Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010

Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

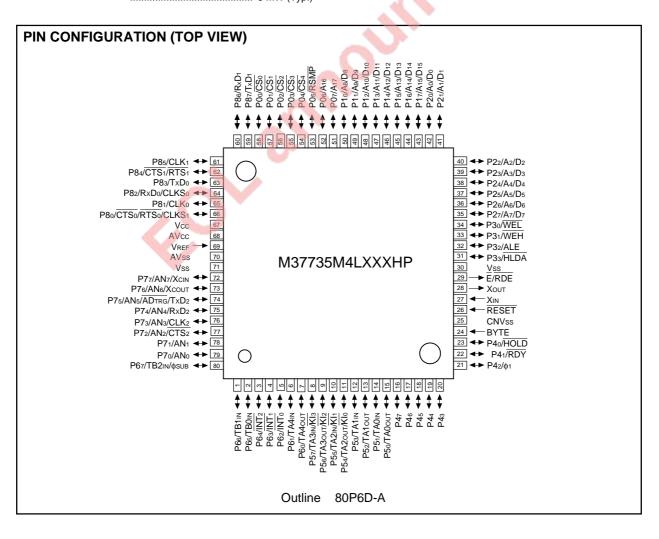
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

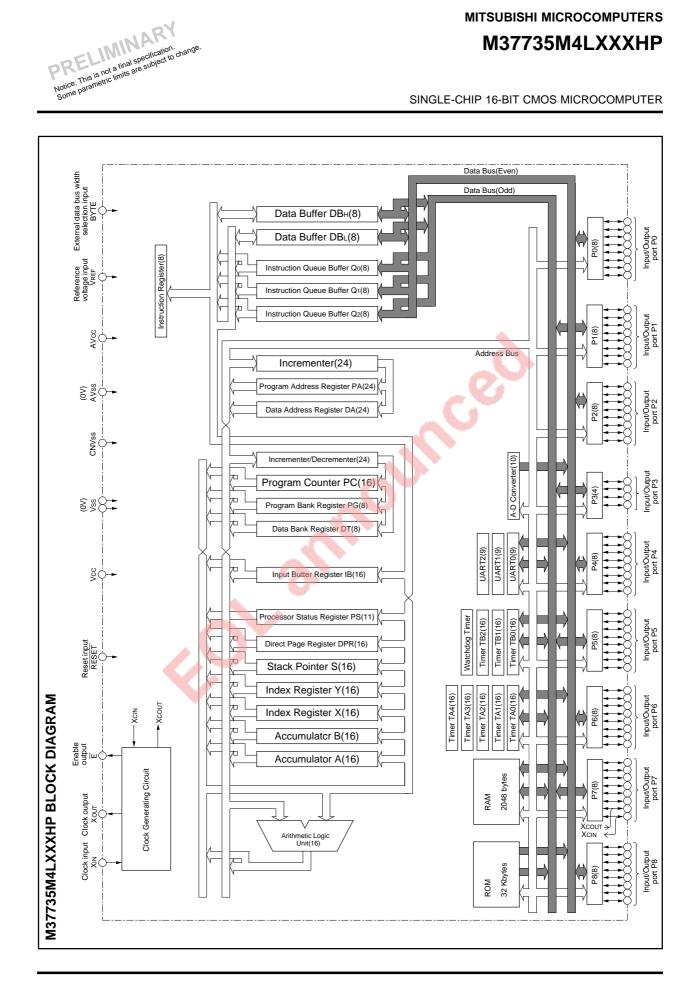
The M37735M4LXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the ROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on.

Its strong points are the low power dissipation, the low supply voltage and the small package.

FEATURES


 Number of basic 	instructions	103
Memory size	ROM	32 Kbytes
	RAM	2048 bytes
Instruction exect	ution time	
The fastest instr	uction at 12 MHz frequency	333 ns
 Single power su 	pply	2.7–5.5 V
Low power dissi	pation (At 3 V supply voltage,	12 MHz frequency)

●Interrupts
•Multiple-function 16-bit timer
•Serial I/O (UART or clock synchronous)
•10-bit A-D converter 8-channel inputs
●12-bit watchdog timer
Programmable input/output
(ports P0, P1, P2, P3, P4, P5, P6, P7, P8)
Clock generating circuit 2 circuits built-in
•Small package 80-pin plastic molded fine-pitch QFP
(80P6D-A;0.5 mm lead pitch)


APPLICATION

Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and so on.

Control devices for general industrial equipment such as communication equipment, and so on.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37735M4LXXXHP

	Parameter	Functions
Number of basic instructions		103
Instruction execution time		333 ns (the fastest instruction at external clock 12 MHz frequency)
Memory size	ROM	32 Kbytes
Memory size	RAM	2048 bytes
Input/Output ports	P0 – P2, P4 – P8	8-bit X 8
	P3	4-bit X 1
Multi-function timers	TA0, TA1, TA2, TA3, TA4	16-bit X 5
	TB0, TB1, TB2	16-bit X 3
Serial I/O		(UART or clock synchronous serial I/O) X 3
A-D converter		10-bit X 1 (8 channels)
Watchdog timer		12-bit X 1
		3 external types, 16 internal types
Interrupts		Each interrupt can be set to the priority level $(0 - 7.)$
		2 circuits built-in (externally connected to a ceramic resonator or a
Clock generating circuit		quartz-crystal oscillator)
Supply voltage		2.7 – 5.5 V
Dever dissinction		9 mW (at 3 V supply voltage, external clock 12 MHz frequency)
Power dissipation		22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency)
	Input/Output voltage	5 V
Input/Output characteristic	Output current	5 mA
Memory expansion	· ·	Maximum 1 Mbytes
Operating temperature range		-40 to 85 °C
Device structure		CMOS high-performance silicon gate process
Package		80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch)
	-O-ans	
	•	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
Vcc,	Power source		Apply 2.7 – 5.5 V to Vcc and 0 V to Vss.
Vss			
CNVss	CNVss input	Input	This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode.
RESET	Reset input	Input	When "L" level is applied to this pin, the microcomputer enters the reset state.
XIN	Clock input	Input	These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartz- crystal oscillator between XIN and XOUT. When an external clock is used, the clock source should
Xout	Clock output	Output	be connected to the XIN pin, and the XOUT pin should be left open.
Ē	Enable output	Output	In the single-chip mode, this pin functions as the enable signal output pin which indicates the access status in the internal bus. In the memory expansion mode or the microprocessor mode, this pin functions as the RDE signal output pin.
BYTE	External data bus width selection input	Input	In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when "L" signal is input and an 8-bit width when "H" signal is input.
AVcc, AVss	Analog power source input		Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.
VREF	Reference voltage input	Input	This is reference voltage input pin for the A-D converter.
P00 – P07	I/O port P0	I/O	In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. In the memory expansion mode or the microprocessor mode, these pins output $\overline{CS_0} - \overline{CS_4}$, \overline{RSMP} signals, and address (A16, A17).
P10-P17	I/O port P1	I/O	In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data ($D_8 - D_{15}$) is input/output or an address ($A_8 - A_{15}$) is output. When the BYTE pin is "H" and an external data bus has an 8-bit width, only address ($A_8 - A_{15}$) is output.
P20 – P27	I/O port P2	I/O	In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data ($D_0 - D_7$) is input/output or an address ($A_0 - A_7$) is output.
P30 – P33	I/O port P3	I/O	In the single-chip mode, these pins have the same function as port P0. In the memory expansion mode or the microprocessor mode, WEL, WEH, ALE, and HLDA signals are output.
P40 – P47	I/O port P4	1/0	In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and clock ϕ_1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 also functions as an I/O port.
P50 – P57	I/O port P5	I/O	In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for timers A0 to A3 and input pins for key input interrupt input ($\overline{K_{10}} - \overline{K_{13}}$).
P60 – P67	I/O port P6	I/O	In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for timer A4, input pins for external interrupt input ($\overline{INT_0} - \overline{INT_2}$) and input pins for timers B0 to B2. P67 also functions as sub-clock ϕ_{SUB} output pin.
P70 – P77	I/O port P7	1/0	In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both.
P80 – P87	I/O port P8	I/O	In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37735M4LXXXHP has the same fuanctions as the M37735MHBXXXFP except for the memory allocation, the reset circuit, the ROM area modification function, and the package. Refer to the section on the M37735MHBXXXFP.

MEMORY

The memory map is shown in Figure 1. The address space has a capacity of 16 Mbytes and is allocated to addresses from 016 to FFFFFF16. The address space is divided by 64-Kbyte unit called bank. The banks are numbered from 016 to FF16.

However, banks 1016 - FF16 of the 7735 group cannot be accessed. Built-in ROM, RAM and control registers for internal peripheral devices are assigned to bank 016.

The 32-Kbyte area from addresses 800016 to FFF16 is the built-in ROM. Addresses FFD616 to FFF16 are the RESET and interrupt vector addresses and contain the interrupt vectors. Refer to the section on interrupts for details.

The 2048-byte area allocated to addresses from 80_{16} to $87F_{16}$ is the built-in RAM. In addition to storing data, the RAM is used as stack

during a subroutine call or interrupts.

Peripheral devices such as I/O ports, A-D converter, serial I/O, timer, and interrupt control registers are allocated to addresses from 016 to 7F16.

Additionally, the internal ROM area can be modified by software. Refer to the section on ROM area modification function for details.

A 256-byte direct page area can be allocated anywhere in bank 016 by using the direct page register (DPR). In the direct page addressing mode, the memory in the direct page area can be accessed with two words. Hence program steps can be reduced.

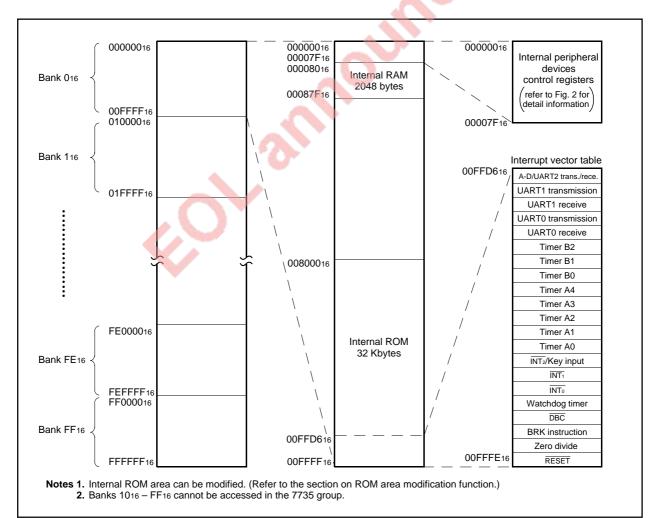


Fig. 1 Memory map

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

000000	adecimal notation)
000001	
000002	Port P0 register
000003	Port P1 register
000004	Port P0 direction register
000005	Port P1 direction register
000006	Port P2 register
000007	Port P3 register
000008	Port P2 direction register
000009	Port P3 direction register
A00000	Port P4 register
00000B	Port P5 register
00000C	Port P4 direction register
00000D	Port P5 direction register
00000E	Port P6 register
00000F 000010	Port P7 register Port P6 direction register
000010	Port P7 direction register
000011	Port P8 register
000012	
000013	Port P8 direction register
000015	
000016	
000017	
000018	
000019	
00001A	
00001B	
00001C	Reserved area (Note)
00001D	Reserved area (Note)
00001E	A-D control register 0
00001F	A-D control register 1
000020	A-D register 0
000021	
000022	A-D register 1
000023 000024	
000024	A-D register 2
000026	
000027	A-D register 3
000028	
000029	A-D register 4
00002A	A D register 5
00002B	A-D register 5
00002C	A-D register 6
00002D	
00002E	A-D register 7
00002F	
000030	UART 0 transmit/receive mode register
000031	UART 0 baud rate register
000032	UART 0 transmission buffer register
000033	
000034 000035	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1
000035	
000030	UART 0 receive buffer register
000037	UART 1 transmit/receive mode register
000039	UART 1 baud rate register
00003A	· · · · · · · · · · · · · · · · · · ·
00003B	UART 1 transmission buffer register
00003C	UART 1 transmit/receive control register 0
00003D	UART 1 transmit/receive control register 1
00003E	UART 1 receive buffer register
	LUAR I LIECEIVE DUIIELIEOISTEL

000040	adecimal notation) Count start flag
000040	Count start hag
000042	One-shot start flag
000043	
000044	Up-down flag
000045	
000046	Timer A0 register
000047 000048	
000048	Timer A1 register
00004A	
00004B	Timer A2 register
00004C	Timer A3 register
00004D	
00004E	Timer A4 register
00004F	
000050	Timer B0 register
000051 000052	
000052	Timer B1 register
000054	
000055	Timer B2 register
000056	Timer A0 mode register
000057	Timer A1 mode register
000058	Timer A2 mode register
000059	Timer A3 mode register
00005A	Timer A4 mode register
00005B	Timer B0 mode register
00005C 00005D	Timer B1 mode register Timer B2 mode register
00005E	Processor mode register 0
00005F	Processor mode register 1
000060	Watchdog timer register
000061	Watchdog timer frequency selection flag
000062	Reserved area (Note)
000063	Memory allocation control register
000064	UART 2 transmit/receive mode register
000065	UART 2 baud rate register
000066 000067	UART 2 transmission buffer register
000068	UART 2 transmit/receive control register 0
000069	UART 2 transmit/receive control register 1
00006A	
00006B	UART 2 receive buffer register
00006C	Oscillation circuit control register 0
00006D	Port function control register
00006E	Serial transmit control register
00006F	Oscillation circuit control register 1
000070	A-D/UART 2 trans./rece. interrupt control register
000071	UART 0 transmission interrupt control register UART 0 receive interrupt control register
000072 000073	UART 1 transmission interrupt control register
000073	UART 1 receive interrupt control register
000074	Timer A0 interrupt control register
000076	Timer A1 interrupt control register
000077	Timer A2 interrupt control register
000078	Timer A3 interrupt control register
000079	Timer A4 interrupt control register
00007A	Timer B0 interrupt control register
00007B	Timer B1 interrupt control register
00007C	Timer B2 interrupt control register
00007D	INTo interrupt control register
00007E 00007F	INT1 interrupt control register
	INT ₂ /Key input interrupt control register

Fig. 2 Location of internal peripheral devices and interrupt control registers

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

unced

RESET CIRCUIT

The microcomputer is released from the reset state when the RESET pin is returned to "H" level after holding it at "L" level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A₂₃ – A₁₆ to 0016, A₁₅ – A₈ to the contents of address FFFF16, and A₇ – A₀ to the contents of address FFFF16, and A₇ – A₀ to the contents of address FFFF16. Figure 3 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from "L" to "H" after the main-clock oscillation is fully stabilized.

The status of the internal registers during reset is the same as the M37735MHBXXXFP's.

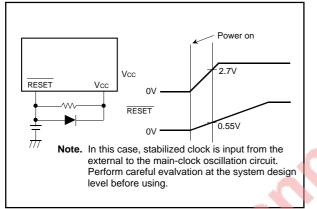


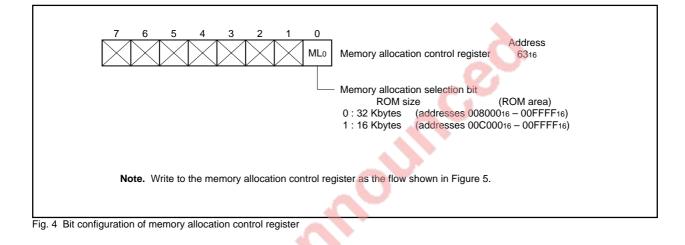
Fig. 3 Example of a reset circuit

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ROM AREA MODIFICATION FUNCTION

The internal ROM size and its address area of the M37735M4LXXXHP can be modified by the memory allocation control register's bit 0 shown in Figure 4.

Figure 6 shows the memory allocation in which the internal ROM size and its address area are modified.


Make sure to write data in the memory allocation control register as the flow shown in Figure 5.

This ROM area modification function is valid in memory expansion mode and single-chip mode.

Table 1 shows the relationship between memory allocation selection

bits and address corresponding to chip-select signals $\overline{\text{CS}_0}$ and $\overline{\text{CS}_1}$. When ordering a mask ROM, Mitsubishi Electric corp. produces the mask ROM using the data within 32 Kbytes (addresses 00800016 – 00FFF16). It is regardless of the selected ROM size (refer to MASK ROM ORDER CONFIRMATION FORM.) Therefore, program "FF16" to the addresses out of the selected ROM area in the EPROM which you tender when ordering a mask ROM.

Address 00FFFF16 of this microcomputer corresponds to the lowest address of the EPROM which you tender.

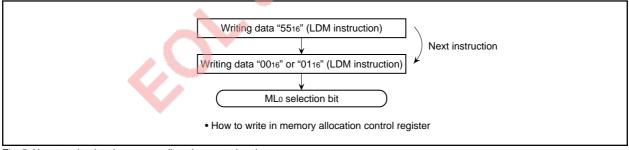


Fig. 5 How to write data in memory allocation control register

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

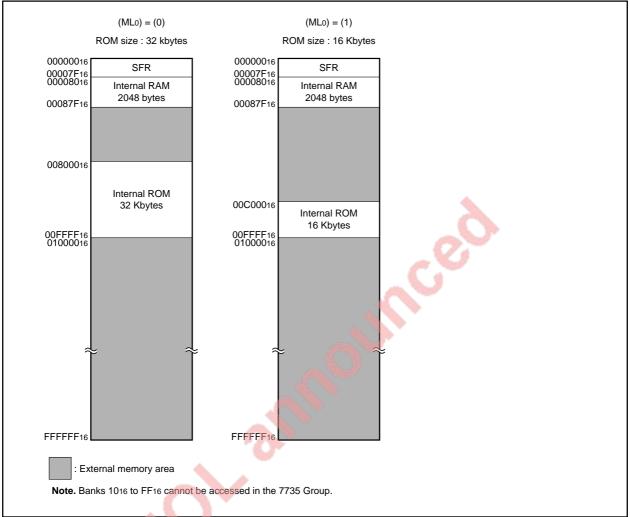


Fig. 6 Memory allocation (modification of internal ROM area by memory allocation selection bit)

Table 1. Relationship between memory allocation selection bits and addresses corresponding to chip-select signals CS0 and CS1

Memory allocation select bit	Internal ROM area	Access address		
MLo		CS0	CS1	
0	00800016 - 00FFFF16	00088016 - 007FFF16	01000016 – 03FFFF16	
1	00C00016 - 00FFFF16	00088016 - 007FFF16	00800016 – 00BFFF16 01000016 – 03FFFF16	

ADDRESSING MODES

The M37735M4LXXXHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37735M4LXXXHP has 103 machine instructions. Refer to the

MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16-BIT MICROCOMPUTERS for details.

DATA REQUIRED FOR MASK ROM ORDERING

Please send the following data for mask orders. (1) M37735M4LXXXHP mask ROM order confirmation form (2) 80P6D mark specification form (3) ROM data (EPROM 3 sets)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to +7	V
AVcc	Analog power source voltage		-0.3 to +7	V
Vi	Input voltage RESET, CNVss, BYTE		-0.3 to +12	V
Vı	Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, VREF, XIN		-0.3 to Vcc + 0.3	V
Vo	Output voltage P00 - P07, P10 - P17, P20 - P27, P30 - P33, P40 - P47, P50 - P57, P60 - P67, P70 - P77, P80 - P87, XOUT, Ē		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Ta = 25 °C	200	mW
Topr	Operating temperature		-40 to +85	°C
Tstg	Storage temperature		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = -40 to +85 °C, unless otherwise noted)

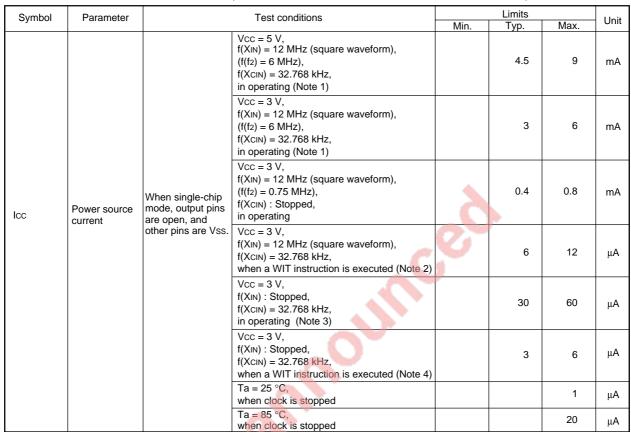
Symbol	Deremeter		Limits		11-14
Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	f(XIN) : Operating	2.7		5.5	v
	Power source voltage f(XiN) : Stopped, f(XciN) = 32.768 kHz	2.7		5.5	
AVcc	Analog power source voltage		Vcc		V
Vss	Power source voltage	•	0		V
AVss	Analog power source voltage		0		V
Vін	High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – F P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)	0.8 Vcc		Vcc	v
Viн	High-level input voltage P10 – P17, P20 – P27 (in single-chip mode)	0.8 Vcc		Vcc	V
Viн	High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode)	0.5 Vcc		Vcc	V
VIL	Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P7 P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)	77, 0		0.2Vcc	V
VIL	Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode)	0		0.2Vcc	V
VIL	Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode)	0		0.16Vcc	V
IOH(peak)	High-level peak output current P00 – P07, P10– P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87			-10	mA
IOH(avg)	High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P3 P40 – P47, P50 – P57, P60 – P67, P70 – P7 P80 – P87			-5	mA
IOL(peak)	Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87			10	mA
IOL(peak)	Low-level peak output current P44 – P47, P50 – P53			16	mA
IOL(avg)	Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P3 P40 – P43, P54 – P57, P60 – P67, P70 – P7 P80 – P87	· ·		5	mA
IOL(avg)	Low-level average output current P44 – P47, P50 – P53			12	mA
f(XIN)	Main-clock oscillation frequency (Note 4)			12	MHz
f(XCIN)	Sub-clock oscillation frequency		32.768	50	kHz

Notes 1. Average output current is the average value of a 100 ms interval.

2. The sum of IoL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IoH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IoL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IoH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less.

3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = "1".

4. The maximum value of $f(X_{IN}) = 6$ MHz when the main clock division selection bit = "1".


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Limits Symbol Test conditions Parameter Unit Min. Max. Тур. High-level output voltage P00 - P07, P10 - P17, P20 - P27, P33. Vcc = 5 V. IOH = -10 mA3 Vон P40 - P47, P50 - P57, P60 - P67, P70 - P77, V Vcc = 3 V, IOH = -1 mA 2.5 P80 - P87 Vон High-level output voltage P00 - P07, P10 - P17, P20 - P27, P33 V Vcc = 5 V, юн = -400 µА 4.7 3.1 Vcc = 5 V, Iон = -10 mA V Vон High-level output voltage P30 - P32 Vcc = 5 V, юн = -400 µА 4.8 2.6 Vcc = 3 V, Iон = -1 mA 3.4 Vcc = 5 V, Iон = -10 mA High-level output voltage E V Vон Vcc = 5 V, юн = -400 µА 4.8 2.6 Vcc = 3 V, юн = –1 mA Low-level output voltage P00 - P07, P10 - P17, P20 - P27, P33, 2 Vcc = 5 V, IoL = 10 mA Vol P40 - P43, P54 - P57, P60 - P67, P70 - P77, V 0.5 Vcc = 3 V, IoL = 1 mA P80 - P87 Vcc = 5 V, IoL = 16 mA 1.8 Vol Low-level output voltage P44 - P47, P50 - P53 V Vcc = 3 V, IoL = 10 mA 1.5 Vol Low-level output voltage P00 - P07, P10 - P17, P20 - P27, P33 0.45 V Vcc = 5 V, IoL = 2 mA Vcc = 5 V, IoL = 10 mA 1.9 0.43 Vol Low-level output voltage P30 - P32 V Vcc = 5 V, IoL = 2 mAVcc = 3 V, IoL = 1 mA 0.4 1.6 Vcc = 5 V, IoL = 10 mA Vol Low-level output voltage $\overline{\mathsf{E}}$ Vcc = 5 V, IoL = 2 mA 0.4 V 0.4 Vcc = 3 V, IoL = 1 mAHysteresis HOLD, RDY, TA0IN - TA4IN, TB0IN - TB2IN, 0.4 1 Vcc = 5 V $VT_{+} - VT_{-}$ INT0 - INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, V Vcc = 3 V0.1 0.7 CLK1, CLK2, KI0 - KI3 0.5 Vcc = 5 V 0.2 V VT+ - VT-Hysteresis RESET 0.4 Vcc = 3 V0.1 Vcc = 5 V0.1 0.4 V VT+ – VT– Hysteresis XIN Vcc = 3 V0.06 0.26 Vcc = 5 V0.4 0.1 V VT+ – VT– Hysteresis XCIN (When external clock is input) Vcc = 3 V 0.26 0.06 High-level input current P00 - P07, P10 - P17, P20 - P27, P30 - P33, Vcc = 5 V. V = 5 V5 μΑ Ιн P40 - P47, P50 - P57, P60 - P67, P70 - P77, Vcc = 3 V, VI = 3 V 4 P80 - P87, XIN, RESET, CNVss, BYTE Low-level input current P00 - P07, P10 - P17, P20 - P27, P30 - P33, Vcc = 5 V. V = 0 V-5 Iш μΑ P40 - P47, P50 - P53, P60, P61, P65 - P67, Vcc = 3 V, VI = 0 V -4 P70 - P77, P80 - P87, XIN, RESET, CNVss, BYTE $V_{I} = 0 V$ Low-level input current P54 - P57, P62 - P64 Vcc = 5 V -5 without a pull-up μΑ Vcc = 3 V -4 transistor ١L $V_{I} = 0 V$ Vcc = 5 V-0.25-0.5 -1.0 with a pull-up mA Vcc = 3 V -0.08 -0.18-0.35 transistor When clock is stopped. V VRAM RAM hold voltage 2

ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = -40 to +85 °C, unless otherwise noted)

Notes 1. This applies when the main clock external input selection bit = "1", the main clock division selection bit = "0", and the signal output stop bit = "1".

2. This applies when the main clock external input selection bit = "1" and the system clock stop bit at wait state = "1".

3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.

4. This applies when the Xcour drivability selection bit = "0" and the system clock stop bit at wait state = "1".

A-D CONVERTER CHARACTERISTICS

Notice: This is not a final specification. Some parametric limits are subject to chan

(Vcc = AVcc = 5 V, Vss = AVss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note))

Symbol	Parameter	Test conditions	Limits			Unit
Gymbol			Min.	Тур.	Max.	
—	Resolution	VREF = VCC			10	Bits
—	Absolute accuracy	VREF = VCC			± 3	LSB
RLADDER	Ladder resistance	VREF = VCC	10		25	kΩ
t CONV	Conversion time		19.6			μs
VREF	Reference voltage		2.7		Vcc	V
VIA	Analog input voltage		0		Vref	V

Note. This applies when the main clock division selection bit = "0" and $f(f_2) = 6$ MHz.

PREUMINARY Notice: This is not a tinal specification. Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS (Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) **Notes 1.** This applies when the main clock division selection bit = "0" and f(f2) = 6 MHz.

2. Input signal's rise/fall time must be 100 ns or less, unless otherwise noted.

External clock input

Symbol	Parameter	Lir	Unit	
		Min.	Max.	Unit
tc	External clock input cycle time (Note 1)	83		ns
tw(H)	External clock input high-level pulse width (Note 2)	33		ns
tw(L)	External clock input low-level pulse width (Note 2)	33		ns
tr	External clock rise time		15	ns
tf	External clock fall time		15	ns

Notes 1. When the main clock division selection bit = "1", the minimum value of t_c = 166 ns.

2. When the main clock division selection bit = "1", values of $t_w(H) / t_c$ and $t_w(L) / t_c$ must be set to values from 0.45 through 0.55.

Single-chip mode

Symbol	Parameter		Limits		
Cymbol		Min.	Max.	Unit	
tsu(P0D–E)	Port P0 input setup time	200		ns	
tsu(P1D–E)	Port P1 input setup time	200		ns	
tsu(P2D–E)	Port P2 input setup time	200		ns	
tsu(P3D–E)	Port P3 input setup time	200		ns	
tsu(P4D–E)	Port P4 input setup time	200		ns	
tsu(P5D–E)	Port P5 input setup time	200		ns	
tsu(P6D–E)	Port P6 input setup time	200		ns	
tsu(P7D–E)	Port P7 input setup time	200		ns	
tsu(P8D–E)	Port P8 input setup time	200		ns	
th(E–P0D)	Port P0 input hold time	0		ns	
th(E–P1D)	Port P1 input hold time	0		ns	
th(E–P2D)	Port P2 input hold time	0		ns	
th(E–P3D)	Port P3 input hold time	0		ns	
th(E–P4D)	Port P4 input hold time	0		ns	
th(E–P5D)	Port P5 input hold time	0		ns	
th(E–P6D)	Port P6 input hold time	0		ns	
th(E–P7D)	Port P7 input hold time	0		ns	
th(E–P8D)	Port P8 input hold time	0		ns	

Memory expansion mode and microprocessor mode

Symbol	Parameter	Limits		Unit
	T drameter	Min.	Max.	Unit
tsu(D–RDE)	Data input setup time	80		ns
tsu(RDY–φ1)	RDY input setup time	80		ns
tsu(HOLD–φ1)	HOLD input setup time	80		ns
th(RDE–D)	Data input hold time	0		ns
th(\phi1-RDY)	RDY input hold time	0		ns
th(\phi1-HOLD)	HOLD input hold time	0		ns

PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer A input (Count input in event counter mode)

Symbol	Parameter	Limits		Unit
Gymbol		Min.	Max.	
tc(TA)	TAin input cycle time	250		ns
tw(TAH)	TAin input high-level pulse width	125		ns
tw(TAL)	TAin input low-level pulse width	125		ns

Timer A input (Gating input in timer mode)

Symbol	Parameter	Lir	Limits	
Gymbol		Min.	Max.	- Unit
tc(TA)	TAin input cycle time (Note)	666		ns
tw(TAH)	TAin input high-level pulse width (Note)	333		ns
tw(TAL)	TAin input low-level pulse width (Note)	333		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS".

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Parameter	Limits		Unit
Gymbol			Min.	Max.	Unit
tc(TA)	TAiin input cycle time (Note)		666		ns
tw(TAH)	TAin input high-level pulse width		166		ns
tw(TAL)	TAin input low-level pulse width		166		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS".

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Lir	nits	Unit
Gymbol		Min.	Max.	Unit
tw(TAH)	TAin input high-level pulse width	166		ns
tw(TAL)	TAin input low-level pulse width	166		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lir	nits	Unit
Symbol	Falanielei	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3333		ns
tw(UPH)	TAiout input high-level pulse width	1666		ns
tw(UPL)	TAiout input low-level pulse width	1666		ns
tsu(UP–Tin)	TAiout input setup time	666		ns
th(Tın−UP)	TAiout input hold time	666		ns

Timer A input (Two-phase pulse input in event counter mode)

Symbol	Parameter	Lir	mits	Unit
	Falanciel	Min.	Max.	Unit
tc(TA)	TAjın input cycle time	2000		ns
tsu(TAjın–TAjout)	TAjin input setup time	500		ns
tsu(TAjout–TAjin)	TAjout input setup time	500		ns

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change

MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

Symbol	Parameter	Limits		Unit
Symbol		Min.	Max.	
tc(TB)	TBin input cycle time (one edge count)	250		ns
tw(TBH)	TBin input high-level pulse width (one edge count)	125		ns
tw(TBL)	TBin input low-level pulse width (one edge count)	125		ns
tc(TB)	TBin input cycle time (both edges count)	500		ns
tw(TBH)	TBin input high-level pulse width (both edges count)	250		ns
tw(TBL)	TBin input low-level pulse width (both edges count)	250		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Lii	Unit	
Gymbol		Min.	Max.	
tc(TB)	TBin input cycle time (Note)	666		ns
tw(TBH)	TBin input high-level pulse width (Note)	333		ns
tw(TBL)	TBin input low-level pulse width (Note)	333		ns
Note. Limits	change depending on f(XIN). Refer to "DATA FORMULAS".			
Timer B i				

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Lir	nits	Unit
Gymbol	T arameter	Min.	lin. Max.	Unit
tc(TB)	TBin input cycle time (Note)	666		ns
tw(TBH)	TBin input high-level pulse width (Note)	333		ns
tw(TBL)	TBin input low-level pulse width (Note)	333		ns

Note. Limits change depending on f(XIN). Refer to "DATA FORMULAS".

A-D trigger input

Symbol	Parameter	Lir	Unit	
Gymbol	i didificici	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (minimum allowable trigger)	1333		ns
tw(ADL)	ADTRG input low-level pulse width	166		ns

Serial I/O

Symbol	Parameter	Limits		Unit
	raianietei	Min.	Max.	Onit
tc(CK)	CLKi input cycle time	333		ns
tw(CKH)	CLKi input high-level pulse width	166		ns
tw(CKL)	CLKi input low-level pulse width	166		ns
td(C–Q)	TxDi output delay time		100	ns
th(C–Q)	TxDi hold time	0		ns
tsu(D–C)	RxDi input setup time	65		ns
th(C–D)	RxDi input hold time	75		ns

External interrupt INTi input, key input interrupt Kli input

Symbol	Parameter	Min. Max. 250 250 250 250	nits	Unit
Symbol	Falameter		Unit	
tw(INH)	INTi input high-level pulse width	250		ns
tw(INL)	INTi input low-level pulse width	250		ns
tw(KIL)	Kii input low-level pulse width	250		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DATA FORMULAS

Timer A input (Gating input in timer mode)

Symbol	Parameter	Limits		Unit	
Cymbol	Symbol		Max.	Unit	
tc(TA)	TAiın input cycle time	$\frac{8 \times 10^9}{2 \cdot f(f_2)}$		ns	
tw(TAH)	TAin input high-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns	
tw(TAL)	TAin input low-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns	

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Limits		Linit	
Gymbol	i diameter		Min.	Max.	Unit
tc(TA)	TAin input cycle time		$\frac{8 \times 10^9}{2 \cdot f(f_2)}$		ns

Timer B input (In pulse period measurement mode or pulse width measurement mode)

Symbol	Parameter	Limits		Unit
Cymbol	i didificici	Min.	Max.	Unit
tc(TB)	TBin input cycle time	$\frac{8 \times 10^9}{2 \cdot f(f_2)}$		ns
tw(TBH)	TBin input high-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns
tw(TBL)	TBin input low-level pulse width	$\frac{4 \times 10^9}{2 \cdot f(f_2)}$		ns

Note. f(f2) represents the clock f2 frequency.

For the relation to the main clock and sub clock, refer to Table 10 in data sheet "M37735MHBXXXFP".

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS

 $(Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85^{\circ}C, f(Xin) = 12 MHz, unless otherwise noted (Note))$

Single-chip mode

Symbol	Parameter	Test conditions	Limits		Unit
Symbol	Falanetei		Min.	Max.	
td(E–P0Q)	Port P0 data output delay time			300	ns
td(E–P1Q)	Port P1 data output delay time			300	ns
td(E–P2Q)	Port P2 data output delay time			300	ns
td(E–P3Q)	Port P3 data output delay time			300	ns
td(E–P4Q)	Port P4 data output delay time	Fig. 7		300	ns
td(E–P5Q)	Port P5 data output delay time			300	ns
td(E–P6Q)	Port P6 data output delay time			300	ns
td(E–P7Q)	Port P7 data output delay time			300	ns
td(E–P8Q)	Port P8 data output delay time]		300	ns

Note. This applies when the main clock division selection bit = "0" and $f(f_2) = 6$ MHz.

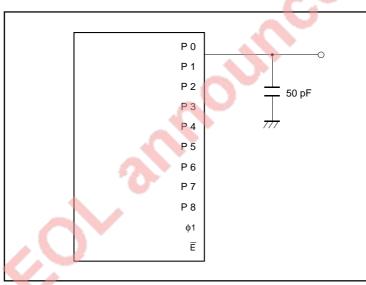


Fig. 7 Measuring circuit for ports P0 – P8 and ϕ_1

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(Vcc = 2.7 - 5.5 V, Vss = 0 V, Ta = -40 to +85 °C, f(XiN) = 12 MHz (Note 1), unless otherwise noted)

Symbol	Parameter	(Note 2)	Test	Lin	nits	1.1
Symbol	Falameter	Wait mode	conditions	Min.	Max.	Unit
td(CS-WE)		No wait		20		ns
td(CS-RDE)	Chip-select output delay time	Wait 1				
th(WE–CS)		Wait 0		182		ns
th(RDE–CS)	Chip-select hold time			4		ns
td(An–WE)		No wait		20		ns
td(An–RDE)	Address output delay time	Wait 1	-	-		
		Wait 0		182		ns
td(A–WE)	Address output delay time	No wait Wait 1		20		ns
td(A–RDE)		Wait 1 Wait 0		162		ns
th(WE-An)		Trait 0		40		
th(RDE–An)	Address hold time			40		ns
		No wait		40		ns
tw(ALE)	ALE pulse width	Wait 1	7			113
		Wait 0		123		ns
		No wait	Fig. 7	10		ns
tsu(A–ALE)	Address output setup time	Wait 1		-		_
		Wait 0		93		ns
th(ALE–A)	Address hold time	No wait Wait 1		9		ns
		Wait 0		40		ns
		No wait		-		-
td(ALE–WE)	ALE output delay time	Wait 1		4		ns
td(ALE-RDE)		Wait 0		40		ns
td(WE-DQ)	Data output delay time			-	90	ns
th(WE–DQ)	Data hold time]	40		ns
		No wait		131		ns
tw(WE)	WEL/WEH pulse width	Wait 1		298		ns
		Wait 0				
tpxz(RDE–DZ)	Floating start delay time		-	50	10	ns
tpzx(RDE–DZ)	Floating release delay time	Nervert		53		ns
tw(RDE)		No wait Wait 1		128		ns
	RDE pulse width	Wait 0		295		ns
td(RSMP–WE)	TOTTO sudand delay fire			25		
td(RSMP-RDE)	RSMP output delay time			-		ns
th(φ1–RSMP)	RSMP hold time			0		ns
td(WE–φ1)	φ1 output delay time			0	30	ns
td(RDE						
td(φ1–HLDA)	HLDA output delay time				120	ns

Notes 1. This applies when the main clock division selection bit = "0" and $f(f_2) = 6$ MHz.

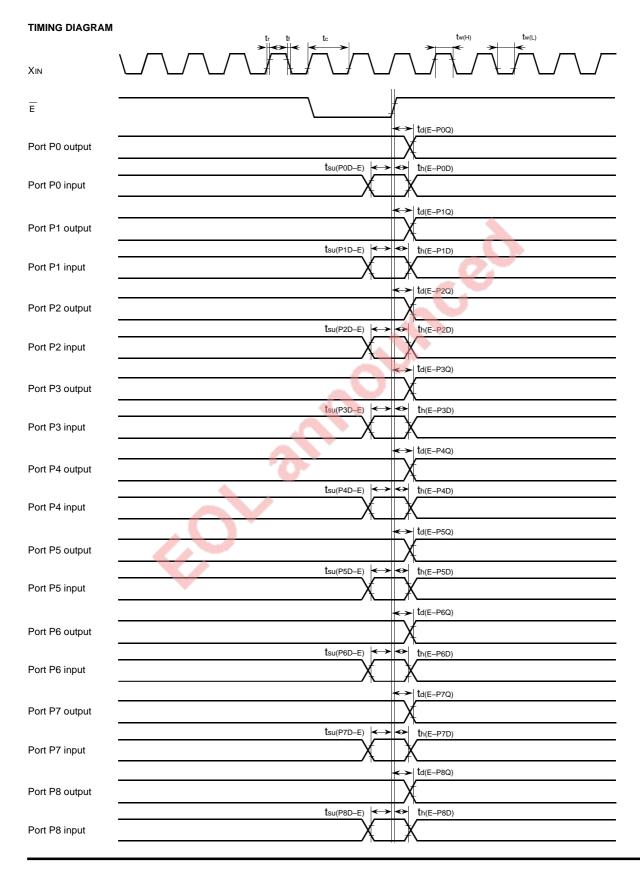
2. No wait : Wait bit = "1".

Wait 1 : The external memory area is accessed with wait bit = "0" and wait selection bit = "1". Wait 0 : The external memory area is accessed with wait bit = "0" and wait selection bit = "0".

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

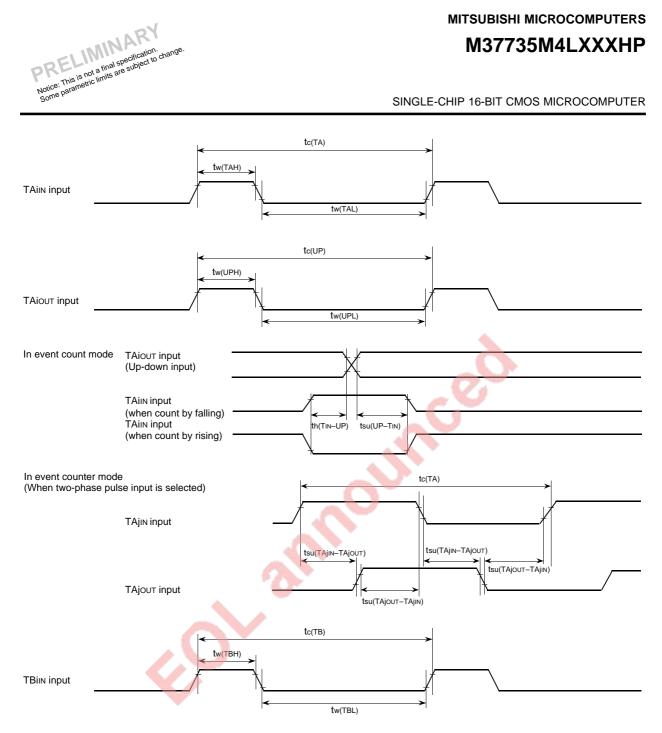
Symbol	Parameter		Limits		Linit
Gymbol	i didificici	Wait mode	Min.	Max.	Unit
		No wait	$\frac{1 \times 10^9}{0.00000000000000000000000000000000000$		ns
td(CS–WE)	Chip-select output delay time	Wait 1	$2 \cdot f(f_2)$		115
td(CS-RDE)		Wait 0	$\frac{3 \times 10^9}{-68}$		ns
		Waite	$2 \cdot f(f_2) = 00$		110
th(WE–CS)	Chip-select hold time		4		ns
th(RDE–CS)	•	NI	4 14 4 09		
		No wait Wait 1	$\frac{1 \times 10^9}{2 \cdot f(f_2)} - 63$		ns
td(An–WE) td(An–RDE)	Address output delay time	wait i	3 X 10 ⁹ co		
tu(AII=RDE)		Wait 0	$\frac{3 \times 10}{2 \cdot f(f_2)} - 68$		ns
		No wait	1 ¥ 10 ⁹		
td(A–WE)		Wait 1	$\frac{1 \times 10}{2 \cdot f(f_2)} - 63$		ns
td(A–RDE)	Address output delay time		3 × 10 ⁹		
		Wait 0	$\frac{3 \times 10}{2 \cdot f(f_2)} - 88$		ns
th(WE–An)		1	$1 \times 10^{9} - 43$		
th(RDE–An)	Address hold time		$2 \cdot f(f_2) = 43$		ns
		No wait	1×10^9 - 43		ns
tw(ALE)	ALE pulse width	Wait 1	2 · f(f2)		113
		Wait 0	$\frac{2 \times 10^9}{-43}$		ns
			$2 \cdot f(f_2)$		
		No wait	$\frac{1 \times 10^9}{2 \times 10^9} - 73$		ns
tsu(A–ALE)	Address output setup time	Wait 1	$2 \cdot f(f_2)$		
		Wait 0	$\frac{2 \times 10^9}{2 \cdot f(f_2)} - 73$		ns
		No wait	2 • 1(12)		
		Wait 1	9		ns
th(ALE–A)	Address hold time	Walt	1 X 10 ⁹ 40		
		Wait 0	$\frac{1}{2 \cdot f(f_2)} - 43$		ns
		No wait			
td(ALE–WE)	ALE output delay time	Wait 1	4		ns
td(ALE-RDE)		Wait 0	$\frac{1 \times 10^9}{-43}$		ns
		wait 0	2 · f(f2)		110
td(WE–DQ)	Data output delay time			90	ns
th(WE–DQ)	Data hold time		$\frac{1 \times 10^9}{2} - 43$		ns
		1	$\frac{2 \cdot f(f_2)}{2 \cdot f(f_2)} = 43$		
		No wait	$\frac{2 \times 10^9}{2 \cdot f(f_2)} - 35$		ns
tw(WE)	WEL/WEH pulse width	Wait 1	4 X 10 ⁹		
		Wait 0	$\frac{-4 \times 10}{2 \cdot f(f_2)} - 35$		ns
tpxz(RDE–DZ)	Floating start delay time	1 Walt 0		10	ns
			1 X 10 ⁹ 20		
tpzx(RDE–DZ)	Floating release delay time		$\frac{1\times10}{2\cdot f(f_2)} - 30$		ns
			2 X 10 ⁹ 20		
tw(RDE)	RDE pulse width	No wait	$2 \cdot f(f_2) = 30$		ns
		Wait 1	$\frac{4 \times 10^9}{-38}$ - 38		ns
		Wait 0	2 · f(f2)		113
td(RSMP–WE)	RSMP output delay time		$\frac{1 \times 10^9}{-58}$		ns
td(RSMP-RDE)			2 · f(f2)		
th(φ1–RSMP)	RSMP hold time		0		ns
td(WE–φ1)	φ1 output delay time		0	30	ns
td(RDE–φ1)			, č		

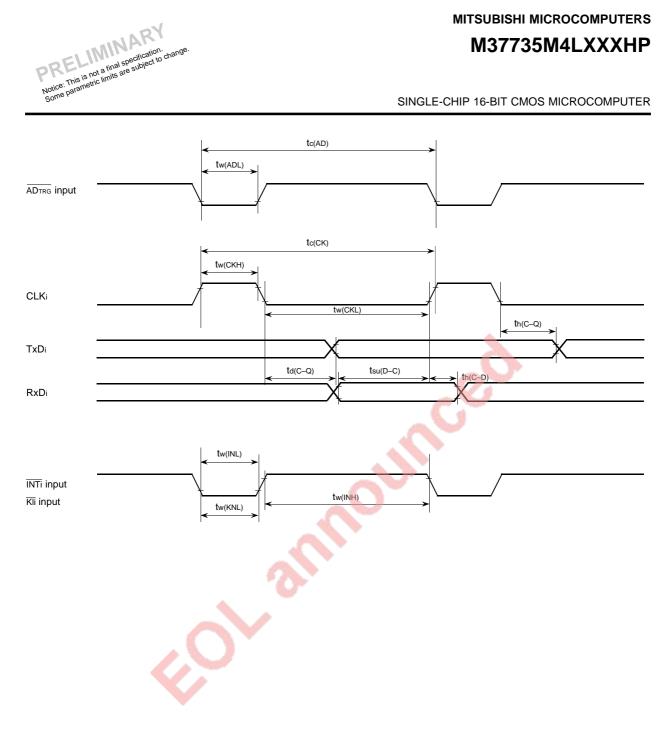
Bus timing data formulas (Vcc = 2.7 - 5.5V, Vss = 0 V, Ta = -40 to +85 °C, f(XIN) = 12 MHz (Max. Note1), unless otherwise noted)


Notes 1. This applies when the main clock division selection bit = "0".

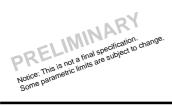
2. f(f2) represents the clock f2 frequency.

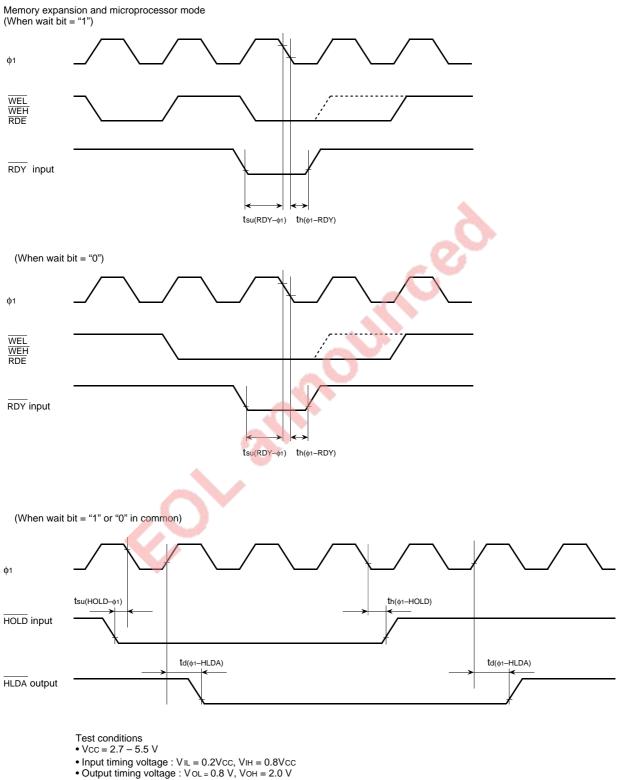
For the relation to the main clock and sub clock, refer to Table 10 in data sheet "M37735MHBXXXFP".

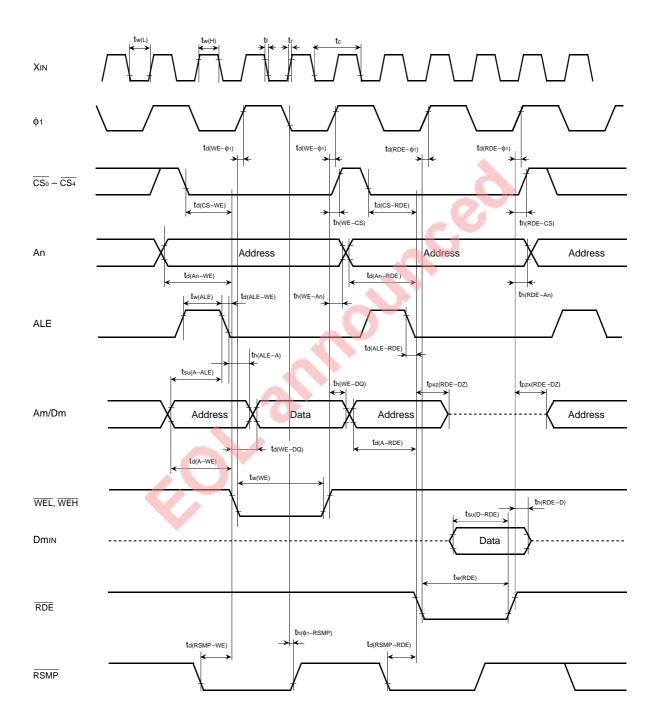

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER



PRELIMINAR


Notice: This is not a final specificatio Some parametric limits are subject t





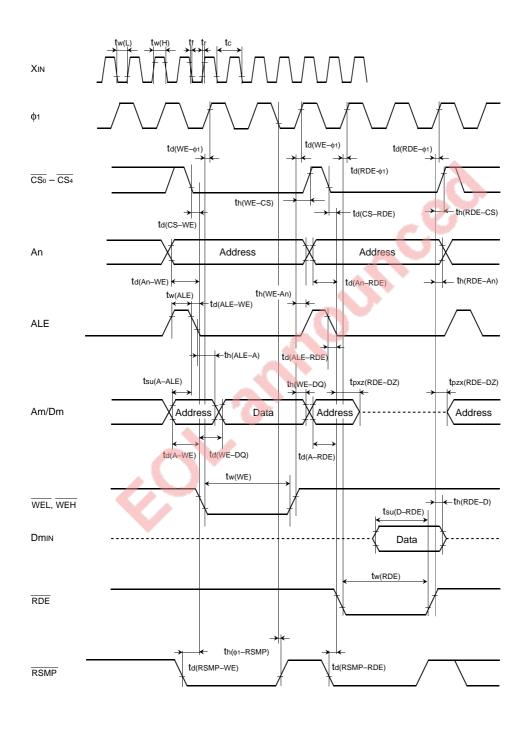
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion and microprocessor mode (No wait : When wait bit = "1")

Test conditions

• Vcc = 2.7 - 5.5 V

• Output timing voltage : $V_{OL} = 0.8 \text{ V}$, $V_{OH} = 2.0 \text{ V}$ • Data input DmIN : $V_{IL} = 0.16 \text{ Vcc}$, $V_{IH} = 0.5 \text{ Vcc}$



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion and microprocessor mode

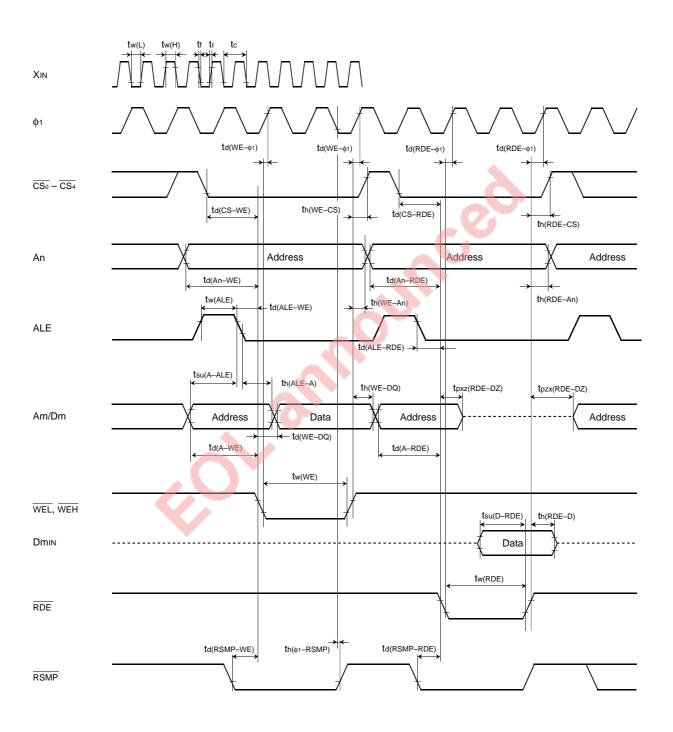
(Wait 1 : The external area is accessed when wait bit = "0" and wait selection bit = "1".)

Test conditions

• Vcc = 2.7 - 5.5 V

• Output timing voltage : VoL = 0.8 V, VoH = 2.0 V

• Data input DmIN : VIL = 0.16 Vcc, VIH = 0.5 Vcc



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

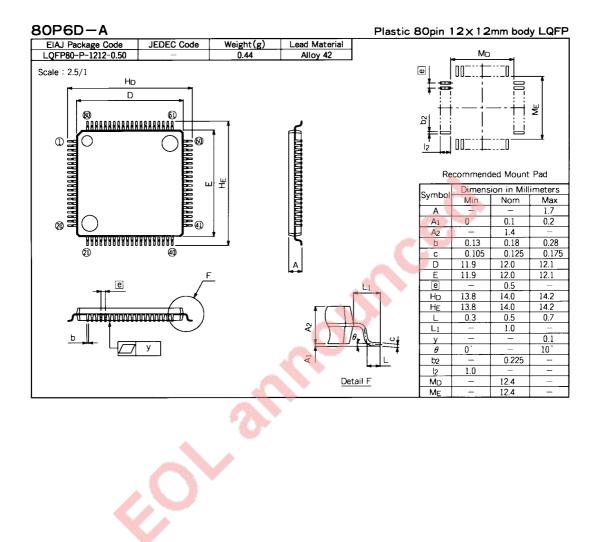
Memory expansion and microprocessor mode

(Wait 0 : The external memory are is accessed when wait bit = "0" and wait selection bit = "0".)

Test conditions

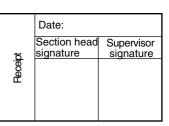
• Vcc = 2.7 - 5.5 V

• Output timing voltage : VoL = 0.8 V, VoH = 2.0 V


• Data input DmIN : VIL = 0.16 Vcc, VIH = 0.5 Vcc

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE



GZZ-SH00-54B<73A0>

7700 FAMILY MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37735M4LXXXHP MITSUBISHI ELECTRIC

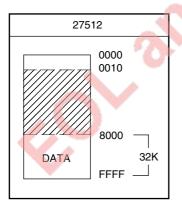
Mask ROM number

Note : Please fill in all items marked *

		Company		TEL	e es	Responsible officer	Supervisor
*	Customer	name		()	t S		
		Date issued	Date:		lssua signa		

*1. Confirmation

Specify the name of the product being ordered.


Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM areas

EPROM Type :

(1) Set "FF16" in the shaded area.

(2) Address 016 to 1016 are the area for storing the data on model designation and options. This area must be written with the data shown below.

Details for option data are given next in the section describing the STP instruction option.

Address and data are written in hexadecimal notation.

	Address		Addres	ss	Address
4D	0	4C	8	Option data	10
33	1	FF	9		
37	2	FF	Α		
37	3	FF	В		
33	4	FF	С		
35	5	FF	D		
4D	6	FF	Е		
34	7	FF	F		

%2. STP instruction option

One of the following sets of data should be written to the option data address (1016) of the EPROM you have ordered. Check @ in the appropriate box.

STP instruction enable

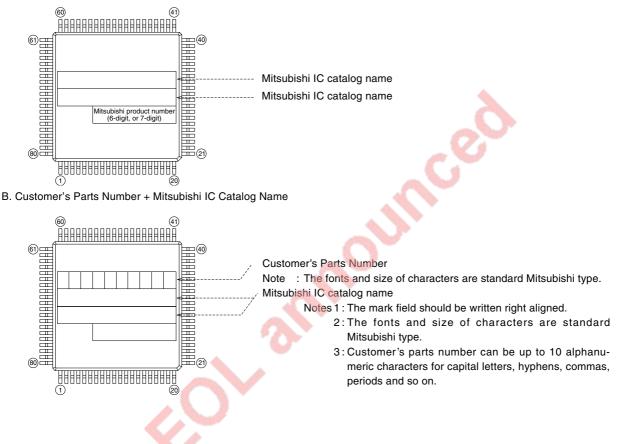
STP instruction disable

0116 Address 1016 0016 Address 1016

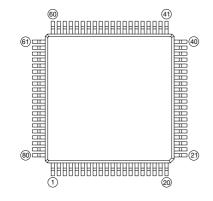
%3. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37735M4LXXXHP) and attach to the Mask ROM Order Confirmation Form.

%4. Comments



80P6S (80-PIN QFP) MARK SPECIFICATION FORM 80P6D, 80P6Q (80-PIN Fine-pitch QFP)


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

C. Special Mark Required

- Notes 1 : If Special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated technically as close as possible. Mitsubishi product number (6-digit, or 7-digit) and Mask ROM number (3-digit) are always marked for sorting the products.
 - 2 : If special character fonts (e.g., customer's trade mark logo) must be used in Special Mark, check the box below.

For the new special character fonts, a clean font original (ideally logo drawing) must be submitted.

Special character fonts required

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

RenesasTechnologyCorp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs! -

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials -

- Notes regarding these materials
 Notes regarding these materials
 Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation inscharted in these materials.
 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product information before purchasing a product listed herein.
 Witsubishi Electric Corporation semiconductors are not designed or for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation semiconductor product distributor or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear expeater use.
 The prior written approval of Mitsubishi Electric Corporation file subjects to constained in the see expert control restrictions, they was the exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 If these products or technologies are Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 1996 MITSUBISHI ELECTRIC CORP New publication, effective Dec. 1996. Specifications subject to change without notice.

REVISION DESCRIPTION LIST

M37735M4LXXXHP DATA SHEET

Rev.		Rev.
No.	Revision Description	date
1.0	First Edition	970604
1.01	The following are added:	980526
	•MASK ROM ORDER CONFIRMATION FORM	
	•MARK SPECIFICATION FORM	
	tot announced	