

General Description

The 843034 is a general purpose, low phase noise LVPECL synthesizer which can generate frequencies for a wide variety of applications. The 843034 has a 4:1 input Multiplexer from which the following inputs can be selected: one differential input, one single-ended input, or two crystal oscillators, thus making the device ideal for frequency translation or frequency generation. Each differential LVPECL output pair has an output divider which can be independently set so that two different frequencies can be generated. Additionally, each LVPECL output pair has a dedicated power supply pin so the outputs can run at 3.3V or 2.5V. The 843034 also supplies a buffered copy of the test clock or crystal frequency on the single-ended REF_OUT output pin which can be enabled or disabled, (disabled by default). The output frequency can be programmed using either a serial or parallel programming interface.

The phase jitter of the 843034 is less than 1ps RMS, making it suitable for use in Fiber Channel, SONET, and Ethernet applications.

Pin Assignment

Features

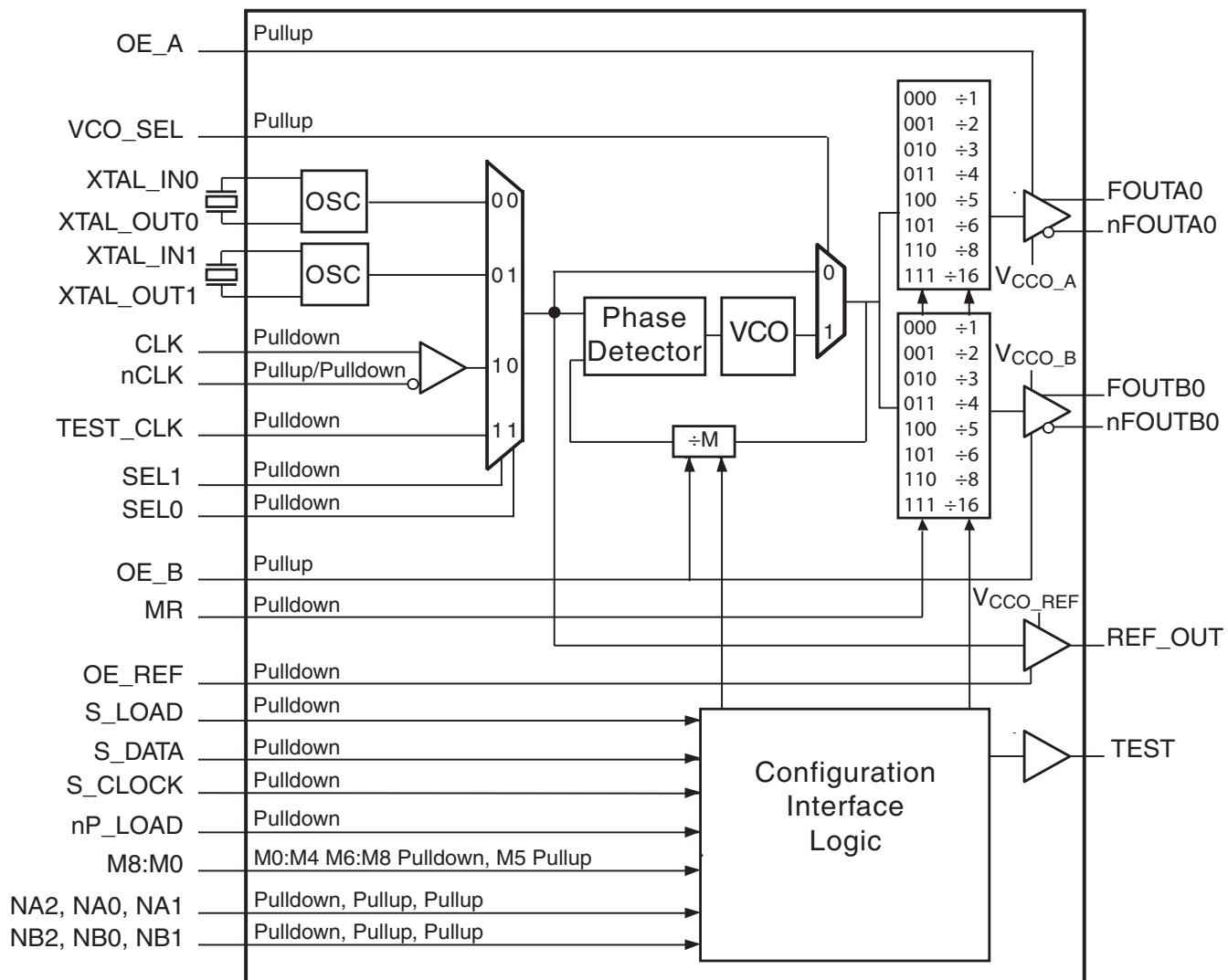
- Dual differential 3.3V LVPECL outputs which can be set independently for either 3.3V or 2.5V
- 4:1 Input Mux:
 - One differential input
 - One single-ended input
 - Two crystal oscillator interfaces
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL
- TEST_CLK accepts LVCMOS or LVTTL input levels
- Output frequency range: 35MHz to 625MHz
- Crystal input frequency range: 12MHz to 40MHz
- VCO range: 560MHz to 750MHz
- Parallel or serial interface for programming feedback divider and output dividers
- RMS phase jitter at 333.3MHz, using a 22.222MHz crystal (12kHz to 20MHz): 0.91ps (typical)
- Supply voltage modes:

LVPECL outputs

Core/ Output

3.3V/ 3.3V

3.3V/ 2.5V


REF_OUT output

Core/ Output

3.3V/ 3.3V

- 0°C to 70°C ambient operating temperature
- Industrial temperature available upon request with ePad option
- Lead-free (RoHS 6) packaging

Block Diagram

Functional Description

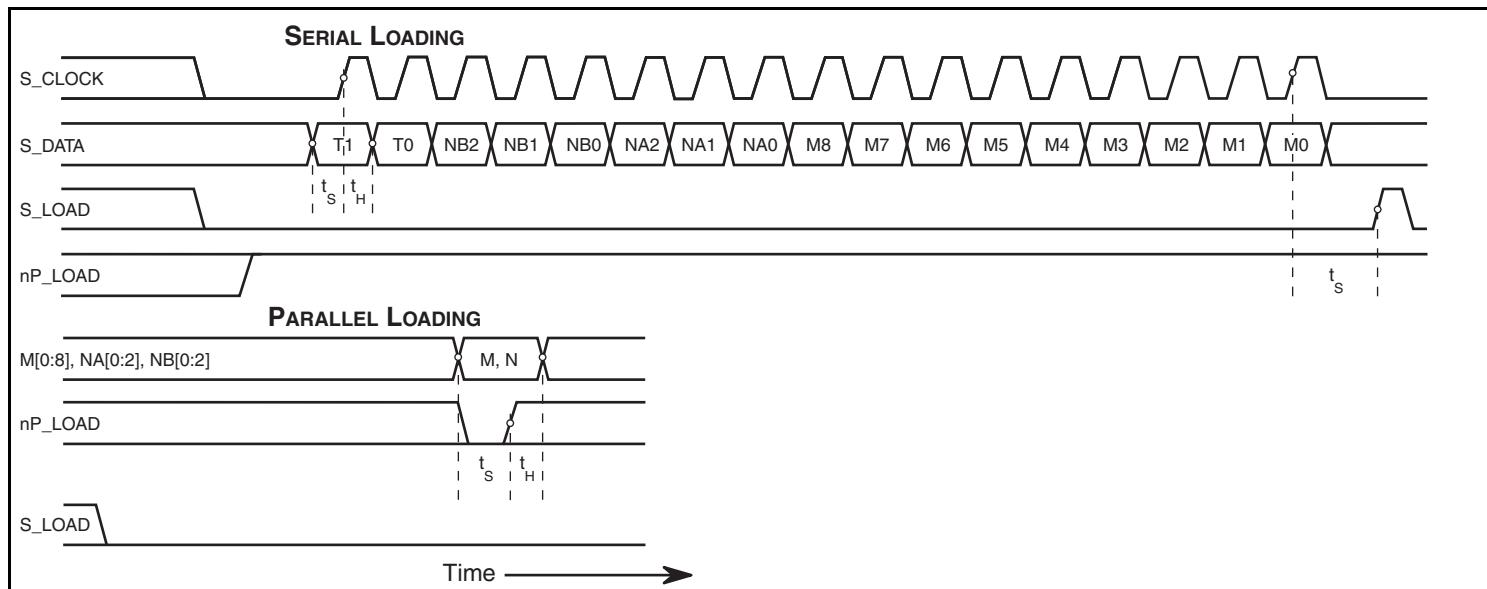
NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE.

The 843034 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is fed into the phase detector. A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of 560MHz to 750MHz. The output of the M divider is also applied to the phase detector.

The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle.

The 843034 supports either serial or parallel programming modes to program the M feedback divider and N output divider. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on the M, NA and NB inputs are passed directly to the M divider and both N output dividers. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M and N dividers remain loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and Nx bits can be hardwired to set the M divider and Nx output divider to a specific default state that will automatically occur during power-up. The TEST output is LOW when operating in the parallel input mode.

The relationship between the VCO frequency, the crystal frequency and the M divider is defined as follows:


$$f_{VCO} = f_{XTAL} \times M$$

The M value and the required values of M0 through M8 are shown in Table 3B to program the VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as $23 \leq M \leq 30$. The frequency out is defined as follows:

$$f_{OUT} = \frac{f_{VCO}}{N} = \frac{f_{XTAL} \times M}{N}$$

Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and Nx output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and Nx output values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and Nx output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and Nx bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows:

	T1	T0	<u>TEST Output</u>
	0	0	LOW
	0	1	S_Data, Shift Register Output
	1	0	Output of M divider
	1	1	Same frequency as FOUTA0

Figure 1. Parallel & Serial Load Operations

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Type	Description
1, 41, 42, 43, 44, 45, 47, 48	M8, M0, M1, M2, M3, M4, M6, M7	Input Pulldown	M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMS/LVTTL interface levels.
46	M5	Input Pullup	
2, 3	NB0, NB1	Input Pullup	Determines output divider value as defined in Table 3C, Function Table. LVCMS/LVTTL interface levels.
4	NB2	Input Pulldown	
5	OE_REF	Input Pulldown	Output enable. Controls enabling and disabling of REF_OUT output. REF_OUT is enabled when OE_REF is HIGH. REF_OUT is in high impedance when OE_REF is LOW. OE_REF defaults to LOW. LVCMS/LVTTL interface levels.
6	OE_A	Input Pullup	Output enable. Controls enabling and disabling of FOUTA0, nFOUTA0 outputs. LVCMS/LVTTL interface levels.
7	OE_B	Input Pullup	Output enable. Controls enabling and disabling of FOUTB0, nFOUTB0 outputs. LVCMS/LVTTL interface levels.
8, 14	V _{CC}	Power	Core supply pins.
9, 10	NA0, NA1	Input Pullup	Determines output divider value as defined in Table 3C, Function Table. LVCMS/LVTTL interface levels.
11	NA2	Input Pulldown	
12, 24	V _{EE}	Power	Negative supply pins.
13	TEST	Output	Test output which is Active in the serial mode of operation. Output driven LOW in the parallel mode. LVCMS/LVTTL interface levels.
15, 16	FOUTA0, nFOUTA0	Output	Differential output for the synthesizer. LVPECL interface levels.
17	V _{CCO_A}	Power	Output supply pin for FOUTA0, nFOUTA0.
18, 19	FOUTB0, nFOUTB0	Output	Differential output pair for the synthesizer. LVPECL interface levels.
20	V _{CCO_B}	Power	Output supply pin for FOUTB0, nFOUTB0.
21	REF_OUT	Output	Single-ended reference clock output. LVCMS/LVTTL interface levels.
22	V _{CCO_REF}	Power	Output supply pin for REF_OUT.
23	nc	Unused	No connect.
25	MR	Input Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs FOUTx to go low and the inverted outputs nFOUTx to go high. When Logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M, N and T values. LVCMS/LVTTL interface levels.
26	S_CLOCK	Input Pulldown	Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMS/LVTTL interface levels.
27	S_DATA	Input Pulldown	Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMS/LVTTL interface levels.
28	S_LOAD	Input Pulldown	Controls transition of data from shift register into the dividers. LVCMS/LVTTL interface levels.
29	V _{CCA}	Power	Analog supply pin.
30, 31	SEL0, SEL1	Input Pulldown	Clock select inputs. LVCMS/LVTTL interface levels.

Number	Name	Type		Description
32	TEST_CLK	Input	Pulldown	Single-ended test clock input. LVCMS/LVTTL interface levels.
33, 34	XTAL_IN0 XTAL_OUT0	Input		Crystal oscillator interface. XTAL_IN0 is the input, XTAL_OUT0 is the output.
35, 36	XTAL_IN1 XTAL_OUT1	Input		Crystal oscillator interface. XTAL_IN1 is the input, XTAL_OUT1 is the output.
37	CLK	Input	Pulldown	Non-inverting differential clock input.
38	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input. $V_{CC}/2$ default when left floating.
39	nP_LOAD	Input	Pulldown	Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and when data present at NA2:NA0 and NB2:NB0 is loaded into the N output dividers. LVCMS/LVTTL interface levels.
40	VCO_SEL	Input	Pullup	Determines whether the synthesizer is in PLL or Bypass mode. LVCMS/LVTTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance	Control Input Pins			4		pF
		Clock Input Pins			3		pF
R_{PULLUP}	Input Pullup Resistor				51		k Ω
$R_{PULLDOWN}$	Input Pulldown Resistor				51		k Ω
R_{OUT}	Output Impedance	REF_OUT	$V_{CCO_REF} = 3.3V$	5	7	12	Ω

Function Tables

Table 3A. Parallel and Serial Mode Function Table

Inputs							Conditions
MR	nP_LOAD	M	N	S_LOAD	S_CLOCK	S_DATA	
H	X	X	X	X	X	X	Reset. Forces outputs LOW.
L	L	Data	Data	X	X	X	Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW.
L	↑	Data	Data	L	X	X	Data is latched into input registers and remains loaded until next LOW transition level or until a serial event occurs.
L	H	X	X	L	↑	Data	Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK.
L	H	X	X	↑	L	Data	Contents of the shift register are passed to the M divider and N output divider.
L	H	X	X	↓	L	Data	M divider and N output divider values are latched.
L	H	X	X	L	X	X	Parallel or serial input do not affect shift registers.
L	H	X	X	H	↑	Data	S_DATA passed directly to M divider as it is clocked.

NOTE: L = LOW

H = HIGH

X = Don't care

↑ = Rising edge transition

↓ = Falling edge transition

Table 3B. Programmable VCO Frequency Function Table

VCO Frequency (MHz)	M Divide	256	128	64	32	16	8	4	2	1
		M8	M7	M6	M5	M4	M3	M2	M1	M0
575	23	0	0	0	0	1	0	1	1	1
700	28	0	0	0	0	1	1	1	0	0
750	30	0	0	0	0	1	1	1	1	0

NOTE 1: These M divide values and the resulting frequencies correspond to a crystal or TEST_CLK frequency of 25MHz.

Table 3C. Programmable Output Divider Function Table (PLL Enabled)

Inputs			N Divider Value	Output Frequency (MHz)	
*NX2	*NX1	*NX0		Minimum	Maximum
0	0	0	1	560	625
0	0	1	2	280	375
0	1	0	3	186.66	250
0	1	1	4 (default)	140	187.5
1	0	0	5	112	150
1	0	1	6	93.33	125
1	1	0	8	70	93.75
1	1	1	16	35	46.875

*NOTE: X denotes Bank A or Bank B.

Table 3D. OE_REF Function Table

Control Input	Output
OE_REF	REF_OUT
0	High Impedance (default)
1	Enabled

Table 3E. OE_A, OE_B Function Table

Control Inputs	Outputs
OE_A, OE_B	FOUTA0, nFOUTA0 FOUTB0, nFOUTB0
0	Disabled (Hi-Z)
1	Enabled (default)

Table 3F. SEL0, SEL1 Function Table

Control Inputs		Input
SEL1	SEL0	
0	0	XTAL_IN0, XTAL_OUT0 (default)
0	1	XTAL_IN1, XTAL_OUT1
1	0	CLK, nCLK
1	1	TEST_CLK

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{CC}	4.6V
Inputs, V_I	-0.5V to $V_{CC} + 0.5V$
Outputs, V_O (LVC MOS)	-0.5V to $V_{CC_REF} + 0.5V$
Outputs, I_O (LVPECL) Continuous Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	65.7°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics,

$V_{CC} = 3.3V \pm 5\%$, $V_{CCO_A} = V_{CCO_B} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V_{CCA}	Analog Supply Voltage		$V_{CC} - 0.18$	3.3	V_{CC}	V
V_{CCO_A} , V_{CCO_B}	Output Supply Voltage		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
V_{CCO_REF}	Output Supply Voltage	REF_OUT	3.135	3.3	3.465	V
I_{EE}	Power Supply Current				188	mA
I_{CCA}	Analog Supply Current				18	mA

Table 4B. LVCMS/LVTTL DC Characteristics, $V_{CC} = V_{CCO_REF} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	$V_{CC} = 3.3V$	2		$V_{CC} + 0.3$	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	$V_{CC} = V_{IN} = 3.465V$			150	μA
		$V_{CC} = V_{IN} = 3.465V$			5	μA
I_{IL}	Input Low Current	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μA
		$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μA
V_{OH}	Output High Voltage	$V_{CCO_REF} = 3.3 \pm 5\%$	2.6			V
		$V_{CCO_REF} = 3.3 \pm 5\%$	2.5			V
V_{OL}	Output Low Voltage	$V_{CCO_REF} = 3.3 \pm 5\%$			0.5	V
		$V_{CCO_REF} = 3.3 \pm 5\%$			0.4	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_REF}/2$. See Parameter Measurement Information section. *Load Test Circuit diagrams*.

Table 4C. Differential DC Characteristics,

$V_{CC} = 3.3V \pm 5\%$, $V_{CCO_A} = V_{CCO_B} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	$V_{CC} = V_{IN} = 3.465V$			150	μA
I_{IL}	Input Low Current	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μA
		$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μA
V_{PP}	Peak-to-Peak Voltage; NOTE 1		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		$V_{EE} + 0.5$		$V_{CC} - 0.85$	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode voltage is defined as V_{IH}

Table 4D. LVPECL DC Characteristics, $V_{CC} = V_{CCO_A} = V_{CCO_B} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO} - 1.4$		$V_{CCO} - 0.9$	V
V_{OL}	Output Low Voltage NOTE 1		$V_{CCO} - 2.0$		$V_{CCO} - 1.6$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.5		1.1	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_A, B} - 2V$.

Table 4E. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{CCO_A} = V_{CCO_B} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO} - 1.4$		$V_{CCO} - 0.9$	V
V_{OL}	Output Low Voltage NOTE 1		$V_{CCO} - 2.0$		$V_{CCO} - 1.6$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.1	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_A, _B} - 2V$.

Table 5. Input Frequency Characteristics,

$V_{CC} = 3.3V \pm 5\%$, $V_{CCO_A} = V_{CCO_B} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{IN}	Input Frequency	XTAL_IN0, XTAL_OUT0 XTAL_IN1, XTAL_OUT1;	12		40	MHz
		CLK, nCLK, TEST_CLK	12		40	MHz

NOTE 1: For the input crystal and CLK/, nCLK and TEST_CLK frequency range, the M value must be set for the VCO to operate within the 560MHz to 625MHz range. Using the minimum input frequency of 12MHz, valid values of M are $47 \leq M \leq 52$. Using the maximum input frequency of 40MHz, valid values of M are $14 \leq M \leq 15$. For N = 1, M divider value must result in a VCO frequency $\leq 625MHz$.

Table 6. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		12		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Load Capacitance (C_L)			12	18	pF

AC Electrical Characteristics

Table 7A. AC Characteristics, $V_{CC} = V_{CCO_A} = V_{CCO_B} = V_{CCO_REF} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		35		625	MHz
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter (Random), NOTE 1, 2	$f_{OUT} = 333.3\text{MHz}$, XTAL = 22.222MHz, Integration Range: 12kHz – 20MHz		0.91		ps
$\text{f}_{\text{jit(cc)}}$	Cycle-to-Cycle Jitter; NOTE 3, 4, 6				175	ps
$t_{sk(o)}$	Output Skew; NOTE 2, 4, 5				120	ps
t_R / t_F	Output Rise/Fall Time	LVPECL Outputs	20% to 80%	200		ps
		REF_OUT	20% to 80%	200		ps
t_S	Setup Time	M, N to nP_LOAD		5		ns
		S_DATA to S_CLOCK		5		ns
		S_CLOCK to S_LOAD		5		ns
t_H	Hold Time	M, N to nP_LOAD		5		ns
		S_DATA to S_CLOCK		5		ns
		S_CLOCK to S_LOAD		5		ns
odc	Output Duty Cycle; NOTE 2	N Divider Value $\neq 1$	45		55	%
		N Divider Value = 1	35		65	%
t_{LOCK}	PLL Lock Time				200	ms

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: See Parameter Measurement Information section.

NOTE 1: Please refer to phase noise plot.

NOTE 2: Characterized with REF_OUT output disabled.

NOTE 3: Jitter performance using XTAL inputs.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at the output differential cross points.

NOTE 6: Characterized using worst device configuration.

Table 7B. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{CCO_A} = V_{CCO_B} = V_{CCO_REF} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency			35		625	MHz
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter (Random), NOTE 1, 2		$f_{OUT} = 333.3\text{MHz}$, XTAL = 22.222MHz, Integration Range: 12kHz – 20MHz		0.91		ps
$\text{f}_{\text{jit(cc)}}$	Cycle-to-Cycle Jitter; NOTE 3, 4, 6					175	ps
$t_{sk(o)}$	Output Skew; NOTE 2, 4, 5					120	ps
t_R / t_F	Output Rise/Fall Time	LVPECL Outputs	20% to 80%	200		700	ps
		REF_OUT	20% to 80%	200		700	ps
t_S	Setup Time	M, N to nP_LOAD		5			ns
		S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
t_H	Hold Time	M, N to nP_LOAD		5			ns
		S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
odc	Output Duty Cycle; NOTE 2		N Divider Value $\neq 1$	45		55	%
			N Divider Value = 1	35		65	%
t_{LOCK}	PLL Lock Time					200	ms

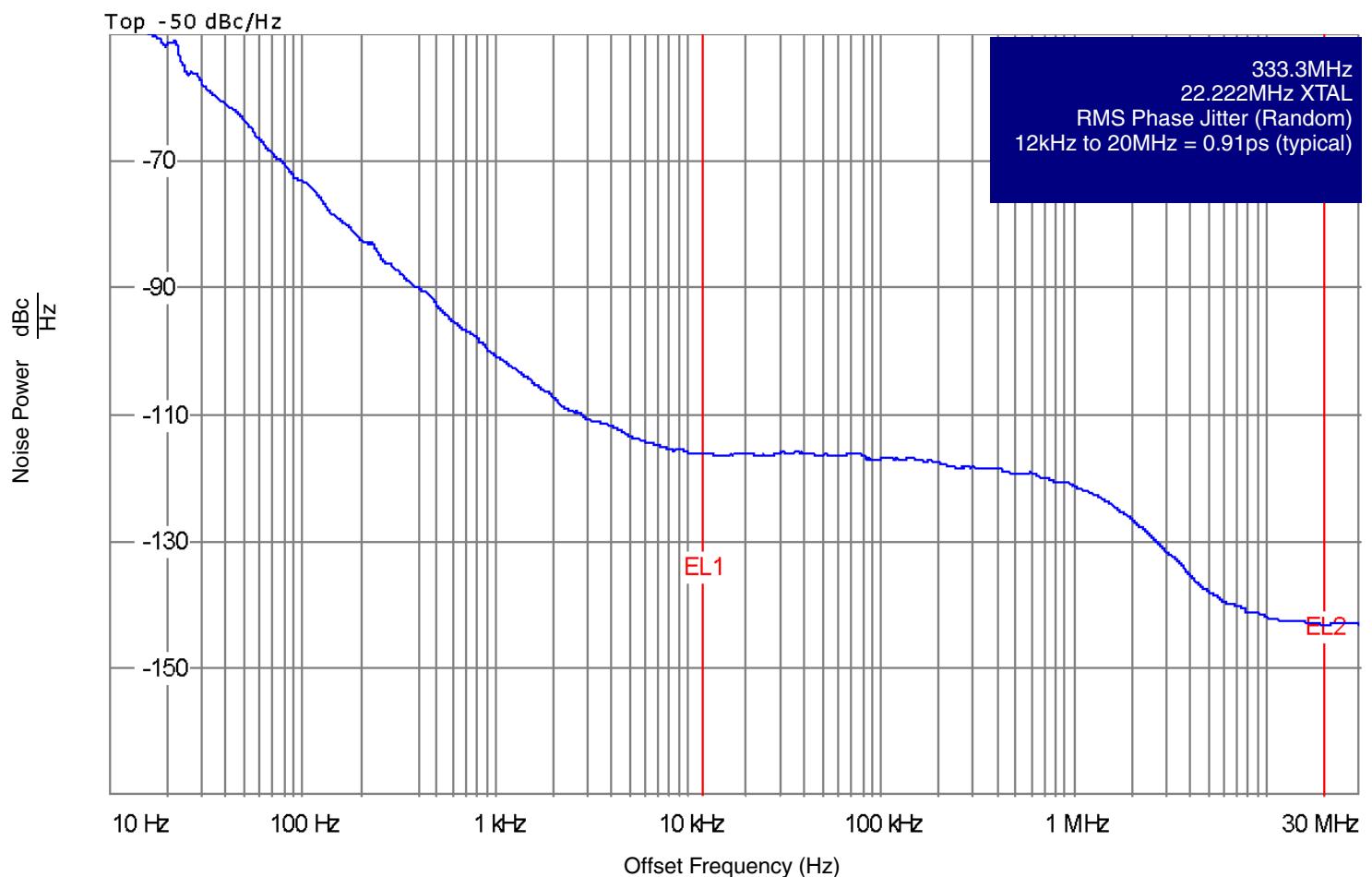
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: See Parameter Measurement Information section.

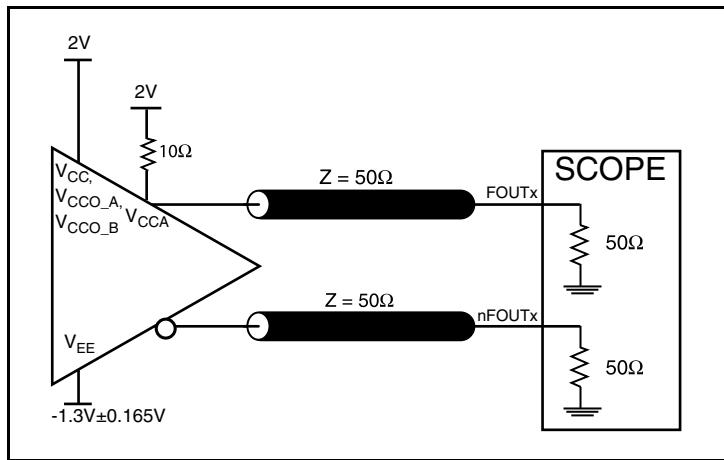
NOTE 1: Please refer to phase noise plot.

NOTE 2: Characterized with REF_OUT output disabled.

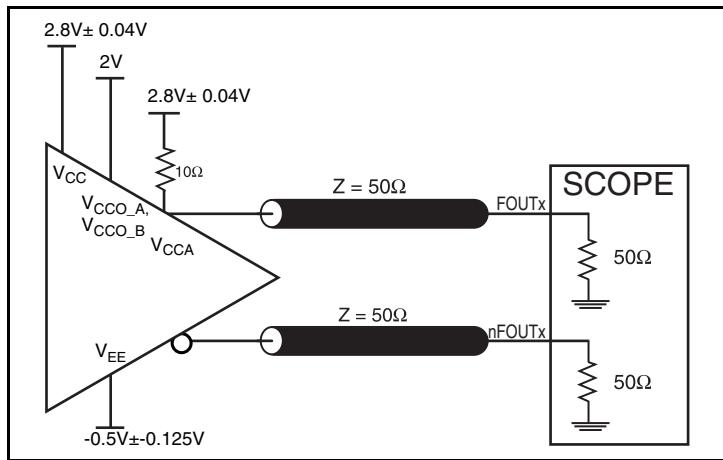
NOTE 3: Jitter performance using XTAL inputs.

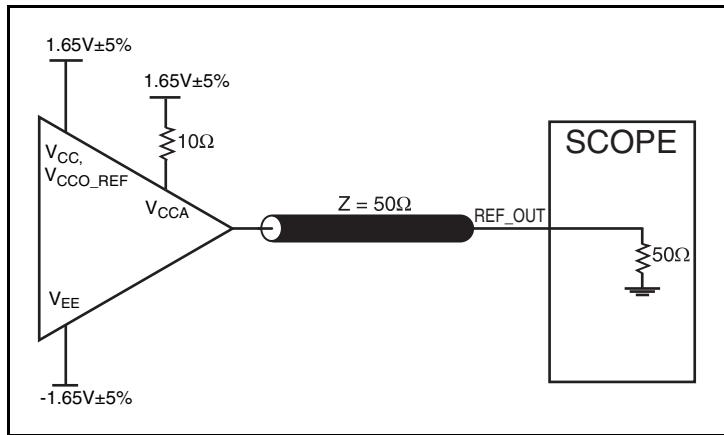

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

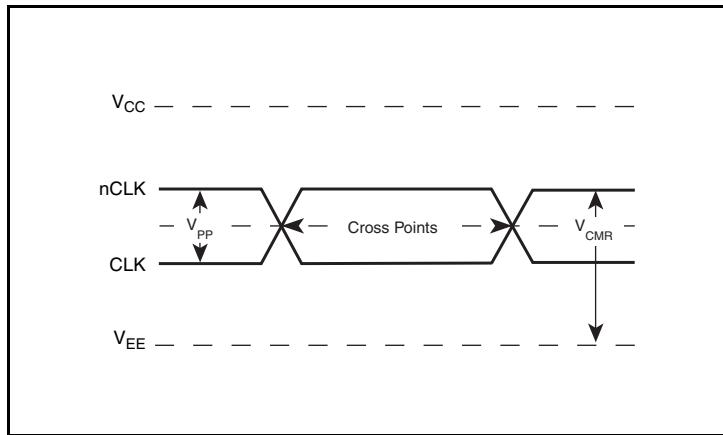
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.

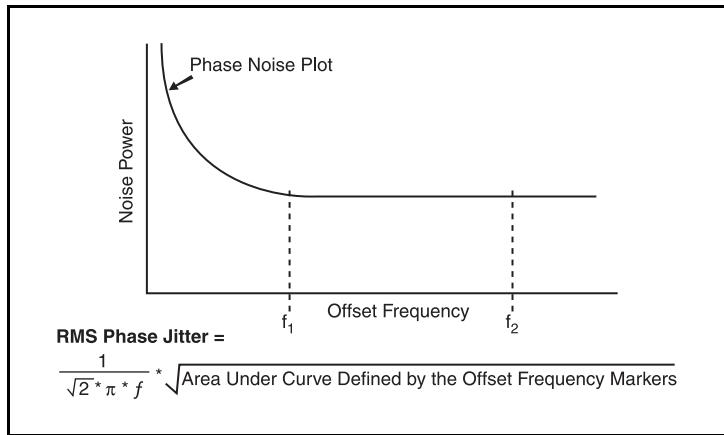

Measured at the output differential cross points.

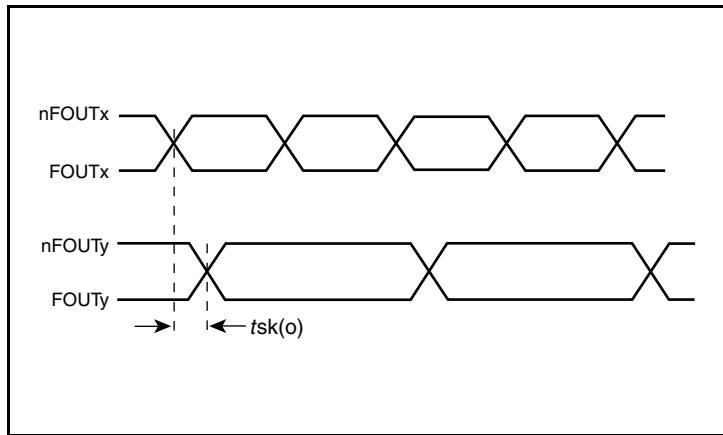
NOTE 6: Characterized using worst device configuration.


Typical Phase Noise at 333.3MHz


Parameter Measurement Information


3.3V/3.3V LVPECL Output Load Test Circuit

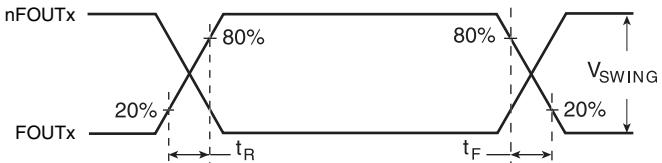

3.3V/2.5V LVPECL Output Load Test Circuit


3.3V/3.3V LVC MOS Output Load Test Circuit

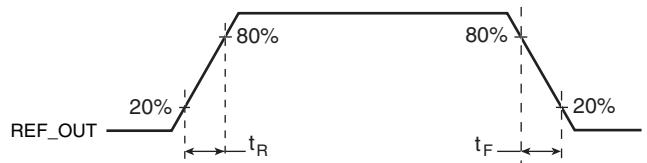
Differential Input Levels

RMS Phase Jitter

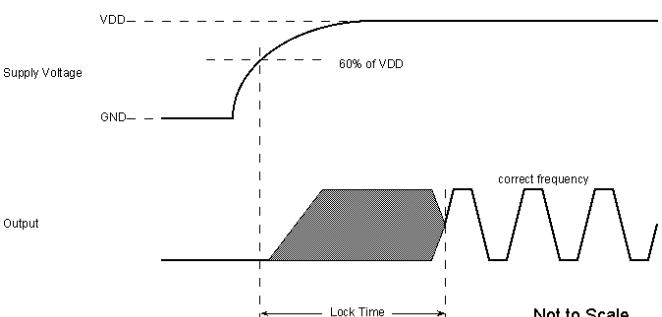
Output Skew


Parameter Measurement Information, continued

$$t_{jit(cc)} = \frac{|t_{cycle\ n} - t_{cycle\ n+1}|}{1000\ Cycles}$$


Cycle-to-Cycle Jitter

$$odc = \frac{t_{PW}}{t_{PERIOD}} \times 100\%$$


Differential Output Duty Cycle/Output Pulse Width/Period

Differential Output Rise/Fall Time

LVC MOS Output Rise/Fall Time

PLL Lock Time

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from XTAL_IN to ground.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from CLK to ground.

TEST_CLK Input

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from the TEST_CLK to ground.

LVC MOS Control Pins

All control pins have internal pullup or pulldown resistors; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:

TEST Output

The unused TEST output can be left floating. There should be no trace attached.

REF_OUT Output

The unused REF_OUT output can be left floating. There should be no trace attached.

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_1 = V_{CC}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_1 at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (R_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line

impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than $-0.3V$ and V_{IH} cannot be more than $V_{CC} + 0.3V$. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

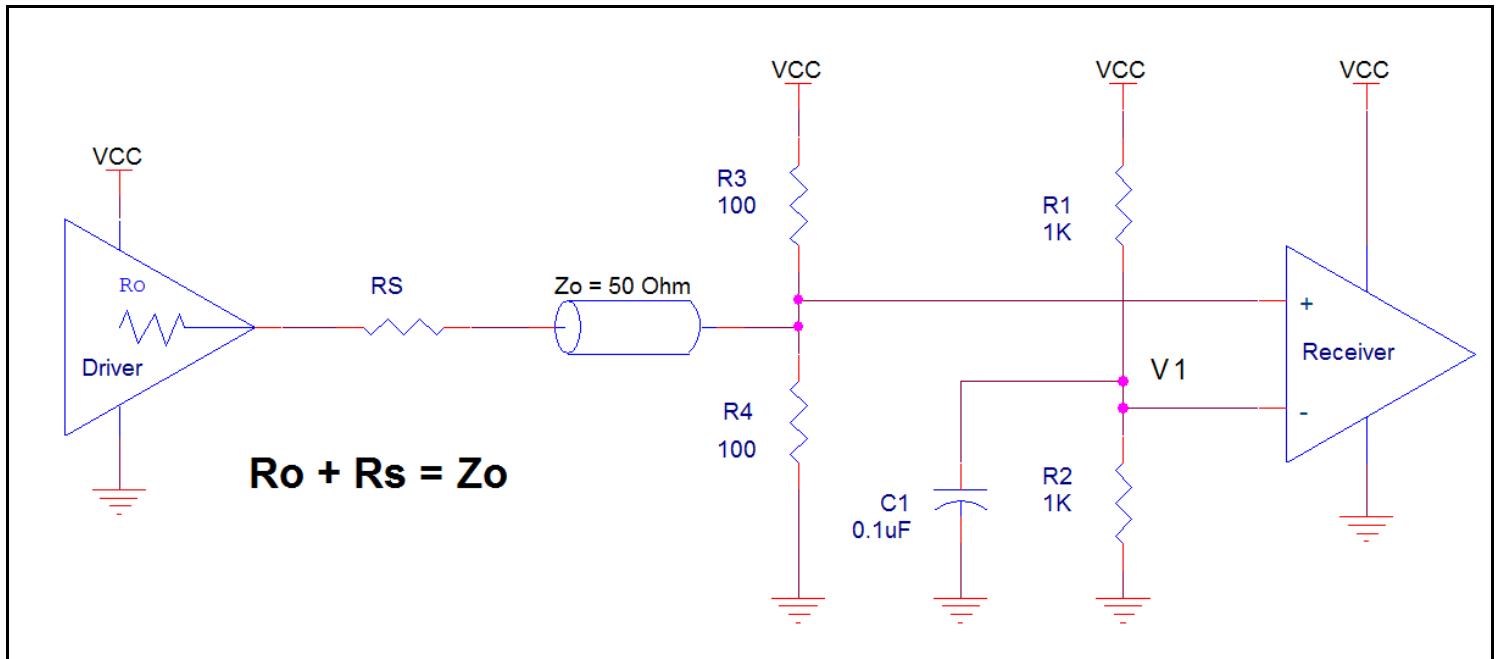


Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVC MOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVC MOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 3A shows an example of the interface diagram for a high speed 3.3V LVC MOS driver. This configuration requires that the sum of the output impedance of the driver (Z_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and changing R_2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVC MOS driver. Figure 3B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

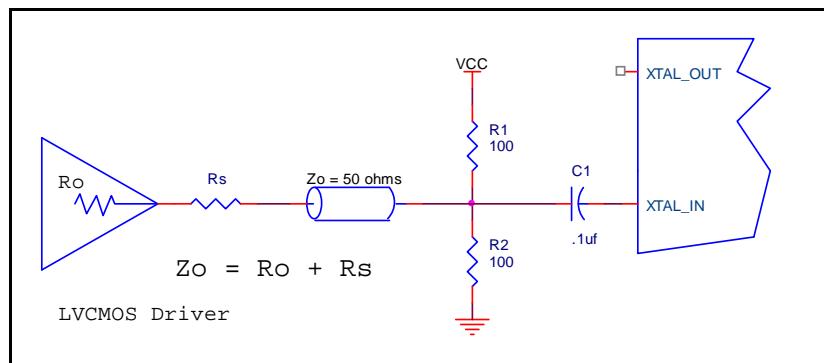


Figure 3A. General Diagram for LVC MOS Driver to XTAL Input Interface

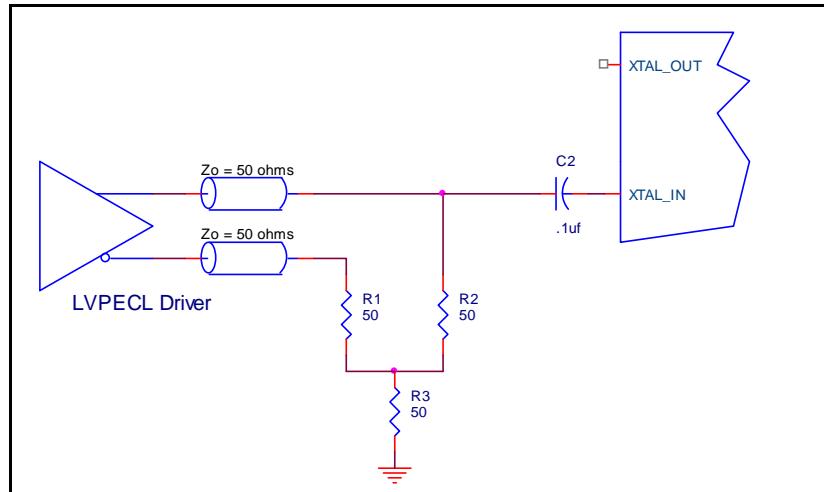
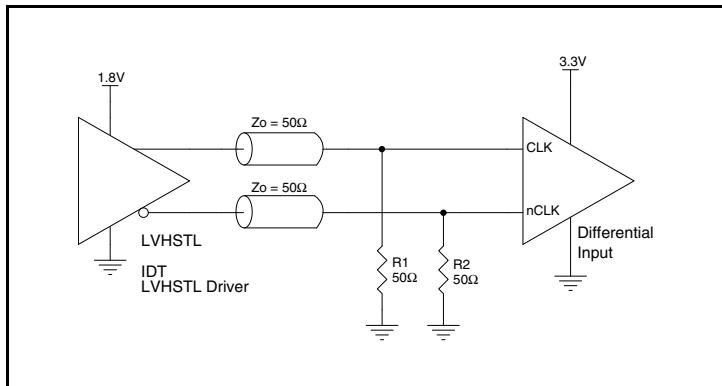
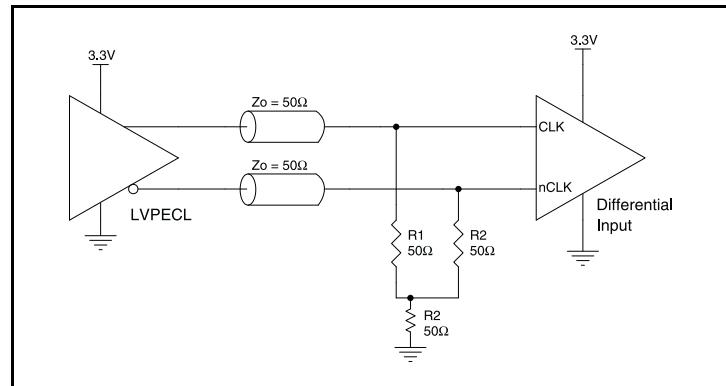
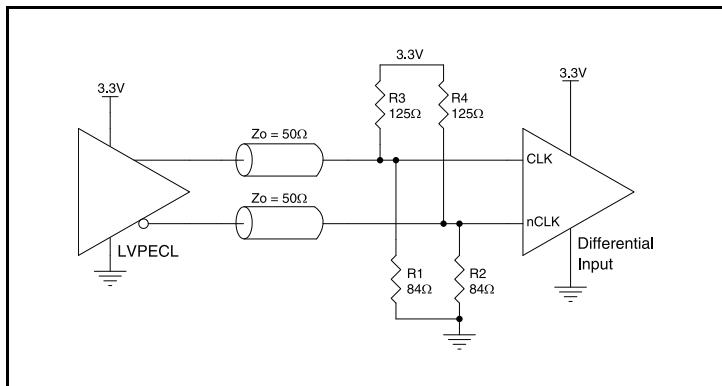
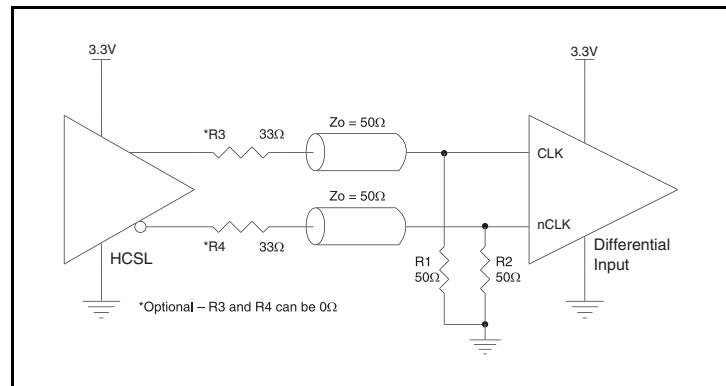



Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface


3.3V Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 4A to 4E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult


with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 4A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.


Figure 4A. CLK/nCLK Input Driven by an IDT Open Emitter LVHSTL Driver

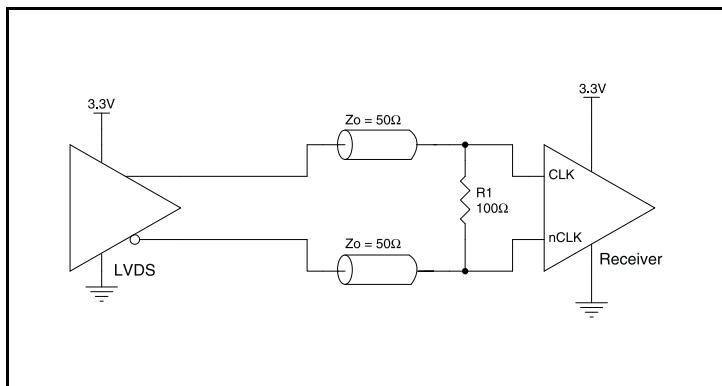

Figure 4B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 4C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 4D. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 4E. CLK/nCLK Input Driven by a 3.3V LVDS Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 5A and 5B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

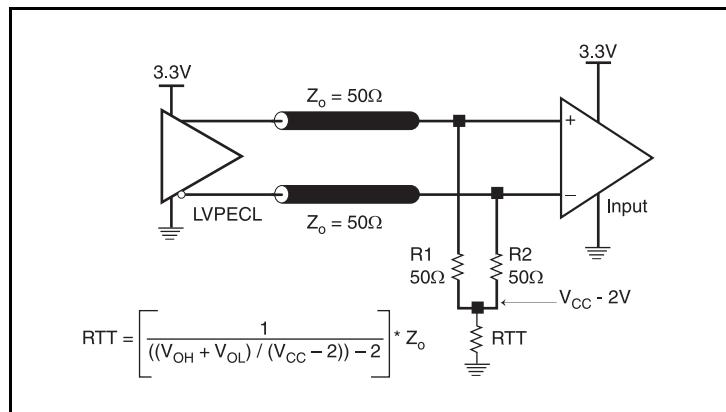


Figure 5A. 3.3V LVPECL Output Termination

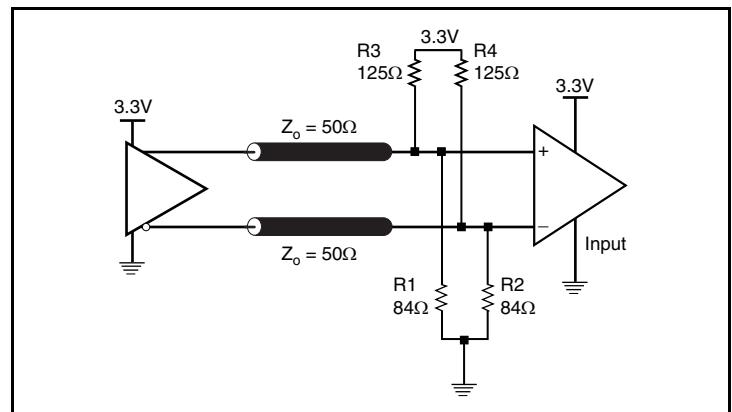


Figure 5B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 6A and Figure 6B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CCO} - 2V$. For $V_{CCO} = 2.5V$, the $V_{CCO} - 2V$ is very close to ground

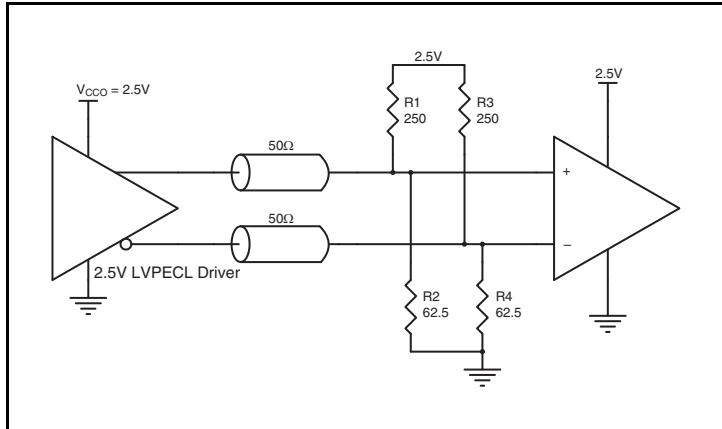


Figure 6A. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 6B can be eliminated and the termination is shown in Figure 6C.

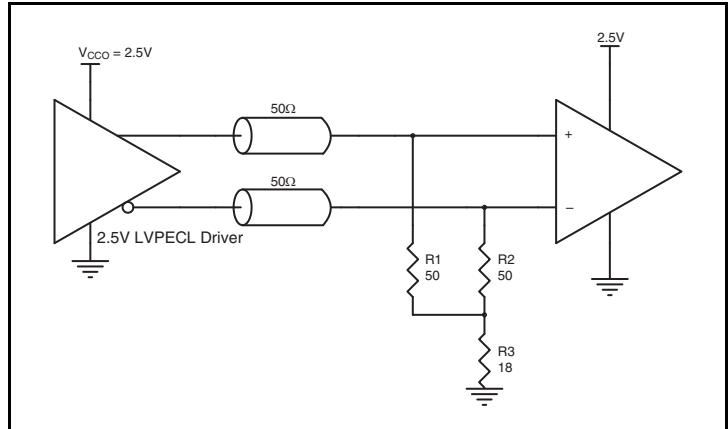


Figure 6B. 2.5V LVPECL Driver Termination Example

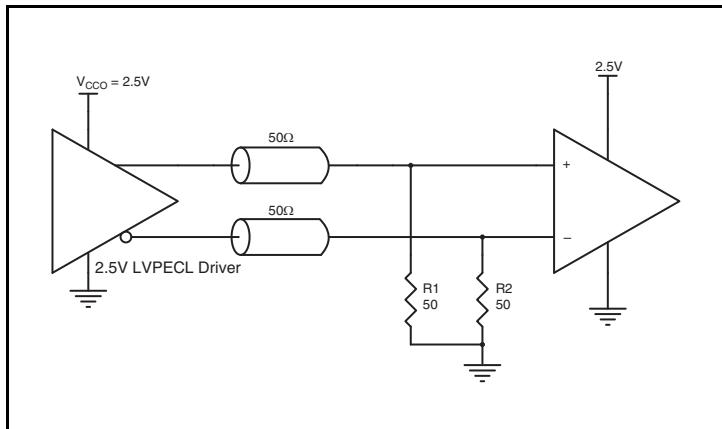


Figure 6C. 2.5V LVPECL Driver Termination Example

Application Schematic Example

Figure 7 (next page) shows an example of 843034 application schematic. In this example, the device is operated at $V_{CC} = V_{CCO_A} = V_{CCO_B} = V_{CCO_REF} = 3.3V$. An 18pF parallel resonant 25MHz crystal is used. The load capacitance $C1 = 18pF$ and $C2 = 22pF$ are recommended for frequency accuracy. Depending on the parasitics of the printed circuit board layout, these values might require slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting $C1$ and $C2$. For this device, the crystal load capacitors are required for proper operation.

As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The 843034 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component with high amplitude interference is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally general design practice for power plane voltage stability suggests adding bulk capacitances in the general area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

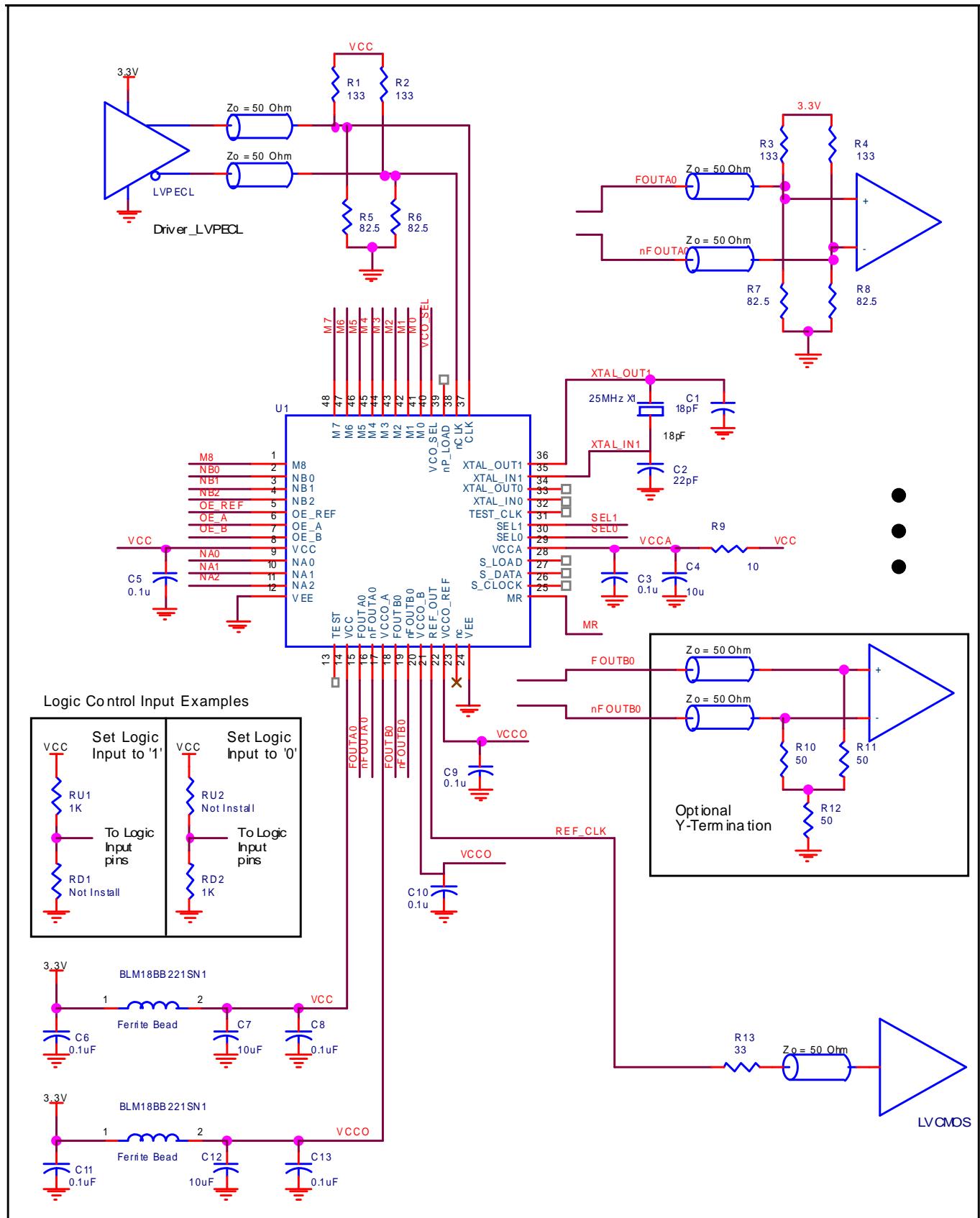


Figure 7. 843034 Application Schematic

Power Considerations

This section provides information on power dissipation and junction temperature for the 843034. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843034 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{CC} = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

Core and LVPECL Output Power Dissipation

- Power (core)_{MAX} = $V_{CC_MAX} * I_{EE_MAX} = 3.465V * 188mA = 651.42mW$
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**
If all outputs are loaded, the total power is $2 * 32.6mW = 65.2mW$

LVC MOS Output Power Dissipation

- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{CCO_REF}/2$
Output Current $I_{OUT} = V_{CCO_REF} / [2 * (50\Omega + R_{OUT})] = 3.465V / [2 * (50\Omega + 12\Omega)] = 27.94mA$
Power (REF_OUT) = $R_{OUT} * (I_{OUT})^2 = 12\Omega * (27.94mA)^2 = 9.37mW$ per output

Total Power Dissipation

- **Total Power**
= Power (core)_{MAX} + Power(LVPECL outputs)_{MAX} + Power (REF_OUT)
= $651.42mW + 65.2mW + 9.37mW$
= **725.99mW**

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^\circ C$. Limiting the internal transistor junction temperature, T_j , to $125^\circ C$ ensures that the bond wire and bond pad temperature remains below $125^\circ C$.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is $65.7^\circ C/W$ per Table 8 below.

Therefore, T_j for an ambient temperature of $70^\circ C$ with all outputs switching is:

$70^\circ C + 0.726W * 65.7^\circ C/W = 117.7^\circ C$. This is below the limit of $125^\circ C$.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Table 8. Thermal Resistance θ_{JA} for 48-Lead LQFP Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	$65.7^\circ C/W$	$55.9^\circ C/W$	$52.4^\circ C/W$

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in *Figure 8*.

Figure 8. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$
 $(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.6V$
 $(V_{CCO_MAX} - V_{OL_MAX}) = 1.6V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.6V)/50\Omega] * 1.6V = 12.8mW$$

$$\text{Total Power Dissipation per output pair} = Pd_H + Pd_L = 32.6mW$$

Reliability Information

Table 9. θ_{JA} vs. Air Flow Table for a 48-Lead LQFP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	65.7°C/W	55.9°C/W	52.4°C/W

Transistor Count

The transistor count for 843034 is: 11,748

Package Outline and Package Dimensions

Package Outline - Y Suffix for 48-Lead LQFP

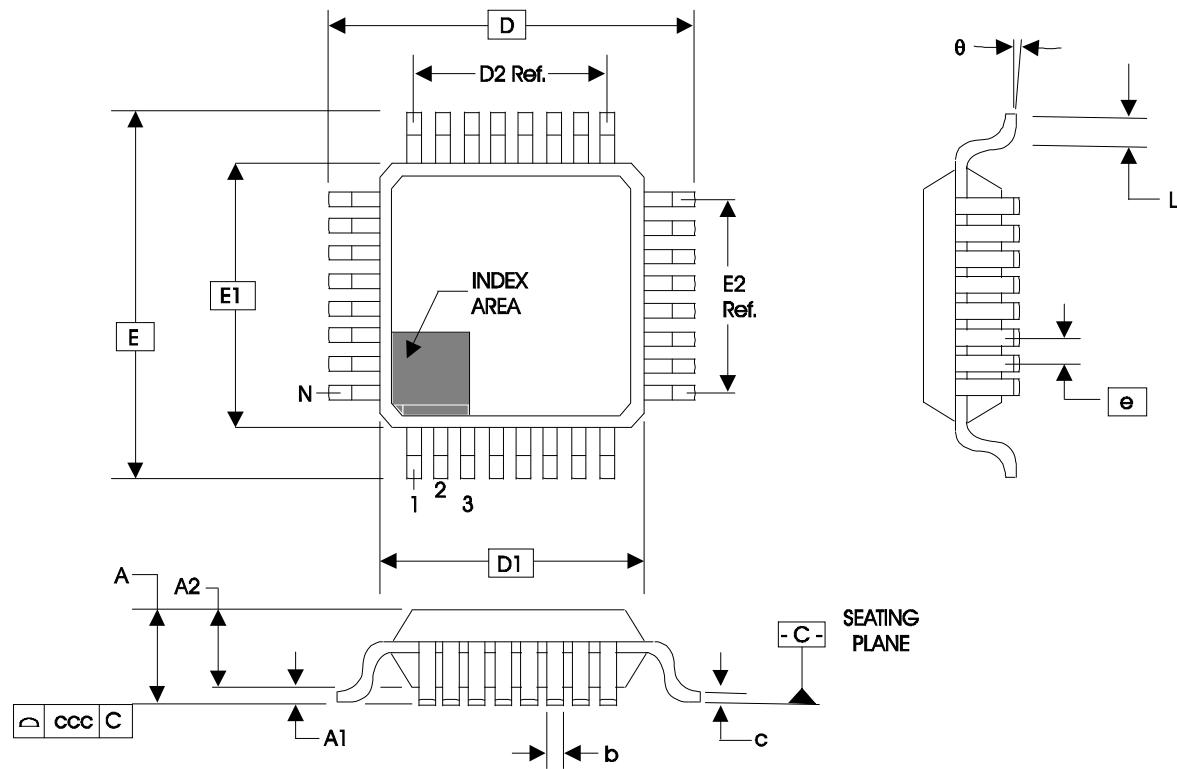


Table 10. Package Dimensions for 48-Lead LQFP

JEDEC Variation: BBC - HD All Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
N		48	
A			1.60
A1	0.05	0.10	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
c	0.09		0.20
D & E	9.00 Basic		
D1 & E1	7.00 Basic		
D2 & E2	5.50 Ref.		
e	0.5 Basic		
L	0.45	0.60	0.75
θ	0°		7°
ccc			0.08

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 12. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843034CYLF	ICS843034CYL	“Lead-Free” 48-Lead LQFP	Tray	0°C to 70°C
843034CYLFT	ICS843034CYL	“Lead-Free” 48-Lead LQFP	Tape & Reel	0°C to 70°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
B		1	Corrected General Description: changed reference clock to test clock; and changed REF_CLK to REF_OUT. Deleted last paragraph.	
		1	Features: corrected Supply Voltage bullet from REF_CLK output to REF_OUT output.	
		2	Block Diagram - swapped SEL1 and SEL0 pins; changed REF_CLK to TEST_CLK.	
	T1	4	Pin Description Table - Pin 5, corrected description to read REF_OUT from REF_CLK; Pin 21, corrected pin name from REF_CLK to REF_OUT.	
	T3	5	Pin Characteristics Table - CIN row, added Clock Input Pin row; R _{OUT} row, corrected pin name from REF_CLK to REF_OUT.	
	T3B	6	Programmable VCO Frequency Function Table - deleted blank rows. changed VCO Frequency from 700 to 600 and M Divide from 28 to 24 (updated row for M2 column); changed VCO Frequency from 750 to 625 and M Divide from 30 to 25 (updated rows for M2:M1 columns).	
	T3C	7	Programmable Output Divider Function Table - corrected Output Frequency Maximum column.	
	T3F	8	SEL0, SEL1 Function Table - corrected Headings, changed from SEL 0 / SEL1 to SEL 1 /SEL0 Input Column - swapped 2nd and 3rd rows.	
	T4A	9	Power Supply DC Characteristics Table - changed V _{CCO_REF} test condition from REF_CLK to REF_OUT.	
	T4B	9	LVCMS DC Characteristic Table - V _{OH} / V _{OL} rows - changed REF_CLK to REF_OUT.	11/6/13
	T5	10	Input Frequency Characteristics Table - f _{IN} parameter - deleted S_CLOCK row; deleted Rise/Fall Time parameters.	
	T6	10	Crystal Characteristics - added Load Capacitance parameter.	
	T7A, T7B	11 - 12	AC Characteristic Tables - Output Rise/Fall Time, changed REF_CLK to REF_OUT; Output Duty Cycle parameter - changed specs from 40% - 60% to 35% - 65%; PLL Lock Time parameter - change spec from 100ms to 200ms; Note 2 changed REF_CLK to REF_OUT.	
		14 - 15	Parameter Measurement Information - corrected 3.3V/2.5V LVPECL Output Load Test Circuit Diagram. Added differential Input Levels, RMS Phase Jitter, Cycle-to-Cycle Jitter and PLL Lock Time diagrams. LVCMS Output Rise/Fall Time diagram corrected label from changed REF_CLK to REF_OUT	
		16	Applications Section - Recommendations for Unused Input & Output Pins - added CLK, nCLK input section and changed Output section.	
		17	Updated <i>Wiring the Differential Input to Accept Single-Ended Levels</i> .	
		18	Updated <i>Wiring the Differential Input to Accept Single-Ended Levels</i> .	
		22 - 23	Updated Schematic Application Note.	
		24	Power Considerations, corrected LVCMS Output Power Dissipation and calculation.	
B	F1 T3B T3C	1 3 3 6 6	Features: Changed VCO range from 625MHz to 750MHz. Functional Description, 2nd paragraph: Changed VCO range from 625MHz to 750MHz. Functional Description, 5th paragraph: Changed $23 \leq M \leq 25$ to $23 \leq M \leq 30$. Replaced Figure 1. Updated Table for VCO Frequencies 700MHz, 750MHz. Updated Output Frequency Maximum column.	2/5/2014
B			Updated data sheet format	12/2/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.