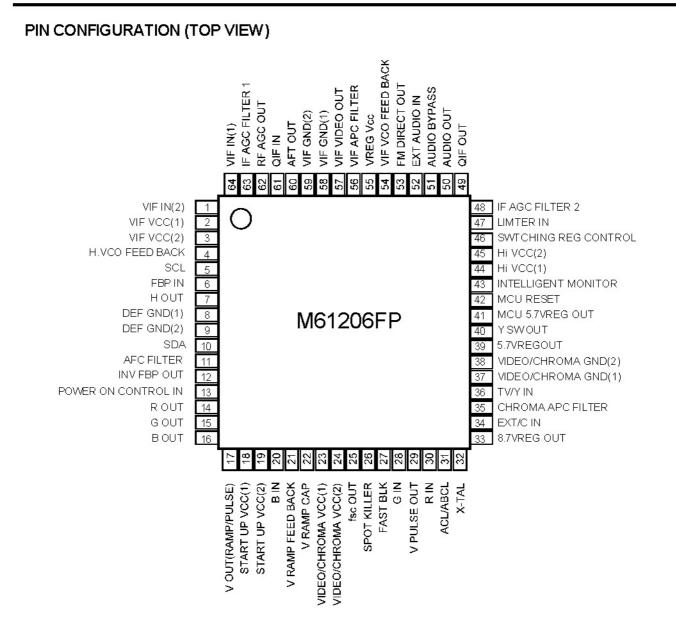
DESCRIPTION

The M61206FP is designed to provide a solution to NTSC color television system. It is an l^2C bus controlled NTSC 1 chip.

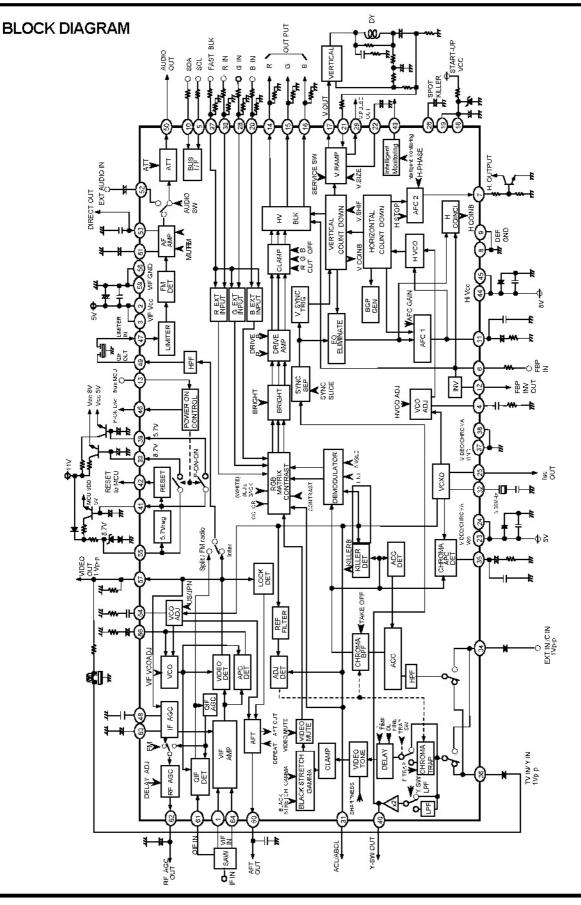
It consists of various processing blocks such as power supply, video IF, sound IF, luminance, chrominance, OSD display, interface, H and V deflection.

At each block, I²C control is possible and a total of 62 parameters can be controlled by I²C bus.

FEATURES


■ Various signal output for Intelligent Monitoring function

- Alignment-free sound demodulator
- Built-in H OSC resonator
- Built-in sync sep.(auto-slicer type)
- Built-in blackpeakhold capacitor
- ACL / ABCL
- Vertical count-down circuit
- Built-in vertical saw tooth generator
- Mute filter integrated
- PLL-SPLIT SIF system with FM receiving function
- ■H&V pulse output for OSD
- Built-in MCU reset circuit
- fsc output
- Built-in 5V(MCU,1CHIP) & 8V regulator

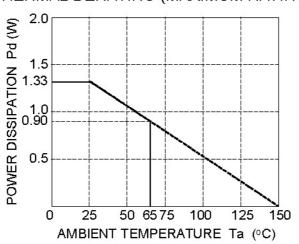

RECOMMENDED OPERATING CONDITIONS

Supply voltage	4.75V to 5.25V	(pins 2, 3, 23 and 24)
	7.6V to 8.4V	(pins 18, 19, 44, and 45)
	8.3V to 9.1V	(pin 55)
Rated supply voltage	5.0V	(pins 2, 3, 23 and 24)
	8.0V	(pins 18, 19, 44 and 45)
	8.7V	(pin 55)
Maximum output current	4.0mA	(pin 7)

APPLICATION NTSC type color TV, projector

RENESAS

M61206FP


MITSUBISHI ICs (TV)

NTSC TV SIGNAL PROCESSOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	6.0, 10.0	V
Pd	Power dissipation	1325	mW
Kt	Thermal derating	10.6	m₩/ºC
Topr	Operating temperature	-20 to 65	°C
Tstg	Storage temperature	-40 to 150	°C

TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMUM RATING)

D3 AFTD D2 AFT1 D1 HCO INB

DD (lotasiqied)

D4 STD ETB

DS VCO INB

D6 FM STDET8

(1) SLAVE ADDRESS= BAH(WRITE), BBH(READ)														
	A6 A5		A4	A3	A2	A1	AD	RAW						
	1	0	1	1	1		1	1/0						

(2) WRITE TABLE(input bytes)

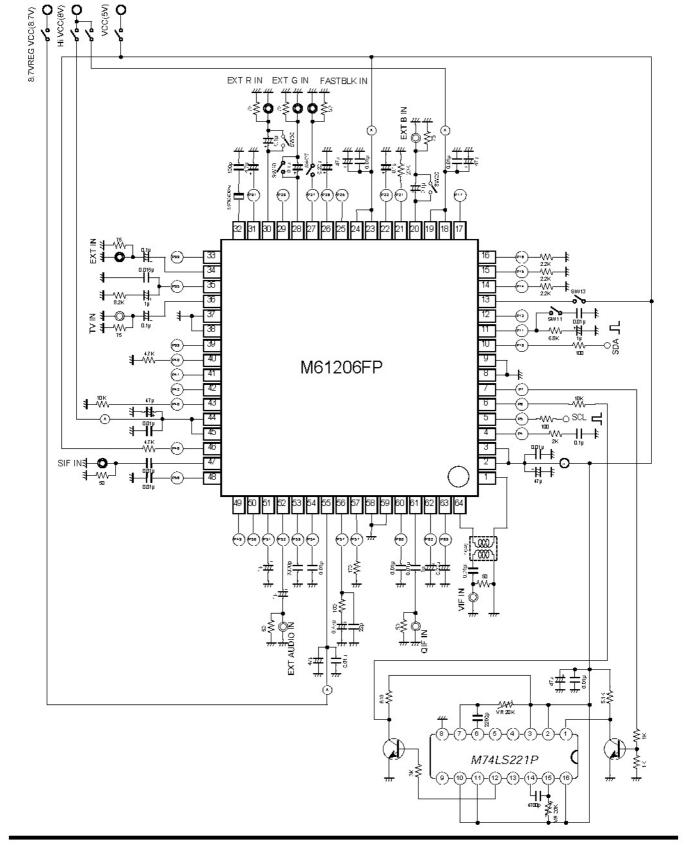
SUBADDRESS D7 DDH 0000000 KILLERB

	DDRESS	DATA									
HEX	BIN	D7	D6	D6	D4	D3	D2	D1	D0	INITIAL	
		SPUT		20		RF Delay Adj		0 0			
ωн	000000	0	1	0	0	0	0	0	0	40H	
		OSD level	VIFFreq5875	Ŭ						4011	
αн	00000001	0	0	1	0	0	0	0	0	20H	
0111		Video Mute	Audio EXT	Force S. Killer	TRAP Off	Video T Sharp	ABCL	Y DL Fine Adj	Take Off	2011	
œн	00000010		0			the second se	0			ωн	
ωn		0	0	0	0	0	0	0	0	UUN	
		Audio Mute	-	-	-	Audio ATT			-		
CBH	00000011	0	0	0	0	0	0	0	0	COH	
00.000	0.0000000000000000000000000000000000000	ABC L Gain	AFT Defeat			Video	the second se			10101010	
O4H	00000100	0	0	V1	VO	VO	VO	VO	VO	20H	
		ехтядвіс, сір				Contrast Control					
06 H	00000101	VO	V1	VO	VO	VO	VO	VO	VO	40H	
		1	/IF Video Out Gai	n	Y/C	Black Stretch Off	and the second se	Y DL T	ime Adj		
05H	00000110	1	0	0	VO	0	VO	0	0	80H	
		VIF Defeat	2 - C			TintControl					
O7 H	00000111	0	V1	VO	VO	VO	VO	VO	VO	40H	
		Blue Back		591		Color Control		S			
œн	00001000	VO	V1	VO	VO	VO	VO	VO	VO	40H	
-		3		1 Phase	(c)		(not asigned)	- B	APC2 Gain		
ωн	00001001	1	1	1	1	1	0	0	0	F8H	
						Blightness Contro		, i i i i i i i i i i i i i i i i i i i	Ŭ	1 011	
OAH	00001010	V1	VO	VO	VO	V0	vo	VO	VO	80H	
0611	0001010	V-fiee	00	00	00	Drive(R)					
084	00001011	0	1	0	0	0	0	0	0	40H	
ОВН	0001011		FM Radio		0		0	0	0	401	
					-	Drive(B)					
OCH	00001100	0	1	0	0	0	0	0	0	40H	
						Cut Off(R)					
ODH	00001101	1	0	0	0	0	0	0	0	80H	
				cutom(g)							
OEH	00001110	1	0	0	0	0	0	0	0	80H	
			202	202 - 202 - 202		Cut Off(B)					
OFH	00001111	1	0	0	0	0	0	0	0	80H	
×		White Back	S.Slice Down1		H VCO Adj	10 B	Testi	Ramp Stop	AutoSlice Down	~	
10H	00010000	0	0	1	0	0	1	0	0	24H	
· · · · · ·		(inhil	dited)		10	V-3	Size	8 3			
11H	00010001	0	0	1	0	0	0	0	0	20H	
	10			toring			Control		Fine Adj		
12H	00010010	0	0	0	0	0	0	0	0	ωн	
		H-free	V.1Window	A PC Gain	HStart	Selvice SW		V Shirt	, i		
13H	00010011	0	0	0	0	0	0	0	0	ωн	
1011	00010011	FBPV1hL	YSWLPF		ch Charge	S.Slice Down2		FM Station Level		0011	
1414						the second se	the second se	and the second se	Contraction of the local division of the loc	OH H	
14H	00010100	0 H Dhara MCR	0	0	0		1 Form COLOD	0 C. Anglo OF	0 Kilorlaud	O4H	
46.11	00000	H Phase MSB	(inhibited)	tsofiee	Analog OSD	Force MONO	Force COLOR	C.Angle 95	Killerlevel	4011	
15 H	00010101	0	1	0	0	0	0	0	0	40H	
			52								
16H	00010110	0	0	10						COH	
			513	<i></i>							
17H	00010111	0	0							COH	
× 1		(notas	sgned)	2							
18 H	00011000	0	0							COH	
19. and 19.	-0		igned)	5							
19 H	00011001	0	0							COH	
	6	motas	signed)								
1AH	00011010	0	0							ωн	
			st4								
1BH	00011011	0	0	8						ωн	
1011	aonon		h Discharge							0011	
100	00011100			1						mu	
TOH	00011100	0	0	2				NOTE, VO 2024	- V LATCH PR	COH	
10.1								NOTE: 00701=	=> V- LATCH BI		
(3)	READ	TABLE	(output l	ovtes)							
<u>``</u>	_			<i>i i</i>							

NTSC TV SIGNAL PROCESSOR

	TUNO TION						
	FUNCTION RF Delay Adj	BIT 7	SUB ADD 00 H	DATA DO-DA	DISCRIPTION RFAGC Delay Point Adjustment by 7 bit DAC	INITIAL 1000000	NOTE
	VIFVCO Adj	6	10H		VIF VCO Free-running Frequency Adjustment by 5bit DAC	100000	
555	VIF Freq 58.75	1	01H	D6	VIF Frequency Selector 0: 45.75MHz, 1: 58.75MHz	000	
Ŗ	VIFVideoOutGain	3	06H	D5-D7	VIF Video det output Amplitude Adjustment by 3bit DAC	100	
	AFT Defeat	1	04H	D6	AFTOUTON/OFF(Defeat) switch 0: AFTON (Non Defeat), 1: Defeat	0	
	VIF Defeat SPUT	1	07H 00H	D7 D7	VIFAGC Gain Normal/Minimum switch 0:AGC Function, 1:Defeat(Minimum Gain) Inter Carrier/SplitCarrier Switch 0:Inter Carrier, 1:SplitCarrier	0	
-	Audio ATT	7	03H	D0-D6	Audio Out Level Attenuation by 7 bit DAC MAX gain=0dB	0	
ш	Audio EXT	1	02H	D6	AF Direct out/External Audio input signal switch 0: AF amp out, 1: External	0	
0	Audio Mute	1	03H	D7	AF Direct out ON/OFF(Mute) switch 0: Sound ON (Non Mute), 1: Mute	0	
	FM Radio	1	OCH	D7	TV / FM Radio switch 0: TV mode, 1: FM Radio mode	0	
_	FM Station Level Video Tone	3 6	14H 04H	D0-D2 D0-D5	FM Radio station detection level Delay line type Aperture Control	100	V Latch
	Contrast Control	7	05H		Contrast Control by 7 bit DAC	100000	V Latch
	EXTRGB Contrast Clip	1	05H	D7	Contrast Control Clip Switch when OSD mode 0: Clip ON, 1: Clip OFF	0	V Latch
	Y DL Time Adj	2	06H	D0-D1	Luminance Signal Delay time Adjustment	0	
	Y DL Fine Adj	1	02H	D1	Luminance Signal Delay time Fine pitch Adjustment	0	
	EXT Y/C	1	06H	D2 D4	AV Switch Selector 0: TV mode, 1: EXT mode	0	V Latch
ß	YSWLPF	1	06H 14H	D4	AV Switch Selector 0: Composit video input, 1: Y/C input mode Y SW OUT frequency switch 0: FLAT, 1: LPF(fc=700KHz)	0	V Latch
0	Video Tone Sharp	1	02H	D3	Video Tone Gain (Hi/Normal) switch 0: normal, 1: high(sham)	0	
	Video Mute	1	02H	D7	Luminance signal Mute ON/OFF switch 0: OUT, 1: Mute	0	
	TRAP Off	1	02H	D4	Chroma Trap ON/OFF switch 0.Chroma Trap ON, 1: Chroma Trap Off	0	
	TRAP Fine Adj	2	12H	D0-D1	Chroma Trap fo Adjustment	00	
	Black Stretch Off Black Stretch Charge	1	06H 14H	D3 D4-D5	Black Stretch function ON/OFF switch 0: ON, 1: OFF Charge Time Constant Adjustment for Black Stretch	0	
	Black Stretch Discharge	2	1CH	D6-D7	Discharge Time Constant Adjustment for Black Stretch	00	
	Gamma Control	2	12H	D2-D3		00	
	TintControl	7	07 H	D0-D6	Tint Control by 7bit DAC.	1000000	V Latch
	ColorControl	7	08H	D0-D6		1000000	V Latch
MA	Take Off Classes	1	02H 15H	D0 D1	Chroma BPF/Take Off Switch 0:BPF, 1: Take Off Chroma Dependuibting Karls Switch 0: 1995 and 1:05 dep	0	
CHROMA	C Angle95 Killer Level	1	15H	DO	Chroma Demodulation Angle Switch 0: 103deg, 1:95deg Color Killer Sensitivity Threshold Switch 0: 43dB, 1:45dB	0	
Ċ	Force Color	1	15H	D2	Forced Color mode switch 0:OFF, 1: Forced Color	0	
	Force Mono	1	15H	D3	Forced B/W mode 0: OFF, 1: Forced Black&White	0	
	Fsc Free	1	15H	D5	Free-running mode of crystal oscillator 0: OFF, 1: Free-running	0	
	BrightnessControl	8	OAH		Brightness Control by 8bit DAC	10000000	V Latch
	Drive(R) Drive(B)	7	OBH OCH		R OUT Amplitude Adjustment by 7 bit DAC B OUT amplitude Adjustment by 7 bit DAC	1000000	-
	CutOff(R)	8	ODH		R OUT Pedestal Level Adjustment by 8bit DAC	10000000	
	CutOff(G)	8	OEH	D0-D7	G OUT Pedestal Level Adjustment by 8bit DAC	10000000	
μ Ω	CutOff(B)	8	OFH		B OUT Pedestal Level Adjustment by 8bit DAC	10000000	
RGB	Blue Back	1	OSH	D7	Blue Back mode ON/OFF switch 0: OFF, 1: Blue Back	0	
	White Back ABCL	1	10H 02H	D7 D2	White Rastermode ON/OFF switch 0:OFF, 1:White Back. ABCLON/OFF switch 0:OFF(ACL), 1: ABCLON	0	-
	ABOL ABOL Gain	1	04H	D7	ABGL Gain Low/High switch 0: Low, 1: Hi	0	
	Force S.Killer	1	02H	D5	Forced Spot Killer under Power on condition 1: OFF, 0: Forced S.Killer	0	
	OSD level	1	01H	D7	OSD Level(70%/90%) 0:70%, 1:90%	0	
_	Analog OSD	1	15H	D4	OSD Input Digital/Analog switch 0: Digital, 1: Analog	0	19. Y
	AFC2 H Phase (H Phase MSB)	5	09H 15H	D4-D7 D7	Horizontal Phase Adjustment by 5bit DAC (AFC2 H Phase MSB bit)	1111 0	1
	Ramp Stop	1	10H	D1	pin17 VOUT(Ramp/Pulse)STOP_0:VOUT, 1:STOP	0	
	Service SW	1	13H	D3	0: Vertical output ON/ Contrast Control Normal, 1: Vertical output OFF/Contrast Control Minimum	0	
	HStop	1	13H	D4	Horizon tal output switch 0:HOUT, 1:HSTOP	0	
	AFC Gain	1	13H		Horizontal AFC Gain switch 0: Low, 1: High	0	
	AFC2 Gain H VCO Adj	1	09H 10H		Horizontal AFC2 Gain switch 0: High, 1: Low H VCO free-running frequency Adjustment	0	
-	V Shift	3	10H 13H		V RAMP Sart timing Adjustment 2Line/Step	100	
	V-Size	6	11H		V RAMP Amplitude Adjustment by 6bit DAC.	100000	
	H-free	1	13H	D7	Horizontal Forced free-running mode switch 0: OFF, 1: Forced Free-running	0	
	V-free	1	OBH	D7	Vertical Forced free-running mode switch 0: OFF, 1: Forced Free-running	0	
	S Slice Down 1	1	10H	D6	Syno Det Slice Level (50%/30%) 0:50%, 1:30%	0	-
	S Slice Down 2 Auto Slice Down	1	14H 10H	D3 D0	Sync Det Slice Level (50%/40%) 0: 50%, 1: 40% Sync Det Slice Level switch during video period 0: Slice Level constant, 1: Level down during video	0 100	-
	AutoSlice Down FBP V th L	1	10H 14H	D0	Synd Let Side Level switch during video period U: Side Level constant, 1: Level down during video Pin6 FBP slice level switch 0:Vth=2V(narrow), 1:Vth=1V(wide)	100	
	1 Window	1	13H	D6	Vertical Sync. Det mode (1 Window/2 Window) 0: 2 Window/Vsyncdet=9µs , 1: 1 Window/Vsyncdet=11µs	0	
	Monitoring	4	12H	D4-D7	Intelligent Monitor mode selector	0000	
_						100	
_	Test1	1	10H	D2	NO USE for CUSTOMER (TEST bit)		
	Test2	2	16H	D6-D7	NO USE for CUSTOMER (TEST bit)	0	
				D6-D7 D6-D7			

WRITE


NTSC TV SIGNAL PROCESSOR

READ

KILLERB	1	00H	D7	Killer off for manual mode.
AFTO	1	00H	D3	AFT output
AFT1	1	00H	D2	AFT output
HCOINB	1	00H	D1	Horizontal mute det output. 0: H coincident
FM STDETB	1	00H	D6	Station det for FM Radio mode. 0: Station det.
VGOINB	1	00H	DS	Vertical Sync det output. 0:V coincident
STDETB	1	00H	D4	Station det for TV mode. Q. Station det.

<READBYTEAFTOUTPUT>

	- 1 0	-100KHz ^{fo} +100KHz								
2			2		F					
AFTO	1	0	0	1	Ι					
A FT 1	1	1	0	0						

Measurement circuit

NTSC TV SIGNAL PROCESSOR

MITSUBISHI ICs (TV)

M61206FP

NTSC TV SIGNAL PROCESSOR

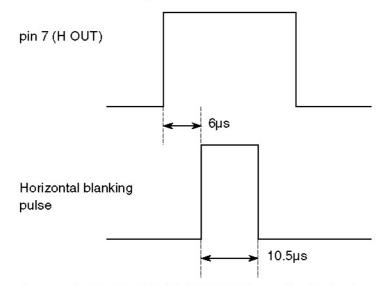
INPUT SIGNALS

(1) For VIF/SIF block

SG No.	Input signal (value at pin terminal is 50 Ω)
SG 1	fo=45.75MHz, 90dBµ, fm=20kHz, AM77.8%
SG 2	fo=58.75MHz, 90dBµ, fm=20kHz, AM77.8%
SG 3	fo=45.75MHz, 90dBμ, CW
SG 4	f1=45.75MHz, 90dBµ, CW
	f2=45.75 ±4.5MHz, 70dBμ, CW
SG 5	fo=45.75MHz, amplitude can be varied, fm=20kHz, AM77.8%
SG 6	fo=45.75MHz, amplitude can be varied, fm=20kHz, AM16%
SG 7	fo=45.75MHz, 80dBµ, fm=20kHz, CW
SG 8	fo=45.75MHz, 110dBµ, fm=20kHz, CW
SG 9	fo=40.75 to 50.75MHz (frequency can be varied), 90dBµ, CW
SG 10	fo=44.75MHz, 90dBμ, CW
SG 11	fo=46.75MHz, 90dBμ, CW
SG 12	fo=53.75 to 63.75MHz(frequency can be varied), 90dBµ, CW
SG 13	f1=45.75MHz, 90dBµ, Red raster signal, AM=87.5% video modulation,
	f2=4.5MHz, CW, P/S=20dB
SG 14	fo=45.75MHz, Standard 10-step signal, Sync ratio 28.6%
	AM=87.5% video modulation, Sync tip-Sync tip level 90dBµ
SG 15	fo=45.75MHz, 93dBμ, CW
SG 16	fo=45.75MHz, 73dBµ, CW
SG 17	fo=4.5MHz, 100dBµ, fm=400Hz, FM ±25kHz dev.
SG 18	fo=4.5MHz, 100dBµ, fm=400Hz, AM 30%
SG 19	fo=4.5MHz, 100dBμ, CW
SG 20	fo=400Hz, 500mVrms, CW
SG 21	fo=0.5 to 8.5MHz, 100dBµ, fm=400Hz, FM ±25kHz dev.
SG 22	fo=41.25MHz, amplitude can be varied, CW
SG 23	fo=41.25MHz, 85dBµ, fm=400Hz, FM ±75kHz dev.

NTSC TV SIGNAL PROCESSOR

(2) VIDEO/CHROMA/RGB/DEF block

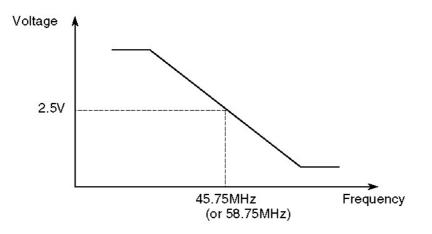

SG No.	Input signal (value at pin terminal is 50ohm)
SG. A	NTSC system APL100% standard video signal. The vertical signal should be interlaced at 60Hz.
SG. B	The amplitude and frequency of Luminance signal can be varied by signal SG. A. The typical amplitude is 0.714mVp-p. The frequency of Luminance, (f) as stated in test.
SG. C	NTSC system standard mono- chroma video signal. The vertical signal should be interlaced at 60Hz. 0.286V 0.286V 5.8µs 1.5µs
SG. D	NTSC system video signal. APL can be varied. The vertical signal should be interlaced at 60Hz. 4.0µs 4.0µs 0.286V

SG No.	Input signal (value at pin terminal is 50ohm)
SG. E	NTSC system mono-chroma video signal. The amplitude and frequency of burst part and chroma part can be varied. The vertical signal should be interlaced at 60Hz. (typical condition: Veb=0.286V, Vec=0.572V feb=fec=3.579545MHz) (typical condition: Veb=0.286V, Vec=0.572V feb=fec=3.579545MHz)
SG. F	Fast blanking signal. It should be synchronized with input video signal. External RGB (OSD) signals. They should be synchronized with input video signal and fast blanking signal. 0V $20\mu s$ $24\mu s$ V $20\mu s$ $24\mu s$ V $20\mu s$ $24\mu s$ V $20\mu s$ $24\mu s$ $20\mu s$ $24\mu s$ $20\mu s$ $24\mu s$
SG. G	NTSC system rainbow color bar video signal. The vertical signal should be interlaced at 60Hz.
SG. H	Duty cycle 90%, frequency can be varied, level can be varied (typ. 1V _{p-p})
SG. I	Duty cycle can be varied (typ. 95%), frequency can be varied, level can be varied (typ. 1V _{p-p})
SG. J	NTSC system standard color bar video signal. The vertical signal should be interlaced at 60Hz. $1.5\mu s 5.8\mu s$
SG. K	NTSC system standard 8-steps signal. The vertical signal should be interlaced at 60Hz.

Setup instruction for evaluation PCB

(1) Horizontal blanking pulse adjustment

The timing and pulse width of the horizontal blanking pulse should be as shown in the following figure by adjusting the variable resistor of the single shot multi vibrator.



The variable resistor at pin 15 of TTL IC 'M74LS221P' is used to fix the timing at 8µs and that at pin 7 is used to fix the pulse width at 12µs.

(2) VIF VCO adjustment

Before measurement of M61206FP, VIF VCO must be adjusted by the following procedure.

- (1) Input I^c bus data of VIF Freq (01H D6), according as IF frequency.
- (45.75MHz:0, 58.75MHz:1)
- (2) Input I^cC bus data of VIF Defeat ON (07H D7 = 1).
- (3) Set the DC voltage at pin 60 (AFT OUT) to 2.5V by adjusting I²C bus data of VCO control (01H D0-D5).
- (4) Input l^2C bus data of VIF Defeat OFF (07H D7 = 0).

(3) H VCO adjustment

Before measurement of M61206FP, H VCO must be adjusted by the following procedure. (a) Set the frequency at pin 7 (H OUT) to about 15.734kHz by adjusting I²C bus data of H VCO control (10H D3-D5).

M61206FP

NTSC TV SIGNAL PROCESSOR

Electrical characteristics (Ta=25iC)

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
	Standard conditions								pin13=5V, pin27=0V
ICC5V	5V current (Pins 2,3,23 and 24)	1	<u>.</u>	2,3,23,2 4	67	86	96	mA	VIF/SIF/VIDEO/Chroma supply
10023	Pins 2 and 3 supply current		1	2,3	5	41	378	mΑ	Reference data VIF/SIF supply
1002324	Pins 23 and 24 supply current	10	2 25	23,24	1.00	45	10.00	mΑ	Reference data VIDEO/Chroma supply
ICC8V	8V current	-	8 15	18, 19,44 ,45	24	33	39	mA	Start up/Deflection/RGB Drive 8V supply
ICC1819	Pins 18 and 19 supply current		5	18,19	270	20	80	mΑ	Reference data Start up supply Deflection
1004445	Pins 44 and 45 supply current	-	1	44,45	ł	13	3	mΑ	Reference data RGB Drive 8V supply
ICC55	Pin 55 supply current	17	LT.	55	6	7	8	mA	8.7 VREG supply
		-							
Power	Standard conditions of Power supply parameter								pin13=5V, pin27=0V
Vth13	Power ON Control threshold voltage	-	j.	13	2.6	3	3.4	۷	
VЗЗН	8.7 VREG output voltage 1	1) (33	8.3	8.7	8.8	۷	pin13=5V
V33L	8.7 VREG output voltage 2	828		33	3	0	0.3	۷	pin13=0V
V39	5.7 VREG output voltage 1		2	39	5.45	5.6	5.85	۷	pin13=5V
V41H1	MCU 5.7 VREG output voltage 1			41	5.35	5.6	5.85	۷	pin13=5V
V41H2	MCU 5.7 VREG output voltage 2		3	41	5.35	5.6	5.85	۷	pin13=0V
V46H	SW REG Control output voltage 1	1.0	Ľ,	46	0	0.3	1	۷	pin13=5V
V46L	SW REG Control output voltage 2	1.73	ŝ	46	4.5	5	3	۷	pin13=0V
Reset	Standard conditions of Reset parameter								pin13=5V
V42H	Reset output high voltage	873) 1		42	4.5	5	5.5	۷	
V42L	Reset output low voltage	1.00	÷.	42	£	0	0.5	۷	
TH42	Reset threshold voltage	1.0	÷.	41	4	4.2	4.4	۷	
lic	Standard conditions of IIC parameter	- 21	2	-	20	2	2	2	
Іаск	ACKcurrent	- 70	-		-	1	-	mA	
VIL	SCL/SDA input low voltage	-2	7	5,10	0.0	0.75	1.5	٧	

M61206FP

Symbol												SUE	3 AD	DR	ESS											
	оон	01Н	œн	озн	04H	06Н	06Н	07H	08H	09Н	OAH	овн	осн	ODH	OEH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1 CH
ICC	40	20	00	00	20	40	88	40	40	FO	80	40	40	<i>8</i> 0	80	80	24	20	00	10	00	00	00	00	00	00
ICC5V																										
16623																										
1002324																										
ICC8V																										
ICC1819																										
1004445																										
ICC55																										

Power	40	adj	00	00	20	40	88	40	40	FO	<i>8</i> 0	40	40	80	80	80	24	20	80	10	00	00	00	00	00	00
Vth13			Č,						× 				<	× .				×	× .					× .		
VЗЗН					5. · · ·				20	25	8. B					8		×.	24	8	5 B	20		24	8 8	8
V33L			80					80				1						199								
V39								80	10 10				36	2				68	2					2		
V41H1					6									66					66					66		
V41H2													5					5								
V46H			8					8	8					8		2		8	8					8		
V46L																										
Reset	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
V42H													5 J											5		
V42L																										
TH42																										

I	ic	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
b	ACK																										
V	/IL																										

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
VIH	SCL/SDA input high voltage	Э.	3-3	5,10	3.5	4.25	5.0	v	
Fsa.	Clock frequency	-	858	5	1073		100	kHz	
VIF	Standard conditions of IF parameter								pin13=5V, pin27 =0 V
Vde	Video detector output DC voltage	Э.	3-3	67	2.2	2.7	3.2	v	pin63= 0 ∨
Vo4575	Video detectoro utput (45.75MHz)	1,64	SG1	67	0.7	1.0	1.4	Vpp	
Vo5875	Video detectoro utput (58.75MHz)	1,64	SG2	57	0.7	1.0	1.4	Vpp	
P/N	Video S/N	1,64	SG3	57	43	60	8	dB	
Vf	Video frequency characteristics	1,64	SG4	57	4	5.4	ŝ	MHz	
Vin min	Input sensitivity	1,64	SG5	57	829	45	50	dBu	
Vin max	Maximum permissible input	1,64	SG6	67	100	108	0.00	dBu	
GR	AGC control range	-0	3.53	-	5 0	-	5	dB	Vomax - Vomin
V63H	Maximum IF AGC voltage	3	10	63	3.8	4.3	4.8	V	
V63T	IF AGC voltage (80dBu)	1,64	SG7	63	2.3	2.8	3.3	V	
V63L	Minimum IF AGC voltage	1,64	SG8	63	1.7	2.2	2.7	v	
Vdefeat	VIF DEFEAT function	1,64	SG1	57	0	0.1	0.2	Vpp	
uAFT	AFT detector sensitivity	1,64	SG9	60	7	10	13	mV#kHz	
V60H	Maximum AFT voltage	1,64	SG10	60	4.2	4.7	2	V	
V60L	Minimum AFT voltage	1,64	SG11	60	y.	0.3	0.8	V	
V60D	AFT DEFEAT voltage	-	1.52	60	2.0	2.5	3. 0	V	
VCU45	Capture range (45.75MHz upper)	1,64	SG9	57	1.5	2.2		MHz	Centerfrequency=45.75MHz
VCL45	Capture range (45.75MHz lower)	1,64	SG9	57	1	-1.8	-1.1	MHz	Centerfrequency=45.75MHz
VC T45	Capture range (45.75MHz total)	i i i i i i i i i i i i i i i i i i i i	2.52	57	2.6	4.0	3 . 3	MHz	VGU45-VGL45
VCU58	Capture range (58.75MHz upper)	1,64	SG12	57	1.5	2.2		MHz	Center frequency=58.75MHz
VCL58	Capture range (58.75MHz lower)	1,64	SG12	57	3	-1.8	-1.1	MHz	Center frequency=58.75MHz
VC T58	Capture range (58.75MHz total)	ı ıč	873	57	2.6	4.0	5	MHz	VCU58-VCL58
IM	Intermodulation	1,64	SG13	57	2	42	2	d8	Reference data
DG	Differential gain	1,64	SG14	57	2	3	2	%	Reference data
DP	Differential phase	1,64	SG14	57		3	S.	deg	Reference data
V62H	Maximum RF AGC voltage	1,64	SG15	62	4.3	4.8	828	٧	

M61206FP

Symbol												SUB	3 AC	DRI	ESS											_
Cymbol	оон	01H	02Н	озн	04H	05 H	06Н	07 H	08Н	09Н	OAH	овн	осн	орн	OEH	OFH	10H	11 H	12H	13H	14H	1 <i>5</i> H	16H	17H	1BH	1Gł
VIH																										
Fsa.																										
VIF	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
Vdc																										
Vo4575																										
Vo5875		+40																								
P/N																										
Vf																										
Vin min																										
Vin max																										
GR							2										s 22									
V63H																										
V63T																-										
V63L							2									2	s 22									
Vdefeat																										
uAFT																										
V60H	8 - 20 																s - 2	× - 2		8			2			
V60L																										
V60D																										
VCU45																	5 × 5			8						
VCL45																										
VC T45																										
VCU58																				8						
VCL58																										
VC T58																										
м																										
DG																										
DP																										
V62H																										

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
V62L	Minimum RF AGC voltage	1,64	SG16	62	-	0.2	0.7	۷	
DLPH	Maximum RF AGC delay point	1,64	SG5	62	95	108	-	dBu	
DLPL	Minimum RF AGC delay point	1,64	SG5	62	-	58	71	dBu	

Symbol		1742 (2			10		20		1 V			SUE	B AD	DR	ESS								22			
	оон	01H	02H	озн	04H	05H	06H	07H	08H	09H	0AH	OBH	осн	ODH	OEH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1CH
V62L																										
DLPH	00																									
DLPL	7F																									

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
DLP	RF AGC delay point adjustment range	5	-	-	33	43	1	dBu	DLPH-DLPL
SPN	Sync ratio	1,64	SG14	57	25	28	33	%	
SIF	Standard conditions of SIF parameter								pin13=5V, pin27=0V
VAF	AF direct output DC voltage	a.	- <u>-</u>	53	2.2	3.0	3.8	٧	
VoAF	AF direct output voltage	47	SG17	53	330	590	850	mVrms	
THD AF	AF output distortion	47	SG17	53	, is	0.5	3	%	
LIM	Input limiting sensitivity	47	SG17	53	T.	46	55	dBu	
AMR	AM rejection	47	SG18	53	48	54	T.	dB	
AFSN	AF S/N	47	SG19	50	49	55		dB	
GEAu	EXT Audio gain	52	SG20	50	-4.1	-2.1	-0.1	dB	
SCFU	SIF capture frequency (upper)	47	SG21	53	5.5	7.5	Ξ	MHz	Varyfrequency of input signal.
SCFL	SIF capture frequency (lower)	47	SG21	53	-	3	4.0	MHz	Varyfrequency of input signal.
VOL-max	Audio output maximum amplitude	47	SG17	50	350	620	890	mVrms	
VOL-min	Audio ATT maximum attenuation	47	SG17	50	-	-80	-69	dB	
QIF/FM	Standard conditions of QIF parameter								pin13=5V, pin27=0V
QIF1	QIF detector output 1	61	8G22	49	91	97	103	dBu	vi=90dBu
QIF2	QIF detector output 2	61	8G22	49	91	97	103	dBu	vi=75dBu
FM-VoAF	FM mode AF direct output voltage	61	SG23	53	330	590	850	m∨rms	
FM-S/N	FM mode S/N	61	8G22	53	38	42	2	dB	
FM-OUT	FM mode video detector output	61	SG23	57	2.2	2.7	3.2	٧	
FM- RFAGC1	FM mode RF AGC delay 1	61	8G23	62	5	23	41	data	vi=100dBu

Symbol												SUE	3 AD	DRE	ESS											
	оон	01H	02н	03Н	04H	06Н	06H	07H	08H	09Н	OAH	овн	осн	ODH	0EH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1CH
DLP	00- 7F	201					201													10						
SPN												~														
SIF	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
VAF				80																						
VoAF																										
THD AF																										
LIM	8																									
AMR																										
AFSN		~		7F			~																			
GEAu			40	7F																						
SCFU	- 22																			- 22						
SCFL	2	8					8													2						~
VOL-max	×	×		7F			×					~								×		2				~
VOL-min	~	~					~	2				2	2 - 2	2			2									~
QIF/FM	40	adj	00	00	20	40	88	40	40	FO	3 0	40	40	80	80	<i>8</i> 0	24	20	00	10	00	00	00	00	00	00
QIF1	C0	×.			. 2		~	5		- 28		0	8		28		-	8 - 8		×		30	а С. С.			~
QIF2	C0												8													
FM-VoAF	C0	30		· · · · ·			36						8										· · · · · ·			
FM-S/N	C0												8													
FM-OUT	C0												8							~						
FM- RFAGC1	CO												α													

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
FM- RFAGC2	FM mode RFAGC delay 2	61	SG23	82	73	84	95	ctata	vi=85dBu
FM- RFAGC3	FM mode RFAGC delay 3	61	SG23	62	100	107	114	data	vi=75dBu
VIDEO	Standard conditions of video character	÷	-	÷	-	-	-		pin13=6V,pin27=0V
2AGTV	Video SW output level (TV input)	36	SG.A	40	1.6	2.0	2.6	Vpp	
2AGEV	Video SW output level (External input)	34	SG.A	40	1.6	2.0	2.6	Vpp	
Ymax	Video maximum output	34	SG.A	14,15, 16	2.9	4.2	5.6	٧	
GY	Video gain	34	SG.A	14,15, 16	12	15	18	dB	
FBY	Video frequency characteristics	34	SG.B	14,15, 16	-4	-1	2	dB	f=5MHz, C-trap : OFF
CRF	Chroma trap attenuation	34	SG.C	14,15, 16	-	2	-18	dB	
TRF	Chroma trap maximum attenuation	34	SG.C	14,15, 16	2	2	-20	dB	After Trap fine adj. is adjusted.
YDL1	Y delay time 1	34	SG.A	14,15, 16	190	260	330	nS	
YDL2	Y delay time 2	34	SG.A	14,15, 16	120	200	280	nS	YDL2=measure - YDL1
YDL3	Y delay time 3	34	SG.A	14,15, 16	120	200	280	nS	YDL3=measure - YDL2
YDL4	Y delay time 4	34	SG.A	14,15, 16	120	200	280	nS	YDL4=measure - YDL3
GTnor	Video tone control characteristic 1	34	SG.B	14,15, 16	1.0	1.4	1.8	۷	f=2.5MHz
GTmax	Video tone control characteristic 2	34	SG.B	14,15, 16	7	10	14	dB	f=2.5MHz
GTmin	Video tone control characteristic 3	34	SG.B	14,15, 16	-6	-2	2	dB	f=2.5MHz
GT2M	Video tone control characteristic 4	34	SG.B	14,15, 16	-1	2	5	dB	f=2MHz
GT5M	Video tone control characteristic 5	34	SG.B	14,15, 16	-9	-5	-1	dB	f=5MHz
BLS	Black stretch characteristic	34	SG.K	14,15, 16	0.01	0.03	0.05	٧	
VMF	Video mute function	34	SG.A	14,15, 16	-	-45	-35	dB	

M61206FP

Symbol												SUE	3 AC	DR	ESS											
2008	оон	01H	02Н	озн	04H	06Н	06H	07 H	овн	09Н	OAH	овн	осн	оdн	OEH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1CH
FM- RFAGC2	C0												α													
FM- RFAGC3	C0												ω													
VIDEO	40	adj	00	00	20	40	88	40	40	FO	8 0	40	40	<i>8</i> 0	80	8 0	24	20	00	10	00	00	00	00	00	00
2AGTV																										
2AGEV							8C																			
Ymax						7F	8C		00																	
GY			2			7F	8C	20	00				~													
FBY			10			7F	8C		00																	
CRF							8C		00										02							
TRF							8C	~	00										00- 03							
YDL1		30	~				8C	~	00	2 8			~					~					2			~
YDL2		- 20	~				8D	~	00				~	s - 1				~	s - 5	2 1			2	2 3	2 2	
YDL3			~				8E	~	00				26								~					
YDL4			~				8F	~	00	3																
GTnor							8C		00																	
GTmax					ЗF		8C		00				3													
GTmin					00		8C		00																	
GT2M							8C		00				00													
GT5M							8C		00																	
BLS						adj	8C		00		adj										30					8
VMF			80			7F	8C		00																	

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max		
CHROM A	Standard condition of chroma parameter	2	2	-	<u>а</u>	1	-	-	pin13=5V, pin27=0V
CnorR	Chroma standard output (R-Y)	34	SG.C	82	390	560	790	mV	
CnorB	Chroma standard output (B-Y)	34	SG.C	62	640	920	1290	mV	
ACC1	ACC characteristic 1	34	SG.E	62	ဗု	0	3	dB	Veb, Vec : +6dB of typical input level
ACC2	ACC characteristic 2	34	SG.E	62	-4.5	0	1.5	dB	Veb, Vec : -20dB of typical input level
ov	Chroma overload characteristic	34	SG.E	62	ş	2	5	dB	Vec = 800 mV
VikN	Killer operation input level	34	SG.E	62	л. Г	-43	-35	dB	Veb, Vec : variable
KillP	Color residual at Killer on	34	SG.E	62	н. Н	-45	-30	dB	Veb = 0mV
APCU	APC pull-in range (upper)	34	SG.E	62	E	-600	-300	Hz	feb=fec : variable
APCL	APC pull-in range (lower)	34	SG.E	62	300	600	-	Hz	feb=fec : variable
R/BN	Demodulated output ratio	34	SG.E	62	0.40	0.57	0.80	Ξ	fec=feb+50kHz
R-YN1	Demodulation phase angle 1	34	SG.E	62	86	103	120	deg	fec=feb+50kHz
R-YN2	Demodulation phase angle 2	34	SG.E	62	78	95	112	deg	fec=feb+50kHz
тсі	TINT control characteristic 1	34	SG.E	62	30	45	60	deg	feb=fec+50kHz
тс2	TINT control characteristic 2	34	SG.E	62	30	45	60	deg	feb=fec+50kHz
Ffsc	fsc output frequency	34	SG.C	25	3.5798	3.5796	3.5799	MHz	
Vfsc	fsc output amplitude	34	SG.C	25	250	500	800	mVpp	
Ffscfree	fsc output frequency at fsc free mode	34	SG.C	25	3.5790	3.5795	3.5810	MHz	
Vfsc	fsc output amplitude at fsc free mode	34	SG.C	25	250	500	800	mVpp	

M61206FP

Symbol												SUE	3 AD	DRE	ESS											٦
22222	оон	01H	02Н	03Н	04H	06Н	06H	07H	08H	09Н	OAH	овн	осн	ODH	OEH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1CH
CHROM A	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
CnorR							8C																8	40		
CnorB							8C																80	40		
ACC1							8C																80	40		
ACC2							8C																80	40		
ov							8C																80	40		
VikN							8C																80	40		
KIIIP							8C											4			2.		80	40		
APCU		10	10				8C	10															80	40		
APCL			10				8C	10															80	40		
R/BN		2	~		2 3		8C	~					~	8 8	2 1			2	8 8	2 1			C0/ 80	40		
R-YN1							8C	X					X					85 95					C0/ 80	40		
R-YN2							8C	~										86			~~~~	02	C0/ 80	40		
тс1		20					8C	7F															80	40		
TC2							8C	00															80	40		
Ffsc							8C																			
Vfsc							8C																			
Ffscfree							8C															20				
Vfsc							8C															20				

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
RGB	Standard condition of RGB parameter		-	10 <u>1</u> 0	о н	- 828 -	4	2	pin13=5V, pin27= 0 V
VBLK	Output Blanking voltage	34	SGA	14,15, 16	0	0.1	0 .3	۷	
GYtyp	Contrast control characteristic 1	34	SG.B	14,15, 16	1.6	2.1	2.7	Vpp	f=100kHz
GYmin	Contrast control characteristic 2	34	SG.B	14,15, 16	2	200	300	mV	f=100kHz
GYEnor	Contrast control characteristic 3	34	SG.A	14,15, 16	1.6	2.1	2.7	V	pin31=2.9V
GYEmin	Contrast control characteristic 4	34	SG.A	14,15, 16	-	100	200	mV	pin31 =0.0 V
GYEclip	Contrast control characteristic 5	28,3 0	SG.F	14,15, 16	0.50	0.65	0.80	۷	pin27=2.5V
Lum nor	Brightness control characteristic 1	34	SG.D	14,15, 16	1.7	2.1	2.5	۷	$\forall \gamma = 0.0 \forall$
Lum max	Brightness control characteristic 2	34	SG.D	14,15, 16	0.6	0.9	-	V	Vγ = 0.0V
Lum min	Brightness control characteristic 3	34	SG.D	14,15, 16	9	-0 .8	-0.5	۷	Vγ = 0.0V
D(R)1	R Drive control characteristic 1	34	SGA	14	2.0	4.0	6.0	dB	
D(B)1	B Drive control characteristic 1	34	SGA	14	2.0	4.0	6.0	dB	
D(R)2	R Drive control characteristic 2	34	SG.A	16	-5.0	-3.0	-1.0	dB	
D(B)2	B Drive control characteristic 2	34	SG.A	16	-5.0	-3.0	-1.0	dB	
EXD1(R)	Digital OSD (R) I/O characteristic 1	2 0 ,27, 34	SG.F, SG.A	14	1.0	1.5	2.0	Vpp	Vost = 1.0V, SW30=ON
EXD1(G)	Digital OSD (G) VO characteristic 1	27,28, 34	SG.F, SG.A	15	1.0	1.5	2.0	Vpp	Vost = 1.0V, SW28 <i>≕</i> ON
EX(D1(B)	Digital OSD (B) VO characteristic 1	27,3 0 , 34	SG.F, SG.A	16	1.0	1.5	2.0	Vpp	Vosd = 1.0V, SW20=ON
EXD2(R)	Digital OSD (R) I/O characteristic2	2 0 ,27, 34	SG.F, SG.A	14	200	300	400	mV	Vosd = 1.0V, SW30=ON EXD2(R)=measure - EXD1(R)
EX(02(G)	Digital OSD (G) VO characteristic2	27,28, 34	SG.F, SG.A	15	200	300	400	mV∋	Vosd = 1.0V, SW28=ON EXD2(G)=measure - EXD1(G)
EX(D2(B)	Digital OSD (B) VO characteristic2	27,3 0 , 34	SG.F, SG.A	16	200	300	400	mV	Vosd = 1.0V, SW20=ON EXD2(B)=measure - EXD1(B)
EXD1(R- G)	Digital OSD level difference R and G	ŝ.	1		-35 0	0	35 0	mV	
EXD1 <i>(</i> G- B)	Digital OSD level difference G and B		-	829	-35 0	0	35 0	mV∋	
	Digital OSD level difference B and R	Ÿ.	-		-35 0	0	35 0	mV	
EXA(R)	Analog OSD (R) VO characteristic	2 0 ,27, 34	SG.F, SG.A	14	1.2	2.1	3.0	Vpp	Vosd = 0.7V
EXA(G)	Analog OSD (G) I/O characteristic	27,28, 34	SG.F, SG.A	15	1.2	2.1	3.0	Vpp	Vosd = 0.7V
EXA(B)	Analog OSD (B) I/O characteristic	27,3 0 , 34	SG.F, SG.A	16	1.2	2.1	3.0	Vpp	Vosd = 0.7V
EXA(R-G)	Analog OSD level difference R and G	I	-	-	-35 0	0	35 0	mV	
EXA(G-B)	Analog OSD level difference G and B	Ū,	-	10	-350	0	35 0	mV	
EXA(B-R)	Analog OSD level difference B and R	1	-	121	-350	0	35 0	mV	

M61206FP

Symbol												SUE	3 AC	DR	ESS											
	00Н	σн	02Н	αзн	04 H	05 Н	оєн	07H	08Н	оэн	OAH	овн	осн	орн	OEH	OFH	10H	11н	12H	13H	14H	15H	16H	17H	1вн	16
RGB	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	0
VBLK							8C		00																	Γ
GYtyp							8C		00																	
GYmin						00	8C		00																	
GYEnor							8C		00																	
GYEmin							8C		00																	
GYEclip						00	8C		00																	
Lum nor							8C		80																8 - N 8 - N	
Lum max							8C		8		FF															
Lum min							8C		80		00															
D(R)1							8C	~	00		00	7F						8							× 2	
D(B)1							8C		80		00		7F													
D(R)2							8C		80		00	00														
D(B)2						8	8C		8		00		00													
EXD1(R)		00					8C		80																	
EXD1(G)		00					8C		00																	
EXD1(B)		00					8C		00																	
EXD2(R)		80					8C		00																	
EX(D2(G)		80					8C		8																	
EXD2(B)		80					8C		80																	
EXD1(R- G)							8C																			
EXD1 <i>(</i> G- B)							8C																			
EXD1(B- R)							8C																			
EXA(R)						40	8C		00													10				
EXA(G)						40	8C		00													10				
EXA(B)						40	8C		00													10				
EXA(R-G)							8C															10				
EXA(G-B)							8C															10				
EXA(B-R)							8C															10				

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
ofrg	Offset voltage between R and G	34	SG.D	14,15	-1 00	0	100	mV	Vy = 0.0V
OFBG	Offset voltage between B and G	34	SG.D	15,16	-100	0	100	mV	Vy = 0.0V
C(R)1	R Cut off control characteristic 1	34	SG.D	14	2.6	2.9	3.2	۷	Vy = 0.0V
C(G)1	G Cut off control characteristic 1	34	SG.D	15	2.6	2.9	3.2	۷	Vy = 0.0V
C(B)1	B Cut off control characteristic 1	34	SG.D	16	2.6	2.9	3.2	۷	Vy = 0.0V
C(R)2	R Cut off control characteristic 2	34	SG.D	14	1.1	1.4	1.7	۷	Vy = 0.0V
C (G)2	G Cut off control characteristic 2	34	SG.D	15	1.1	1.4	1.7	۷	Vy = 0.0V
C (B)2	B Cut off control characteristic 2	34	SG.D	16	1.1	1.4	1.7	۷	Vy = 0.0V
Ccon 1	Color control characteristic 1	34	SG.C	15	2	5	8	dB	
Ccon 2	Color control characteristic 2	34	SG.C	15	•	-15	-10	dB	
Ccon 3	Color control characteristic 3	34	SG.C	15	-	-40	-35	dB	
MTXRB	Matrix ratio R/B	34	SG.G	14,16	0.81	0.98	1.08	2-0	
MTXGB	Matrix ratio G/B	34	SG.G	15,16	0.29	0.37	0.45		
DOSD1	Digital OSD speed characteristic 1	27,30, 34	SG.F, SG.A	14	1	0.05	0.13	us	Vosd = 1.0V, SW30=ON
DOSD2	Digital OSD speed characteristic 2	27,30, 34	SG.F, SG.A	14	-	0.05	0.13	us	Vosd = 1.0V, SW30=ON
AOSD1	Analog OSD speed characteristic 1	27,30, 34	SG.F, SG.A	14		0.05	0.13	us	Vosd = 1.0V
AOSD2	Analog OSD speed characteristic 2	27,30, 34	SG.F, SG.A	14		0.05	0.13	us	Vosd = 1.0V
BB(R)	Blue back function (R)	34	SG.A	14	1.7	2.1	2.5	۷	
BB(G)	Blue back function (G)	34	SG.A	15	1.7	2.1	2.5	۷	
BB(B)	Blue back function (B)	34	SG.A	16	2.7	3.7	4.7	۷	
WB	White raster function	34	SG.A	14,15, 16	2.7	3.7	4.7	۷	

M61206FP

Symbol												SU	3 AD	DRI	ESS	8										
	оон	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	овн	осн	ODH	0EH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1CH
ofrg							8C		00																	
ofbg							8C		00																	
C(R)1							8C		00					FF												
C(G)1							8C		00						FF											
C(B)1							8C		00							FF										
C(R)2							8C		00					00				. S								
C(G)2							8C		00						00			3								
C(B)2		8					8C		00							00										
Ccon 1			80				8C		7F																	
Ccon 2			80				8C		01																	
Ccon 3			80				8C		00																	
MTXRB							8C																			
MTXGB							8C																			
D O SD1						7F	8C																			
D O SD2						7F	8C							94 X												
AOSD1						7F	8C															10				
AOSD2						7F	8C															10				
BB(R)							8C		80																	
BB(G)							8C		8 0																	
BB(B)							8C		8 0																	
WB							8C										A 0									

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
DEF	Standard condition of defrection parameter	-	5		-12	- ē		-	pin13=5V, pin27=0V
fH 1	Horizontal free-running frequency 1	-	5	7	15.3	15.7	16.1	kHz	
fH2	Horizontal free-running frequency2	-	5	7	14.7	15.1	15.5	kHz	
fH3	Horizontal free-running frequency3		-	7	15.8	16.2	16.6	kHz	
Hfree	Forced horizontal free- running function	34	SG.A	7	15.3	15.7	16.1	kHz	
FPHU	Horizontal pul⊦in range (upper)	34	SG.H	7	250	500	, i	Hz	Vary frequency of input signal.
FPHL	Horizontal pul⊦in range (lower)	34	SG.H	7	4	-500	-250	Hz	Vary frequency of input signal.
HPT1	Horizontal pulse timing 1	34	SG.A	7	9.5	11.0	12.5	us	
HPT2	Horizontal pulse timing 2	34	SG.A	7	4.5	6.0	7.5	us	
HPTW	Horizontal pulse width	1	9	7	21	25	29	us	
VH	Horizontal pulse amplitude	-	1	7	4.7	5.4	-	۷	
нято	Horizontal pulse stop function		23	7	1	0.0	0.5	٧	
AFCG	AFC gain operation	34	SG.A	11	2.0	3.0	10.0	dB	
fV	Vertical free-running frequency		24	17	55	60	65	Hz	
Vfree	Forced Vertical free-run function	34	SG.A	17	55	60	65	Hz	
svc	Service mode function	10	24	17	4.2	4.7	5.2	۷	
FPVU	Vertical pull-in frequency (upper)	34	SG.H	17	63	67		Hz	Vary frequency of input signal.
FPVL	Vertical pull-in frequency (lower)	34	SG.H	17	1	55	57	Hz	Vary frequency of input signal.
VRsi 1	Vertical ramp size	34	SG.A	17	1.6	2.0	2.4	Vpp	
VRsc 1	Vertical ramp size control range 1	34	SG.A	17	2.0	2.4	2.8	Vpp	
VRsc 2	Vertical ramp size control range 2	34	SG.A	17	0.8	1.2	1.6	Vpp	
VRpo 1	Vertical ramp position control range 1	34	SG.A	17	18	38	58	us	
VRpo 2	Vertical ramp position control range 2	34	SG.A	17	840	860	880	us	(Measured value) - (Vrpo 1)
vw	Vertical pulse width	34	SG.A	29	0.35	0.53	0.65	ms	
VBLKW	Vertical blanking width	34	SG.A	14,15, 16	1.32	1.47	1.62	ms	
w∨ss	Minimum vertical sync detection width	34	SG.I	17	13	-	-	us	Vary duty cycle of input signal.

M61206FP

Symbol												SUE	3 AD	DRI	ESS											-
	οон	01Н	œн	03Н	04H	06Н	06Н	07 H	08H	09Н	OAH	овн	осн	ODH	0EH	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1ВН	тсн
DEF	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
fH1														10							2					
fH2																	04			2						
fH3																	34			1						
Hfree							8C													90						
FPHU							8C																			
FPHL							8C																			
HPT1							8C			08										30						
HPT2							8C			F8										30						
HPTW																										
νн																										
HSTO																										
AFCG				2			8C							2	N.					30						
fV					~					~				~	~					2			1			N N
Vfree	2			×	~		8C		X	~		8		X	×					1	0 0				~	8 3
svc	86			×	~				×	~				×	~					18		0	1			
FPVU				×.	~		8C		×					×	X		с — 18 — — — — — — — — — — — — — — — — — — —			6		3				
FPVL							8C							80	10 10											
VRsi 1	оц				· · · · · · · · · · · · · · · · · · ·		8C			· · · · · · · · · · · · · · · · · · ·													i			
VRsc 1							8C								2			30		2						
VRsc2				8			8C		8					8	8			00								
VRpo 1							8C																			
VRpo 2							8C													17						
vw							8C																			
VBLKW							8C		00																	
WVSS							8C																			

M61206FP

Symbol	Parameter	Input	signal	Test point		Limits		Unit	Remarks
		Pins	SG		Min.	Тур.	Max.		
MONIT ORING	Standard condition of Intelligent monitor	- E	T	A	4	3 - 33	2 2	- 8 - 8	pin13=5V, pin27=0V
MONII	Intelligent monitoring 1 (AFT)	64,1	SG.7	43	2.0	2.5	3.0	۷	At which AFT voltage is 2.5V
MONI2-1	Intelligent monitoring 2-1 (RF AGC1)	1	15	43	3.75	3.95	4.15	۷	At which RFAGC voltage is High
MONI2-2	Intelligent monitoring 2-2 (RF AGC2)	64,1	SG.7	43	0.9	0.95	1.00	ŝ	pin43 voltage / pin62 voltage
MONI3	Intelligent monitoring 3 (Audio direct out)	47	SG.16	43	280	460	740	mVmns	
MONI4	Intelligent monitoring 4 (Audio bypass)	47	SG.16	43	2.05	2.45	2.85	۷	
MONI5	Intelligent monitoring 5 (Video SW output)	36	SG.A	43	0.76	0.95	1.24	Vpp	
MONI6	Intelligent monitoring 6 (G out)	36	SG.A	43	1.5	2.0	2.5	Vpp	Measure amplitude from blanking level.
MONI7	Intelligent monitoring 7 (R out)	36	SG.A	43	1.5	2.0	2.5	Vpp	Measure amplitude from blanking level.
MONI8	Intelligent monitoring 8 (B out)	36	SG.A	43	1.5	2.0	2.5	Vpp	Measure amplitude from blanking level.
MONI9	Intelligent monitoring 9 (ACL)	2	1	43	3.6	4.0	4.4	۷	
MONI10	Intelligent monitoring 10 (Composit sync)	36	SG.A	43	3.50	3.95	4.40	Vpp	
MONI11	Intelligent monitoring 11 (H out)	36	SG.A	43	2.4	2.8	3.2	Vpp	
MONI12	Intelligent monitoring 12 (VIF Vcc)	2 <u>-</u>	82	43	2.35	2.50	2.65	۷	
MONI13	Intelligent monitoring 13 (Start-up Vcc)	25	. 15	43	2.55	2.70	2.85	۷	
MONI14	Intelligent monitoring 14 (Video/chroma Vcc)	35	3	43	2.35	2.50	2.65	۷	
MONI15	Intelligent monitoring 15 (Hi Vcc)	-	5	43	2.55	2.70	2.85	۷	

M61206FP

Symbol												SUE	5 AD	DR	ESS											
	оон	01H	02Н	озн	04H	06H	06H	07 H	оен	09Н	OAH	овн	осн	ODH	0E H	OFH	10H	11H	12H	13H	14H	15H	16H	17H	1BH	1 CH
MONIT ORING	40	adj	00	00	20	40	88	40	40	FO	80	40	40	80	80	80	24	20	00	10	00	00	00	00	00	00
MONI1			8																10							
MONI2-1												33					32		20			×				
MONI2-2																			20							
MONIS								2											30							
MONI4																			40							
MON15																			50							
MON16									00										60							
MONI7									00										70							
MON18									00										80							
MON19																			90							
MONI 10																			AO							
MONI11												X					2		BO		(
MONI12												N.							8			2				
MONI13												~							DO		~	~				×
MONI14																			EO							
MONI15						2 2 2						×					~		FO							

NTSC TV SIGNAL PROCESSOR

Electrical characteristics test method

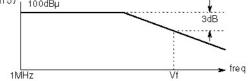
VIF BLOCK

P/N: Video S/N

1. Input SG3 and measure the rms value of output signal at pin 57.

2. P/N is defined as follows:

$$P/N = 20 \log \frac{Vo \text{ measured value}(V_{P-P}) \times 10^3 \times 0.7}{\text{Noise measured value}(mV_{rms})} \text{ (dB)}$$


Vf : Video frequency characteristics

1. Input SG4 and set the frequency f2 to 44.75MHz so that the beat element of 1MHz is output to pin 57.

2. Then set the applied voltage at pin 63 so that the beat element of 1MHz at pin 64 may be 100dB $\mu.$

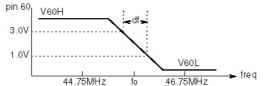
3. Decrease f2 to the level at which the beat element becomes 3dB smaller than the element of 1MHz, and read the value at that level.

pin 57 | 100dBµ

Vin min : Input sensitivity

1. Decrease SG5 level until the video detector output is 3dB smaller than the measured value of Parameter Vo "Video detector output".

Vin max : Maximum permissible input


1. Input 90dBµ SG6.

2. VA is the output level at pin 57. Increase amplitude of SG6 until the output at pin 57 becomes 3dB smaller than VA. The input level at that time is the maximum permissible input.

µAFT : AFT detector sensitivity V2H : Maximum AFT voltage

V2L : Minimum AFT voltage

See the following figure.

µAFT is defined as follows:

$$\mu AFT = \frac{(3.0-1.0) \times 10^{3} mV}{df \text{ KHz}} \text{ (mV/KHz)}$$

IM : Intermodulation

1. Input SG13 to pins 64 and 1.

2. Measure elements of 0.92MHz and 3.58MHz of output at pin 57.

3. IM is defined as follows:

IM = 20 log $\frac{\text{Element of 0.92MHz}}{\text{Element of 3.58MHz}}$ (dB)

DLPH : Maximum RF AGC delay point DLPL : Minimum RF AGC delay point

1. Input SG5 to pins 64 and 1.

2. Change amplitude of SG5 to the level at which voltage of pin 62 becomes 2.5V, and read the value at that level.

SIF, QIF BLOCK

LIM : Input limiting sensitivity

Decrease the input level of SG19. Measure the input level when the element of 400Hz at pin 57 is 3dB smaller than VoAF P (Maximum AF output (5.5M)).

AMR : AM Rejection

1. Vam is the element of 400Hz at pin 53.

2. AMR is defined as follows:

$$AMR = 20 \log \frac{VoAF P(mVrms)}{Vam(mVrms)} (dB)$$

AFSN : AF S/N

1. Measure the noise (20Hz to 100KHz) of output at pin 50. 2. AFSN is defined as follows:

FM-SM : FM mode S/N

- 1. Set FM Radio and SPLIT control data to 'ON'.
- 2. Input SG22 (vi=85dBµ) to pins 64 and 1.
- 3. Measure the noise (20Hz to 100kHz) of output at pin 53. 4. FM-SN is defined as follows:

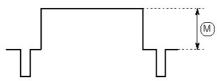
FM-OUT : FM mode video detector output

- 1. Set FM Radio and SPLIT control data to 'ON'.
- 2. Input SG23 to pins 64 and 1.
- 3. Measure the DC voltage of output at pin 57.

NTSC TV SIGNAL PROCESSOR

VIDEO BLOCK

2AGTV :Video SW output level (TV input) 2AGEV :Video SW output level (External input)


- 1. Input SG.A to pin 36 (2AGTV) or pin 34 (2AGEV).
- 2. Measure the amplitude (peak to peak) at pin 40.

Note : use sub address 06H to select TV or external video input.

Ymax : Maximum video output

1. Input SG.A to pin 34.

2. Measure the amplitude (peak to peak) except measure from blanking part of output at pins 14, 15 and 16.

FBY : Video frequency characteristics

1. Input SG.B (5MHz, 0.4Vp-p) to pin 34.

2. Measure the amplitude (peak to peak) except measure from blanking part of the output at pins 14, 15 and 16. The amplitude is defined as YB.

3. FBY is defined as follows:

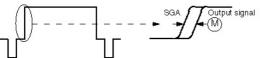
 $\mathsf{FBY} = 20 \log \ \frac{\mathsf{YB} \ \mathsf{Vp}\text{-}\mathsf{p}}{\mathsf{GY} \ \mathsf{Vp}\text{-}\mathsf{p}} \ (\mathsf{dB})$

CRF : Chroma trap attenuation (common to R/G/B output) TRF : Chroma trap maximum attenuation

1. Input SG.C to pin 34. Measure the frequency level of 3.58MHz at trap on/off (02H D4) data 1. The level is defined as No.

2. Then, measure the level at trap on/off data 1 (trap active).

3. CRF is defined as follows.


$$CRF = 20 log \quad \frac{Measured value (m V_{P-P})}{N_0 (m V_{P-P})} (dB)$$

 TRF is minimum value of CRF at which I²C bus data of Trap fine adj. (12H D0/D1) is adjusted.

YDL1 : Y delay time 1

1. Input SGA to pin 34.

2. Measure the delay time from signal input to output at pins 14, 15 and 16.

Measure the delay time at the center point of rise.

YDL2, 3 and 4 : Y delay time 2, 3 and 4

1. Input SGA to pin 34.

- 2. Measure the delay time from signal input to output at pins 14, 15 and 16.
- 3. YDL2, YDL3 and YDL4 are defined as follows:
 - YDL2=Measured value (nsec) YDL1
 - YDL3=Measured value (nsec) YDL2
 - YDL4=Measured value (nsec) YDL3

GTmax : Video tone control characteristic 1

1. Input SG.B (f=2.5MHz) to pin 34

2. The output amplitude at pins 14, 15 and 16 when video tone data is center (20H) are defined as GTnor.

3. Measure output amplitude at pins 14, 15 and 16 at video tone data maximum.

4. GTmax is defined as follows:

GTmax = 20 log GTmax = 20 log (Measured value (mVp-p) GTnor (mVp-p) (dB)

GTmin : Video tone control characteristic 2

1. Input SG.B (f=2.5MHz) to pin 34.

2. The output amplitude at pins 14, 15 and 16 when video tone data is center (20H) are defined as GTnor.

3. Measure output amplitude at pins 14, 15 and 16 at video tone data minimum.

.

4. GTmin is defined as follows:

$$GTmin = 20 \log \frac{Measured value (m V_{P-P})}{GTnor (m V_{P-P})} (dB)$$

GT1M : Video tone control characteristic 3

1. The output amplitude at pins 14, 15 and 16 when frequency of input signal is 2.5MHz are defined as GTnor.

- 2. Input SG.B (f=2MHz) to pin 34.
- 3. Measure output amplitude at pins 14, 15 and 16
- 4. GT2M is defined as follows:

 $GT2M = 20 \log \frac{-Measured value (mV_{P-P})}{GTnor (mV_{P-P})} (dB)$

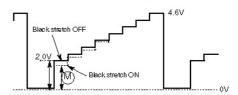
GT5M : Video tone control characteristic 4

1. The output amplitude at pins 14, 15 and 16 when frequency of input signal is $2.5\,\rm MHz$ are defined as GTnor.

- 2. Input SG.B (f=5MHz) to pin 34.
- 3. Measure output amplitude at pins 14, 15 and 16.
- 4. GT5M is defined as follows:

$$GT5M = 20 \log \frac{\text{Measured value (mV_{P-P})}}{\text{GTnor (mV_{P-P})}} (dB)$$

BLS Black stretch characteristics


1. Input SG.K to pin 34.

 At condition of Black stretch OFF (06H D3=1), set output level of the first step (the lowest step) to 2.0V and eighth step (the highest step) to 4.6V at pins 14, 15 and 16 by adjusting Contrast (05H) and Brightness (0AH).

3. Change to Black stretch ON (06H D3=0), and measure the output level of the first step at pins 14, 15 and 16.

4. BLS is defined as follows:

BLS = 2.0 - Measured value (V)

VMF Video mute characteristics

- 1. Input SG.A to pin 34.
- 2. Measure output amplitude when mute switch (02H D7) is
- on "VMFon" and off "VMFoff".
- VMF is defined as follows:

$$VMF = 20 \log \frac{VMFon (V_{P-P})}{VMFoff (V_{P-P})} (dB)$$

CHROMA BLOCK

CnorR : Standard chroma output (R-Y)

CnorB : Standard chroma output (B-Y)

1. Input SG.C to pin 34.

2. ChorR and ChorB are output amplitude measured at pin 62 when I²C data of 'test mode' 16H D6=1, D7=1 and D6=0, D7=1 respectively.

ACC1: ACC characteristics 1

- 1. Input SG.E (eb=570mV:level+6dB) to pin 34.
- 2. Measure the output amplitude at pin 62.
- 3. ACC1 is defined as follows:

ACC1 = 20 log $\frac{\text{Measured value (m V_{P-P})}}{\text{Cnort (m V_{P-P})}}$ (dB)

ACC2 : ACC characteristics 2

- 1. Input SG.E (input level:-20dB) to pin 34.
- 2. Measure the output amplitude at pin 62.
- 3. ACC2 is defined as follows:

ACC2 = 20 log
$$\frac{\text{Measured value (mV_{P-P})}}{\text{Cnor1 (mV_{P-P})}}$$
 (dB)

OV : Chroma overload characteristics

- 1. Input SG.E (ec=800mVp-p:chroma+3dB) to pin 34.
- 2. Measure the output amplitude at pin 62.
- 3. OV is defined as follows:

$$OV = 20 \log \frac{-Measured value (mV_{P-P})}{Cnor1 (mV_{P-P})} (dB)$$

VikN1 : Killer operating input level 1 VikN2 : Killer operating input level 2

- 1. Input SG.E (level:variable) to pin 34 at input level 0dB.
- 2. Lower the input level while monitoring the output amplitude at pin 62, and measure the input level when output amplitude
- is not found.

KillP : Killer color residual

- 1. Input SG.E (level:-40dB) to pin 34.
- 2. Measure the output amplitude at pin 62.

APCU : APC pull-in range (Upper) APCL : APC pull-in range (Lower)

- 1. Input SG.E (feb=fec=3.579545MHz) to pin 34
- 2. Increase the frequency until the output from pin 62 disappears. Decrease the frequency and note the point at which the output reappears; fu.
- 3. Decrease the frequency until the output from pin 62 disappears. Increase the frequency and note the point at which the output reappears; fL.
- 4. APCU and APCL are defined as follows:
 - APCU = fu 357954500 (Hz) APCL = fL - 357954500 (Hz)

R/BN : Demodulation output ratio

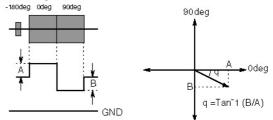
- 1. Input SG.E (eb=single chroma=ec+50KHz) to pin 34.
- 2. VRY is the output amplitude at pin 62 when I²C bus data of 'test mode' 16H D6=1, D7=1.
- 3. VBY is the output amplitude at pin 62 when I^2C bus data of 'test mode' 16H D6=0, D7=1 .
- 4. R/BN is defined as follows:
 - $R/BN = \frac{V_{RY} (mV_{P-P})}{V_{BY} (mV_{P-P})}$

R-YN : Demodulated phase angle

- 1. Input SG.E (eb=single chroma=ec+50KHz) to pin 34.
- 2. VRY is the output amplitude at pin 62 when I²C bus data of 'test mode' 16H D6=1, D7=1 .

3. Vey is the output amplitude at pin 62 when I²C bus data of 'test mode' 16H D6=0, D7=1 .

4. R-YN is defined as follows:


<u>Note:</u> Vector should be found with taking the gain ratio of a demodulator into consideration.

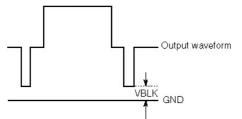
TC1 : Tint control characteristics 1

R-

TC2 : Tint control characteristics 2

1. Input SG.C (see the following figure) to pin 34. Based on the output voltage at pin 62, find the absolute angle as shown in the above figure.

2. Tint data center (07H data 40H) is defined as the reference angle "TC". Find angles at tint data maximum and tint data minimum. TC1 and TC2 are differences in angle between TCmax and TC and between TCmin and TC and defined as follows.


TC1 = TCmax - TC (deg) TC2 = TC - TCmin (deg)

RGB INTERFACE BLOCK

VBLK : Output blanking voltage

1. Input SG.A to pin 34.

2. Measure the voltage of pedestal part and blanking part at pins 14, 15 and 16.

GYmax : Contrast control characteristic 1

GYmin : Contrast control characteristic 2

- 1. Input SG.B (f=100KHz) to pin 34.
- 2. Measure output amplitude at pins 14, 15 and 16.

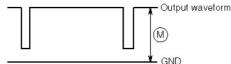
GYEnor : Contrast control characteristic 3

GYEmin : Contrast control characteristic 4

1. Input SG.A to pin 34.

2. Measure output amplitude at pins 14, 15 and 16 when 2.9V and 0V are externally applied to pin 31.

GYEcrip : Contrast control characteristic 5


1. Input SG.F to pins 20, 27, 28 and 30.

 Set contrast control data to minimum and measure the output amplitude which is higher than the pedestal level at pins 14, 15 and 16. The amplitude at blanking part should not be measured.

Lum nor : Brightness control characteristic 1 Lum max : Brightness control characteristic 2 Lum min : Brightness control characteristic 3

1. Input SG.D (Vy=0V) to pin 34.

Measure DC voltage of output at pins 14, 15 and 16 except that at blanking part.

D(R)1 : Drive control characteristic 1 (R)

1. Input SG.A to pin 34.

2. Measure DRnor and DRmax which are output amplitude at pin 14 at Drive (R) data center and Drive (R) data maximum respectively.

3. D(R)1 is defined as follows

 $D(R)1 = 20 \log \frac{DRmax(V_{P-P})}{DRnor(V_{P-P})} (dB)$

D(B)1 : Drive control characteristic 1 (B)

1. Input SG.A to pin 34.

 Measure DBnor and DBmax which are output amplitude at pin 16 at Drive(B) data center and Drive(B) data maximum respectively.

3. D(B)1 is defined as follows:

$$D(B)1 = 20 \log \frac{DBmax (V_{P-P})}{DBmor (V_{P-P})} (dB)$$

D(R)2 : Drive control characteristic 2 (R)

1. Input SG.A to pin 34.

2. Measure DRnor and DRmin which are output amplitude at pin 14 at Drive(R) data center and Drive(R) data minimum respectively.

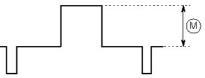
3. D(R)2 is defined as follows:

$$D(R)2 = 20 \log \frac{DRmin(V_{P-P})}{DRnor(V_{P-P})} (dB)$$

D(B)2 : Drive control characteristic 2 (B)

1. Input SG.A to pin 34.

Г


 Measure DBnor and DBmin which are output amplitude at pin 16 at Drive(B) data center and Drive(B) data minimum respectively.

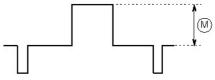
3. D(B)2 is defined as follows:

$$D(B)2 = 20 \log \frac{DBmin (V_{P-P})}{DBnor (V_{P-P})} (dB)$$

EXD(R) : Digital OSD (R) I/O characteristic EXD(G) : Digital OSD (G) I/O characteristic EXD(B) : Digital OSD (B) I/O characteristic

1. Input SG.F (Vosd=1.0V) to pins 20, 27, 28 and 30. 2. Measure output amplitude which is higher than the pedestal level at pins 14, 15 and 16. The amplitude at blanking part should not be measured.

$\begin{array}{l} \mbox{EXD}(R\mbox{-}G): \mbox{Digital OSD level difference } R \mbox{ and } G \\ \mbox{EXD}(G\mbox{-}B): \mbox{Digital OSD level difference } G \mbox{ and } B \\ \mbox{EXD}(B\mbox{-}R): \mbox{Digital OSD level difference } B \mbox{ and } R \\ \end{array}$


1. EXD(R-G), EXD(G-B) and EXD (B-R) are defined as follows:

EXD(R-G) = EXD(R) - EXD(G)EXD(G-B) = EXD(G) - EXD(B)EXD(B-R) = EXD(B) - EXD(R)

EXA(R) : Analog OSD (R) I/O characteristic EXA(G) : Analog OSD (G) I/O characteristic EXA(B) : Analog OSD (B) I/O characteristic

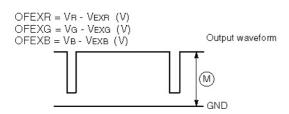
1. Input SG.F (Vosd=0.7V) to pins 20, 27, 28 and 30.

2. Measure output amplitude which is higher than the pedestal level at pins 14, 15 and 16. The amplitude at blanking part should not be measured.

EXA(R-G) : Analog OSD level difference R and G EXA(G-B) : Analog OSD level difference G and B EXA(B-R) : Analog OSD level difference B and R

 EXA(R-G), EXA(G-B) and EXA (B-R) are defined as follows:

- EXA(R-G) = EXA(R) EXA(G)
- EXA(G-B) = EXA(G) EXA(B)EXA(B-R) = EXA(B) - EXA(R)



OFEXR : Offset voltage between R and EXT(R) OFEXG : Offset voltage between G and EXT(G) OFEXB : Offset voltage between B and EXT(B)

- 1. Input SG.D (Vy=0V) to pin 34.
- 2. Measure DC voltage of output at pins 14, 15 and 16 except that at blanking part.

3. The voltage when RGB output is defined as VR, VG and VB, and the voltage when OSD output is defined as VEXR, VEXG and Vexe.

4.OFEXR, OFEXG and OFEXB are defined as follows:

- C(R)1 : R cutoff characteristic 1 C(G)1 : G cutoff characteristic 1 C(B)1 : B cutoff characteristic 1 C(R)2 : R cutoff characteristic 2 C(G)2: G cutoff characteristic 2
- C(B)2 : B cutoff characteristic 2

1. Input SG.D (Vy=0V) to pin 34.

2. Measure DC voltage of output at pins 14, 15 and 16 except that at blanking part.

Ccon1 : Color control characteristic 1 Ccon2 : Color control characteristic 2 Ccon3 : Color control characteristic 3

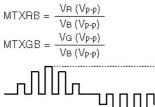
1. Input SG.C to pin 34

2. Measure output amplitude at pins 14, 15 and 16 when I²C data 08H=40h, and define as Ccon0

2. Measure output amplitude at pins 14, 15 and 16 under each condition.

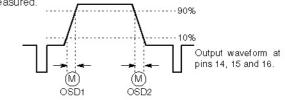
3. Ccon1, Ccon2 and Ccon3 are defined as follows:

Ccon1, Ccon2 and Ccon3

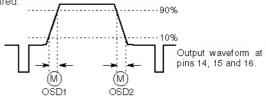

= 20 log $\frac{\text{Measured value (Vp-p)}}{\text{Measured value (Vp-p)}}$ (dB) Ccon0 (Vp-p)

MTXRB : Matrix ratio R/B MTXGB : Matrix ratio G/B

1. Input SG.G (rainbow color bar) to pin 34


2. Measure output amplitude VR, VG and VB at pins 14, 15 and 16 respectively

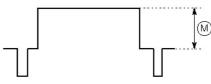
3. MTXRB and MTXGB are defined as follows:


DOSD1 : Digital OSD speed characteristic 1 DOSD2 : Digital OSD speed characteristic 2

- 1. Input SG.F (Vosd=1.0V) to pins 20, 27, 28, 30
- 2. Measure rise time and fall time of the signal of output at pins 14, 15 and 16. Measurement points should be higher than the pedestal level and blanking part should not be measured

AOSD1 : Analog OSD speed characteristic 1 AOSD2 : Analog OSD speed characteristic 2

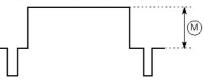
1. Input SG.F (Vosd=0.7V) to pins 20, 27, 28, 30. 2. Measure rise time and fall time of the signal of output at pins 14, 15 and 16. Measurement points should be higher than the pedestal level and blanking part should not be measured


BB(R) : Blue back function (R)

BB(G) : Blue back function (G)

BB(B) : Blue back function (B)

1. Input SG.A to pin 34


2. Measure the amplitude (peak to peak) except measure from blanking part of output at pins 14, 15 and 16.

WB : White raster function

1. Input SG.A to pin 34

2. Measure the amplitude (peak to peak) except measure from blanking part of output at pins 14, 15 and 16.

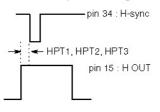
DEFLECTION BLOCK

fH1: Horizontal free-running frequency 1

- fH2 : Horizontal free-running frequency 2
- fH3 : Horizontal free-running frequency 3

Measure the output frequency at pin 7 when no signal is input.

Hfree : Forced horizontal free-running frequency


- 1. Input SG.A to pin 34.
- 2. Set H-free control data to 'ON', and measure the output frequency at pin 7.

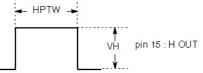
FPHU : Horizontal pull-in range (upper)

- FPHL : Horizontal pull-in range (lower)
 - 1. Input SG.H to pin 34.

2. Change the frequency of SG.H, and measure the frequency at the moment when the output signal at pin 7 and the input signal at pin 34 are pulled in. The horizontal pull-in range is measured by comparing with the horizontal frequency of video signal.

HPT1 : Horizontal pulse timing 1

HPT2 : Horizontal pulse timing 2 HPT3 : Horizontal pulse timing 3


1. Measure the timing of horizontal pulse as same method in

HPT1. 2. HPT2 and HPT3 are defined as follows:

HPT2, HPT3 = (Measured value) - HPT1

HPTW : Horizontal pulse width

VH : Horizontal pulse amplitude

HSTO : Horizontal stop operation

Confirm that the horizontal output is high when the horizontal stop switch is on.

AFCG : AFC gain operation

1. Measure AFCon which is the output amplitude of pin 19 when AFC switch is on and AFCoff which is that when the switch is off.

2. AFCG is defined as follows:

$$AFCG = 20 \log \frac{AFCon (V_{P-P})}{AFCoff (V_{P-P})} (dB)$$

fV : Vertical free run frequency

Measure the output frequency at pin 17 when no signal is input.

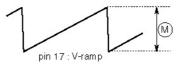
Vfree : Forced vertical free-running frequency

1. Input SG.A to pin 34.

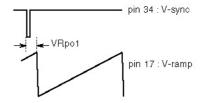
2. Set V-free control data to 'ON', and measure the output frequency at pin 17.

SVC : Service mode function

Measure the output DC voltage at pin 17 when the service switch is on.


FPVU : Vertical pull-in frequency (upper) FPVL : Vertical pull-in frequency (lower)

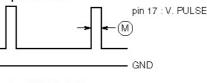
Change the vertical frequency of SG.H and measure the frequency when output waveform at pin 17 is pulled in.


VRsi : Vertical ramp size

VRsc1: Vertical ramp size control range 1

VRsc2 : Vertical ramp size control range 2

VRpo1 : Vertical ramp position control range 1

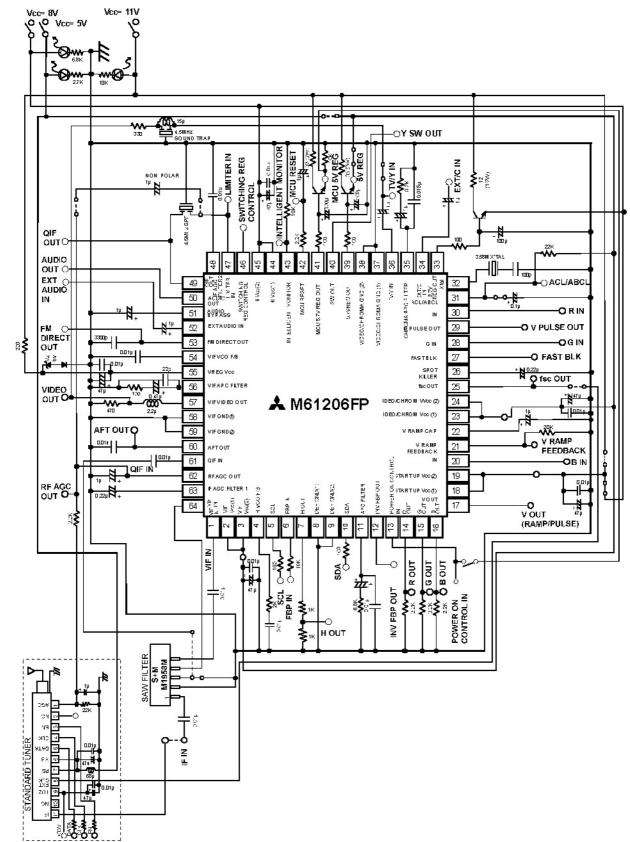


VRpo2 : Vertical ramp position control range 2

1. Measure the timing of vertical ramp as same method in VRpo1

- 2. VRpo2 is defined as follows:
 - VRpo2 = (Measured value) VRpo1

VW : Vertical pulse width


VBLKW : Vertical BLK width

Output waveform at pins 14, 15 and 16
 M
 GND

WVSS : Minimum sync detection width

Reduce the width of signal SG.I and measure the width of input signal when the output waveform at pin 17 loses lock with SG.I.

APPLICATION CIRCUIT (EVALUATION BOARD CIRCUIT)

Vcc= 11V 0 **MITSUBISHI ICs (TV)**

M61206FP

NTSC TV SIGNAL PROCESSOR

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
64 1	VIF IN (1) VIF IN (2)		1.6V
2 3	VIF Vcc (1) VIF Vcc (2)		5.0V
4	H VCO FEEDBACK		3.0V
5	SCL		ViL : 0.75V Viн : 4.25V

PIN DESCRIPTION

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
6	FBP IN		VTH: 2.0V (FBP Vth L=OFF) VTH: 1.0V (FBP Vth L=ON)
7	HOUT		Vol : 0.0V Voн : 5.4V
8 9	DEF GND (1) DEF GND (2)		
10	SDA		ViL : 0.75V Viн : 4.25V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
11	AFC FILTER		3.5V
12	FBP INV OUT		Vol : 0.0V Voн : 5.0V
13	POWER ON CONTROL		Vтн : 3.0V
14 15 16	R OUT G OUT B OUT		

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
17	V OUT		4.6V
18 19	START UP Vcc (1) START UP Vcc (2)		
20	B IN		(1)Digital OSD Vi∟ : 0.0V Vi⊩ : 1.0V (2)Analog OSD 0.7Vpp
21 22	V RAMP FEED BACK V RAMP CAP		

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
23 24	Video/Chroma Vcc (1) Video/Chroma Vcc (2)		5.0V
25	fsc OUT		3.0V
26	SPOT K ILLER		7.1V
27	FAST BL K		0.0-0.5V: INT RGB 1.5-3.0V: EXT RGB 4.0-5.0V: BLK

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
28	R IN		(1)Digital OSD Vi∟ : 0.0V Viн : 1.0V (2)Analog OSD 0.7Vpp
29	V PULSE OUT		Vol : 0.0V Voн : 5.0V
30	R IN		(1)Digital OSD VIL : 0.0V VIH : 1.0V (2)Analog OSD 0.7Vpp
31	ACL/ABCL		

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
32	X-TAL		3.3V
33	8.7 VREG OUT		8.7V
34	EXT/C IN		1.7V
35	CHROMA APC FILTER		3.2V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
36	TV/Y IN		1.7V
37 38	Video/Chroma GND(1) Video/Chroma GND (2)		0.0V
39	5.7 VREG OUT		5.7V
40	Y SW OUT		1.7V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
41	MCU 5.7VREG OUT		5.7V
42	MCU RESET		H: 5.0V L: 0.0V
43	INTELLIGENT MONITOR	5V C 5V C SV C 5V C 5V C SV C 5V C 5V C 5V C SV C 5V C	
44 45	Hi Vcc (1) Hi Vcc (2)		8V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
46	SWITCHING REG CONTROL		Open Collector
47	LIMITER IN		2.5V
48	IF AGC FILTER 2		2.3V
49	QIF OUT		2.3V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
50	AUDIO OUT		2.3V
51	AUDIO BYPASS		2.3V
52	ext audio In		2.3V
53	FM DIRECT OUT		2.3V

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
54	VIF VCO FEEDBACK		3.0V
55	VREG Vcc		8.7V
56	VIF APC FILTER		3.0V
57	VIDEO OUT		2.7V

NTSC TV SIGNAL PROCESSOR

Pin No.	Name	Peripheral circuit of pins	DC Voltage (V)
58 59	VIF GND (1) VIF GND (2)		
60	AFT OUT		0.3~4.7V
61	QIF IN		2.7V
62	RF AGC OUT		0.3 ~ 4.7V
63	IF AGC FILTER 1		2.3V

RENESAS