

19 Output Differential Buffer for PCIe Gen2 and QPI

9DB1904B

Description

The **9DB1904** is electrically compatible to the Intel DB1900GS Differential Buffer Specification. This buffer provides 19 output clocks for PCI-Express Gen2 or Intel QPI 6.4GT/s applications. A differential clock from a CK410B+ main clock generator, such as the ICS932S421 drives the **9DB1904**. The **9DB1904** can provide outputs up to 400MHz in Bypass Mode.

Recommended Application

19 Output Differential Buffer for PCIe Gen2 and QPI

Key Specifications

- DIF output cycle-to-cycle jitter < 50ps
- DIF output-to-output skew < 150ps across all outputs

Functionality at Power Up (PLL Mode)

CLK_IN DIF_(18:0) CKPWR 100M_133M# MHz MHz CKPWR 1 100MHz CLK_IN 1 0 133MHz CLK IN 0

Features/Benefits

- Power up default is all outputs in 1:1 mode/No SMBus programming
- Spread spectrum compatible/EMI reductions
- Supports output frequencies up to 400 MHz in bypass mode/flexible fanout buffer
- 8 Selectable SMBus addresses/no SMBus segmentation required
- SMBus address determines PLL or Bypass mode/pin savings
- Dedicated VDDA and CKPWRGD_PD# pins/easy board design

Power Down Functionality

INP	UTS	OUTPUTS	
CKPWRGD_	CLK_IN/		PLL State
PD#	CLK_IN#	DIF/DIF#	
1	Running	Running	ON
0	Х	Hi-Z	OFF

Pin Configuration

Pin Description

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
			This pin establishes the reference for the differential current-mode output
1	IREF	OUT	pairs. It requires a fixed precision resistor to ground. 475ohm is the standard
1			value for 100ohm differential impedance. Other impedances require different
			values. See data sheet.
2	GNDA	PWR	Ground pin for the PLL core.
3	VDDA	PWR	3.3V power for the PLL core.
4	HIGH_BW#	IN	3.3V input for selecting PLL Band Width
4			0 = High, 1= Low
5	100M_133M#_LV	IN	Low Threshold Input to select operating frequency.
5	100101_133101#_LV		See Functionality Table for Definition
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential Complementary clock output
8	DIF_1	OUT	0.7V differential true clock output
9	DIF_1#	OUT	0.7V differential Complementary clock output
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_2	OUT	0.7V differential true clock output
13	DIF_2#	OUT	0.7V differential Complementary clock output
14	DIF_3	OUT	0.7V differential true clock output
15	DIF_3#	OUT	0.7V differential Complementary clock output
16	DIF 4	OUT	0.7V differential true clock output
17	 DIF_4#	OUT	0.7V differential Complementary clock output
10			Active low input for enabling DIF pairs 0, 1, 2, 3 and 4.
18	OE_01234#	IN	1 = disable outputs, $0 =$ enable outputs
19	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
20	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
			Active low input for enabling DIF pair 5.
21	OE5#	IN	1 =disable outputs, $0 =$ enable outputs
22	DIF_5	OUT	0.7V differential true clock output
23	DIF_5#	OUT	0.7V differential Complementary clock output
			Active low input for enabling DIF pair 6.
24	OE6#	IN	1 =disable outputs, $0 =$ enable outputs
25	DIF_6	OUT	0.7V differential true clock output
	DIF_6#	OUT	0.7V differential Complementary clock output
27	VDD	PWR	Power supply, nominal 3.3V
28	GND	PWR	Ground pin.
			Active low input for enabling DIF pair 7.
29	OE7#	IN	1 =disable outputs, 0 = enable outputs
30	DIF 7	Ουτ	0.7V differential true clock output
31	DIF_7#		0.7V differential Complementary clock output
			Active low input for enabling DIF pair 8.
32	OE8#	IN	1 =disable outputs, $0 =$ enable outputs
33	DIF_8	OUT	0.7V differential true clock output
<u> </u>	DIF_8#		0.7V differential Complementary clock output
34 35	SMB_A0	IN	SMBus address bit 0 (LSB)
35 36	SMB_A0	IN	SMBus address bit 0 (LSB)
30		or PCle Gen2 and	

© 2019 Renesas Electronics Corporation

Pin Description (continued)

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
37	OE9#	IN	Active low input for enabling DIF pair 9.
57	019#		1 =disable outputs, 0 = enable outputs
38	DIF_9	OUT	0.7V differential true clock output
39	DIF_9#	OUT	0.7V differential Complementary clock output
40	OE10#	IN	Active low input for enabling DIF pair 10.
40			1 =disable outputs, 0 = enable outputs
41	DIF_10	OUT	0.7V differential true clock output
42	DIF_10#	OUT	0.7V differential Complementary clock output
43	OE11#	IN	Active low input for enabling DIF pair 11.
-0	OLII#		1 =disable outputs, 0 = enable outputs
44	DIF_11	OUT	0.7V differential true clock output
45	DIF_11#	OUT	0.7V differential Complementary clock output
46	GND	PWR	Ground pin.
47	VDD	PWR	Power supply, nominal 3.3V
48	OE12#	IN	Active low input for enabling DIF pair 12.
40			1 =disable outputs, 0 = enable outputs
49	DIF_12	OUT	0.7V differential true clock output
50	DIF_12#	OUT	0.7V differential Complementary clock output
51	OE13#	IN	Active low input for enabling DIF pair 13.
51	0110#		1 =disable outputs, 0 = enable outputs
52	DIF_13	OUT	0.7V differential true clock output
53	DIF_13#	OUT	0.7V differential Complementary clock output
54	OE14#	IN	Active low input for enabling DIF pair 14.
54	0E14#	IIN	1 =disable outputs, 0 = enable outputs
55	DIF_14	OUT	0.7V differential true clock output
56	DIF_14#	OUT	0.7V differential Complementary clock output
			3.3V Input notifies device to sample latched inputs and start up on first high
57	CKPWRGD_PD#	IN	assertion, or exit Power Down Mode on subsequent assertions. Low enters
			Power Down Mode.
58	DIF_15	OUT	0.7V differential true clock output
59	DIF_15#	OUT	0.7V differential Complementary clock output
60	OE15_16#	IN	Active low input for enabling DIF pairs 15 and 16.
00	OE15_10#	IIN	1 =disable outputs, 0 = enable outputs
61	DIF_ 16	OUT	0.7V differential true clock output
62	DIF_16#	OUT	0.7V differential Complementary clock output
63	VDD	PWR	Power supply, nominal 3.3V
64	GND	PWR	Ground pin.
65	DIF_17	OUT	0.7V differential true clock output
66	DIF_17#	OUT	0.7V differential Complementary clock output
67	DIF_18	OUT	0.7V differential true clock output
68	DIF_18#	OUT	0.7V differential Complementary clock output
69	OE17_18#	IN	Active low input for enabling DIF pairs 17 and 18.
09	OL17_10#		1 =disable outputs, 0 = enable outputs
70	CLK_IN	IN	True Input for differential reference clock.
71	CLK_IN#	IN	Complementary Input for differential reference clock.
			SMBus address bit 2. When Low, the part operates as a fanout buffer with the
70		INI	PLL bypassed. When High, the part operates as a zero-delay buffer (ZDB) with
72	SMB_A2_PLLBYP#	IN	the PLL operating.
			0 = fanout mode (PLL bypassed), 1 = ZDB mode (PLL used)
)utput Differential Buffer fo		

IDT® 19 Output Differential Buffer for PCIe Gen2 and QPI

Functional Block Diagram

Power Groups

Pin N	umber	Description			
VDD	GND	Description			
3	2	PLL, Analog			
11,27,47,63	10,28,46,64	DIF clocks			

9DB1904 Frequency Selects for PLL Mode

Byte 9, bit 2 100M_133M#_LV	Byte9, bit 1 FSB	Byte 9, bit 0 FSA	CLK_IN MHz	DIF Outputs MHz	Notes
1	0	1	100.00	100.00	1
0	0	1	133.33	133.33	2

Notes:FS_A_410 = 1

1. Powerup Default for 100M_133M# = 1

2. Powerup Default for $100M_{133}M = 0$

9DB1904B 19 Output Differential Buffer for PCIe Gen2 and QPI

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics - Clock Input Parameters

TA = T_{COM} ; Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1, 3
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

³ Input duty cycle will directly impact output duty cycle in bypass mode. It has no impact in PLL mode.

Electrical Characteristics - Current Consumption

TA = T_{COM:} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

		,					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	VDD, All outputs active @100MHz		425	450	mA	1
Operating Supply Current	I _{DD3.3AOP}	VDDA, All outputs active @100MHz		35	45	mA	1
Bowordown Current	I _{DD3.3PD}	VDD		20	25	mA	1
Powerdown Current	I _{DD3.3APD}	VDDA		12	15	mA	1

¹Guaranteed by design and characterization, not 100% tested in production. Zo = 100Ω

Electrical Characteristics - Input/Supply/Common Parameters

TA = T_{COM:} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	T _{COM}	Commmercial range	0		70	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	v	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	1
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%, Applies to 100M_133M#_LV pin	0.7		V _{DD} + 0.3	v	1
Low Threshold Input- Low Voltage	$V_{\text{IL}_{\text{FS}}}$	3.3 V +/-5%, Applies to 100M_133M#_LV pin	V _{SS} - 0.3		0.35	V	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200		200	uA	1
	F _{ibyp}	$V_{DD} = 3.3 V$, Bypass mode	33		400	MHz	2
Input Frequency	F _{ipll}	V _{DD} = 3.3 V, 100MHz PLL mode	90	100.00	110	MHz	2
	F _{ipll}	V _{DD} = 3.3 V, 133.33MHz PLL mode	120	133.33	147	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	CIN	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C_{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	рF	1,4
'	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	VILSMB				0.8	V	1
SMBus Input High Voltage	VIHSMB		2.1		V _{DDSMB}	V	1
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

IDT[®] 19 Output Differential Buffer for PCIe Gen2 and QPI

Electrical Characteristics - DIF 0.7V Current Mode Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
Slew rate	Trf	Scope averaging on	1	2	4	V/ns	1, 2, 3	
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on		12.6	20	%	1, 2, 4	
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	797	850	mV	1	
Voltage Low	VLow	averaging on)	-150	39	150		1	
Max Voltage	Vmax	Measurement on single ended signal using		857	1150	mV	1	
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	7		mv	1	
Vswing	Vswing	Scope averaging off	300	1510		mV	1, 2	
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	378	550	mV	1, 5	
Crossing Voltage (var)	∆-Vcross	Scope averaging off		57	140	mV	1, 6	

TA = T_{COM}: Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/($3xR_R$). For $R_R = 475\Omega$ (1%), $I_{REF} = 2.32mA$.

 I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ $Z_{O}{=}50\Omega$ (100 Ω differential impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

9DBxxx Differential Test Loads

Differential Output Termination Table

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	43.2

Electrical Characteristics - Output Duty Cycle, Jitter, Skew and PLL Characterisitics

TA = T_{COM} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	ВW	-3dB point in High BW Mode	2	3	4	MHz	1
FLL Baildwidtii	DVV	-3dB point in Low BW Mode	0.7	1	1.4	MHz	1
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		1.4	2	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.5	55	%	1,2
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	1	2	%	1,2,5
Skow Input to Output	t _{pdBYP}	Bypass Mode, nominal value @ 25°C, 3.3V, $V_T = 50\%$	2500	3700	4500	ps	1,2,4
Skew, Input to Output	t _{pdPLL}	PLL Mode, nominal value @ 25°C, 3.3V, $V_T = 50\%$	100	300	500	ps	1,2,3
DIF_IN, DIF [x:0]	$\Delta_{t_{pd_BYP}}$	Input-to-Output Skew Variation in Bypass mode (over specified voltage / temperature operating ranges)		15001	16001	ps	1,2,4,6,7, 8,9,13
DIF_IN, DIF [x:0]	$\Delta t_{pd_{PLL}}$	Input-to-Output Skew Variation in PLL mode (over specified voltage / temperature operating ranges)		12501	350	ps	1,2,3,6,7, 8,9,13
DIF[X:0]	t _{JPH}	Differential Phase Jitter (RMS Value)		2	10	ps	1,7,10
DIF[X:0]	t _{SSTERROR}	Differential Spread Spectrum Tracking Error (peak to peak)		40	80	ps	1,7,12
Skew, Output to Output	t _{sk3}	V _T = 50%		100	150	ps	1
Jitter, Cycle to cycle		PLL mode		40	50	ps	1,2
	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		25	50	ps	1,2

¹Guaranteed by design and characterization, not 100% tested in production. $C_{LOAD} = 2pF$

² Measured from differential cross-point to differential cross-point

³ PLL mode Input-to-Output skew is measured at the first output edge following the corresponding input.

⁴ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁵ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

 6 VT = 50% of Vout

⁷ This parameter is deterministic for a given device

⁸ Measured with scope averaging on to find mean value.

⁹ Long-term variation from nominal of input-to-output skew over temperature and voltage for a single device.

¹⁰ This parameter is measured at the outputs of two separate 9DB1904 devices driven by a single main clock. The 9DB1904's must be set to high bandwidth. Differential phase jitter is the accumulation of the phase jitter not shared by the outputs (eg. not including the affects of spread spectrum). Target ranges of consideration are agents with BW of 1-22MHz and 11-33MHz.

¹¹ t is the period of the input clock

¹² Differential spread spectrum tracking error is the difference in spread spectrum tracking between two 9DB1904 devices This parameter is measured at the outputs of two separate 9DB1904 devices driven by a single main clock in Spread Spectrum mode. The 9DB1904's must be set to high bandwidth. The spread spectrum characteristics are: maximum of 0.5%, 30-33KHz modulation frequency, linear profile.

¹³ This parameter is an absolute value. It is not a double-sided figure.

Electrical Characteristics - Phase Jitter Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1		35	86	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band		1.2	3	ps	1.0
	+	10kHz < f < 1.5MHz		1.2	3	(rms)	1,2
Phase Jitter, PLL Mode	t _{jphPCleG2}	PCIe Gen 2 High Band		25	3.1	ps	1,2
		1.5MHz < f < Nyquist (50MHz)		2.5 3.1		(rms)	1,2
	t _{jphQPI_SMI}	QPI & SMI		0.30	0.5	ps	1,5
		(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.50	0.5	(rms)	1,5
	t _{jphPCleG1}	PCIe Gen 1		3	10	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band		0.01	0.3	ps	1,2,6
Additive Phase Jitter,	+	10kHz < f < 1.5MHz		0.01	0.5	(rms)	1,2,0
Bypass mode	t _{jphPCleG2}	PCIe Gen 2 High Band		0.8	1.3	ps	1,2,6
Dypace mode		1.5MHz < f < Nyquist (50MHz)		0.0 1.0		(rms)	1,2,0
	+	QPI & SMI		0.12 0.3		ps	1,5,6
	^t jphQPI_SMI	(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.12	0.5	(rms)	1,3,0

TA = T_{COM;} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² = (total jitter)² - (input jitter)²

Clock Periods - Differential Outputs with Spread Spectrum Disabled

			Measurement Window							
	Center 1 Clock 1us 0.1s 0.1s 0.1s	1us	1 Clock							
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
DIF	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2

Clock Periods - Differential Outputs with Spread Spectrum Enabled

				Measurement Window							
	SSC ON	Center1 Clock1us0.1s0.1s0.1sFreqc2c jitter-SSC- ppm0 ppm+ ppmMHzAbsPerShort-TermLong-TermPeriodAverageMinMinMinMinMinNominalMax	1us	1 Clock	1						
			Center Freqc2c jitter MHz AbsPer	AbsPer	Short-Term	Long-Term	Period	Long-Term	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units
	DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2
	DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+/CK420BQ accuracy requirements. The 9DB1904 itself does not contribute to ppm error.

9DB1904B 19 Output Differential Buffer for PCIe Gen2 and QPI

DIF Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2

9DB1904B 19 Output Differential Buffer for PCIe Gen2 and QPI

	Alternative Termination for LVDS and other Common Differential Signals (figure 3)								
Vdiff	Vp-р	Vcm	R1	R2	R3	R4	Note		
0.45v	0.22v	1.08	33	150	100	100			
0.58	0.28	0.6	33	78.7	137	100			
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible		
0.60	0.3	1.2	33	174	140	100	Standard LVDS		
R1a = R1	R1a = R1b = R1								

 $R_{2a} = R_{2b} = R_{2}$

Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Cc	0.1 µF						
Vcm	0.350 volts						

IDT® 19 Output Differential Buffer for PCIe Gen2 and QPI

General SMBus serial interface information for the 9DB1904B

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4(h)
- IDT clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D4 (h)
- IDT clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (h)
- IDT clock will *acknowledge*
- IDT clock will send the data byte count = X
- IDT clock sends Byte N + X -1
- IDT clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation	
	troller (Host)		T (Slave/Receiver)	
Т	starT bit			
Slave	Address D4 _(h) *			
WR	WRite			
			ACK	
Begir	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	Address D5 _(h) *			
RD	RD ReaD			
			ACK	
		D	ata Byte Count = X	
	ACK			
			Beginning Byte N	
	ACK			
		Byte	♦	
	\diamond	Ð,	\$	
	O	×	\$	
	\$			
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

Ind	Index Block Write Operation							
Cor	ntroller (Host)	IDT (Slave/Receiver)						
Т	starT bit							
Slave	e Address D4 _(h) *							
WR	WRite							
			ACK					
Begi	nning Byte = N							
			ACK					
Data	Byte Count = X							
			ACK					
Begir	ning Byte N							
			ACK					
	\diamond	te						
	\diamond	Byte	◇					
	\diamond	×	◇					
			◇					
Byt	e N + X - 1							
			ACK					
Р	stoP bit							

SMBusTable: Reserved Register

Byte	e 0	Pin # Name Control Function		Туре	0	1	PWD	
Bit 7	_		Re	eserved	R			1
Bit 6	-		Re	eserved	R			1
Bit 5	-		Re	Reserved				1
Bit 4	-		Re	Reserved				1
Bit 3	-		Re	eserved	R			1
Bit 2	-		Re	eserved	R			0
Bit 1	-		Reserved		R			1
Bit 0	-		Re	eserved	R			1

SMBusTable: Output Control Register

Byte	e 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			DIF_7	Output Control	RW	Hi-Z	Enable	1
Bit 6			DIF_6	Output Control	RW	Hi-Z	Enable	1
Bit 5			DIF_5	Output Control	RW	Hi-Z	Enable	1
Bit 4			DIF_4	Output Control	RW	Hi-Z	Enable	1
Bit 3			DIF_3	Output Control	RW	Hi-Z	Enable	1
Bit 2			DIF_2	Output Control	RW	Hi-Z	Enable	1
Bit 1			DIF_1	Output Control	RW	Hi-Z	Enable	1
Bit 0			DIF_0	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output and PLL BW Control Register

Byte	e 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	see	e note	PLL_B	W# adjust	RW	High BW	Low BW	1
Bit 6	see	e note	BYPASS# t	est mode / PLL	RW	Bypass	PLL	1
Bit 5			DIF_13	Output Control	RW	Hi-Z	Enable	1
Bit 4			DIF_12	Output Control	RW	Hi-Z	Enable	1
Bit 3			DIF_11	Output Control	RW	Hi-Z	Enable	1
Bit 2			DIF_10	Output Control	RW	Hi-Z	Enable	1
Bit 1			DIF_9	Output Control	RW	Hi-Z	Enable	1
Bit 0			DIF_8	Output Control	RW	Hi-Z	Enable	1

Note: Bit 7 is wired OR to the HIGH_BW# input, any 0 selects High BW Note: Bit 6 is wired OR to the SMB_A2_PLLBYP# input, any 0 selects Fanout Bypass mode

SMBusTable: Output Enable Readback Register

					-	•	<u>ر</u>	
Byte	3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			Readback	- OE9# Input	R	Read	lback	Х
Bit 6			Readback	- OE8# Input	R	Read	lback	Х
Bit 5			Readback	- OE7# Input	R	Read	lback	Х
Bit 4			Readback	- OE6# Input	R	Read	lback	Х
Bit 3			Readback	- OE5# Input	R	Read	lback	Х
Bit 2			Readback - O	E_01234# Input	R	Read	lback	Х
Bit 1		8	Readback -	HIGH_BW# In	R	Read	lback	Х
Bit 0		72	Readback - SME	3_A2_PLLBYP# In	R	Read	lback	Х

SMBusTable: Output Enable Readback Register

Byte	e 4 Pin #	[‡] Name	Control Function	Туре	0	1	PWD
Bit 7	69 Readback - OE17_18# Input R Readback		Х				
Bit 6	60	Readback - (DE15_16# Input	R	Read	lback	Х
Bit 5			Reserved				0
Bit 4	54	Readback	- OE14# Input	R	Read	lback	Х
Bit 3	51	Readback	- OE13# Input	R	Read	lback	Х
Bit 2	48	Readback	- OE12# Input	R	Read	lback	Х
Bit 1	43	Readback	- OE11# Input	R	Read	back	Х
Bit 0	40	Readback	- OE10# Input	R	Read	back	Х

SMBusTable: Vendor & Revision ID Register

Byte	∋5 Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1		R	-	-	0
Bit 4	-	RID0		R	-	-	1
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBusTable: DEVICE ID (194 Decimal or C2 Hex)

Byte	e6 Pin	า #	Name	Control Function	Туре	0	1	PWD
Bit 7	7 - Device ID 7 (MSB) RW Reserved		1					
Bit 6	-		Devi	ce ID 6	RW	Rese	erved	1
Bit 5	-		Devi	ce ID 5	RW Reserved		0	
Bit 4	-		Device ID 4 RW Reserved		0			
Bit 3	-		Devi	ce ID 3	RW	Rese	erved	0
Bit 2	-		Devi	ce ID 2	RW	Rese	erved	0
Bit 1	-		Devi	ce ID 1	RW	Rese	erved	1
Bit 0	-		Devi	ce ID 0	RW	Rese	erved	0

SMBusTable: Byte Count Register

Byte	e 7	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	BC7	-	RW	-	-	0
Bit 6		-	BC6		RW	-	-	0
Bit 5		-	BC5	Writing to this register	RW	-	-	0
Bit 4		-	BC4	Writing to this register	RW	-	-	0
Bit 3		-	BC3	configures how many bytes will be read back.	RW	-	-	0
Bit 2		-	BC2	bytes will be read back.	RW	-	-	1
Bit 1		-	BC1		RW	-	-	1
Bit 0		-	BC0		RW	-	-	1

SMBusTable: Control Pin Readback Register

Byte	e 8 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	5	Readback -100M_133M#_LV		R	Readback		Latch
Bit 6			RESERVED			Х	
Bit 5			RESERVED				Х
Bit 4		DIF_18	Output Control	RW	Hi-Z	Enable	1
Bit 3		DIF_17	Output Control	RW	Hi-Z	Enable	1
Bit 2		DIF_16	Output Control	RW	Hi-Z	Enable	1
Bit 1		DIF_15	Output Control	RW	Hi-Z	Enable	1
Bit 0		DIF_14	Output Control	RW	Hi-Z	Enable	1

SMBusTable: PLL Operating Set Point Register

Byte	e 9	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6	Bit 6 RESERVED			0				
Bit 5	Bit 5 RESERVED				0			
Bit 4		RESERVED				0		
Bit 3				RESERVED				0
Bit 2		-	Frequency Sel	ect 100M_133M#	RW	See ICS9E	DB1904 1:1	Latch
Bit 1		-	Frequenc	cy Select B	RW		nming Table	0
Bit 0		-	Frequenc	cy Select A	RW	9	5	1

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

SYMBOL	MIN.	MAX.	
А	0.8	1.0	
A1	0	0.05	
A3	0.25 Re	eference	
b	0.18	0.3	
е	e 0.50 BASIC		

SYMBOL	ICS 72L TOLERANCE
N	72
N _D	18
N _E	18
D x E BASIC	10.00 x 10.00
D2 MIN. / MAX.	5.75 / 6.15
E2 MIN. / MAX.	5.75 / 6.15
L MIN. / MAX.	0.30/ 0.50

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB1904BKLF	Tubes	72-pin MLF	0 to +70° C
9DB1904BKLFT	Tape and Reel	72-pin MLF	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

"B" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1	7/1/2009	Initial release	-
0.2	7/8/2009	Updated revision ID in Byte 5	13
		Updated electrical characteristics tables.	
А	9/21/2010	Added Test loads and terminations	Various
		Corrected minor typo's, move to release.	
		1. Updated electrical char tables	
В	9/23/2010	2. Updated test loads and termination figures	Various
		3. Added Period PPM tables	
		1. Updated electrical tabels with Typ. Values	Various
С	4/19/2011	2. Updated Differential Clock Period PPM tables	various

-

- - - - - -

-

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.