Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DESCRIPTION

The M5M5V5636GP is a family of 18M bit synchronous SRAMs organized as 524288-words by 36-bit. It is designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Renesas's SRAMs are fabricated with high performance, low power CMOS technology, providing greater reliability. M5M5V5636GP operates on 3.3V power/ 2.5V I/O supply or a single 3.3V power supply and are 3.3V CMOS compatible.

The M5M5V5636GP also operates on a single 2.5V power supply and is also 2.5V CMOS compatible. Therefore the M5M5V5636GP can replace the M5M5T5636GP.

The M5M5V5636GP-16 operates at 167MHz or 133MHz and is guaranteed both AC DC electrical characteristics of 167MHz and those of 133MHz.

FEATURES

- Fully registered inputs and outputs for pipelined operation
- Fast clock speed: 167 MHz and 133MHz
- Fast access time: 3.8 ns and 4.2ns
- Single 3.3V -5% and +5% power supply VDD
- Separate VDDQ for 3.3V or 2.5V I/O
- Single 2.5V -5% and +5% power supply VDD
- Individual byte write (BWa# BWd#) controls may be tied LOW
- Single Read/Write control pin (W#)
- CKE# pin to enable clock and suspend operations
- Internally self-timed, registers outputs eliminate the need to control G#
- Snooze mode (ZZ) for power down
- Linear or Interleaved Burst Modes
- Three chip enables for simple depth expansion

PART NAME

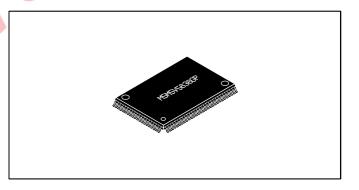
M5M5V5636GP-16

PACKAGE

100pin TQFP

APPLICATION

High-end networking products that require high bandwidth, such as switches and routers.


FUNCTION

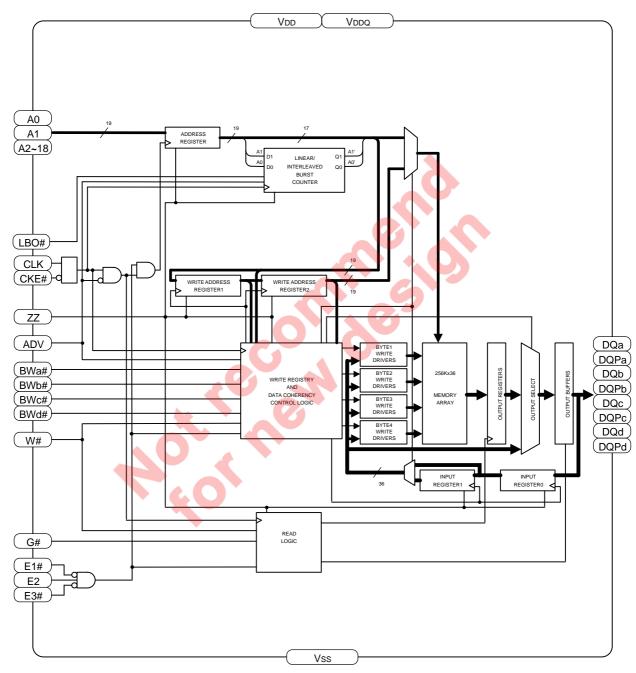
Synchronous circuitry allows for precise cycle control triggered by a positive edge clock transition.

Synchronous signals include : all Addresses, all Data Inputs, all Chip Enables (E1#, E2, E3#), Address Advance/Load (ADV), Clock Enable (CKE#), Byte Write Enables (BWa#, BWb#, BWc#, BWd#) and Read/Write (W#). Write operations are controlled by the four Byte Write Enables (BWa# - BWd#) and Read/Write(W#) inputs. All writes are conducted with on-chip synchronous self-timed write circuitry.

Asynchronous inputs include Output Enable (G#), Clock (CLK) and Snooze Enable (ZZ). The HIGH input of ZZ pin puts the SRAM in the power-down state. The Linear Burst order (LBO#) is DC operated pin. LBO# pin will allow the choice of either an interleaved burst, or a linear burst.

All read, write and deselect cycles are initiated by the ADV LOW input. Subsequent burst address can be internally generated as controlled by the ADV HIGH input.

Operate frequency	Access	Cycle	Active Current (max.)	Standby Current (max.)
167MHz	3.8ns	6.0ns	380mA	30mA
133MHz	4.2ns	7.5ns	350mA	30mA


PIN CONFIGURATION(TOP VIEW)

Note1. MCH means "Must Connect High". MCH should be connected to HIGH.

BLOCK DIAGRAM

Note2. The BLOCK DIAGRAM does not include the Boundary Scan logic.

Note3. The BLOCK DIAGRAM illustrates simplified device operation. See TRUTH TABLE, PIN FUNCTION and timing diagrams for detailed information.

PIN FUNCTION Pin Name **Function** These inputs are registered and must meet the setup and hold times around the rising edge of Synchronous A0~A18 CLK. A0 and A1 are the two least significant bits (LSB) of the address field and set the internal Address burst counter if burst is desired. Inputs These active LOW inputs allow individual bytes to be written when a WRITE cycle is active and Synchronous must meet the setup and hold times around the rising edge of CLK. BYTE WRITEs need to be BWa#, BWb#, Byte Write asserted on the same cycle as the address. BWs are associated with addresses and apply to BWc#, BWd# Enables subsequent data. BWa# controls DQa, DQPa pins; BWb# controls DQb, DQPb pins; BWc# controls DQc, DQPc pins; BWd# controls DQd, DQPd pins. This signal registers the address, data, chip enables, byte write enables CLK **Clock Input** and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. Synchronous This active LOW input is used to enable the device and is sampled only when a new external E1# address is loaded (ADV is LOW). Chip Enable Synchronous This active High input is used to enable the device and is sampled only when a new external E2 address is loaded (ADV is LOW). This input can be used for memory depth expansion. Chip Enable Synchronous This active Low input is used to enable the device and is sampled only when a new external E3# address is loaded (ADV is LOW). This input can be used for memory depth expansion. Chip Enable G# **Output Enable** This active LOW asynchronous input enable the data I/O output drivers. Synchronous When HIGH, this input is used to advance the internal burst counter, controlling burst access after ADV Address the external address is loaded. When HIGH, W# is ignored. A LOW on this pin permits a new address to be loaded at CLK rising edge. Advance/Load This active LOW input permits CLK to propagate throughout the device. When HIGH, the device Synchronous CKF# ignores the CLK input and effectively internally extends the previous CLK cycle. This input must Clock Enable meet setup and hold times around the rising edge of CLK. This active HIGH asynchronous input causes the device to enter a low-power standby mode in Snooze which all data in the memory array is retained. When active, all other inputs are ignored. When this 77 Enable pin is LOW or NC, the SRAM normally operates. This active input determines the cycle type when ADV is LOW. This is the only means for determining READs and WRITES. READ cycles may not be converted into WRITEs (and vice Synchronous versa) other than by loading a new address. A LOW on the pin permits BYTE WRITE operations W# Read/Write and must meet the setup and hold times around the rising edge of CLK. Full bus width WRITEs occur if all byte write enables are LOW. DQa,DQPa,DQb,DQPb Synchronous Byte "a" is DQa, DQPa pins; Byte "b" is DQb, DQPb pins; Byte "c" is DQc, DQPc pins; Byte "d" is DQc,DQPc,DQd,DQPd DQd,DQPd pins. Input data must meet setup and hold times around CLK rising edge. Data I/O This DC operated pin allows the choice of either an interleaved burst or a linear burst. If this pin is Burst Mode LBO# HIGH or NC, an interleaved burst occurs. When this pin is LOW, a linear burst occurs, and input Control leak current to this pin. VDD Vdd Core Power Supply Vss Vss Core Ground VDDQ Vddq I/O buffer Power supply Vssq Vsso I/O buffer Ground MCH Must Connect High These pins should be connected to HIGH NC No Connect These pins are not internally connected and may be connected to ground.

Renesas LSIs M5M5V5636GP - 16

18874368-BIT(524288-WORD BY 36-BIT) NETWORK SRAM

DC OPERATED TRUTH TABLE

Name	Input Status	Operation
LBO#	HIGH or NC	Interleaved Burst Sequence
LBO#	LOW	Linear Burst Sequence

Note4. LBO# is DC operated pin. Note5. NC means No Connection.

Note6. See BURST SEQUENCE TABLE about interleaved and Linear Burst Sequence.

BURST SEQUENCE TABLE

Interleaved Burst Sequence (when LBO# = HIGH or NC)

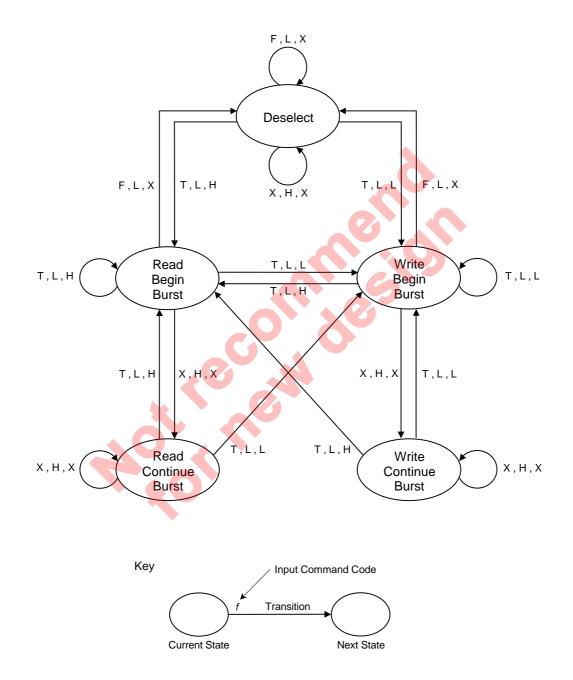
Operation	A18~A2				
First access, latch external address	A18~A2	0,0	0,1	1,0	1,1
Second access(first burst address)	latched A18~A2	0,1	0,0	1,1	1,0
Third access(second burst address)	latched A18~A2	1,0	1,1	0,0	0,1
Fourth access(third burst address)	latched A18~A2	1,1	1,0	0,1	0,0

Linear Burst Sequence (when LBO# = LOW)

Operation	A18~A2	2	A1,/	40	
First access, latch external address	A18~A2	0,0	0,1	1,0	1,1
Second access(first burst address)	latched A18~A2	0,1	1,0	1 , 1	0,0
Third access(second burst address)	latched A18~A2	1,0	1,1	0,0	0,1
Fourth access(third burst address)	latched A18~A2	1 , 1	0,0	0,1	1,0

Note7. The burst sequence wraps around to its initial state upon completion.

TRUTH TABLE


E1#	E2	E3#	zz	ADV	W#	BWx#	G#	CKE#	CLK	DQ	Address used	Operation
Н	Х	Х	L	L	X	X	Х	L	L->H	High-Z	None	Deselect Cycle
Х	L	Х	L	L	X	X	Х	L	L->H	High-Z	None	Deselect Cycle
Х	Х	Н	L	L	Х	Х	Х	L	L->H	High-Z	None	Deselect Cycle
Х	Х	Х	L	Н	Х	Х	Х	L	L->H	High-Z	None	Continue Deselect Cycle
L	Н	L	L	L	Н	Х	L	L	L->H	Q	External	Read Cycle, Begin Burst
Х	Х	Х	L	Н	Х	Х	L	L	L->H	Q	Next	Read Cycle, Continue Burst
L	Н	L	L	L	Н	Х	Н	L	L->H	High-Z	External	NOP/Dummy Read, Begin Burst
Х	Х	Х	L	Н	Х	Х	H	L	L->H	High-Z	Next	Dummy Read, Continue Burst
L	Н	L	L	L	L	L	Х	L	L->H	D	External	Write Cycle, Begin Burst
Х	Х	Х	L	Н	Х	L	Х	L	L->H	D	Next	Write Cycle, Continue Burst
L	Н	L	L	L	L	Н	Х	L	L->H	High-Z	None	NOP/Write Abort, Begin Burst
Х	Х	Х	L	Н	Х	Н	Х	L	L->H	High-Z	Next	Write Abort, Continue Burst
Х	Х	Х	L	Х	Х	Х	Х	Н	L->H	-	Current	Ignore Clock edge, Stall
Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	High-Z	None	Snooze Mode

Note8. "H" = input VIH; "L" = input VIL; "X" = input VIH or VIL.
 Note9. BWx#=H means all Synchronous Byte Write Enables (BWa#,BWb#,BWc#,BWd#) are HIGH. BWx#=L means one or more Synchronous Byte Write Enables are LOW.
 Note10. All inputs except G# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.

STATE DIAGRAM

6/18

Note11. The notation "x , x , x" controlling the state transitions above indicate the state of inputs E, ADV and W# respectively. Note12. If (E1# = L and E2 = H and E3# = L) then E="T" else E="F". Note13. "H" = input VIH; "L" = input VIL; "X" = input VIH or VIL; "T" = input "true"; "F" = input "false".

Renesas Technology Corp.

WRITE TRUTH TABLE

W#	BWa#	BWb#	BWc#	BWd#	Function
Н	Х	Х	Х	Х	Read
L	L	Н	Н	Н	Write Byte a
L	Н	L	Н	Н	Write Byte b
L	Н	Н	L	Н	Write Byte c
L	Н	Н	Н	L	Write Byte d
L	L	L	L	L	Write All Bytes
L	Н	Н	Н	Н	Write Abort/NOP

Note14. "H" = input VIH; "L" = input VIL; "X" = input VIH or VIL.

Note15. All inputs except G# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Power Supply Voltage		-1.0*~4.6	V
Vddq	I/O Buffer Power Supply Voltage	With respect to Vss	-1.0*~4.6	V
VI	Input Voltage	with respect to vss	-1.0~Vddq+1.0**	V
Vo	Output Voltage		-1.0~VDDQ+1.0**	V
PD	Maximum Power Dissipation (VDD)		1.6	W
TOPR	Operating Temperature		0~70	°C
TSTG(bias)	Storage Temperature(bias)		-10~85	°C
TSTG	Storage Temperature		-65~150	°C

Note16.* This is –1.0V when pulse width<2ns, and –0.5V in case of DC. ** This is –1.0V~Vppq+1.0V when pulse width<2ns, and –0.5V~Vppq+0.5V in case of DC.

DC ELE	CTRICAL CHARACTERISTICS 1	(Ta=0~70°C, VDD	=3.135~3.465V, unles	s otherwise no	ted)	_	
Complete	Bernmeder	0.5	ndition	Lir	nits	Unit	
Symbol	Parameter		nation	Min	Max	Unit	
Vdd	Power Supply Voltage			3.135	3.465	V	
Veeo		VDDQ = 3.3V		3.135	3.465		
Vddq	I/O Buffer Power Supply Voltage	VDDQ = 2.5V		2.375	2.625	V	
V/u i	Ligh lovel loout) (altogo	VDDQ = 3.135~3.46	65V	2.0		V	
Vih	High-level Input Voltage	VDDQ = 2.375~2.62	25V	1.7	- VDDQ+0.3*	V	
\/u		VDDQ = 3.135~3.46	65V	-0.3*	0.8	v	
VIL	Low-level Input Voltage	VDDQ = 2.375~2.62	25V	-0.3	0.7		
Vон	High-level Output Voltage	Iон = -2.0mA		VDDQ-0.4		V	
Vol	Low-level Output Voltage	IOL = 2.0mA			0.4	V	
	Input Leakage Current except ZZ and LBO#	VI = 0V ~ VDDQ		2	10		
ILI	Input Leakage Current of LBO#	VI = 0V ~ VDDQ			100	μA	
	Input Leakage Current of ZZ	VI = 0V ~ VDDQ			100		
Ilo	Off-state Output Current	VI (G #) ≥ VIH, Vo =	= OV ~ VDDQ		10	μA	
ICC1	Power Supply Current : Operating	Device selected; Output Open	6.0ns cycle(167MHz)		380	mA	
1001	Tower Supply Current . Operating	Vi≤Vi∟ or Vi≥Viн ZZ≤Vi∟	7.5ns cycle(133MHz)		350	ША	
ICC2	Power Supply Current : Deselected	Device deselected	6.0ns cycle(167MHz)		160		
1002	Power Supply Current . Deselected	Vi≤Vi∟ or Vi≥Viн ZZ≤Vi∟	7.5ns cycle(133MHz)		130	mA	
Іссз	CMOS Standby Current (CLK stopped standby mode)	Device deselected; Output Open Vi≤Vss+0.2V or Vi≥VDDQ-0.2V CLK frequency=0Hz, All inputs static			30	mA	
ICC4	Snooze Mode Standby Current	Snooze mode ZZ≥VpDq-0.2V, LBO#≥Vpp-0.2V			30	mA	
ICC5	Stall Current	Device selected; 6.0ns cycle(167MHz) Output Open 6.0ns cycle(167MHz) CKE#≥VIH 7.5ns cycle(133MHz) VI≥VDDQ-0.2V 7.5ns cycle(133MHz)		130	^		
1005					120	- mA	

Note17.*VILmin is –1.0V and VIH max is VDDQ+1.0V in case of AC(Pulse width≤2ns). Note18."Device Deselected" means device is in power-down mode as defined in the truth table.

				Lii	L Init		
Symbol	Parameter	Сог	ndition	Min	Max	Unit	
Vdd	Power Supply Voltage			2.375	2.625	V	
Vddq	I/O Buffer Power Supply Voltage			2.375	2.625	V	
VIH	High-level Input Voltage			1.7	VDDQ+0.3*	V	
VIL	Low-level Input Voltage			-0.3*	0.7	V	
Vон	High-level Output Voltage	Іон = -2.0mA		VDDQ-0.4		V	
Vol	Low-level Output Voltage	IOL = 2.0mA			0.4	V	
	Input Leakage Current except ZZ and LBO#	Vi = 0V ~ Vddq			10		
ILI	Input Leakage Current of LBO#	VI = 0V ~ VDDQ			100	μA	
	Input Leakage Current of ZZ	VI = 0V ~ VDDQ		5	100		
Ilo	Off-state Output Current	$VI (G#) \ge VIH, VO =$	0V ~ VDDQ		10	μA	
ICC1	Power Supply Current : Operating	Device selected; Output Open,	6.0ns cycle(167MHz)		380	mA	
	Power Supply Current . Operating	Vi≤Vi∟ or Vi≥Viн, ZZ≤Vi∟	7.5ns cycle(133MHz)		350	ША	
ICC2	Dower Supply Current - Decelected	Device deselected Vi≤ViL or Vi≥Viн,	6.0ns cycle(167MHz)		160	mA	
1002	Power Supply Current : Deselected	VI≦VIL OF VI≥VIH, ZZ≤VIL	7.5ns cycle(133MHz)		130	mA	
Іссз	CMOS Standby Current (CLK stopped standby mode)	Vi≤Vss+0.2V or Vi≥	Device deselected; Output Open Vi≤Vss+0.2V or Vi≥VDDQ-0.2V CLK frequency=0Hz, All inputs static		30	mA	
ICC4	Snooze Mode Standby Current	Snooze mode ZZ≥Vppq-0.2V, LBO#≥Vpp-0.2V			30	mA	
loor		Device selected; Output Open,	6.0ns cycle(167MHz)		130		
ICC5	Stall Current	CKE#≥Viн Vi≤Vss+0.2V or Vi≥VDDQ-0.2V	7.5ns cycle(133MHz)		120	mA	

Note17.*VILmin is −1.0V and VIH max is VDDQ+1.0V in case of AC(Pulse width≤2ns). Note18."Device Deselected" means device is in power-down mode as defined in the truth table.

Renesas LSIs M5M5V5636GP –16

18874368-BIT(524288-WORD BY 36-BIT) NETWORK SRAM

CAPACITANCE

Peremeter	Conditions		Unit		
Farameter	Conditions	Min	Тур	Max	Unit
nput Capacitance	VI=GND, VI=25mVrms, f=1MHz			6	pF
nput / Output(DQ) Capacitance	Vo=GND, Vo=25mVrms, f=1MHz			8	pF
r	1 1	nput Capacitance VI=GND, VI=25mVrms, f=1MHz	Min nput Capacitance VI=GND, VI=25mVrms, f=1MHz	Min Typ nput Capacitance VI=GND, VI=25mVrms, f=1MHz	Parameter Conditions Min Typ Max nput Capacitance VI=GND, VI=25mVrms, f=1MHz 6 6

Note19. This parameter is sampled.

THERMAL RESISTANCE

4-Layer PC board mounted (70x70x1.6mmT)

Symbol	Peremeter	Conditions		Limits			Unit
Symbol	Parameter	Conditions	Mi	n T	ур	Max	Unit
θја	Thermal Resistance Junction Ambient	Air velocity=0m/sec		2	28		°C/W
		Air velocity=2m/sec	5	2	20		°C/W
θJC	Thermal Resistance Junction to Case			6	6.6		°C/W
Noto20 This	naramatar is sampled						

Note20. This parameter is sampled.

<u>AC ELECTRICAL CHARACTERISTICS</u> (Ta=0~70°C, VDD=3.135~3.465V or VDD=2.375~2.625V, unless otherwise noted) (1)MEASUREMENT CONDITION

Input pulse levels	
Input rise and fall times	faster than or equal to 1V/ns
Input timing reference levels	
Output reference levels	VIH=VIL=0.5*VDDQ
Output load	Fig.1
	3

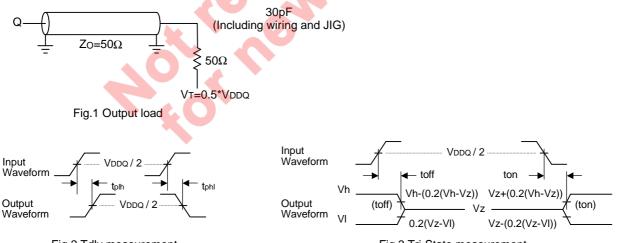


Fig.2 Tdly measurement

10/18

Fig.3 Tri-State measurement

- Note21.Valid Delay Measurement is made from the VDDQ/2 on the input waveform to the VDDQ/2 on the output waveform. Input waveform should have a slew rate of faster than or equal to 1V/ns.
- Note22.Tri-state toff measurement is made from the VDDQ/2 on the input waveform to the output waveform moving 20% from its initial to final Value VDDQ/2.

Note: the initial value is not VoL or VoH as specified in DC ELECTRICAL CHARACTERISTICS table.

Note23. Tri-state ton measurement is made from the V_{DDQ}/2 on the input waveform to the output waveform moving 20% from its initial Value V_{DDQ}/2 to its final Value.

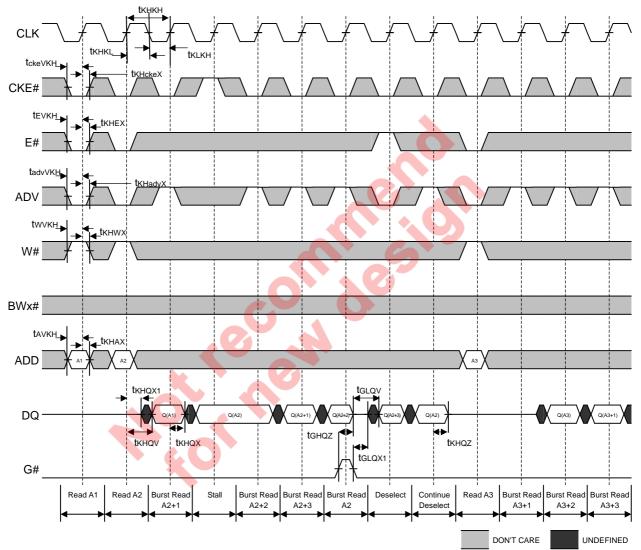
Note:the final value is not VOL or VOH as specified in DC ELECTRICAL CHARACTERISTICS table.

Note24.Clocks,Data,Address and control signals will be tested with a minimum input slew rate of faster than or equal to 1V/ns.

		Limits				
Symbol	Parameter	167MHz		133MHz		Unit
		-16		-16		
		Min	Max	Min	Max	
Clock						
tкнкн	Clock cycle time	6.0		7.5		ns
tKHKL	Clock HIGH time	2.7		3.0		ns
tKLKH	Clock LOW time	2.7		3.0		ns
Output time	S					
t KHQV	Clock HIGH to output valid		3.8		4.2	ns
t KHQX	Clock HIGH to output invalid	1.5		1.5		ns
tKHQX1	Clock HIGH to output in LOW-Z	1.5		1.5		ns
tkhqz	Clock HIGH to output in High-Z	1.5	3.8	1.5	4.2	ns
tGLQV	G# to output valid		3.8		4.2	ns
tGLQX1	G# to output in Low-Z	0.0		0.0		ns
tghqz	G# to output in High-Z		3.8		4.2	ns
Setup Time	s					
tavĸh	Address valid to clock HIGH	1.2		1.2		ns
tckeVKH	CKE# valid to clock HIGH	1.2		1.2		ns
tadvVKH	ADV valid to clock HIGH	1.2		1.2		ns
tw∨ĸн	Write valid to clock HIGH	1.2		1.2		ns
tBVKH	Byte write valid to clock HIGH (BWa#~BWd#)	1.2		1.2		ns
te∨ĸн	Enable valid to clock HIGH (E1#,E2,E3#)	1.2		1.2		ns
tdvkh	Data In valid clock HIGH	1.2		1.2		ns
Hold Times						
t KHAX	Clock HIGH to Address don't care	0.8		0.8		ns
tKHckeX	Clock HIGH to CKE# don't care	0.8		0.8		ns
tKHadvX	Clock HIGH to ADV don't care	0.8		0.8		ns
tĸнwx	Clock HIGH to Write don't care	0.8		0.8		ns
tкнвх	Clock HIGH to Byte Write don't care	0.8		0.8		20
	(BWa#~BWb#)	0.0		0.0		ns
tKHEX	Clock HIGH to Enable don't care (E1#,E2,E3#)	0.8		0.8		ns
t KHDX	Clock HIGH to Data In don't care	0.8		0.8		ns
ZZ						
tzzs	ZZ standby		2*tкнкн		2*tкнкн	ns
tZZREC	ZZ recovery		2*tкнкн		2*tкнкн	ns

(2)TIMING CHARACTERISTICS

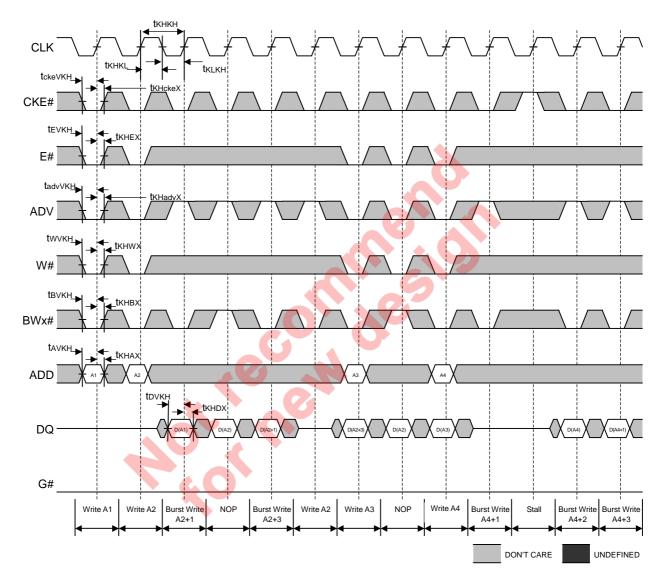
Note25.All parameter except tzzs, tzzREC in this table are measured on condition that ZZ=LOW fix.


Note26.Test conditions is specified with the output loading shown in Fig.1 unless otherwise noted.

Note27. tkHQX1, tkHQZ, tGLQX1, tGHQZ are sampled.

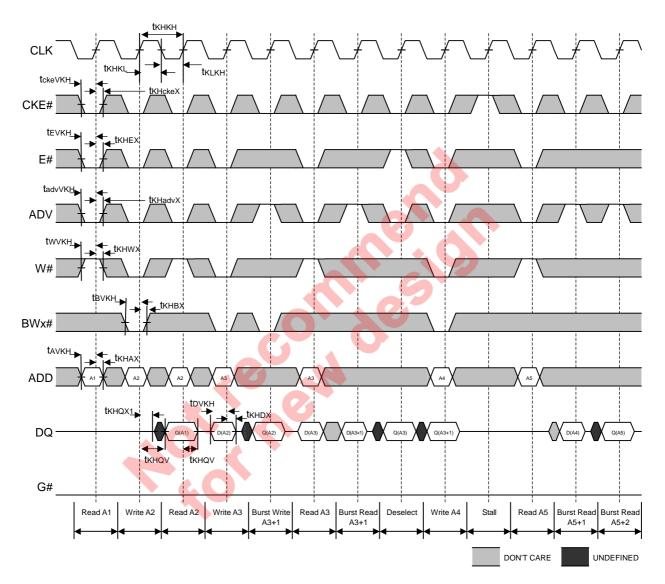
Note28.LBO# is static and must not change during normal operation.

(3)READ TIMING

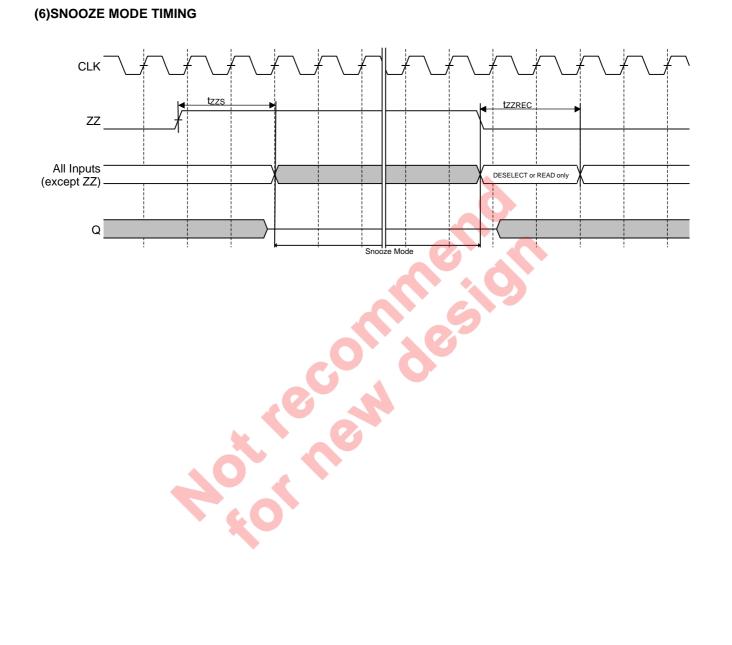


Note29.Q(An) refers to output from address An. Q(An+1) refers to output from the next internal burst address following An. Note30. E# represents three signals. When E# is LOW, it represents E1# is LOW, E2 is HIGH and E3# is LOW. Note31.ZZ is fixed LOW.

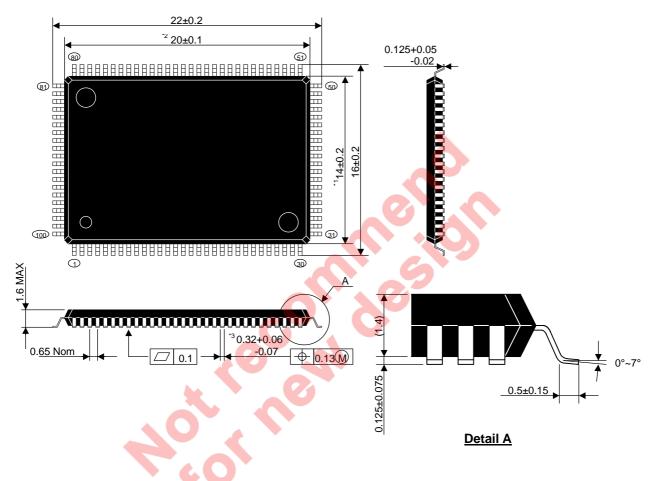
Renesas LSIs M5M5V5636GP –16 18874368-BIT(524288-WORD BY 36-BIT) NETWORK SRAM


(4)WRITE TIMING

Note32.Q(An) refers to output from address An. Q(An+1) refers to output from the next internal burst address following An. Note33. E# represents three signals. When E# is LOW, it represents E1# is LOW, E2 is HIGH and E3# is LOW. Note34.ZZ is fixed LOW.


(5)READ/WRITE TIMING

Note35.Q(An) refers to output from address An. Q(An+1) refers to output from the next internal burst address following An. Note36. E# represents three signals. When E# is LOW, it represents E1# is LOW, E2 is HIGH and E3# is LOW. Note37.ZZ is fixed LOW.


Renesas LSIs M5M5V5636GP –16 18874368-BIT(524288-WORD BY 36-BIT) NETWORK SRAM

PACKAGE OUTLINE

Plastic 100pin 14x20 mm body

Note38. Dimensions *1 and *2 don't include mold flash. Note39 Dimension *3 doesn't include trim off set. Note40.All dimensions in millimeters.

Rev. No.	History	Date	
0.0	First revision	June 4, 2001	Advanced Information
0.1	Fixed WRITE TRUTH TABLE	July 16, 2001	Advanced Information
0.2	Fixed Note8,13 and 14	March 28, 2002	Advanced Information
	Add –13(133MHz)		
0.3	Fixed THERMAL RESISTANCE	July 5, 2002	Preliminary
	Preliminary		
	DC ELECTRICAL CHARACTERISTICS		
	Changed VIH limit from 0.65VDDQ to 2.0 at 3.3V VDDQ		
	Changed VIH limit from 0.65VDDQ to 1.7 at 2.5V VDDQ		
	Changed VIL limit from 0.35VDDQ to 0.8 at 3.3V VDDQ		
	Changed VIL limit from 0.35VDDQ to 0.7 at 2.5V VDDQ		
	Changed ICC1 limit from 340mA to 380mA at 167MHz(-16)		
	Changed ICC1 limit from 320mA to 350mA at 133MHz(-13)		
0.4	Changed ICC2 limit from 90mA to 160mA at 167MHz(-16)		Dualizaire a m
0.4	Changed ICC2 limit from 80mA to 130mA at 133MHz(-13) Changed ICC5 limit from 45mA to 130mA at 167MHz(-16)	August 6, 2002	Preliminary
	Changed ICC5 limit from 45mA to 150mA at 167MH2(-16) Changed ICC5 limit from 40mA to 120mA at 133MHz(-13)		
	AC ELECTRICAL CHARACTERISTICS		
	Changed tKHKL limit from 2.0ns to 2.7ns at 167MHz(-16)		
	Changed tKLKH limit from 2.0ns to 2.7ns at 167MHz(-16)		
	Changed tKHQX limit from 0.8ns to 1.5ns		
	Changed tKHQX1 limit from 0.8ns to 1.5ns		
	Changed tKHQZ limit from 0.8ns to 1.5ns		
0.5	DC ELECTRICAL CHARACTERISTICS		
	Changed ILI limit from 10uA to 100uA		
	(Input Leakage Current of ZZ and LBO#)	January 14, 2003	Preliminary
	Changed Icc3 and Icc4 limit from 20mA to 30mA	•	
	(Standby Current)		
	The semiconductor operations of HITACHI and MITSUBISHI		
	Electric were transferred to RENESAS Technology		
	Corporation on April 1st 2003.		
1.0	AC ELECTRICAL CHARACTERISTICS	August 1, 2003	Preliminary
	Changed all Setup times from 1.5ns to 1.2ns at 167MHz(-16).		
	Changed all Hold times from 0.5ns to 0.8ns at 167MHz(-16).		
	Changed all Setup times from 1.5ns to 1.2ns at 133MHz(-13).		
	Changed all Hold times from 0.5ns to 0.8ns at 133MHz(-13).		
	Eliminate preliminary		
2.0	Be guaranteed 2.5V operation Eliminate M5M5V5636GP-13	March 15, 2004	
2.0	Changed PD(Maximum Power Dissipation) from 1180mW to 1.6W	March 15, 2004	

Renesas Technology Corp.

Nippon Bldg.,6-2,Oteamchi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable
material or (iii) prevention against any matinshap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- examples contained in these materials. All information contrained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation mathematicates and are subject to change by Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation space and the information and products. Renesas Technology Corporation semiconductor home page (http://www.renesas.com). When using any or all of the information ontained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information contained herein. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at take. Please contact Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at take. Please contact Renesas Technology Corporation repreduce in whole or in part these materials. The prior written approval of Renesas Technology Corporation, is necessary to reproduce in whole or in part these materials. The prior written approval of Renesas Technology Corporation, sensens to response to in whole or in part these materials. The prior written approval of Renesas Technology Corporation, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

REJ03C0074 © 2003 Renesas Technology Corp. New publication, effective March 2004. Specifications subject to change without notice.

