Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

HM64YGB36100 Series

32M Synchronous Late Write Fast Static RAM (1-Mword × 36-bit)

REJ03C0271-0100 (Previous ADE-203-1374 (Z) Rev. 0.0) Rev.1.00 Jun.27.2005

Description

The HM64YGB36100 is a synchronous fast static RAM organized as 1-Mword \times 36-bit. It has realized high speed access time by employing the most advanced CMOS process and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. It is packaged in standard 119-bump BGA.

Note: All power supply and ground pins must be connected for proper operation of the device.

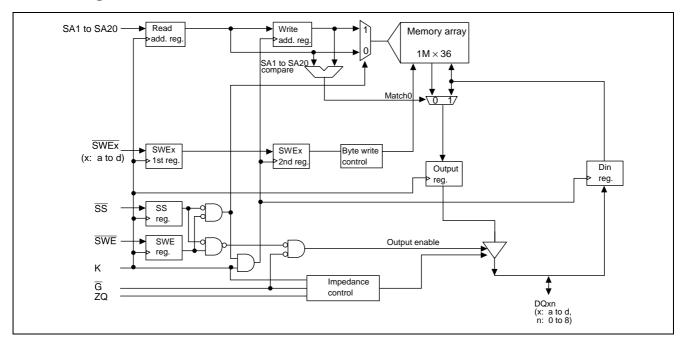
Features

- 2.5 V \pm 5% operation and 1.5 V (V_{DDO})
- 32-Mbit density
- Synchronous register to register operation
- Internal self-timed late write
- Byte write control (4 byte write selects, one for each 9-bit)
- Optional ×18 configuration
- HSTL compatible I/O
- Programmable impedance output drivers
- Differential HSTL clock inputs
- Asynchronous \overline{G} output control
- Asynchronous sleep mode
- FC-BGA 119pin package with SRAM JEDEC standard pinout
- Limited set of boundary scan JTAG IEEE 1149.1 compatible

Ordering Information

Type No.	Organization	Access time	Cycle time	Package
HM64YGB36100BP-33	1M × 36	1.6 ns	3.3 ns	119-bump 1.27 mm
				14 mm × 22 mm BGA
				PRBG0119DC-A (BP-119F)

Note: HM: Hitachi Memory prefix, 64: External Cache SRAM, Y: V_{DD} = 2.5 V, G: Late Write SRAM, B: V_{DDQ} = 1.5 V



Pin Arrangement

	1	2	3	4	5	6	7
Α	V_{DDQ}	SA14	SA13	NC	SA6	SA7	V_{DDQ}
В	NC	SA15	SA12	SA20	SA5	SA9	NC
С	NC	SA16	SA11	V_{DD}	SA4	SA8	NC
D	DQc7	DQc8	V_{SS}	ZQ	V_{SS}	DQb8	DQb7
Е	DQc5	DQc6	V _{SS}	SS	V _{SS}	DQb6	DQb5
F	V_{DDQ}	DQc4	V_{SS}	G	V _{SS}	DQb4	V_{DDQ}
G	DQc3	DQc2	SWEc	NC	SWEb	DQb2	DQb3
Н	DQc1	DQc0	V_{SS}	NC	V_{SS}	DQb0	DQb1
J	V_{DDQ}	V_{DD}	V_{REF}	V_{DD}	V_{REF}	V_{DD}	V_{DDQ}
K	DQd1	DQd0	V_{SS}	K	V_{SS}	DQa0	DQa1
L	DQd3	DQd2	SWEd	K	SWEa	DQa2	DQa3
M	V_{DDQ}	DQd4	V_{SS}	SWE	V_{SS}	DQa4	V_{DDQ}
N	DQd5	DQd6	V_{SS}	SA17	V _{SS}	DQa6	DQa5
Р	DQd7	DQd8	V_{SS}	SA19	V_{SS}	DQa8	DQa7
R	NC	SA10	M1	V_{DD}	M2	SA1	NC
Т	NC	NC	SA18	SA3	SA2	NC	ZZ
U	V_{DDQ}	TMS	TDI	TCK	TDO	NC	V_{DDQ}

(Top view)

Block Diagram

Pin Descriptions

Name	I/O type	Descriptions	Notes
V_{DD}	Supply	Core power supply	
V _{SS}	Supply	Ground	
V_{DDQ}	Supply	Output power supply	
V_{REF}	Supply	Input reference, provides input reference voltage	
K	Input	Clock input, active high	
K	Input	Clock input, active low	
SS	Input	Synchronous chip select	
SWE	Input	Synchronous write enable	
SAn	Input	Synchronous address input	n: 1 to 20
SWEx	Input	Synchronous byte write enables	x: a to d
G	Input	Asynchronous output enable	
ZZ	Input	Power down mode select	
ZQ	Input	Output impedance control	1
DQxn	I/O	Synchronous data input/output	x: a to d n: 0 to 8
M1, M2	Input	Output protocol mode select	
TMS	Input	Boundary scan test mode select	
TCK	Input	Boundary scan test clock	
TDI	Input	Boundary scan test data input	
TDO	Output	Boundary scan test data output	
NC	_	No connection	

M1	M2	Protocol	Notes
V _{SS}	V_{DD}	Synchronous register to register operation	2

Notes: 1. ZQ is to be connected to V_{SS} via a resistance RQ where 175 $\Omega \le$ RQ \le 300 Ω . If ZQ = V_{DDQ} or open, output buffer impedance will be maximum.

2. Mode control input pins M1 and M2 are set at power-up and will not change the states during the SRAM operates.

This SRAM supports only single clock, pipelined read protocol.

Other settings are not applicable.

Mode control pin M2 can be set to V_{DDQ} instead of V_{DD} .

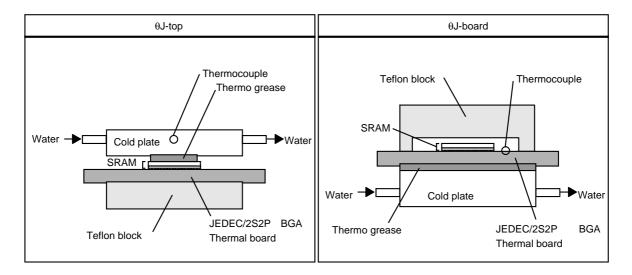
Truth Table

ZZ	SS	G	SWE	SWEa	SWEb	SWEc	SWEd	K	K	Operation	DQ (n)	DQ (n+1)
Н	×	×	×	×	×	×	×	×	×	Sleep mode	High-Z	High-Z
L	Н	×	×	×	×	×	×	L-H	H-L	Dead (not selected)	×	High-Z
L	×	Н	Н	×	×	×	×	×	×	Dead (dummy read)	High-Z	×
L	L		Н	×	×	×	×	L-H	H-L	Read	×	D _{OUT} (a, b, c, d) 0 to 8
L	L	×	L	L	L	L	L	L-H	H-L	Write a, b, c, d byte	High-Z	D _{IN} (a, b, c, d) 0 to 8
L	L	×	L	Н	L	L	L	L-H	H-L	Write b, c, d byte	High-Z	D _{IN} (b, c, d) 0 to 8
L	L	×	L	L	Н	L	L	L-H	H-L	Write a, c, d byte	High-Z	D _{IN} (a, c, d) 0 to 8
L	L	×	L	L	L	Н	L	L-H	H-L	Write a, b, d byte	High-Z	D _{IN} (a, b, d) 0 to 8
L	L	×	L	L	L	L	Н	L-H	H-L	Write a, b, c byte	High-Z	D _{IN} (a, b, c) 0 to 8
L	L	×	L	Н	Н	L	L	L-H	H-L	Write c, d byte	High-Z	D _{IN} (c, d) 0 to 8
L	L	×	L	L	Н	Н	L	L-H	H-L	Write a, d byte	High-Z	D _{IN} (a, d) 0 to 8
L	L	×	L	L	L	Ι	Ι	L-	H-L	Write a, b byte	High-Z	D _{IN} (a, b) 0 to 8
L	L	×	L	Н	L	L	Ι	L-H	H-L	Write b, c byte	High-Z	D _{IN} (b, c) 0 to 8
L	L	×	L	Н	Н	Н	L	L-H	H-L	Write d byte	High-Z	D _{IN} (d) 0 to 8
L	L	×	L	Н	Н	L	Н	L-H	H-L	Write c byte	High-Z	D _{IN} (c) 0 to 8
L	L	×	L	Н	L	Н	Н	L-H	H-L	Write b byte	High-Z	D _{IN} (b) 0 to 8
L	L	×	L	L	Н	Ι	Ι	L-	H-L	Write a byte	High-Z	D _{IN} (a) 0 to 8

Notes: 1. H: V_{IH} , L: V_{IL} , \times : V_{IH} or V_{IL}

2. $\overline{\text{SWE}}$, $\overline{\text{SS}}$, $\overline{\text{SWEa}}$ to $\overline{\text{SWEd}}$ and SA are sampled at the rising edge of K clock.

Programmable Impedance Output Drivers


Output buffer impedance can be programmed by terminating the ZQ pin to V_{SS} through a precision resistor (RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance matching with a tolerance of 15% is 250 Ω typical. If the status of ZQ pin is open, output impedance is maximum value. Maximum impedance also occurs with ZQ connected to V_{DDQ} . The impedance update of the output driver occurs when the SRAM is in high-Z. Write and deselect operations will synchronously switch the SRAM into and out of high-Z, therefore will trigger an update. At power up, the output buffer is in high-Z. It will take 4,096 cycles for the impedance to be completely updated.

Absolute Maximum Ratings

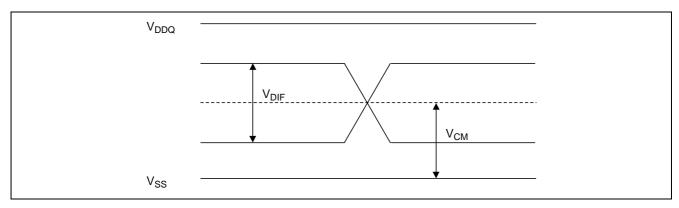
Parameter	Symbol	Rating	Unit	Notes
Input voltage on any pin	V _{IN}	-0.5 to $V_{DDQ} + 0.5$	V	1, 4
Core supply voltage	V_{DD}	-0.5 to +3.13	V	1
Output supply voltage	V_{DDQ}	-0.5 to +2.1	V	1, 4
Operating temperature	T _{OPR}	0 to +85	°C	
Storage temperature	T _{STG}	-55 to +125	°C	
Output short-circuit current	I _{OUT}	25	mA	
Latch up current	ILI	200	mA	
Package junction to top thermal resistance	θJ-top	6.5	°C/W	5
Package junction to board thermal resistance	θJ-board	12	°C/W	5

Notes: 1. All voltage is referenced to V_{SS} .

- 2. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted the operation conditions. Exposure to higher voltages than recommended voltages for extended periods of time could affect device reliability.
- 3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables after thermal equilibrium has been established.
- 4. The following supply voltage application sequence is recommended: V_{SS} , V_{DD} , V_{DDQ} , V_{REF} then V_{IN} . Remember, according to the absolute maximum ratings table, V_{DDQ} is not to exceed 2.1 V, whatever the instantaneous value of V_{DDQ} .
- 5. See figure below.

Note: The following DC and AC specifications shown in the tables, this device is tested under the minimum transverse air flow exceeding 500 linear feet per minute.

Recommended DC Operating Conditions


 $(Ta = 0 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power supply voltage: core	V_{DD}	2.38	2.50	2.63	V	
Power supply voltage: I/O	V_{DDQ}	1.40	1.50	1.60	V	
Input reference voltage: I/O	V_{REF}	0.60	0.75	0.90	V	1
Input high voltage	V _{IH}	V _{REF} + 0.10	_	$V_{DDQ} + 0.30$	V	4
Input low voltage	V _{IL}	-0.30	_	V _{REF} – 0.10	V	4
Clock differential voltage	V_{DIF}	0.10	_	$V_{DDQ} + 0.30$	V	2, 3
Clock common mode voltage	V _{CM}	0.60		0.90	V	3

Notes: 1. Peak to peak AC component superimposed on V_{REF} may not exceed 5% of V_{REF} .

- 2. Minimum differential input voltage required for differential input clock operation.
- 3. See figure below.
- 4. $V_{REF} = 0.75 V \text{ (typ)}.$

Differential Voltage / Common Mode Voltage

DC Characteristics

 $(Ta = 0 \text{ to } +85^{\circ}\text{C}, V_{DD} = 2.5 \text{ V} \pm 5\%)$

	,				
Parameter	Symbol	Min	Max	Unit	Notes
Input leakage current	ILI		2	μΑ	1
Output leakage current	I _{LO}		5	μΑ	2
Standby current	I _{SBZZ}		150	mΑ	3
V _{DD} operating current, excluding output drivers	I_{DD}		550	mΑ	4
Quiescent active power supply current	I _{DD2}		200	mΑ	5
Maximum power dissipation, including output drivers	Р		2.3	W	6

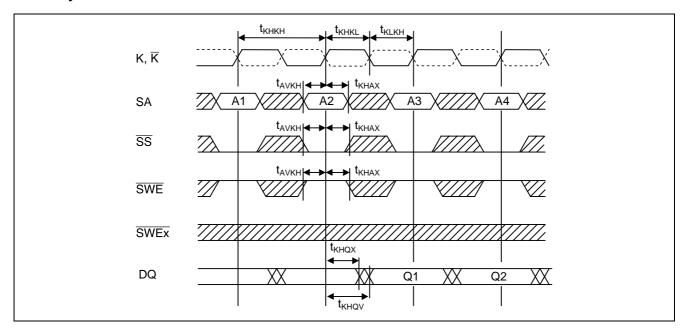
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output low voltage	V _{OL}	V _{SS}	_	V _{SS} + 0.4	V	7
Output high voltage	V _{OH}	$V_{DDQ} - 0.4$	_	V_{DDQ}	V	8
ZQ pin connect resistance	RQ	_	250	_	Ω	
Output "Low" current	I _{OL}	(V _{DDQ} /2) / {(RQ/5) – 15%}		(V _{DDQ} /2) / {(RQ/5) + 15%}	mΑ	9, 11
Output "High" current	I _{OH}	(V _{DDQ} /2) / {(RQ/5) + 15%}		(V _{DDQ} /2) / {(RQ/5) – 15%}	mΑ	10, 11

- Notes: 1. $0 \le V_{IN} \le V_{DDQ}$ for all input pins (except V_{REF} , ZQ, M1, M2 pin)
 - 2. $0 \le V_{OUT} \le V_{DDQ}$, DQ in high-Z
 - 3. All inputs (except clock) are held at either V_{IH} or V_{IL} , ZZ is held at V_{IH} , $I_{OUT} = 0$ mA. Specification is guaranteed at +75°C junction temperature.
 - 4. $I_{OUT} = 0$ mA, read 50% / write 50%, $V_{DD} = V_{DD}$ max, frequency = min. cycle
 - 5. $I_{OUT} = 0$ mA, read 50% / write 50%, $V_{DD} = V_{DD}$ max, frequency = 3 MHz
 - 6. Output drives a 12 pF load and switches every cycle. This parameter should be used by the SRAM designer to determine electrical and package requirements for the SRAM device.
 - 7. $RQ = 250 \Omega$, $I_{OL} = 6.8 \text{ mA}$
 - 8. RQ = 250 Ω , I_{OH} = -6.8 mA
 - 9. Measured at $V_{OL} = 1/2 V_{DDQ}$
 - 10. Measured at $V_{OH} = 1/2 V_{DDQ}$
 - 11. The total external capacitance of ZQ pin must be less than 7.5 pF.

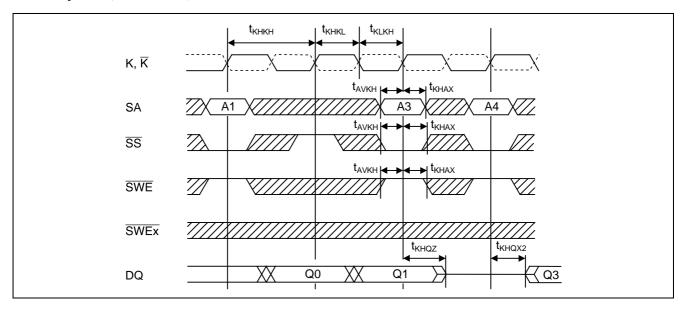
AC Characteristics

 $(Ta = 0 \text{ to } +85^{\circ}\text{C}, V_{DD} = 2.5 \text{ V} \pm 5\%)$

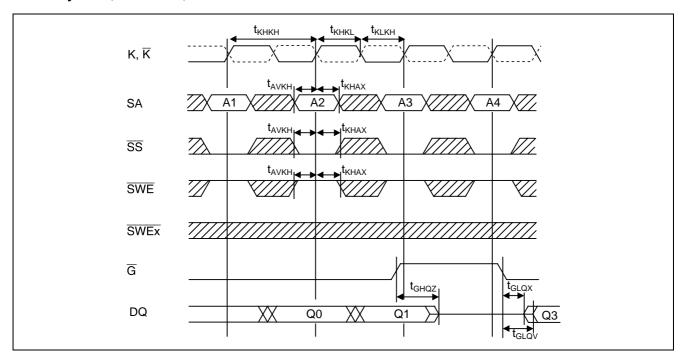
Single Differential Clock Register-Register Mode


		HM64Y	GB36100BP		
			-33		
Parameter	Symbol	Min	Max	Unit	Notes
CK clock cycle time	t _{KHKH}	3.3		ns	
CK clock high width	t _{KHKL}	1.3		ns	
CK clock low width	t _{KLKH}	1.3		ns	
Address setup time	t _{AVKH}	0.3		ns	2
Data setup time	t _{DVKH}	0.3	_	ns	2
Address hold time	t _{KHAX}	0.6		ns	
Data hold time	t _{KHDX}	0.6		ns	
Clock high to output valid	t _{KHQV}		1.6	ns	1
Clock high to output hold	t _{KHQX}	0.65		ns	1, 6
Clock high to output low-Z (SS control)	t _{KHQX2}	0.65		ns	1, 4, 6
Clock high to output high-Z	t _{KHQZ}	0.65	2.0	ns	1, 3, 6
Output enable low to output low-Z	t _{GLQX}	0.1	_	ns	1, 4, 6
Output enable low to output valid	t _{GLQV}		2.0	ns	1, 4
Output enable high to output high-Z	t _{GHQZ}	_	2.0	ns	1, 3
Sleep mode recovery time	t_{ZZR}	20.0	_	ns	5
Sleep mode enable time	t_{ZZE}	_	15.0	ns	1, 3, 5

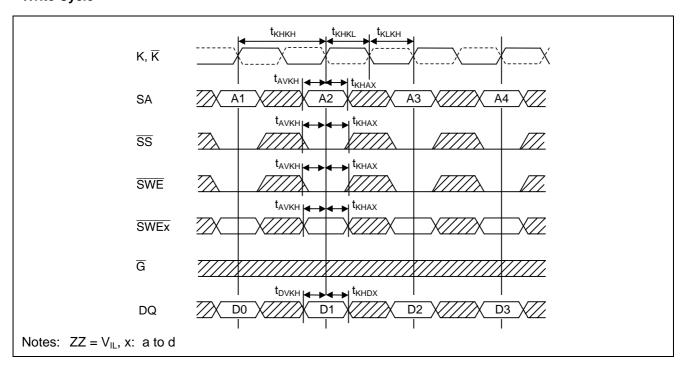
Notes: 1. See figure in "AC Test Conditions".


- 2. Parameters may be guaranteed by design, i.e., without tester guardband.
- 3. Transitions are measured ±50 mV of output high impedance from output low impedance.
- 4. Transitions are measured ± 50 mV from steady state voltage.
- 5. When ZZ is switching, clock input K must be at the same logic level for the reliable operation.
- 6. Minimum value is verified by design and tested without guardband.

Timing Waveforms

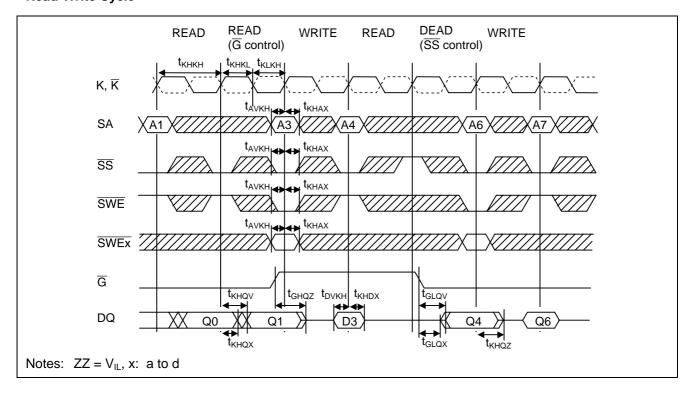

Read Cycle-1

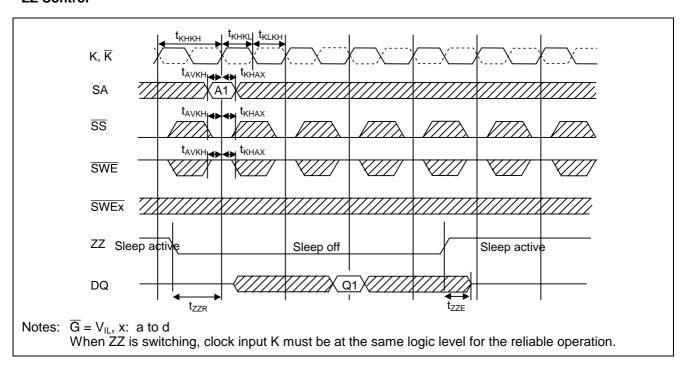
Read Cycle-2 (SS Controlled)


Read Cycle-3 (\overline{G} Controlled)

Read operation

During read cycle, the address is registered during the first rising clock edge, the internal array is read between this first edge and second edge, and data is captured in the output register.


Write Cycle


Write operation

During write cycle, the write data follows the write address by one cycle. All N bits of address are presented during the same cycle. Any subsequent read to this address should get the latest data. Because in the actual implementation the data will be written into the SRAM array only after the next write address is received, a one-entry buffer is needed to hold the write data and to allow bypassing of data from the write buffer to the output if there is a read of the same address.

Read-Write Cycle

ZZ Control

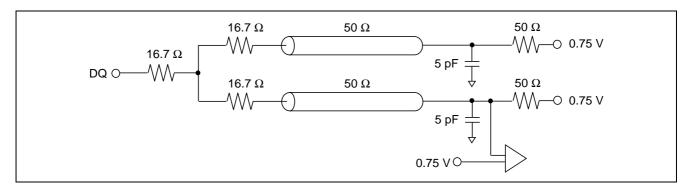
Input Capacitance

 $(V_{DD} = 2.5 \text{ V}, V_{DDQ} = 1.5 \text{ V}, Ta = +25^{\circ}\text{C}, f = 1 \text{ MHz})$

Parameter	Symbol	Min	Max	Unit	Pin name	Notes
Input capacitance	C _{IN}	_	4	pF	SAn, SS, SWE, SWEx	1, 3
Clock input capacitance	C _{CLK}	_	5	pF	K, K	1, 2, 3
I/O capacitance	C _{IO}	_	5	pF	DQxn	1, 3

Notes: 1. This parameter is sampled and not 100% tested.

2. Exclude \overline{G}


3. Connect pins to GND, except V_{DD} , V_{DDQ} , and the measured pin.

AC Test Conditions

Parameter	Symbol	Conditions	Unit	Note
Input and output timing reference levels	V_{REF}	0.75	V	
Input signal amplitude	V_{IL}, V_{IH}	0.25 to 1.25	V	
Input rise / fall time	tr, tf	0.5 (10% to 90%)	ns	
Clock input timing reference level		Differential cross point		
V _{DIF} to clock		0.75	V	
V _{CM} to clock		0.75	V	
Output loading conditions		See figure below		

Note: Parameters are tested with RQ = 250 Ω and V_{DDQ} = 1.5 V.

Output Loading Conditions

Boundary Scan Test Access Port Operations

Overview

In order to perform the interconnect testing of the modules that include this SRAM, the serial boundary scan test access port (TAP) is designed to operate in a manner consistent with IEEE Standard 1149.1 - 1990. But does not implement all of the functions required for 1149.1 compliance. The HM64YGB series contains a TAP controller. Instruction register, boundary scans register, bypass register and ID register.

Test Access Port Pins

Symbol I/O	Name
TCK	Test clock
TMS	Test mode select
TDI	Test data in
TDO	Test data out

Note: This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1.

To disable the TAP, TCK must be connected to V_{SS}. TDO should be left unconnected.

To test boundary scan, the ZZ pin needs to be kept below $V_{REF} - 0.4 \text{ V}$.

TAP DC Operating Characteristics

 $(Ta = 0 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Min	Max	Notes
Boundary scan input high voltage	V _{IH}	1.4 V	3.6 V	
Boundary scan input low voltage	V _{IL}	–0.3 V	0.8 V	
Boundary scan input leakage current	I _{LI}	–10 μΑ	+10 μΑ	1
Boundary scan output low voltage	V _{OL}		0.2 V	2
Boundary scan output high voltage	V _{OH}	2.1 V		3

Notes: 1. $0 \le V_{IN} \le 3.6 \text{ V}$ for all logic input pin

2. $I_{OL} = 2 \text{ mA}$ at $V_{DD} = 2.5 \text{ V}$.

3. $I_{OH} = -2 \text{ mA}$ at $V_{DD} = 2.5 \text{ V}$.

TAP AC Operating Characteristics

 $(Ta = 0 \text{ to } +85^{\circ}C)$

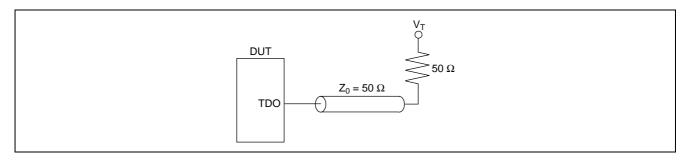
Parameter	Symbol	Min	Max	Unit	Note
Test clock cycle time	t _{тнтн}	67	_	ns	
Test clock high pulse width	t _{THTL}	30	_	ns	
Test clock low pulse width	tтьтн	30	_	ns	
Test mode select setup	t _{MVTH}	10	_	ns	
Test mode select hold	t _{THMX}	10	_	ns	
Capture setup	t _{CS}	10	_	ns	1
Capture hold	t _{CH}	10	_	ns	1
TDI valid to TCK high	t _{DVTH}	10	_	ns	
TCK high to TDI don't care	t _{THDX}	10	_	ns	
TCK low to TDO unknown	t _{TLQX}	0		ns	
TCK low to TDO valid	t _{TLQV}		20	ns	

Note: 1. $t_{CS} + t_{CH}$ defines the minimum pause in RAM I/O pad transitions to assure pad data capture.

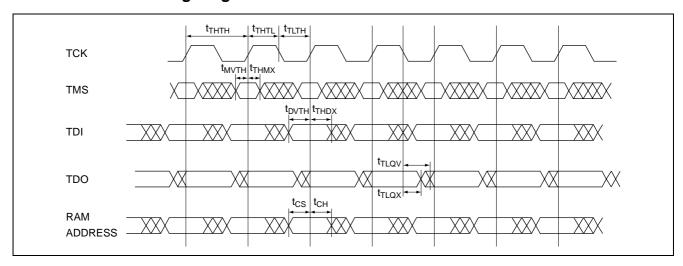
TAP AC Test Conditions

 $(V_{\rm DD}=2.5~\rm V)$

Temperature $0^{\circ}C \le Ta \le +85^{\circ}C$


Input timing measurement reference level 1.1 VInput pulse levels 0 to 2.5 V

Input rise/fall time 1.5 ns typical (10% to 90%)


Output timing measurement reference level 1.25 VTest load termination supply voltage (V_T) 1.25 V

Output load See figure below

Boundary Scan AC Test Load

TAP Controller Timing Diagram

Test Access Port Registers

Register name	Length	Symbol	Note
Instruction register	3 bits	IR [2:0]	
Bypass register	1 bit	BP	
ID register	32 bits	ID [31:0]	
Boundary scan register	70 bits	BS [70:1]	

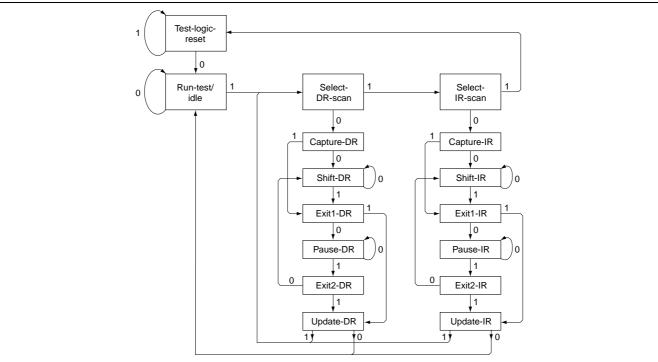
TAP Controller Instruction Set

IR2	IR1	IR0	Instruction	Operation
0	0	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	0	PRIVATE	Do not use. They are reserved for vendor use only
1	1	1	BYPASS	

Note: This device does not perform EXTEST, INTEST or the preload portion of the PRELOAD command in IEEE 1149.1.

Boundary Scan Order (HM64YGB36100)

Bit #	Bump ID	Signal name	Bit #	Bump ID	Signal
	5R	M2	36	3B	SA12
2	4P	SA19	37	2B	SA15
3	4T	SA3	38	3A	SA13
4	6R	SA1	39	3C	SA11
5	5T	SA2	40	2C	SA16
6	7T	ZZ	41	2A	SA14
7	6P	DQa8	42	2D	DQc8
8	7P	DQa7	43	1D	DQc7
9	6N	DQa6	44	2E	DQc6
10	7N	DQa5	45	1E	DQc5
11	6M	DQa4	46	2F	DQc4
12	6L	DQa2	47	2G	DQc2
13	7L	DQa3	48	1G	DQc3
14	6K	DQa0	49	2H	DQc0
15	7K	DQa1	50	1H	DQc1
16	5L	SWEa	51	3G	SWEc
17 ·	4L	K	52	4D	ZQ
18	4K	K	53	4E	SS
19 ·	4F	G	54	4B	SA20
20	5G	SWEb	55	4H	NC
21	7H	DQb1	56	4M	SWE
22	6H	DQb0	57	3L	SWEd
23	7G	DQb3	58	1K	DQd1
24	6G	DQb2	59	2K	DQd0
25	6F	DQb4	60	1L	DQd3
26	7E	DQb5	61	2L	DQd2
27	6E	DQb6	62	2M	DQd4
28	7D	DQb7	63	1N	DQd5
29	6D	DQb8	64	2N	DQd6
30	6A	SA7	65	1P	DQd7
	6C	SA8	66	2P	DQd8
32	5C	SA4	67	3Т	SA18
33	5A	SA6	68	2R	SA10
	6B	SA9	69	4N	SA17
35	5B	SA5	70	3R	M1

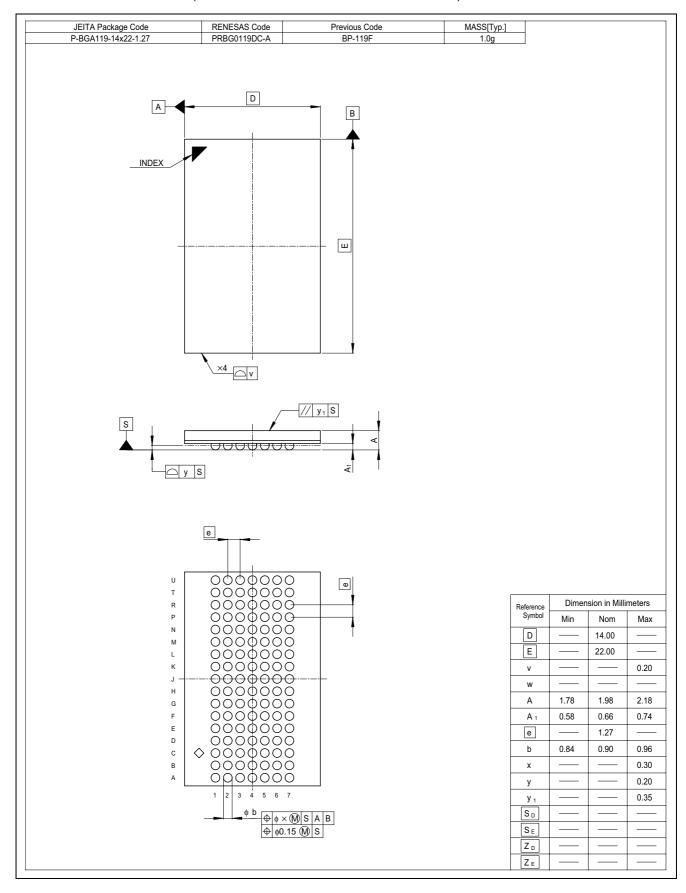

Notes: 1. Bit#1 is the first scan bit to exit the chip.

- 2. The NC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a "Place Holder". Place holder registers are internally connected to Vss.
- 3. In boundary scan mode, differential input K and \overline{K} are referenced to each other and must be at the opposite logic levels for the reliable operation.
- 4. ZZ must remain V_{IL} during boundary scan.
- 5. In boundary scan mode, ZQ must be driven to V_{DDQ} or V_{SS} supply rail to ensure consistent results.
- 6. M1 and M2 must be driven to V_{DD} , V_{DDQ} or V_{SS} supply rail to ensure consistent results.

ID Register

	Revision number	Device density and configuration	Vendor definition	Vendor JEDEC	Start
Part	(31:28)	(27:18)	(17:12)	code (11:1)	bit (0)
HM64YGB36100	0000	0100000100	xxxxxx	0000000111	1

TAP Controller State Diagram



Note: The value adjacent to each state transition in this figure represents the signal present at TMS at the time of a rising edge at TCK.

No matter what the original state of the controller, it will enter Test-logic-reset when TMS is held high for at least five rising edges of TCK.

Package Dimensions

HM64YGB36100BP Series (PRBG0119DC-A / Previous Code: BP-119F)

Revision History

HM64YGB36100 Series Data Sheet

			Description			
Rev.	Date	Page	Summary			
0.0	Dec. 5, 2002	_	Initial issue			
1.00	Jun. 27, 2005	1 5	Change format issued by Renesas Technology Corp. Ordering Information Addition of Renesas package codes Change of Programmable Impedance Output Drivers			
		19	Package Dimensions Addition of Renesas package codes Changed to Renesas formats			

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

A. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510