

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <http://www.renesas.com>

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (<http://www.renesas.com>)

Send any inquiries to <http://www.renesas.com/inquiry>.

Not recommended
for new design

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M54678FP

2-Phase Stepper Motor Driver

REJ03F0046-0100Z

Rev.1.0

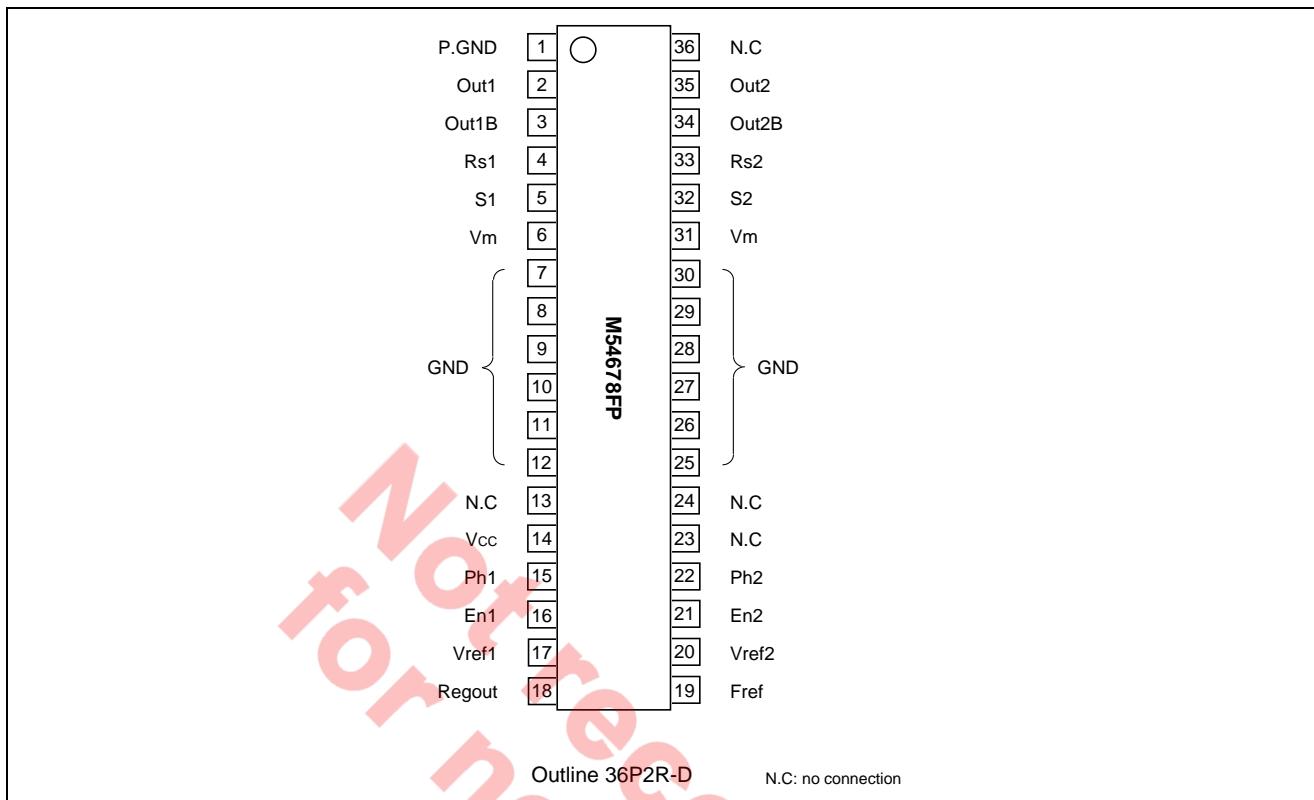
Sep.19.2003

Description

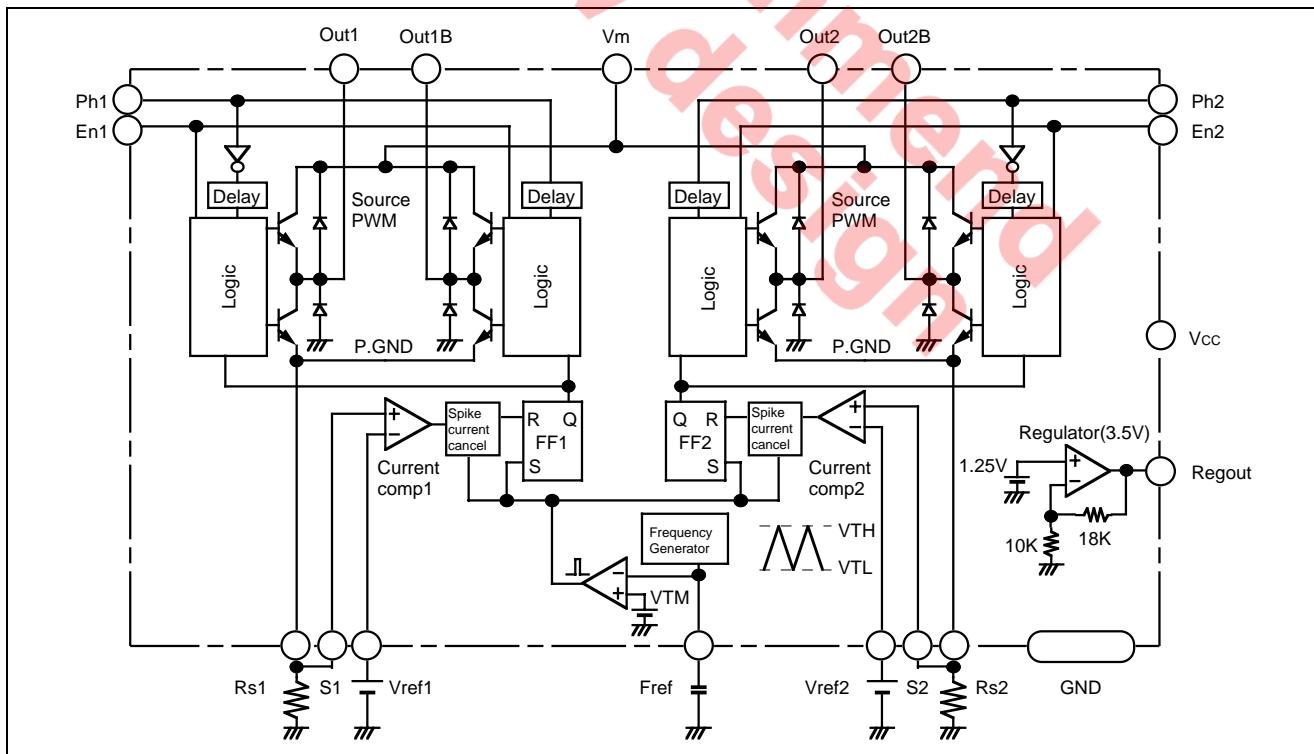
The M54678FP is a semiconductor integrated circuit designed for stepper motor driver used to printer, PPC and facsimile.

Features

- Wide supply voltage range (10 – 35V)
- Output current is controlled by PWM operation
- Few external components (This IC can be operated with 1 capacitor and 2 resistances)
- Voltage stabilizer circuit (Regout = 3.5V)
- Thermal protection circuit
- Flywheel diode


Application

Printers, PPC, facsimile


Function

The M54678FP is a integrated circuit which can drive two phase stepper motor. The output current direction is determined by phase terminal function, and the output current level is controlled by Vref terminals voltage.

Pin Configuration

Block Diagram

Pin Function

Terminal	Symbol	Functions
Output stage supply voltage	Vm	Power supply for motor working
Output terminal	Out1, Out1B, Out2, Out2B	Motor drive output terminal
Current sensor	Rs1, Rs2	Output current sensing resistor (Rs) connect terminal
Power supply	VCC	Control circuit power supply
Phase input	Ph1, Ph2	Output current direction switch
Enable input	En1, En2	“L” input → Motor on “H” input → Enable
Sense input	S1, S2	Comparator input voltage terminal
Vref input	Vref1, Vref2	Comparator reference voltage terminal
Voltage stabilizer output	Regout	Constant voltage output (Vout = 3.5V)

Absolute Maximum Ratings

(Ta = 25°C unless otherwise noted.)

Parameter	Symbol	Ratings	Unit	Condition
Output stage supply voltage	Vm	-0.3 – 37	V	
Output current	Iout	±1.0	A	1 phase
Supply voltage	VCC	-0.3 – 7	V	
Logic input voltage	Vlogic	-0.3 – VCC	V	Ph, En Pin
Analog input voltage	Vanalog	-0.3 – VCC	V	Vref, S Pin
Current sensor voltage	VRs	1.5	V	Rs Pin
Power dissipation	Pd	2.0	W	100mm × 100mm, t = 1.6mm glassfiber epoxy resin circuit board
Thermal derating	Kθ	6.25	°C/W	100mm × 100mm, t = 1.6mm glassfiber epoxy resin circuit board
Junction temperature	Tj	150	°C	
Operating temperature	Topr	-20 – 75	°C	
Storage temperature	Tstg	-40 – 125	°C	

Recommended Operating Conditions

Parameter	Symbol	Limits			Unit
		Min.	Typ.	Max.	
Supply voltage	Vcc	4.5	5.0	5.5	V
Output stage supply voltage	Vm	10	—	35	V
Output current	Iout	50	—	800	mA
Logic input rise time	tPLH	—	—	2	μS
Logic input fall time	tPHL	—	—	2	μS
PWM on time	Ton	5	—	50	μS
PWM off time	Toff	5	—	50	μS
Thermal shutdown temperature	TSDon	—	160	—	°C

Electrical characteristics

(Ta = 25°C, VCC = 5.0V, VM = 24V unless otherwise noted.)

Control Circuit

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Supply current	ICC1	19	33	50	mA	VCC = 5V, En = H
	ICC2	34	58	87		VCC = 5V, En = L
Logic input voltage (Ph, En terminal)	VIH	2.4	—	Vcc	V	
	VIL	0	—	0.6		
Logic input current (Ph, En terminal)	IIH	—5	—	5	μA	Vin = 5V
	IIL	—20	—	5		Vin = 0V
Comparator input offset voltage	IC	—5	+1	+7	mV	Vref = 500mV, VCH = Vref-S
Comparator input current	IC	—20	—5	—	μA	S terminal input current S = 0V, Vref = 500mV
Comparator input voltage range	VC	0	—	1.5	V	
Vref input current	Iref	—20	—5	—	μA	Vref terminal input current Vref = 0V, 2 = 500mV
Vref input voltage range	Vref	0	—	1.5	V	
Fref terminal output voltage	FrefH	2.4	2.5	2.6	V	Fref terminal
	FrefL	0.4	0.5	0.6		
Fref oscillation frequency	FC	20	30	40	kHz	Fref terminal, C = 390pF
Regulator output voltage	Vreg	3.4	3.5	3.6	V	Iout = -0.1mA – +1mA

Output Circuit

(Ta = 25°C, VCC = 5.0V, VM = 24V unless otherwise noted.)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Output saturation voltage	Vsat	—	1.8	2.6	V	Sensing resistor not included. Io = 0.75A
Output leak current	Ileak	—100	—	+100	μA	
Output turn-on delay	tdon	—	0.5	2.0	μS	Time until output on after Fref 2.5V → 0.5V
Output turn-off delay	tdoff	—	2.0	3.5	μS	Time until output off after S < Vref

Application Directions

(1) Ph input, En input determines output function.

Ph*A	Ph*B	Out*A	Out*B
H	L	H	L
L	L	L	H
H	H	Z	Z
L	H	Z	Z

*: 1 or 2

Z : High impedance

(2) Vref (reference voltage)

Output current level is controlled by Vref voltage.

(3) Current comparator

Under VRS (current sensing resistor voltage) > Vref (reference voltage) condition, the current comparator switches, flip-flop is reset and output circuit is set to off.

(4) Oscillating circuit

Frequency of PWM operation synchronize with f_{ref} terminal frequency.

If you change frequency of PWM operation, please change capacitor value of Fref terminal.

This IC is designed oscillating frequency to be 30kHz when capacitor = 390pF is connected to F_{ref} terminal.

Oscillating frequency is inversely proportional to capacitor value. When capacitor value become half, Oscillating frequency will be two times.

(5) Spike current cancellation circuit

This IC includes Spike cancellation circuit to prevent the failure function of current comparator by influence of this spike current.

Thus, current comparator don't function during approximately 2mS from the moment of output transistor is set to on.

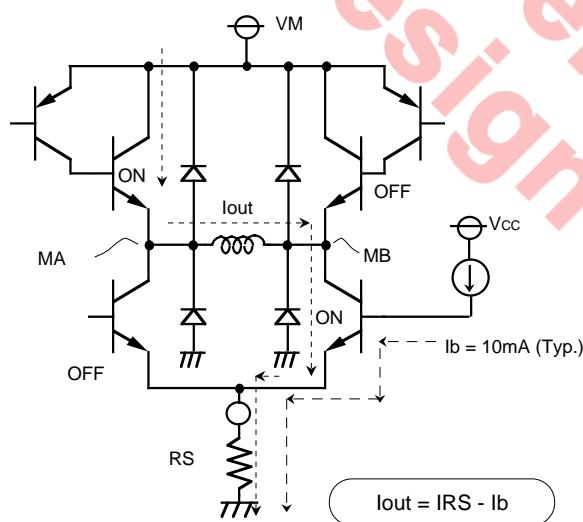
(6) Phase delay circuit

This IC includes Phase delay circuit to prevent output through current at Ph switching time.

Four output transistors of H bridge don't function during approximately 3mS at Ph switching time.

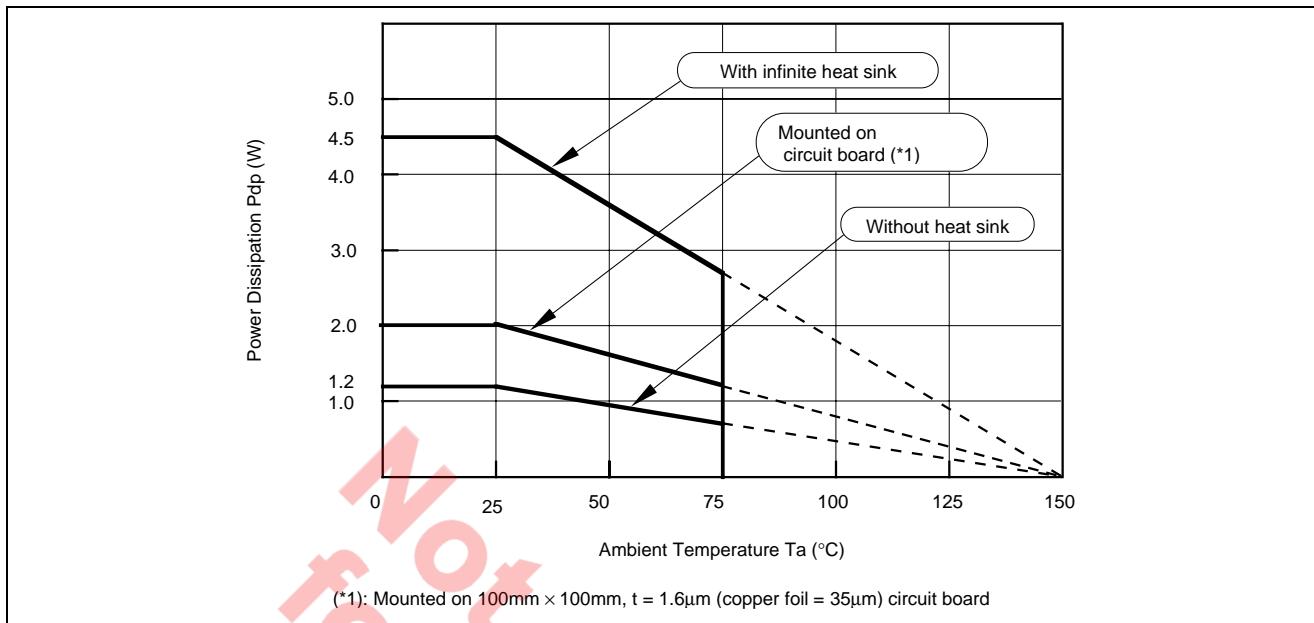
(7) Rs terminal and S terminal

Difference of current sensing that caused by wiring resistance of board (wiring resistance between RS terminal and current sensing resistor) can be prevented by connecting S terminal (plus input of current comparator) to current sensing resistor as close as possible.

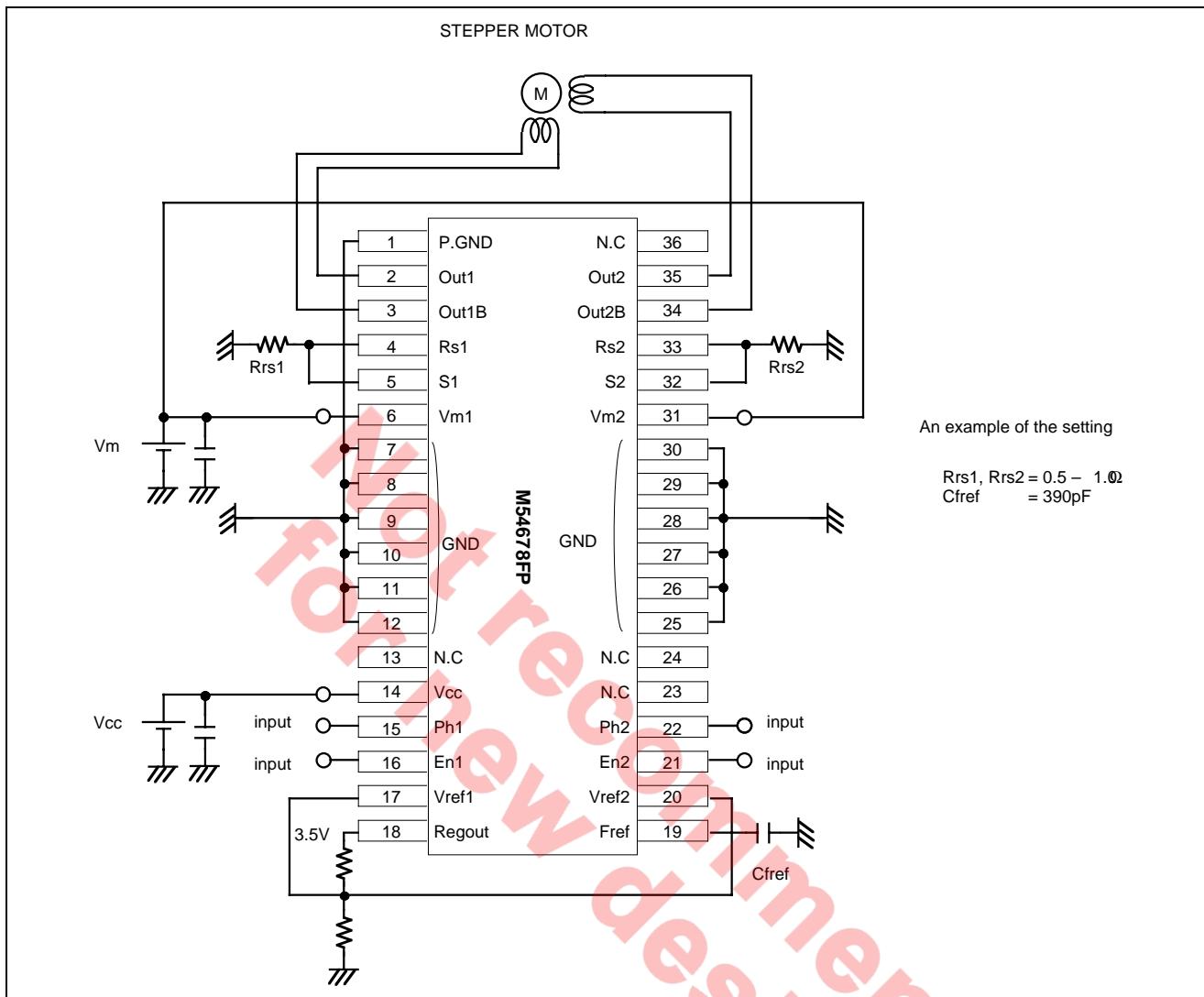

(8) Voltage stabilizer circuit

This IC includes voltage stabilizer circuit. (3.5volts output). Vref reference voltage can be generated by resistance potential dividing from constant voltage output terminal (Regout). Current capability of constant voltage output terminal is I source = +1mA, I sink = -0.1mA

(9) Setting of output current


Since output circuit of this IC consists of NPN type transistor, current flow through the motor coil (I_{out}) becomes approximately 20mA (typical value) smaller than current flow through the current sensing resistor (IRS) by influence of the base current (I_b) of transistor.

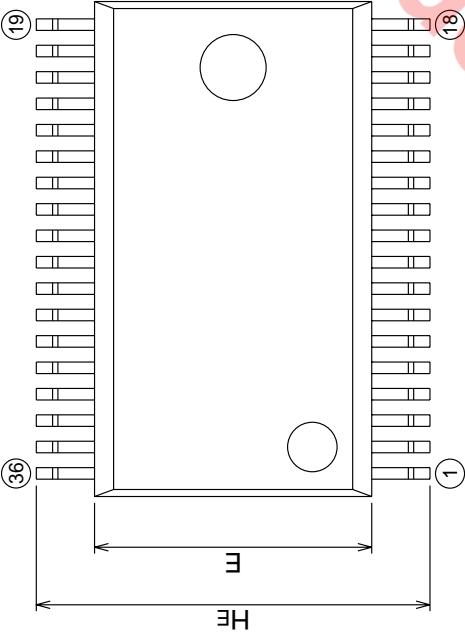
Thus, please consider this current when you set up output current.



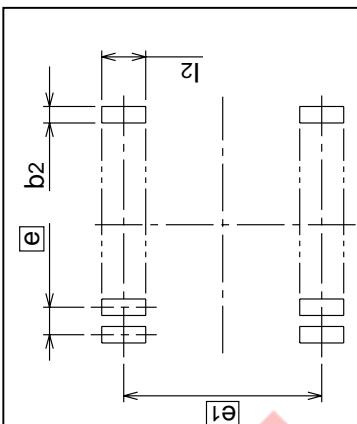
*If Vcc, Tj and manufacturing dispersion are considered, dispersion of Ib will vary maximum $\pm 5\text{mA}$ (minimum = 5mA, maximum = 15mA)

Thermal Derating

Application Circuit



Package Dimensions


36P2R-D (MMP)

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Mater
SSOP36-P-450-0.80	—	0.53	Cu Allo y

(36) ①

Plastic 36pin 450mil SSOP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	—	—	2.35
A1	0	0.1	0.2
A2	—	2.05	—
b	0.3	0.35	0.45
c	0.18	0.2	0.25
D	14.8	15.0	15.2
E	8.2	8.4	8.6
e	—	0.8	—
HE	11.63	11.93	12.23
L	0.3	0.5	0.7
L1	—	1.765	—
Z1	—	0.7	—
y	—	—	0.15
θ	0°	—	8°
b2	—	0.5	—
e1	—	11.43	—
l2	1.27	—	—

Detail G

Detail F

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (<http://www.renesas.com>).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

<http://www.renesas.com>

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001