inter_{sil}

ISL72027CSEH

3.3V Radiation Hardened CAN Transceiver with Listen Mode and Split Termination Output

The ISL72027CSEH is a radiation hardened 3.3V CAN transceiver that is compatible with the ISO11898-2 standard for applications calling for Controller Area Network (CAN) serial communication in satellites and aerospace communications, and telemetry data processing in harsh industrial environments.

This device can transmit and receive at bus speeds of up to 5Mbps. It can drive a 40m cable at 1Mbps per the ISO11898-2 specification. The device is designed to operate over a common-mode range of -7V to +12V, with a maximum of 120 nodes. The device has three discrete selectable driver rise/fall time options, a Listen mode feature, and a Split termination output.

The receiver (Rx) inputs feature a "full fail-safe" design, which ensures a logic high Rx output if the Rx inputs are floating, shorted, or terminated but undriven.

The ISL72027CSEH is available in an 8 Ld hermetic ceramic flatpack and die form that operates across the temperature range of -55°C to +125°C. The logic inputs are tolerant with 5V systems.

Other CAN transceivers available are the ISL72026CSEH and ISL72028CSEH. For a list of differences between these devices, refer to Table 4.

Applications

- Satellites and aerospace communications
- · Telemetry data processing and high-end industrial

Features

- Electrically screened to SMD 5962-15228
- ESD protection on all pins: 4kV HBM
- Compatible with ISO11898-2
- Operating supply range: 3.0V to 3.6V
- Bus pin fault protection to ±20V
- Undervoltage lockout
- Cold spare: powered down devices/nodes do not affect active devices operating in parallel
- · Three selectable driver rise and fall times
 - Fast speed (RS = 0V) edges and propagation delays optimized for data rate of 1Mbps
 - Medium speed (RS = 10kΩ) edges and propagation delays optimized for data rate of 500kbps
 - Slow speed (RS = 50kΩ) edges and propagation delays optimized for data rate of 250kbps
- Glitch free bus I/O during power-up and powerdown
- Full fail-safe (open, short, terminated/undriven) receiver
- · Hi-Z input allows for 120 nodes on the bus
- High data rates: up to 5Mbps
- Quiescent supply current: 7mA (maximum)
- Listen mode supply current: 2mA (maximum)
- -7V to +12V common-mode input voltage range
- 5V tolerant logic inputs
- Thermal shutdown
- Acceptance tested to 75krad(Si) (LDR) and to 100krad(Si) (HDR) wafer-by-wafer
- Radiation hardened
 - SEL/B immune to LET_{TH}: 86.4MeV•cm²/mg
 - Low dose rate (0.01rad(Si)/s): 75krad(Si)
 - High does rate (50-300rad(Si)/s): 100krad(Si)

Figure 1. Typical Application

Figure 2. Fast Driver and Receiver Waveforms

Contents

1.	Pin l	nformation
	1.1	Pin Assignments
	1.2	Pin Descriptions
	1.3	Equivalent Input and Output Diagrams
2.	Spec	cifications
	2.1	Absolute Maximum Ratings
	2.2	Thermal Information
	2.3	Recommended Operating Conditions
	2.4	Electrical Specifications
	2.5	Test Circuits and Waveforms 11
3.	Турі	cal Performance Curves
4.	Fund	ctional Description
	4.1	Overview
	4.2	Slope Adjustment
		4.2.1 Fast Speed Mode
		4.2.2 Medium Speed Mode
		4.2.3 Slow Speed Mode
	4.3	Cable Length
	4.4	Cold Spare
	4.5	Listen Mode
	4.6	Using 3.3V Devices in 5V Systems
	4.7	Split Mode Termination
5.	Pack	age and Die Characteristics
	5.1	Metallization Mask Layout
6.	Pack	cage Outline Drawing
7.	Orde	ering Information
8.	Revi	sion History

1. Pin Information

1.1 Pin Assignments

Note: The package lid is tied to ground.

Figure 3. Pin Assignments - Top View

1.2 Pin Descriptions

Pin Number	Pin Name	Function
1	D	CAN driver digital input. A LOW bus state is Dominant and a HIGH bus state is Recessive. Internally tied HIGH.
2 GND Ground connection.		Ground connection.
3	VCC	System power supply input (3.0V to 3.6V). The typical voltage for the device is 3.3V.
4	R	CAN data receiver output. A LOW bus state is Dominant and a HIGH bus state is Recessive.
5	VREF	VCC/2 reference output for Split mode termination.
6	CANL	CAN bus line for low level output.
7	CANH	CAN bus line for high level output.
8	RS	A resistor to GND from this pin controls the rise and fall time of the CAN output waveform. Drive RS HIGH to put the device in Listen mode.

1.3 Equivalent Input and Output Diagrams

Figure 4. CANH and CANL Inputs

VCC

Figure 6. CANL Output

Figure 7. D Input

Figure 8. R Output

Figure 9. RS Input

Figure 10. V_{REF}

2. Specifications

2.1 Absolute Maximum Ratings

Caution: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

Parameter	Minimum	Maximum	Unit		
VCC to GND with/without Ion Beam	-0.3	5.5	V		
CANH, CANL, VREF Under Ion Beam		±20	V		
CANH, CANL, VREF		±20	V		
I/O Voltages D, R, RS	-0.5	7	V		
Receiver Output Current	-10	10	mA		
Output Short-Circuit Duration	Continuous				
Maximum Junction Temperature		+150	°C		
Maximum Storage Temperature Range	-65	+150	°C		
Human Body Model (Tested per MIL-STD-883 TM3015.7)					
CANH, CANL Bus Pins	-	4	kV		
All Other Pins	-	4	kV		
Charged Device Model (Tested per JS-002-2014)	-	750	V		
Machine Model (Tested per JESD22-A115C)	-	200	V		

2.2 Thermal Information

Parameter	Package	Symbol	Conditions	Typical Value	Unit
Thermal Resistance	8 Ld FP Package	$\theta_{JA}^{[1]}$	Junction to ambient	39	°C/W
merma Resistance	8 Lo FP Package	$\theta_{JC}^{[2]}$	Junction to case	7	°C/W

 θ_{JA} is measured with the component mounted on a high-effective thermal conductivity test board (two buried 1oz copper planes) with direct attach features package base mounted to a PCB thermal land with a 10 mil gap fill material having a thermal conductivity of 1W/m-K. Refer to TB379.

2. For $\theta_{JC},$ the case temperature location is the center of the package underside.

2.3 Recommended Operating Conditions

Parameter	Minimum	Maximum	Unit
Temperature Range	-55	+125	°C
V _{CC} Supply Voltage	3	3.6	V
Voltage on CAN I/O	-7	12	V
V _{IH} D Logic Pin	2	5.5	V
V _{IL} D Logic Pin	0	0.8	V
I _{OH} Driver (CANH - CANL = 1.5V, V _{CC} = 3.3V)	-	-40	mA
I _{OH} Receiver (V _{OH} = 2.4V)	-	-4	mA

Parameter	Minimum	Maximum	Unit
I _{OL} Driver (CANH - CANL = 1.5V, V _{CC} = 3.3V)	-	40	mA
I _{OL} Receiver (V _{OL} = 0.4V)	-	4	mA

2.4 Electrical Specifications

Test Conditions: $V_{CC} = 3V$ to 3.6V. Typical values are at $T_A = +25^{\circ}C^{[1]}$, unless otherwise specified ^[2]. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s, and over a total ionizing dose of 100krad(SI) at +25°C with exposure of a high dose rate of 50krad(SI)/s to 300krad(SI)/s.

Parameter	Symbol	Test Conditions		Temp (°C)	Min ^[3]	Typ ^[1]	Max ^[3]	Unit
Driver Electrical (Characterist	ics						
Dominant Bus	New Sector	D = 0V, CANH, RS = 0V, Figure 11, Figure 12		Full	2.25	2.85	V _{CC}	V
Output Voltage	V _{O(DOM)}	D = 0V, CANL, RS = 0V, Figure 11, Figure 12	$3V \le V_{CC} \le 3.6V$	Full	0.10	0.65	1.25	V
Recessive Bus	Maria	D = 3V, CANH, RS = 0V, 60 Ω and no load, Figure 11, Figure 12	- 3V ≤ V _{CC} ≤ 3.6V	Full	1.80	2.30	2.70	v
Output Voltage	V _{O(REC)}	$\begin{array}{l} D=3V, \mbox{ CANL, RS}=0V,\\ 60\Omega \mbox{ and no load,}\\ \mbox{Figure 11, Figure 12} \end{array}$	- 3V - V _{CC} - 3.0V	Full	1.80	2.30	2.80	v
Dominant Output Differential	N	D = 0V, RS = 0V, $3V \le V_{CC}$ Figure 12	≤ 3.6V, Figure 11,	Full	1.5	2.2	3.0	V
Voltage	V _{OD(DOM)}	D = 0V, RS = 0V, $3V \le V_{C}$ Figure 12, Figure 13	_C ≤ 3.6V,	Full	1.2	2.1	3.0	V
Recessive Output	V _{OD(REC)}	D = 3V, RS = 0V, $3V \le V_{CC} \le 3.6V$, Figure 11, Figure 12		Full	-120	0.2	12	mV
Differential Voltage	()	D = 3V, RS = 0V, 3.0V ≤ V	/ _{CC} ≤ 3.6V, no load	Full	-500	-34	50	mV
Logic Input High Voltage (D) ^[4]	V _{IH}	$3V \le V_{CC} \le 3.6V$		Full	2.0	-	5.5	V
Logic Input Low Voltage (D) ^[4]	V _{IL}	$3V \le V_{CC} \le 3.6V$		Full	0	-	0.8	V
High Level Input Current (D)	I _{IH}	$D = 2V, 3V \le V_{CC} \le 3.6V$		Full	-30	-3	30	μΑ
Low Level Input Current (D)	IIL	D = 0.8V, $3V \le V_{CC} \le 3.6V$	/	Full	-30	-7	30	μΑ
RS Input Voltage for Listen Mode	V _{IN(RS)}	$3V \le V_{CC} \le 3.6V$		Full	0.75xV _{CC}	1.90	5.5	V
		$V_{CANH} = -7V$, CANL = OP $3V \le V_{CC} \le 3.6V$, Figure 2		Full	-250	-100	-	mA
Output Short-		V_{CANH} = +12V, CANL = O 3V $\leq V_{CC} \leq$ 3.6V, Figure 2		Full	-	0.4	1.0	mA
Circuit Current	losc	$V_{CANL} = -7V$, CANH = OP $3V \le V_{CC} \le 3.6V$, Figure 2		Full	-1.0	-0.4	-	mA
		V_{CANL} = +12V, CANH = C 3V ≤ V_{CC} ≤ 3.6V, Figure 2		Full	-	100	250	mA

Test Conditions: $V_{CC} = 3V$ to 3.6V. Typical values are at $T_A = +25^{\circ}C^{[1]}$, unless otherwise specified ^[2]. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s, and over a total ionizing dose of 100krad(SI) at +25°C with exposure of a high dose rate of 50krad(SI)/s to 300krad(SI)/s. (Cont.)

Parameter	Symbol	Test Conditions	Temp (°C)	Min ^[3]	Typ ^[1]	Max ^[3]	Unit
Thermal Shutdown Temperature	T _{SHDN}	3V < V _{IN} < 3.6V	-	-	163	-	°C
Thermal Shutdown Hysteresis	T _{HYS}	3V < V _{IN} < 3.6V	-	-	12	-	°C
Receiver Electric	al Character	ristics					
Input Threshold Voltage (Rising)	V _{THR}	RS = 0V, 10k, 50k, (recessive to dominant), Figure 17, Figure 18 and Table 1	Full	-	700	900	mV
Input Threshold Voltage (Falling)	V _{THF}	RS = 0V, 10k, 50k, (dominant to recessive), Figure 17, Figure 18 and Table 1	Full	500	625	-	mV
Input Hysteresis	V _{HYS}	(V _{THR} - V _{THF}), RS = 0V, 10k, 50k, Figure 17, Figure 18 and Table 1	Full	40	80	-	mV
Listen Mode Input Threshold Voltage (Rising)	V _{THRLM}	RS = V _{CC} , (recessive to dominant), Figure 21, Figure 22	Full	-	650	900	mV
Listen Mode Input Threshold Voltage (Falling)	V _{THFLM}	RS = V _{CC} , (dominant to recessive), Figure 21, Figure 22	Full	325	550	-	mV
Listen Mode Input Hysteresis	V _{HYSLM}	(V _{THR} - V _{THF}), RS = V _{CC} , Figure 21, Figure 22	Full	40	100	-	mV
Receiver Output High Voltage	V _{OH}	I _O = -4mA	Full	2.4	V _{CC} - 0.2	-	V
Receiver Output Low Voltage	V _{OL}	I _O = +4mA	Full	-	0.2	0.4	V
		CANH or CANL at 12V, D = 3V, other bus pin at 0V, RS = 0V	Full	-	470	600	μA
Input Current for		CANH or CANL at 12V, D = 3V, V _{CC} = 0V, other bus pin at 0V, RS = 0V	Full	-	170	275	μA
CAN Bus	ICAN	CANH or CANL at -7V, D = 3V, other bus pin at 0V, RS = 0V	Full	-500	-350	-	μA
		CANH or CANL at -7V, D = 3V, V _{CC} = 0V, other bus pin at 0V, RS = 0V	Full	-175	-100	-	μA
Input Capacitance (CANH or CANL)	C _{IN}	Input to GND, D = 3V, RS = 0V	25	-	35	-	pF
Differential Input Capacitance	C _{IND}	Input to Input, D = 3V, RS = 0V	25	-	15	-	pF
Input Resistance (CANH or CANL)	R _{IN}	Input to GND, D = 3V, RS = 0V	Full	20	40	50	kΩ
Differential Input Resistance	R _{IND}	Input to Input, D = 3V, RS = 0V	Full	40	80	100	kΩ

Test Conditions: $V_{CC} = 3V$ to 3.6V. Typical values are at $T_A = +25^{\circ}C^{[1]}$, unless otherwise specified ^[2]. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s, and over a total ionizing dose of 100krad(SI) at +25°C with exposure of a high dose rate of 50krad(SI)/s to 300krad(SI)/s. (Cont.)

Parameter	Symbol	Test Conditions	Temp (°C)	Min ^[3]	Typ ^[1]	Max ^[3]	Unit
Supply Current							
Supply Current, Listen Mode	I _{CC(L)}	$RS = D = V_{CC}, 3V \le V_{CC} \le 3.6V$	Full	-	1	2	mA
Supply Current, Dominant	I _{CC(DOM)}	D = RS = 0V, no load, $3V \le V_{CC} \le 3.6V$	Full	-	5	7	mA
Supply Current, Recessive	I _{CC(REC)}	D = V _{CC} , RS = 0V, no load, $3V \le V_{CC} \le 3.6V$	Full	-	2.6	5.0	mA
Cold Sparing Bus	Current				1		
CANH Leakage Current	I _{L(CANH)}	V_{CC} = 0.2V, CANH = -7V or 12V, CANL = float, D = V _{CC} , RS = 0V	Full	-25	-4	25	μA
CANL Leakage Current	I _{L(CANL)}	V_{CC} = 0.2V, CANL = -7V or 12V, CANH = float, D = V _{CC} , RS = 0V	Full	-25	-4	25	μA
V _{REF} Leakage Current	I _{L(VREF)}	V_{CC} = 0.2V, V_{REF} = -7V or 12V, D = V_{CC}	Full	-25.00	0.01	25.00	μA
Driver Switching	Characteris	tics			1		
Propagation Delay LOW to HIGH	t _{PDLH1}	RS = 0V, Figure 14, Figure 15	Full	-	90	160	ns
Propagation Delay LOW to HIGH	t _{PDLH2}	RS = 10kΩ, Figure 14, Figure 15	Full	-	350	550	ns
Propagation Delay LOW to HIGH	t _{PDLH3}	RS = 50kΩ, Figure 14, Figure 15	Full	-	475	800	ns
Propagation Delay HIGH to LOW	t _{PDHL1}	RS = 0V, Figure 14, Figure 15	Full	-	115	180	ns
Propagation Delay HIGH to LOW	t _{PDHL2}	RS = 10kΩ, Figure 14, Figure 15	Full	-	410	600	ns
Propagation Delay HIGH to LOW	t _{PDHL3}	RS = 50kΩ, Figure 14, Figure 15	Full	-	550	900	ns
	t _{SKEW1}	RS = 0V, (t _{PHL} - t _{PLH}), Figure 15	Full	-	20	65	ns
Output Skew	t _{SKEW2}	RS = $10k\Omega$, ($ t_{PHL} - t_{PLH} $), Figure 15	Full	-	60	275	ns
	t _{SKEW3}	RS = 50k Ω , (t _{PHL} - t _{PLH}), Figure 15	Full	-	75	400	ns
Output Rise Time	t _{r1}	RS = 0V, (fast speed - 1Mbps)	Full	15	30	85	ns
Output Fall Time	t _{f1}	Figure 15	Full	10	20	65	ns
Output Rise Time	t _{r2}	RS = $10k\Omega$, (medium speed - $500kbps$)	Full	125	250	550	ns
Output Fall Time	t _{f2}	Figure 15	Full	100	250	425	ns

Test Conditions: $V_{CC} = 3V$ to 3.6V. Typical values are at $T_A = +25^{\circ}C^{[1]}$, unless otherwise specified ^[2]. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s, and over a total ionizing dose of 100krad(SI) at +25°C with exposure of a high dose rate of 50krad(SI)/s to 300krad(SI)/s. (Cont.)

Parameter	Symbol	Test Conditions	Temp (°C)	Min ^[3]	Typ ^[1]	Max ^[3]	Unit
Output Rise Time	t _{r3}	RS = $50k\Omega$, (slow speed - 250kbps)	Full	200	360	800	ns
Output Fall Time	t _{f3}	Figure 15	Full	175	390	600	ns
Total Loop Delay,		RS = 0V, Figure 19, Figure 20	Full	-	140	225	ns
Driver Input to Receiver Output,	t _(LOOP1)	RS = $10k\Omega$, Figure 19, Figure 20	Full	-	380	600	ns
Recessive to Dominant		RS = 50kΩ, Figure 19, Figure 20	Full	-	500	800	ns
Total Loop Delay,		RS = 0V, Figure 19, Figure 20	Full	-	160	285	ns
Driver Input to Receiver Output,	t _(LOOP2)	RS = $10k\Omega$, Figure 19, Figure 20	Full	-	450	700	ns
Dominant to Recessive	(20012)	RS = $50k\Omega$, Figure 19, Figure 20	Full	-	575	950	ns
Listen to Valid Dominant Time	t _{L-DOM)}	Figure 21, Figure 22	Full	-	5	15	μs
Receiver Switchin	ng Characte	ristics	•			•	
Propagation Delay LOW to HIGH	t _{PLH}	Figure 17, Figure 18	Full	-	50	110	ns
Propagation Delay HIGH to LOW	t _{PHL}	Figure 17, Figure 18	Full	-	50	110	ns
Rx Skew	t _{SKEW1}	(t _{PHL} - t _{PLH}) , Figure 17, Figure 18	Full	-	2	35	ns
Rx Rise Time	t _r	Figure 17, Figure 18	Full	-	2	-	ns
Rx Fall Time	t _f	Figure 17, Figure 18	Full	-	2	-	ns
VREF/RS Pin Cha	racteristics		•	•	•	•	
VREF Pin	V	-5μΑ < Ι _{REF} < 5μΑ	Full	0.45xV _{CC}	1.60	0.55xV _{CC}	V
Voltage	V _{REF}	-50μA < I _{REF} < 50μA	Full	0.4xV _{CC}	1.6	0.6xV _{CC}	V
RS Pin Input	I _{RS(H)}	RS = 0.75 x V _{CC}	Full	-10.0	-0.2	-	μA
Current	I _{RS(L)}	V _{RS} = 0V	Full	-450	-125	0	μA

1. Typical values are at 3.3V. Parameters with a single entry in the TYP column apply to 3.3V. Typical values shown are not guaranteed.

2. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

3. Parameters with MIN and/or MAX limits are 100% tested at -55°C, +25°C, and +125°C, unless otherwise specified.

4. Parameter included in functional testing.

2.5 Test Circuits and Waveforms

Figure 12. Driver Bus Voltage Definitions

 $\label{eq:VIN} V_{IN}$ = 125kHz, 0V to V_{CC}, DUTY CYCLE 50%, t_r = t_f ≤ 6ns, Z_O = 50Ω C_L Includes Fixture and Instrumentation Capacitance

Figure 16. Receiver Voltage Definitions

 $V_{\rm IN}$ = 125kHz, Duty Cycle 50%, $t_{\rm r}$ = $t_{\rm f}$ = 6ns, $Z_{\rm O}$ = 50 Ω C_L Includes Test Setup Capacitance

Figure 18. Receiver Test Measurement Points

Inp	out	Output	Measured
VCANH	VCANL	R	VDIFF
-6.1V	-7V	L	900mV
12V	11.1V	L	900mV
-1V	-7V	L	6V
12V	6V	L	6V
-6.5V	-7V	Н	500mV
12V	11.5V	Н	500mV
-7V	-1V	Н	6V
6V	12V	Н	6V
Open	Open	Н	Х

Table 1. Differential Input Voltage Threshold Test

Figure 19. Total Loop Delay Test Circuit

 V_{IN} = 125kHz, 0V to $V_{\text{CC}},$ DUTY CYCLE 50%, t_{r} = t_{f} \leq 6ns

Figure 21. Listen to Valid Dominant Time Circuit

Figure 23. Output Short-Circuit Current Circuit

Figure 24. Output Short-Circuit Current Waveforms

3. Typical Performance Curves

 V_{CC} = 3.3V, CL = 15pF, TA = +25°C; unless otherwise specified.

Figure 27. Supply Current vs Slow Data Rate vs Temperature

Figure 26. Supply Current vs Medium Data Rate vs Temperature

Figure 28. Bus Pin Leakage vs V_{CM} at V_{CC} = 0V

FN8904 Rev.1.01 Oct 26, 2023

Figure 33. Transmitter Propagation Delay and Skew vs Temperature at Medium Speed

Figure 32. Transmitter Propagation Delay and Skew vs Temperature at Fast Speed

Figure 34. Transmitter Propagation Delay and Skew vs Temperature at Slow Speed

Figure 39. Driver Output Current vs Short-Circuit Voltage vs Temperature

Figure 41. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3V

Figure 38. Driver Output Current vs Differential Output Voltage

Figure 40. Driver Output Current vs Short-Circuit Voltage vs Temperature

Figure 42. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3.6V

Figure 43. Receiver Propagation Delay and Skew vs Temperature

Figure 45. Supply Current vs Supply Voltage vs Temperature

Figure 47. Medium Driver and Receiver Waveforms

Figure 44. Receiver Rise and Fall Times vs Temperature

Figure 46. Fast Driver and Receiver Waveforms

Figure 48. Slow Driver and Receiver Waveforms

4. Functional Description

4.1 Overview

The ISL72027CSEH is a 3.3V radiation hardened CAN transceiver compatible with the ISO11898-2 standard for use in Controller Area Network (CAN) serial communication systems.

The device performs transmit and receive functions between the CAN controller and the CAN differential bus. It can transmit and receive at bus speeds of up to 5Mbps. It is designed to operate across a common-mode range of -7V to +12V, with a maximum of 120 nodes. The device is capable of withstanding \pm 20V on the CANH and CANL bus pins outside of ion beam and \pm 16V under ion beam.

4.2 Slope Adjustment

The transceiver driver has three programmable rise/fall time options programmed by the resistor value connected from the RS pin to GND. A 0Ω resistor sets the part in Fast Speed mode. A resistor of $10k\Omega$ sets the part in Medium Speed mode. A resistor of $50k\Omega$ puts the part in Slow Speed mode. Putting a high logic level on the RS pin places the part in Listen mode. See Listen Mode for more information.

4.2.1 Fast Speed Mode

Connecting the RS pin directly to GND (0Ω resistor) results in the fastest driver output switching times, limited only by the drive capability of the output state. In Fast Speed mode (RS = 0V), the rise/fall times, propagation delays, and total loop delays are optimized for a data rate of 1Mbps.

4.2.2 Medium Speed Mode

In Medium Speed mode, (RS = $10k\Omega$), the rise/fall times, propagation delays, and total loop delays have been optimized for a data rate of 500kbps. RS = $10k\Omega$ provides for a typical slew rate of $12V/\mu$ s. The slower edges in Medium Speed mode at 500kbps provide better EMI results than running at 1Mbps in Fast Speed mode.

4.2.3 Slow Speed Mode

In Slow Speed mode (RS = $50k\Omega$), the rise/fall times, propagation delays, and total loop delays are optimized for a data rate of 250kbps. RS = $50k\Omega$ provides for a typical slew rate of $8V/\mu s$. The slower edges in Slow Speed mode at 250kbps give better EMI results than running at 500kbps in Medium Speed mode.

4.3 Cable Length

The device can operate according to the ISO11898 specification with a 40m cable and stub length of 0.3m and 60 nodes at 1Mbps. This is greater than the ISO requirement of 30 nodes. The cable type specified is a twisted pair (shielded or unshielded) with a characteristic impedance of 120Ω . Resistors equal to this impedance are to be terminated at both ends of the cable. Stubs should be kept as short as possible to prevent reflections.

4.4 Cold Spare

To reduce the risk of a single-point failure, use redundant bus transceivers in parallel. Space systems call for high reliability in data communications that are resistant to single point failures. This is achieved by using a redundant bus transceiver in parallel. In this arrangement, both active and quiescent devices can be present simultaneously on the bus. The quiescent devices are powered down for cold spare and do not affect the communication of the other active nodes.

The powered down transceiver ($V_{CC} < 200$ mV) has a resistance between the VREF pin or the CANH pin or CANL pin to the V_{CC} supply rail of >480k Ω (maximum) with a typical resistance >2M Ω . The resistance between CANH and CANL of a powered down transceiver is typically 80k Ω . The receiver output (R pin) of a powered-down transceiver ($V_{CC} < 200$ mV) is internally connected to ground. Therefore, the receiver outputs of an active transceiver and a cold spare transceiver cannot be connected together in the redundant application.

4.5 Listen Mode

When a high level is applied to the RS pin, the device enters Low Power Listen mode. The driver of the transceiver is switched off to conserve power while the receiver remains active. In Listen mode, the transceiver draws 2mA (maximum) of current.

A low level on the RS pin brings the device back to normal operation.

4.6 Using 3.3V Devices in 5V Systems

In both the 3.3V and 5V devices, the differential voltage is the same, and the recessive common-mode output is the same. The dominant common-mode output voltage for the 3.3V device is slightly lower than that of the 5V counterparts. The receiver specifications for both devices are also the same. Although the electrical parameters appear compatible, perform necessary system testing to verify interchangeable operation.

4.7 Split Mode Termination

The VREF pin provides a $V_{CC}/2$ output voltage for Split mode termination. The VREF pin has the same ESD protection, short-circuit protection, and common-mode operating range as the bus pins.

The Split mode termination technique is shown in Figure 49.

Figure 49. Split Termination

Split mode termination is used to stabilize the bus voltage at $V_{CC}/2$ and prevent it from drifting to a high common-mode voltage during periods of inactivity. The technique improves the electromagnetic compatibility of a network. The Split mode termination is put at each end of the bus.

The C_L capacitor between the two 60 Ω resistors filters unwanted high frequency noise to ground. The resistors should have a tolerance of 1% or better and the two resistors should be carefully matched to provide the most effective EMI immunity. A typical value of C_L for a high speed CAN network is 4.7nF, which generates a 3dB point at 1.1Mbps. The capacitance value used is dependent on the signaling rate of the network.

5. Package and Die Characteristics

Table 2. Die and Assembly Related Information

Die Information				
Dimensions	2413µm x 3322µm (95 mils x 130.79 mils)			
Dimensions	Thickness: 305µm ±25µm (12 mils ±1 mil)			
Interface Materials				
Glassivation	Type: 12kÅ Silicon Nitride on 3kÅ Oxide			
Top Metallization	Type: 300Å TiN on 2.8µm AlCu			
	In Bondpads, TiN has been removed.			
Backside Finish	Silicon			
Process	P6SOI			
Assembly Information				
Substrate Potential	Floating			
Additional Information				
Worst Case Current Density	1.6x10 ⁵ A/cm ²			
Transistor Count	4055			
Weight of Packaged Device	0.31 grams			
Lid Characteristics	Finish: Gold			
	Potential: Grounded, tied to package Pin 2			

5.1 Metallization Mask Layout

Pad Number	Pad Name	Χ (μm)	Υ (μm)	X	Y	
1	DNC	90.0	90.0	901.4	1365.6	
2	DNC	90.0	90.0	767.4	1365.6	
3	DNC	90.0	90.0	-183.23	1365.6	
4	DNC	90.0	90.0	-333.25	1365.6	
5	DNC	90.0	90.0	-483.25	1365.6	
6	DNC	90.0	90.0	-633.25	1365.6	
7	DNC	90.0	90.0	-783.25	1365.6	
8	DNC	90.0	90.0	-933.25	1365.6	
9	D	110.0	110.0	-931.1	901.85	
10	DNC	110.0	110.0	-931.1	563.25	
11	GND	110.0	180.0	-931.1	342.25	
12	GND_ESD	110.0	110.05	-931.1	119.42	
13	VCC	110.0	180.0	-931.1	-115.05	
14	VCC_VREF	110.0	180.05	-931.1	-371.08	
15	R	110.0	180.0	-931.1	-1350.0	
16	DNC	90.0	90.0	-711.1	-1394.95	
17	DNC	90.0	90.0	-561.1	-1394.95	
18	DNC	90.0	90.0	-411.1	-1394.95	
19	DNC	90.0	90.0	-261.1	-1394.95	
20	DNC	90.0	90.0	-111.1	-1394.95	
21	DNC	90.0	90.0	38.9	-1394.95	
22	DNC	110.0	110.0	756.9	-1307.3	
23	VREF	110.0	180.0	775.3	-1072.3	
24	CANL	110.0	180.0	772.1	2.15	
25	CANH	110.0	180.05	772.1	343.33	
26	RS	110.0	180.0	848.1	1140.6	

Table 3. ISL72027CSEH Die Layout X-Y Coordinates

6. Package Outline Drawing

For the most recent package outline drawing, see K8.A.

K8.A

8 Lead Ceramic Metal Seal Flatpack Package

Rev 4, 12/14

8. Controlling dimension: INCH.

7. Ordering Information

Ordering/SMD Number ^[1]	Part Number ^[2]	Radiation Hardness (Total Ionizing Dose)	Package Description (RoHS Compliant)	Pkg. Dwg. #	Temp Range
5962R1522811VXC	ISL72027CSEHVF	HDR to 100krad(Si) LDR to 75krad(Si)	8 Ld Ceramic Flatpack K8.A		
N/A	ISL72027CSEHF/PROTO ^[3]	N/A	Talpaok		-55 to +125(°C)
5962R1522811V9A	ISL72027CSEHVX ^[4]	HDR to 100krad(Si) LDR to 75krad(Si)	Die		
N/A	ISL72027CSEHX/SAMPLE ^{[3][4]}	N/A			
N/A	ISL72027CSEHEVAL1Z ^[5]	Evaluation Board			

1. Specifications for Radiation Tolerant QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be used when ordering.

2. These Pb-free Hermetic packaged products employ 100% Au plate -e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

- 3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions over-temperature specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified in the DLA SMD at +25°C only. The /SAMPLE is a die and does not receive 100% screening over-temperature to the DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because there is no Radiation Assurance testing and they are not DLA qualified devices.
- 4. Die product tested at T_A = + 25°C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of meeting the electrical performance outlined in Electrical Specifications.
- 5. Evaluation boards utilize the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

Specification	ISL72026CSEH	ISL72027CSEH	ISL72028CSEH	
Loopback Feature	Yes	No	No	
VREF Output	No	Yes	Yes	
Listen Mode	Yes	Yes	No	
Shutdown Mode	No	No	Yes	
VTHRLM	900mV (maximum)	900mV (maximum)	N/A	
VTHFLM	325mV (minimum)	325mV (minimum)	N/A	
VHYSLM	40mV (minimum)	40mV (minimum)	N/A	
Supply Current, Listen Mode	2mA (maximum)	2mA (maximum)	N/A	
Supply Current, Shutdown Mode	N/A	N/A	50µA (maximum)	
VREF Leakage Current N/A		±25μA (maximum)	±25µA (maximum)	

Table 4. ISL7202xCSEH Product Family Feature Table

Specification	ISL7202xSEH	ISL7202xASEH	ISL7202xBSEH	ISL7202xCSEH
Data Rate: RS = 0V	1Mbps	1Mbps	1Mbps	1Mbps
Data Rate: RS = $10k\Omega$	250kbps	500kbps	250kbps	500kbps
Data Rate: RS = $50k\Omega$	125kbps	250kbps	125kbps	250kbps
High Dose Rate (HDR) -100krad(Si) Testing	No	No	Yes	Yes
Low Dose Rate (LDR) - 75krad(Si) Testing	Yes	Yes	Yes	Yes

Table 5. Product Family Comparison for Optimal Data Rate and Total Dose Radiation Testing

8. Revision History

Rev.	Date	Description
		Applied latest template and formatting.
		Updated the "Pin Descriptions" table on page 4: Change Pin 6 name to CANL and Pin 7 name to CANH to match the Pin Configuration diagram.
1.01	1.01 Oct 26, 2023	On page 10 for Output Rise Time tr2 and Output Fall Time tf2 changed the Test Condition From: (medium speed - 50000kbps), To: (medium speed - 500kbps).
		Removed Related Literature section.
		Updated the ordering information table: Added Radiation information; Added Note 4.
		Page 10: Changed the limit for Propagation Delay High to Low t _{PDHL2} from 650ns to 600ns.
1.00	Aug 11, 2017	Page 10: Changed the limit for Total Loop Delay, Driver Input to Receiver Output, Dominant to
		Recessive $t_{(LOOP2)}$ for RS = 10k Ω from 750ns to 700ns.
0.00	Apr 3, 2017	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>