RENESAS

9FGL02x1/04x1/06x1/08x1D

3.3V PCIe Gen1-6 Clock Generator Family

The 9FGL02x1/04x1/06x1/08x1D devices comprise a family of 3.3V PCIe Gen1–6 clock generators. There are 2, 4, 6, and 8 outputs versions available and each differential output has a dedicated OE# pin supporting PCIe CLKREQ# functionality.

PCIe Clocking Architectures

- Common Clocked (CC)
- Independent Reference (IR) with and without spread spectrum (SRIS, SRNS)

Applications

- Servers/High-Performance Computing
- nVME Storage
- Networking
- Accelerators
- Industrial Control

Output Features

- 2, 4, 6, or 8 100MHz PCIe output pairs
- One 3.3V LVCMOS REF output with Wake-On-LAN (WOL) support
- See AN-891 for easy AC-coupling to other logic families

Key Specifications

- 40fs RMS typical jitter (PCIe Gen6 CC)
- < 50ps cycle-to-cycle jitter on differential outputs</p>
- < 50ps output-to-output skew on differential outputs</p>
- ±0ppm synthesis error on differential outputs

Features

- Integrated terminations for 100Ω and 85Ω systems save 4 resistors per output
- 112–206 mW typical power consumption (at 3.3V)
- VDDIO rail allows 35% power savings at optional 1.05V (9FGL06 and 9FGL08 only)
- Devices contain default configuration; SMBus not required
- SMBus-selectable features allows optimization to customer requirements:
 - Input polarity and pull-up/pull-downs
 - Output slew rate and amplitude
 - Output impedance (85Ω or 100Ω) for each output
- Contact factory for custom default configurations
- 25MHz input frequency
- OE# pins support PCIe CLKREQ# function
- Pin-selectable SRnS 0%, CC 0% and CC/SRIS -0.5% spread
- SMBus-selectable CC/SRIS -0.25% spread
- Clean switching between the CC/SRIS spread settings
- DIF outputs blocked until PLL is locked; clean system start-up
- 2 selectable SMBus addresses
- Space saving packages:
 - 4 × 4 mm 24-VFQFPN (9FGL02x1D)
 - 5 × 5 mm 32-VFQFPN (9FGL04x1D)
 - 5 × 5 mm 40-VFQFPN (9FGL06x1D)
 - 6 × 6 mm 48-VFQFPN (9FGL08x1D)

Contents

1.	Pin Information	3
	I.1 9FGL02x1D Pin Assignments	3
	I.2 9FGL04x1D Pin Assignments	4
	I.3 9FGL06x1D Pin Assignments	5
	I.4 9FGL08x1D Pin Assignments	6
	I.5 Pin Descriptions	6
2.	Specifications	9
	2.1 Absolute Maximum Ratings	9
	2.2 Thermal Specifications	9
	2.3 Electrical Specifications	. 10
3.	Power Management	. 18
4.	Fest Loads	. 18
5.	Alternate Terminations	. 19
6.	Crystal Characteristics	. 20
7.	General SMBus Serial Interface Information	. 21
	7.1 How to Write	. 21
	7.2 How to Read	. 21
8.	Package Outline Drawings	. 29
9.	Marking Diagrams	. 29
	9.1 9FGL02x1D	. 29
	9.2 9FGL04x1D	. 29
	0.3 9FGL06x1D	
	9.4 9FGL08x1D	. 30
10.	Ordering Information	. 31
11.	Revision History	. 32

1. Pin Information

1.1 9FGL02x1D Pin Assignments

24-VFQFPN, 4 x 4 mm, 0.5mm pitch

^ prefix indicates internal 120kOhm pull-up resistor
 v prefix indicates internal 120kOhm pull-down resistor
 ^v prefix indicates internal 120kOhm pull-up and pull-down resistors

Figure 2. 4 × 4 mm 24-VFQFPN Package – Top View

1.2 9FGL04x1D Pin Assignments

32-VFQFPN, 5 x 5 mm, 0.5mm pitch

^ prefix indicates internal 120kOhm pull-up resistor
 v prefix indicates internal 120kOhm pull-down resistor
 ^v prefix indicates internal 120kOhm pull-up and pull-down resistors

Figure 3. 5 × 5 mm 32-VFQFPN Package – Top View

1.3 9FGL06x1D Pin Assignments

1.4 9FGL08x1D Pin Assignments

 $\ensuremath{^{\mbox{v}}}$ prefix indicates internal pull-up and pull-down resistors

1.5 Pin Descriptions

Name	Туре	Description	Pin Number					
	туре		9FGL08x1	9FGL06x1	9FGL04x1	9FGL02x1		
^CKPWRGD_PD#	Input	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.	48	40	31	22		
^vSS_EN_tri	Latched In	Latched select input to select spread spectrum amount at initial power up. See Spread and Mode Selection table.	1	1	32	23		
DIF0	Output	Differential true clock output.	15	14	13	13		

	_		Pin Number					
Name	Туре	Description	9FGL08x1	9FGL06x1	9FGL04x1	9FGL02x1		
DIF0#	Output	Differential complementary clock output.	16	15	14	14		
DIF1	Output	Differential true clock output.	18	18	18	17		
DIF1#	Output	Differential complementary clock output.	19	19	19	18		
DIF2	Output	Differential true clock output.	23	22	22	-		
DIF2#	Output	Differential complementary clock output.	24	23	23	-		
DIF3	Output	Differential true clock output.	26	28	27	-		
DIF3#	Output	Differential complementary clock output.	27	29	28	-		
DIF4	Output	Differential true clock output.	32	33	-	-		
DIF4#	Output	Differential complementary clock output.	33	34	-	-		
DIF5	Output	Differential true clock output.	35	36	-	-		
DIF5#	Output	Differential complementary clock output.	36	37	-	-		
DIF6	Output	Differential true clock output.	41	-	-	-		
DIF6#	Output	Differential complementary clock output.	42	-	-	-		
DIF7	Output	Differential true clock output.	44	-	-	-		
DIF7#	Output	Differential complementary clock output.	45	-	-	-		
EPAD	GND	Connect to ground.	49	41	33	25		
GND	GND	Ground pin.	22	EPAD	15	10		
GND	GND	Ground pin.	40	EPAD	26, 30	21		
GNDA	GND	Ground pin for the PLL core.	29	EPAD	20	15		
GNDDIG	GND	Ground pin for digital circuitry.	9	8	8	6		
GNDREF	GND	Ground pin for the REF outputs.	8	-	7	5		
GNDXTAL	GND	GND for XTAL.	2	EPAD	1	24		
NC	-	No connect.	-	7, 25	-	-		
SCLK_3.3	Input	Clock pin of SMBus circuitry, 3.3V tolerant.	10	9	10	8		
SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.	11	10	11	9		
VDD3.3	Power	Power supply, nominally 3.3V.	20	16	16	11		
VDD3.3	Power	Power supply, nominally 3.3V.	38	31	25	20		
VDDA3.3	Power	3.3V power for the PLL core.	30	26	21	16		
VDDDIG3.3	Power	3.3V digital power (dirty power).	12	11	9	7		
VDDIO	Power	Power supply for differential outputs.	13	12	-	-		
VDDIO	Power	Power supply for differential outputs.	21	17	-	-		
VDDIO	Power	Power supply for differential outputs.	31	27	-	-		
VDDIO	Power	Power supply for differential outputs.	39	32	-	-		
VDDIO	Power	Power supply for differential outputs.	47	39	-	-		
VDDREF3.3	Power	Power supply for REF output, nominally 3.3V.	6	5	5	-		
VDDXTAL3.3	Power	Power supply for XTAL, nominally 3.3V.	5	4	4	3		

9FGL02x1/04x1/06x1/08x1D Datasheet

News	-	Burnintin	Pin Number					
Name	Туре	Description	9FGL08x1	9FGL06x1	9FGL04x1	9FGL02x1		
vOE0#	Input	Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	14	13	12	12		
vOE1#	Input	Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	17	21	17	19		
vOE2#	vOE2#InputActive low input for enabling output 2. This pin has an internal pull-down. 1 = disable output, 0 = enable output.vOE3#InputActive low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, 0 = enable output.		25	24	24	-		
vOE3#			28	30	29	-		
vOE4#	Input	Active low input for enabling output 4. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	34	35	-	-		
vOE5#	Input	Active low input for enabling output 5. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	37	38	-	-		
vOE6#	Input	Active low input for enabling output 6. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	43	-	-	-		
vOE7#	Input	Active low input for enabling output 7. This pin has an internal pull-down. 1 = disable output, 0 = enable output.	46	-	-	-		
vSADR/REF3.3	Latched I/O	Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin.	7	6	6	4		
X2	Output	Crystal output.	4	3	3	2		
XIN/CLKIN_25	Input	Crystal input or Reference Clock input, nominally 25MHz.	3	2	2	1		

Table 1. Spread and Mode Selection

Configuration	^vSS_EN_tri Pin (Latched at Power Up)	B1[4:3]	Spread%	Note
0	0	00	0	12kHz to 20MHz mode
1	-	01	-0.25	PCIe CC or IR (SRIS) mode.
2	M (VDD/2)	10	0	PCIe CC or IR (SRIS or SRNS) mode.
3	1	11	-0.50	PCIe CC or IR (SRIS) mode.

If 12kHz to 20MHz mode is desired, power up with ^vSS_EN_tri = 0. Do not attempt to switch to the other modes or a system reset will be required. If PCIe modes are desired, power-up with ^vSS_EN_tri at either M or 1. The desired spread spectrum amount can then be selected via Byte 1 without requiring a system reset. Once M or 1 is latched at power-up, do not attempt to enter 12kHz to 20MHz mode or a system reset will be required.

RENESAS

2. Specifications

2.1 Absolute Maximum Ratings

Caution: The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9FGL02x1/04x1/06x1/08x1D at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol	Conditions	Minimum	Maximum	Unit
Supply Voltage ^[1]	V _{DDx}	With respect to ground	-0.5	4.6	V
Input Voltage ^{[1][2]}	V _{IN}		-0.5	V _{DD} + 0.5	V
Input High Voltage, SMBus ^{[1][2]}	V _{IHSMB}	SMBus clock and data pins.	-	V _{DD} + 0.5	V
Storage Temperature ^[1]	Ts		-65	150	°C
Junction Temperature ^[1]	Tj		-	125	°C
Input ESD Protection ^[1]	ESD prot	Human Body Model.	2500	-	V

1. Operation under these conditions is neither implied nor guaranteed.

2. Not to exceed 4.6V.

2.2 Thermal Specifications

Table 3. Thermal Characteristics

Parameter	Package	Symbol	Conditions	Typical Values	Unit
	θ_{JC} Junction to case.		Junction to case.	62	°C/W
		θ _{Jb}	Junction to base.	5.4	°C/W
9FGL02 Thermal	NLG24 ^[1]	θ _{JA0}	Junction to air, still air.	50	°C/W
Resistance	NEG24	θ _{JA1}	Junction to air, 1 m/s air flow.	43	°C/W
		θ _{JA3}	Junction to air, 3 m/s air flow.	39	°C/W
		θ _{JA5}	Junction to air, 5 m/s air flow.	38	°C/W
		θ _{JC}	Junction to case.	42	°C/W
			Junction to base.	2.4	°C/W
9FGL04 Thermal	NLG32 ^[1]	θ _{JA0}	Junction to air, still air.	39	°C/W
Resistance		θ _{JA1}	Junction to air, 1 m/s air flow.	33	°C/W
				Junction to air, 3 m/s air flow.	28
		θ _{JA5}	Junction to air, 5 m/s air flow.	27	°C/W
		θ _{JC}	Junction to case.	42	°C/W
		θ _{Jb}	Junction to base.	2.4	°C/W
9FGL06 Thermal	NDG40 ^[1]	θ _{JA0}	Junction to air, still air.	39	°C/W
Resistance	NDG40 [1]	θ _{JA1}	Junction to air, 1 m/s air flow.	33	°C/W
		θ _{JA3}	Junction to air, 3 m/s air flow.	28	°C/W
		θ_{JA5}	Junction to air, 5 m/s air flow.	27	°C/W

Parameter	Package	Symbol	Conditions	Typical Values	Unit	
	NDG48	θ _{JC}	Junction to case.	33	°C/W	
		θ _{Jb}	Junction to base.	2.1	°C/W	
9FGL08 Thermal		Thermal NDC48 [1] θ_{JA0} Junction to air, still air.		Junction to air, still air.	37	°C/W
Resistance		θ_{JA1}	Junction to air, 1 m/s air flow.	30	°C/W	
		θ _{JA3}	Junction to air, 3 m/s air flow.	27	°C/W	
		θ_{JA5}	Junction to air, 5 m/s air flow.	26	°C/W	

Table 3. Thermal Characteristics (Cont.)

1. EPAD soldered to board.

2.3 Electrical Specifications

All parameters are measured over conditions specified in Table 6 unless otherwise specified. See Test Loads for loading conditions.

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
V _{IH}	High-level Input Voltage for SMBCLK and SMBDAT	-	0.8 VDD	-	-	V
V _{IL}	Low-level Input Voltage for SMBCLK and SMBDAT	-	-	-	0.3 VDD	
V _{HYS}	Hysteresis of Schmitt Trigger Inputs	-	0.05 VDD	-	-	
V _{OL}	Low-level Output Voltage for SMBCLK and SMBDAT	I _{OL} = 4mA	-	0.28	0.4	
I _{IN}	Input Leakage Current per Pin	-	[2]	-	[2]	μA
CB	Capacitive Load for Each Bus Line	-	-	-	400	pF

 Table 4. SMBus DC Electrical Characteristics [1]

1. V_{OH} is governed by the V_{PUP} , the voltage rail to which the pull-up resistors are connected.

2. For more information, see Input/Supply/Common Parameters – Normal Operating Conditions.

Figure 6. SMBus Slave Timing Diagram

Symbol	Parameter	Condition	100kH	z Class	400kH	Unit	
Symbol	Falanetei	Condition	Minimum	Maximum	Minimum	Maximum	Unit
f _{SMB}	SMBus Operating Frequency	[1]	10	100	10	400	kHz
t _{BUF}	Bus free time between STOP and START Condition	-	4.7	-	1.3	-	μs
t _{HD:STA}	Hold Time after (REPEATED) START Condition	[2]	4	-	0.6	-	μs
t _{SU:STA}	REPEATED START Condition Setup Time	-	4.7	-	0.6	-	μs

Symbol	Parameter	Condition	100kHz Class		400kH	Unit	
	Farameter	Condition	Minimum	Maximum	Minimum	Maximum	Unit
t _{SU:STO}	STOP Condition Setup Time	-	4	-	0.6	-	μs
t _{HD:DAT}	Data Hold Time	[3]	300	-	300	-	ns
t _{SU:DAT}	Data Setup Time	-	250	-	100	-	ns
t _{TIMEOUT}	Detect SCL_SCLK Low Timeout ^[4] 25 35		25	35	ms		
t _{TIMEOUT}	Detect SDA_nCS Low Timeout	[5]	25	35	25	35	ms
t _{LOW}	Clock Low Period	-	4.7	-	1.3	-	μs
t _{HIGH}	Clock High Period	[6]	4	50	0.6	50	μs
t _{LOW:SEXT}	Cumulative Clock Low Extend Time - Slave	[7]	N	/A	N/A		ms
t _{LOW:MEXT}	Cumulative Clock Low Extend Time - Master	[8]	N/A		N/A		ms
t _F	Clock/Data Fall Time	[9]	-	300	-	300	ns
t _R	Clock/Data Rise Time	[9]	-	1000	-	300	ns
t _{SPIKE}	Noise Spike Suppression Time	[10]	-	-	0	50	ns

Table 5. SMBus AC Electrical Characteristics (Cont.)

1. Power must be applied and PWRGD_PWRDNb must be a 1 for the SMBus to be active.

2. A master should not drive the clock at a frequency below the minimum f_{SMB}. Further, the operating clock frequency should not be reduced below the minimum value of f_{SMB} due to periodic clock extending by slave devices as defined in Section 5.3.3 of System Management Bus (SMBus) Specification, Version 3.1, dated 19 Mar 2018. This limit does not apply to the bus idle condition, and this limit is independent from the t_{LOW: SEXT} and t_{LOW: MEXT} limits. For example, if the SMBCLK is high for t_{HIGH,MAX}, the clock must not be periodically stretched longer than 1/f_{SMB,MIN} – t_{HIGH,MAX}. This requirement does not pertain to a device that extends the SMBCLK low for data processing of a received byte, data buffering and so forth for longer than 100µs in a non-periodic way.

- 3. A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the VIH,MIN of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK.
- 4. Slave devices may have caused other slave devices to hold SDA low. This is the maximum time that a device can hold SMBDAT low after the master raises SMBCLK after the last bit of a transaction. A slave device may detect how long SDA is held low and release SDA after the time out period.
- 5. Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds the value of t_{TIMEOUT,MIN}. After the master in a transaction detects this condition, it must generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able to receive a new START condition no later than t_{TIMEOUT,MAX}. Typical device examples include the host controller, and embedded controller, and most devices that can master the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the device that is forcing the timeout holds the SMBCLK low for t_{TIMEOUT,MAX} or longer.
- 6. The device has the option of detecting a timeout if the SMBDATA pin is also low for this time.
- t_{HIGH,MAX} provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than t_{HIGH,MAX}.
- t_{LOW:MEXT} is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master will also extend the clock causing the combined clock low time to be greater than t_{LOW:MEXT} on a given byte. This parameter is measured with a full speed slave device as the sole target of the master.
- 9. The rise and fall time measurement limits are defined as follows:

Rise Time Limits: (V_{IL:MAX} - 0.15 V) to (V_{IH:MIN} + 0.15 V)

Fall Time Limits: (V_{IH:MIN} + 0.15 V) to (V_{IL:MAX} - 0.15 V)

10. Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Supply Voltage	V _{DDxxx}	Supply voltage for core, analog and single- ended LVCMOS outputs.	3.135	3.3	3.465	V
IO Supply Voltage	V _{DDIO}	Supply voltage for differential low power outputs.	0.9975	1.05–3.3	3.465	V
Ambient Operating Temperature	T _{AMB}	Industrial range.	-40	25	85	°C
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus.	0.75 x V _{DDx}	-	V _{DDx} + 0.3	V
Input Low Voltage	V _{IL}	Single-ended inputs, except Sindus.	-0.3	-	0.25 x V _{DDx}	V
Input High Voltage	V _{IHtri}		0.8 x V _{DDx}	-	V _{DDx} + 0.3	V
Input Mid Voltage	V _{IMtri}	Single-ended tri-level inputs ('_tri' suffix).	0.4 x V _{DDx}	$0.5 ext{ v}_{ ext{DDx}}$	0.6 x V _{DDx}	V
Input Low Voltage	V _{ILtri}		-0.3	-	0.20 x V _{DDx}	V
Input Current	I _{IN}	Single-ended inputs, V_{IN} = GND, V_{IN} = $V_{DD.}$	-5	-	5	μA
	I _{INP}	Single-ended inputs. $V_{IN} = 0V$; inputs with internal pull-up resistors. $V_{IN} = V_{DD}$; inputs with internal pull-down resistors.	-50	-	50	μΑ
Input Frequency [1]	F _{IN}	XTAL or X1 input.	-	25	-	MHz
Pin Inductance ^[2]	L _{pin}		-	-	7	nH
Capacitance ^[2]	C _{IN}	Logic inputs, except DIF_IN.	1.5	-	5	pF
Capacitance	C _{OUT}	Output pin capacitance.	-	-	6	pF
CLK Stabilization [2][3]	t _{STAB}	From V_{DD} power-up and after input clock stabilization or de-assertion of PD# to 1st clock.	-	0.3	1.8	ms
SS Modulation Frequency ^[2]	f _{MOD}	Triangular modulation.	30	31.6	33	kHz
OE# Latency ^[2]	t _{LATOE} #	DIF start after OE# assertion. DIF stop after OE# de-assertion.	3	4	5	clocks
Fall Time ^{[2][3]}	t _F	Fall time of single-ended control inputs.	-	-	5	ns
Rise Time ^{[2][3]}	t _R	Rise time of single-ended control inputs.	-	-	5	ns

1. Contact the factory for other frequencies.

2. Confirmed by design and characterization, not 100% tested in production.

3. Control input must be monotonic from 20% to 80% of input swing.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Slew Rate	Trf	Scope averaging on, fast setting. ^{[1][2]}	3	3.8	4.6	V/ns
		Scope averaging, slow setting. ^{[1][2]}	2	2.7	3.5	V/ns
Crossing Voltage (abs)	Vcross_abs	Scope averaging off. ^{[3][4][5]}	250	429	550	mV
Crossing Voltage (var)	∆-Vcross	Scope averaging off. ^{[3][4][6]}	-	26	140	mV

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Avg. Clock Period Accuracy	T _{PERIOD AVG}	9FGL0xxx devices have 0 ppm synthesis error0.5% SSC. ^{[1][7][8][9]}	-	0	+2500	ppm
	_	-0.25% SSC	-	0	+1250	
Absolute Period	T _{PERIOD_ABS}	Includes jitter and spread spectrum modulation. ^{[1][10]}	9.95	10	10.0503	ns
Jitter, Cycle to Cycle [1]	t _{jcyc-cyc}		-	16	50	ps
Voltage High ^[3]	V _{HIGH}	Statistical measurement on single-	660	790	850	mV
Voltage Low ^[3]	V _{LOW}	ended signal using oscilloscope math function (scope averaging on).	-150	-4	150	mV
Absolute Maximum Voltage [3][11][12]	V _{MIN}	Measurement on single-ended signal using absolute value (scope averaging	-	832	1150	mV
Absolute Minimum Voltage [3][12][13]	V _{MAX}	off).	-300	-61	-	mV
Duty Cycle [1]	t _{DC}		45	48.6	55	%
Slew Rate Matching [3][14]	ΔTrf	Single-ended measurement.	-	9	20	%
Skew, Output to Output ^[1]	t _{sk3}	Averaging on, V _T = 50%.	-	32	50	ps

Table 7. Differential Low-Power HCSL Outputs	(Cont.)	
	(

1. Measured from differential waveform.

Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be
monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero
crossing.

3. Measured from single-ended waveform.

4. Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

- 5. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.
- 7. Refer to Section 8.6.2 of the PCI Express Base Specification, Revision 5.0 for information regarding PPM considerations.
- PCle Gen1 through Gen4 specify ±300ppm frequency tolerances. PCle Gen5 reduces the allowable tolerance to ±100ppm without spread spectrum.
- 9. "ppm" refers to parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz. For 100ppm, then we have an error budget of 100Hz/ppm × 100ppm = 10kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ±100ppm applies to systems that do not employ Spread Spectrum clocking, or that use common clock source. For systems employing Spread Spectrum clocking, there is an additional 2,500ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock architectures. Separate Reference Clock architectures may have a lower allowed spread percentage.
- 10. Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum modulation.
- 11. Defined as the maximum instantaneous voltage including overshoot.
- 12. At default SMBus amplitude settings.
- 13. Defined as the minimum instantaneous voltage including undershoot.
- 14. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.
- 15. System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors C_L. Single-ended probes must be used for measurements requiring single ended measurements. Either single-ended probes with math or differential probe can be used for differential measurements. Test load C_L = 2pF.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Phase Jitter, 12kHz–20MHz	t _{jph12k20M}	Differential outputs when device is set to 12kHz to 20MHz mode (Configuration 0 in Table 1) .	-	2.07	2.25	ps (rms)

Table 8. 12kHz–20MHz Phase Jitter of Differential Outputs

Table 9. Current Consumption – 9FGL02

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Operating Supply Current	I _{DDAOP}	V _{DDA} , all outputs active at 100MHz.	-	13	17	mA
	I _{DDOP}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs active at100MHz.	-	18	23	mA
Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1')	I _{DDAPD}	V _{DDA} , DIF outputs off, REF output running. ^[1]	-	0.9	1.5	mA
	I _{DDPD}	All V_{DD} , except V_{DDA} and V_{DDIO} , DIF outputs off, REF output running. ^[1]	-	5.7	8	mA
Power Down Current (Power down state and Byte 3, bit 5 = '0')	I _{DDAPD}	V _{DDA} , all outputs off.	-	0.9	1.5	mA
	I _{DDPD}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs off.	-	1.7	2.5	mA

1. This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).

Table 10. Current Consumption – 9FGL04

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Operating Supply Current	I _{DDAOP}	V _{DDA} , all outputs active at 100MHz.	-	13	17	mA
	I _{DDOP}	All V _{DD} , except V _{DDA} and V _{DDIO} , all outputs active at100MHz.	-	30	39	mA
Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1')	I _{DDAPD}	V _{DDA} , DIF outputs off, REF output running. ^[1]	-	0.9	1.5	mA
	I _{DDPD}	All V _{DD} , except V _{DDA} and V _{DDIO} , DIF outputs off, REF output running. ^[1]	-	5.9	8.0	mA
Power Down Current (Power down state and Byte 3, bit 5 = '0')	I _{DDAPD}	V _{DDA} , all outputs off.	-	0.9	1.5	mA
	I _{DDPD}	All V_{DD} , except V_{DDA} and V_{DDIO} , all outputs off.	-	1.5	2.5	mA

1. This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
	I _{DDAOP}	V _{DDA} , all outputs active at 100MHz.	-	14	17	mA
Operating Supply Current	I _{DDOP}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs active at100MHz.	-	16	20	mA
	IDDIOOP	V _{DDIO} , all outputs active at100MHz.	-	27	32	mA
	I _{DDAPD}	V _{DDA} , DIF outputs off, REF output running.	-	0.9	1.5	mA
Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1')	I _{DDPD}	All V _{DD} , except V _{DDA} and V _{DDIO} , DIF outputs off, REF output running. ^[1]	-	6	8	mA
Byte 0, bit 0 = 1)	IDDIOOP	V _{DDIO} , DIF outputs off, REF output running. ^[1]	-	0.04	0.05	mA
Power Down Current	I _{DDAPD}	V _{DDA} , all outputs off.	-	0.9	1.5	mA
(Power down state and	I _{DDPD}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs off.	-	1.8	2.5	mA
Byte 3, bit 5 = '0')	I _{DDIOOP}	V _{DDIO} , all outputs off.	-	0.04	0.08	mA

Table 11. Current Consumption – 9FGL06

1. This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
	I _{DDAOP}	V _{DDA} , all outputs active at 100MHz.	-	14	19	mA
Operating Supply Current	I _{DDOP}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs active at100MHz.	-	18	24	mA
	IDDIOOP	V _{DDIO} , all outputs active at100MHz.	-	30	37	mA
	I _{DDAPD}	V _{DDA} , DIF outputs off, REF output running. ^[1]	-	0.9	1.5	mA
Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1')	I _{DDPD}	All V_{DD} , except V_{DDA} and V_{DDIO} , DIF outputs off, REF output running. ^[1]	-	5.2	8	mA
Dyte 0, bit 0 = 1)	I _{DDIOOP}	V _{DDIO} , DIF outputs off, REF output running. ^[1]	-	0.04	0.1	mA
Power Down Current	I _{DDAPD}	V _{DDA} , all outputs off.	-	0.9	1.5	mA
(Power down state and	I _{DDPD}	All $V_{DD},$ except V_{DDA} and $V_{DDIO},$ all outputs off.	-	1.7	2.5	mA
Byte 3, bit 5 = '0')	IDDIOOP	V _{DDIO} , all outputs off.	-	0.04	0.1	mA

Table 12. Current Consumption – 9FGL08

1. This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limit	Unit
PCIe Phase Jitter t _{jphPCIeG1-CC}		PCIe Gen1 (2.5 GT/s) ^{[2][3]}	-	9,683	11,660	86,000	fs pk-pk
Common Clocked Architecture ^[1]	t _{jphPCleG2-CC}	PCle Gen2 Hi Band (5.0 GT/s) [2][3]	-	431	509	3100	fs RMS
		PCIe Gen2 Lo Band (5.0 GT/s) ^{[2][3]}	-	921	1220	3000	
	t _{jphPCleG3-CC}	PCIe Gen3 (8.0 GT/s) ^{[2][3][4]}	-	179	211	1000	
	t _{jphPCIeG4-CC}	PCle Gen4 (16.0 GT/s) ^{[2][3][4][5]}	-	179	211	500	
t _{jphPCleG5-CC}		PCle Gen5 (32.0 GT/s) ^{[2][3][4][6]}	-	61	77	150	
	t _{jphPCIeG6-CC}	PCle Gen6 (64.0 GT/s) ^{[2][3][4][7]}	-	40	47	100	
PCIe Phase Jitter	t _{jphPCle} G2-IR	PCIe Gen2 (5.0 GT/s) ^[2]	-	1423	1461	N/A	fs RMS
IR Architecture ^[1]	t _{jphPCleG3-IR}	PCIe Gen3 (8.0 GT/s) [2]	-	562	577		
	t _{jphPCleG4-IR}	PCIe Gen4 (16.0 GT/s) ^[2]	-	417	434		
PCIe Phase Jitter	t _{jphPCleG5-IR}	PCIe Gen5 (32.0 GT/s) ^[2]	-	95	100	N/A	fs RMS
IR Architecture [8]	t _{jphPCleG6-IR}	PCIe Gen6 (64.0 GT/s) [2]	-	70	73		

Table 13. PCIe Phase Jitter of Differential Outputs

1. Calculated for configurations 1, 2, and 3 in Table 1.

2. The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 6.2. See the Test Loads section of the data sheet for the exact measurement setup. If oscilloscope data is used, equipment noise is removed from all results.

3. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.

4. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.

5. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.

6. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.

7. Note that 0.15ps RMS is to be used in channel simulations to account for additional noise in a real system.

8. Calculated for configurations 1 and 2 in Table 1 (0% and -0.25% spread).

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit	
Long Accuracy	ppm	See Tperiod min-max values. [1][2]	0			ppm	
Clock Period	T _{period}	REF output. ^[2]		40		ns	
High Output Voltage	V _{HIGH}	I _{OH} = -2mA.	0.8 x V _{DDREF}	-	-	V	
Low Output Voltage	V _{LOW}	I _{OL} = 2mA.	-	-	0.2 x V _{DDREF}	v	
	t _{rf1}	Byte 3 = 1F, V_{OH} = 0.8 × V_{DD} , V_{OL} = 0.2 × V_{DD} . ^[1]	0.5	0.9	1.5		
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 5F, V_{OH} = 0.8 × V_{DD} , V_{OL} = 0.2 × $V_{DD.}$ ^{[1][3]}	1.0	1.5	2.5	V/ns	
	t _{rf1}	Byte 3 = 9F, V_{OH} = 0.8 × V_{DD} , V_{OL} = 0.2 × $V_{DD.}$ ^[1]	1.5	2.1	3.1		
	t _{rf1}	Byte 3 = DF, V_{OH} = 0.8 × V_{DD} , V_{OL} = 0.2 × $V_{DD.}$ ^[1]	2.0	2.7	3.8	1	
Duty Cycle	d _{t1X}	V _T = V _{DD} /2 V. ^{[1][4]}	45	49.7	55	%	
Jitter, Cycle to Cycle	t _{jcyc-cyc}	V _T = V _{DD} /2 V. ^{[1][4]}	-	35	125	ps	
Noise Floor	t _{jdBc1k}	1kHz offset. ^{[1][4]}	-	-132	-115	dBc	
NOISE FIOU	t _{jdBc10k}	10kHz offset to Nyquist. [1][4]	-	-150	-140	UDC	
litter Phase	+	12kHz to 5MHz, DIF SSC off. [1][4]	-	0.13	0.3		
Jitter, Phase	t _{jphREF}	12kHz to 5MHz, DIF SSC on. [1][4][5]	-	1.4	1.5	ps RMS	

Table 14. REF Output

1. Confirmed by design and characterization, not 100% tested in production.

2. All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00MHz

3. Default SMBus value.

4. When driven by a crystal.

5. Does not apply to the 9FGL06x1 devices.

3. Power Management

			Differential Output		
CKPWRGD_PD#	SMBus OE bit	OEx# Pin	True O/P	Comp. O/P	REF
0	Х	Х	Low ^[2]	Low ^[2]	Hi-Z ^[3]
1	1	0	Running	Running	Running
1	1	1	Disabled ^[2]	Disabled ^[2]	Running
1	0	х	Disabled ^[2]	Disabled ^[2]	Disabled ^[4]

Table 15. Power Management ^[1]

1. Input polarities defined at default values.

2. The output state is set by B11[1:0] (Low/Low default).

REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5] =
1, in which case REF is running.

4. See SMBus description for Byte 3, bit 4.

Table 16. SMBus Address Selection

	SADR	Address	+ Read/Write Bit
State of SADR on first application of CKPWRGD_PD#	0	1101000	Х
	1	1101010	Х

4. Test Loads

Figure 7. Single-ended Output Test Load

Table 17. Terminations for Single-ended Output

Clock Source	Device Under Test (DUT)	Rs (Ω)	Ζο (Ω)	L (cm)	C _L (pF)
N/A	9FGL0nxx	33	50	12.7	4.7

Figure 8. Test Load for AC/DC Measurements

 Table 18. Terminations for AC/DC Measurements

Clock Source	Device Under Test (DUT)	Rs (Ω)	Ζο (Ω)	L (cm)	C _L (pF)
N/A	9FGL0x41	Internal	100	12.7	2
N/A	9FGL0x51	Internal	85	12.7	2

Figure 9. Test Setup for PCIe Clock Phase Jitter Measurements

Table 19. Terminations	for PCIe Clock Phase J	itter Measurements
------------------------	------------------------	--------------------

Clock Source	Device Under Test (DUT)	Rs (Ω)	Ζο (Ω)	L (cm)	C _L (pF)
N/A	9FGL0x41	Internal	100	12.7	N/A
N/A	9FGL0x51	Internal	85	12.7	N/A

5. Alternate Terminations

The 9FGL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with "Universal" Low-Power HCSL Outputs</u>" for details.

6. Crystal Characteristics

Parameter	Value	Unit
Frequency ^[1]	25	MHz
Resonance Mode	Fundamental	-
Frequency Tolerance at 25°C	±20	ppm maximum
Frequency Stability, reference at 25°C over operating temperature range	±20	ppm maximum
Temperature Range (industrial)	-40 to +85	°C
Temperature Range (commercial)	0 to +70	°C
Equivalent Series Resistance (ESR)	50	Ω maximum
Shunt Capacitance (C _O)	7	pF maximum
Load Capacitance (C _L)	8	pF maximum
Drive Level	0.1	mW maximum
Aging per year	±5	ppm maximum

Table 20. Recommended Crystal Characteristics

1. When driven by an external oscillator via the XIN/CLKIN_25 pin, X2 should be floating.

7. General SMBus Serial Interface Information

7.1 How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location
 = N
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

Index Block Write Operation Controller (Host) Renesas (Slave/Receiver) starT bit Slave Address WR WRite ACK Beginning Byte = N ACK Data Byte Count = X ACK Beginning Byte N ACK 0 X Byte 0 0 0 0 0 Byte N + X - 1 ACK Ρ stoP bit

Note: Address is latched on SADR pin.

7.2 How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location
 = N
- Renesas clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count = X
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block R	ead Op	peration
C	ontroller (Host)		Renesas
Т	starT bit		
5	Slave Address		
WR	WRite		
			ACK
Be	ginning Byte = N		
			ACK
RT	Repeat starT		
	Slave Address		
RD	ReaD	_	
			ACK
		_	Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		X Byte	0
	0		0
0			0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

Byte 0 ^[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Output Enable							
Туре	RW							
0				See B	11[1:0]			
1				OE# Pin Cor	ntrols Output			
9FGL08 Name	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0
9FGL08 Default	1	1	1	1	1	1	1	1
9FGL06 Name	OE5	OE4	Reserved	OE3	OE2	OE1	Reserved	OE0
9FGL06 Default	1	1	x	1	1	1	x	1
9FGL04 Name	Reserved	Reserved	Reserved	Reserved	OE3	OE2	OE1	OE0
9FGL04 Default	х	x	x	x	1	1	1	1
9FGL02 Name	Reserved	Reserved	Reserved	Reserved	Reserved	OE1	OE0	Reserved
9FGL02 Default	х	x	х	x	x	1	1	х

Table 21. Byte 0: Output Enable Register

1. A low on these bits will override the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

Table 22. Byte 1: Sprea	d Spectrum with V _{HIG}	_H Control Register
-------------------------	----------------------------------	-------------------------------

Byte 1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	SS Enable Readback Bit1	SS Enable Readback Bit0	Enable software control of spread spectrum	SS Software Control Bit1			Controls Output Amplitude	
Туре	R	R	RW	RW ^[1] RW ^[1]			RW	RW
0	See Spread	d and Mode	SS controlled by latch (B1[7:6])	See Spread	d and Mode	Reserved	00 = 0.6V	10 = 0.75V
1	Selectio	on table	Values in B1[4:3] control SS amount	Selectio	on table		01 = 0.68V	11 = 0.85V
Name	SSENRB1	SSENRB1	SSEN_SWCNTRL	SSENSW1 SSENSW0			AMPLITUDE 1	AMPLITUDE 0
Default	Latch	Latch	0	0	0	х	1	0

1. See notes on Spread and Mode Selection table. B1[5] must be set to a 1 in order to use B1[4:3].

Byte 2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Byte 2	Biti	БКО	БЦЭ	DIL4	БЦЭ	DILZ	ыл	ыю	
Control	Select fast or								
Function	slow slew								
Tunction	rate								
Туре	RW								
0				Slow Sl	ew Rate				
1		Fast Setting							
9FGL08									
Name	DIF7_slew	DIF6_slew	DIF5_slew	DIF4_slew	DIF3_slew	DIF2_slew	DIF1_slew	DIF0_slew	
9FGL08									
Default	1	1	1	1	1	1	1	1	
9FGL06			- ·				- ·		
Name	DIF5_slew	DIF4_slew	Reserved	DIF3_slew	DIF2_slew	DIF1_slew	Reserved	DIF0_slew	
9FGL06				4	4	4			
Default	1	1	х	1	1	1	х	1	
9FGL04	Decemted	Reserved	Deserved	Deserved					
Name	Reserved	Reserved	Reserved	Reserved	DIF3_slew	DIF2_slew	DIF1_slew	DIF0_slew	
9FGL04					4	4	4	_	
Default	x	x	х	х	1	1	1	1	
9FGL02	December	December	December	Decemie	December			Decement	
Name	Reserved	Reserved	Reserved	Reserved	Reserved	DIF1_slew	DIF0_slew	Reserved	
9FGL02	, v	v	v	v	v	1	1		
Default	Х	x	х	x	х	1	1	х	

Table 23. Byte 2: DIF Slew Selection Register [1]

1. See Differential Low-Power HCSL Outputs table for slew rates.

Table 24	. Byte 3: REF	Slew Rate	Control Register
----------	---------------	-----------	-------------------------

Byte 3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Slew Rate Control		Wake-on-Lan Enable for REF	REF Output Enable				
Туре	RW	RW	RW	RW				
0	00 = Slowest	10 = Fast	REF disabled in Power Down	Disabled ^[1]	Reserved	Reserved	Reserved	Reserved
1	01 = Slow	11 = Fastest	REF runs in Power Down	Enabled				
Name	REF Slew	Rate [1:0]	REF Power Down Function	REF OE				
Default	0	1	0	1	х	х	х	х

1. The disabled state depends on Byte11[1:0]. '00' = Low, '01'= HiZ, '10' = Low, '11' = High.

Byte 4 is Reserved

Byte 5	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Control Function		Revis	ion ID		VENDOR ID				
Туре	R	R	R	R	R	R	R	R	
0		D rev :	- 0011			0001 = F	Penesas		
1		Diev	0001 – 1	Venesas					
Name	RID3	RID2	RID1	RID0	VID3	VID2	VID1	VID0	

Table 25. Byte 5: Revision and Vendor ID Register

Table 26. Byte 6: Device Type/Device ID Register

Byte 6	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Control Function	Device Type		Device ID						
Туре	R	R	R	R	R	R	R	R	
0				9FGL08 = 0b01000 9FGL06 = 0b00110					
1	00 =	FGL	9FGL04 = 9FGL02 =						
Name	Device Type1	Device Type0	Device ID5	Device ID4	Device ID3	Device ID2	Device ID1	Device ID0	

Table 27. Byte 7: Byte Count Register

Byte 7	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function					Byte	Count Program	ming	
Туре		Reserved		RW	RW	RW	RW	RW
0	Reserved		Reserved	Writing to thi	s register will c	onfigure how m	any bytes will b	e read back.
1				-	-	-	-	-
Name				BC4	BC3	BC2	BC1	BC0
Default	х	х	х	0	1	0	0	0

Bytes 8 and 9 are Reserved

Table 28. Byte 10: PLL MN Enable, PD_Restore Register

Byte 10	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	M/N Programming Enable	Restore Default Config. In PD						
Туре	RW	RW						
0	M/N Prog. Disabled	Clear Config in PD	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
1	M/N Prog. Enabled	Keep Config in PD						
Name	PLL M/N En	Power-Down (PD) Restore						
Default	0	1	х	х	х	х	х	х

Byte 11	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Control Function							True/Complement DIF Output Disable State		
Туре							RW	RW	
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	00 = Low/Low	01 = HiZ/HiZ	
1							10 = High/Low	11 = Low/High	
Name							STP[1]	STP[0]	
Default	х	х	х	х	х	х	0	0	

Table 29. Byte 11: Stop State Control Register

Table 30. Byte 12: Impedance Control Register 1

Byte 12	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Control	Output im	•	Output im	pedance	Output in	npedance	Output in	npedance		
Function	contro	ol [1:0]	control [1:0]		control [1:0]		control [1:0]			
Туре	RW	RW	RW	RW	RW	RW	RW	RW		
0			00 =	= Reserved, 01	= 850hm DIF Z	Zout				
1		10 = 100ohm DIF Zout, 11 = Reserved								
9FGL08 Name	DIF3_imp[1] DIF3_imp[0] DIF2_imp[1] DIF2_imp[0] DIF1_imp[1] DIF1_imp[0]						DIF0_imp[1]	DIF0_imp[0]		
9FGL08			•	GL0841 defaul						
Default			9F	GL0851 defaul	ts to 0b010101	01				
9FGL06 Name	DIF2_imp[1]	DIF2_imp[0]	DIF1_imp[1]	DIF1_imp[0]	Reserved	Reserved	DIF0_imp[1]	DIF0_imp[0]		
9FGL06			9F	GL0641 defaul	ts to 0b1010xx	10				
Default			9F	GL0651 defau	ts to 0b0101xx	01				
9FGL04 Name	DIF1_imp[1]	DIF1_imp[0]	Reserved	Reserved	DIF0_imp[1]	DIF0_imp[0]	Reserved	Reserved		
9FGL04			9F	GL0441 defau	ts to 0b10xx10	xx				
Default			9F	GL0451 defau	ts to 0b01xx01	xx				
9FGL02 Name	DIF0_imp[1] DIF0_imp[0] Reserved Reserved Reserved Reserved Reserved Reserved							Reserved		
9FGL02	9FGL0241 defaults to 0b10xxxxxx									
Default			96	GL0251 defau	Its to 0b01xxxx	xx				

Byte 13	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Control	Output in	npedance	Output in	npedance	Output in	npedance	Output in	pedance			
Function	contro	ol [1:0]	control [1:0]		control [1:0]		control [1:0]				
Туре	RW	RW	RW	RW	RW	RW	RW	RW			
0	00 = Reserved, 01 = 85ohm DIF Zout										
1		10 = 100ohm DIF Zout, 11 = Reserved									
9FGL08 Name	DIF7_imp[1] DIF7_imp[0] DIF6_imp[1] DIF6_imp[0] DIF5_imp[1] DIF5_imp[0] DIF4_im							DIF4_imp[0]			
9FGL08				9FGL0841 de	faults to 0hAA						
Default		9FGL0851 defaults to 0h55									
9FGL06 Name	DIF5_imp[1]	DIF5_imp[0]	DIF4_imp[1]	DIF4_imp[0]	Reserved	Reserved	DIF3 Zout	DIF3 Zout			
9FGL06			9F	GL0641 defau	ts to 0b1010xx	10					
Default			9F	GL0651 defau	ts to 0b0101xx0	01					
9FGL04 Name	Reserved	Reserved	DIF3_imp[1]	DIF3_imp[0]	DIF2_imp[1]	DIF2_imp[0]	Reserved	Reserved			
9FGL04			9F	GL0441 defau	ts to 0bxx1010	xx					
Default			9F	GL0451 defau	ts to 0bxx0101	xx					
9FGL02 Name	Reserved	Reserved Reserved Reserved DIF1_imp[1] DIF1_imp[0] Reserved Reserved									
9FGL02		9FGL0241 defaults to 0bxxxx10xx									
Default			96	GL0251 defau	ts to 0bxxxx01	KX					

Table 31. Byte 13: Impedance Control Register 2

Table 32. Byte 14: Pull-up Pull-down Control Register 1

Byte 14	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function		p(pu)/ pd) control	Pull-up(pd)/ Pull-down(pd) control		Pull-u Pull-down(p(pd)/ pd) control	Pull-up(pd)/ Pull-down(pd) control	
Туре	RW	RW	RW	RW	RW	RW	RW	RW
0	00 = None	01 = pd	00 = None	01 = pd	00 = None	01 = pd	00 = None	01 = pd
1	10 = pu	11 = pu+pd	10 = pu	11 = pu+pd	10 = pu	11 = pu+pd	10 = pu	11 = pu+pd
9FGL08 Name	OE3_pu/pd [1]	OE3_pu/pd [0]	OE2_pu/pd [1]	OE2_pu/pd [0]	OE1_pu/pd [1]	OE1_pu/pd [0]	OE0_pu/pd [1]	OE0_pu/pd [0]
9FGL08 Default	0	1	0	1	0	1	0	1
9FGL06 Name	OE2_pu/pd [1]	OE2_pu/pd [0]	OE1_pu/pd [1]	OE1_pu/pd [0]	Reserved	Reserved	OE0_pu/pd [1]	OE0_pu/pd [0]
9FGL06 Default	0	1	0	1	х	х	0	1
9FGL04 Name	OE1_pu/pd [1]	OE1_pu/pd [0]	Reserved	Reserved	OE0_pu/pd [1]	OE0_pu/pd [0]	Reserved	Reserved
9FGL04 Default	0	1	х	х	0	1	х	x

Byte 14	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
9FGL02 Name	OE0_pu/pd [1]	OE0_pu/pd [0]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
9FGL02 Default	0	1	х	х	x	х	х	х

Table 32. Byte 14: Pull-up Pull-down Control Register 1 (Cont.)

Table 33. Byte 15: Pull-up Pull-down Control Register 2

Byte 15	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Pull-up(pd)/ Pull-down(pd) control		Pull-up(pd)/ Pull-down(pd) control		Pull-up(pd)/ Pull-down(pd) control		Pull-up(pd)/ Pull-down(pd) control	
Туре	RW	RW	RW	RW	RW	RW	RW	RW
0	00 = None	01 = pd						
1	10 = pu	11 = pu+pd						
9FGL08 Name	OE7_pu/pd [1]	OE7_pu/pd [0]	OE6_pu/pd [1]	OE6_pu/pd [0]	OE5_pu/pd [1]	OE5_pu/pd [0]	OE4_pu/pd [1]	OE4_pu/pd [0]
9FGL08 Default	0	1	0	1	0	1	0	1
9FGL06 Name	OE5_pu/pd [1]	OE5_pu/pd [0]	OE4_pu/pd [1]	OE4_pu/pd [0]	Reserved	Reserved	OE3_pu/pd [1]	OE3_pu/pd [0]
9FGL06 Default	0	1	0	1	0	1	0	1
9FGL04 Name	Reserved	Reserved	OE3_pu/pd [1]	OE3_pu/pd [0]	OE2_pu/pd [1]	OE2_pu/pd [0]	Reserved	Reserved
9FGL04 Default	0	1	0	1	0	1	0	1
9FGL02 Name	Reserved	Reserved	Reserved	Reserved	OE1_pu/pd [1]	OE1_pu/pd [0]	Reserved	Reserved
9FGL02 Default	0	1	0	1	0	1	0	1

Table 34. Byte 16: Pull-up Pull-down Control Register 3

Byte 16	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function							Pull-u Pull-down(
Туре							RW	RW
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	00 = None	01 = pd
1							10 = pu	11 = pu+pd
Name						CKPWRGD_ PD_pu/pd[1]	CKPWRGD_ PD_pu/pd[0]	
Default	0	0	1	0	0	1	1	0

Byte 17 is Reserved

Byte 18	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function	Sets OE pin polarity							
Туре	RW							
0			Οι	utput enabled w	hen OE pin is lo	W		
1			Ou	tput enabled w	hen OE pin is h	igh		
9FGL08 Name	OE7_polarity	OE6_polarity	OE5_polarity	OE4_polarity	OE3_polarity	OE2_polarity	OE1_polarity	OE0_polarity
9FGL08 Default	0	0	0	0	0	0	0	0
9FGL06 Name	OE5_polarity	OE4_polarity	Reserved	OE3_polarity	OE2_polarity	OE1_polarity	Reserved	OE0_polarity
9FGL06 Default	0	0	0	0	0	0	0	0
9FGL04 Name	Reserved	OE3_polarity	OE2_polarity	Reserved	OE1_polarity	Reserved	OE0_polarity	Reserved
9FGL04 Default	0	0	0	0	0	0	0	0
9FGL02 Name	Reserved	Reserved	OE1_polarity	Reserved	OE0_polarity	Reserved	Reserved	Reserved
9FGL02 Default	0	0	0	0	0	0	0	0

Table 35. Byte 18: Polarity Control Register 2

Table 36. Byte 19: Polarity Control Register 1

Byte 19	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Control Function								Sets CKPWRGD_PD polarity
Туре							-	RW
0	Reserved Reserved Re	Reserved	Reserved	Reserved	Reserved	Reserved	Power Down when Low	
1					Power Down when High			
Name								CKPWRGD_PD polarity
Default	0	0	0	0	0	0	0	0

8. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

9. Marking Diagrams

9.1 9FGL02x1D

9.2 9FGL04x1D

•

ICS L0441DIL YYWW COO LOT

- Line 1: "LOT" denotes the lot number.
- Line 2: truncated part number.
- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.

- Lines 1 and 2: truncated part number
- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.
- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

9.3 9FGL06x1D

9.4 9FGL08x1D

● FGL0841DI YYWW COO LOT	 Lines 1 and 2: truncated part number Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled. Line 4: "COO" denotes country of origin. Line 5: "LOT" denotes the lot number.
● FGL0851DI YYWW CO LOT	

· Lines 1 and 2: truncated part number

- Line 3: "YYWW" is the last two digits of the year and the work week the part was assembled.

- Line 4: "COO" denotes country of origin.
- Line 5: "LOT" denotes the lot number.

10. Ordering Information

Number of Clock Outputs	Output Impedance	Part Number	Package Description	Temp. Range	Carrier Type
	100	9FGL0241DKILF			
2	100	9FGL0241DKILFT	24-VFQFPN, 4 × 4 mm		
2	85	9FGL0251DKILF	24-VFQFPN, 4 * 4 11111		
	00	9FGL0251DKILFT			
	100	9FGL0441DKILF			
4	100	9FGL0441DKILFT	32-VFQFPN, 5 × 5 mm	-40 to +85°C	
-	85	9FGL0451DKILF			None = Trays
	00	9FGL0451DKILFT			"T" = Tape and Reel,
	100	9FGL0641DKILF			Pin 1 Orientation: EIA-481C
6	100	9FGL0641DKILFT	40-VFQFPN, 5 × 5 mm		(for more information, see Table 37)
0	85	9FGL0651DKILF			
	00	9FGL0651DKILFT			
	100	9FGL0841DKILF			
8	100	9FGL0841DKILFT	48-VFQFPN, 6 × 6 mm		
0	85	9FGL0851DKILF			
	00	9FGL0851DKILFT			

Table 37. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
Т	Quadrant 1 (EIA-481-C)	Correct Pin 1 ORIENTATION (Round Sprocket Holes) COCOCIONOCOCIONOCOCION CARRIER TAPE TOPSIDE (Round Sprocket Holes) (Round Sprocket Holes) USER DIRECTION OF FEED

11. Revision History

Revision	Date	Description
1.07	Dec 13, 2024	Updated pins 16 and 25 in Figure 3 to VDD3.3 from VDDO3.3.
1.06	Nov 6, 2024	 Updated Table 4 title to SMBus DC Electrical Characteristics from SMBus Parameters. All table parameters updated. Added Figure 6. Added Table 5.
1.05	Apr 2, 2024	Changed PCIe Phase Jitter CC Architecture Gen6 Limit to 100fs RMS from 150fs RMS in Table 13.
1.04	Mar 27, 2024	 Updated Table 1 for clarity, indicating which configurations are for PCIe. Updated datasheet to show Gen6 Compliance with new data. See Table 13. Updated Figure 9.
1.03	Nov 29, 2022	 Changed the 9FGL08 definition for Device ID in Table 26 to 0b01000 from 0b00100. Updated the package links in Ordering Information
1.02	Aug 19, 2022	Changed the maximum Supply Voltage to 4.6V in Table 2.
1.01	Jun 14, 2022	Updated Slew Rate values in Table 7.
1.00	Jun 7, 2022	Initial release.

RENESAS

Package Outline Drawing

PSC-4192-01 NLG24P1 24-VFQFPN 4.0 x 4.0 x 0.9 mm Body, 0.5mm Pitch Rev.06, May 6, 2025

Package Outline Drawing

PSC-4171-01 NLG32P1 32-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.5mm Pitch Rev.05, Apr 30, 2025

Package Outline Drawing

RENESAS

PSC-4292-02 NDG40P2 40-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.4 mm Pitch Rev.03, May 20, 2025

Package Outline Drawing

Package Code:NDG48P2 48-VFQFPN 6.0 x 6.0 x 0.9 mm Body, 0.4mm Pitch PSC-4212-02, Revision: 04, Date Created: Sep 28, 2022

[©] Renesas Electronics Corporation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.