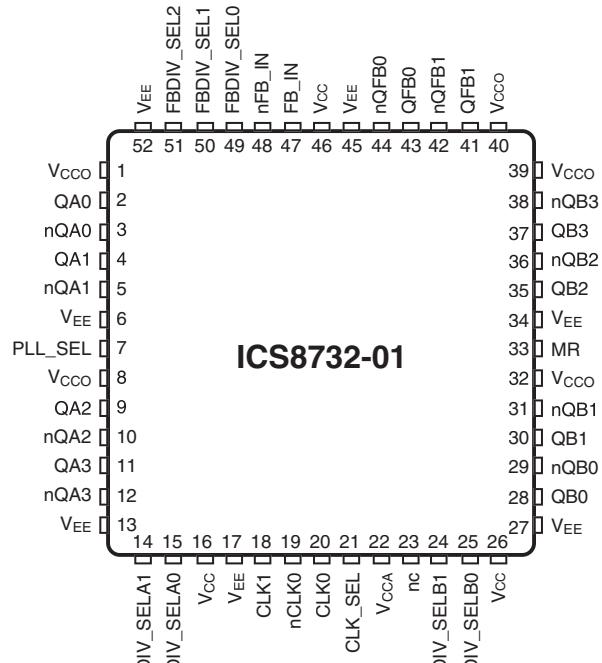


GENERAL DESCRIPTION

The 8732-01 is a low voltage, low skew, 3.3V LVPECL Clock Generator. The 8732-01 has two selectable clock inputs. The CLK0, nCLK0 pair can accept most standard differential input levels. The single ended clock input accepts LVCMOS or LVTTL input levels. The 8732-01 has a fully integrated PLL along with frequency configurable outputs. An external feedback input and outputs regenerate clocks with “zero delay”.

The 8732-01 has multiple divide select pins for each bank of outputs along with 3 independent feedback divide select pins allowing the 8732-01 to function both as a frequency multiplier and divider. The PLL_SEL input can be used to bypass the PLL for test and system debug purposes. In bypass mode, the input clock is routed around the PLL and into the internal output dividers.


BLOCK DIAGRAM

Features

- Ten differential 3.3V LVPECL outputs
- Selectable differential CLK0, nCLK0 or LVCMOS/LVTTL CLK1 inputs
- CLK0, nCLK0 supports the following input types: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- CLK1 accepts the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 350MHz
- VCO range: 250MHz to 700MHz
- External feedback for “zero delay” clock regeneration with configurable frequencies
- Cycle-to-cycle jitter: CLK0, nCLK0, 50ps (maximum)
CLK1, 80ps (maximum)
- Output skew: 150ps (maximum)
- Static phase offset: -150ps to 150ps
- Lead-Free package fully RoHS compliant

PIN ASSIGNMENT

52-Lead LQFP

10mm x 10mm x 1.4mm package body

Y package

Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1, 8, 32, 39, 40	V_{CCO}	Power		Output supply pins.
2, 3, 4, 5	QA0, nQA0, QA1, nQA1	Output		Differential output pair. LVPECL interface levels.
6, 13, 17, 27, 34, 45, 52	V_{EE}	Power		Negative supply pins.
7	PLL_SEL	Input	Pullup	Selects between the PLL and reference clock as the input to the dividers. When LOW, selects reference clock. When HIGH, selects PLL. LVCMOS / LVTTL interface levels.
9, 10, 11, 12	QA2, nQA2, QA3, nQA3	Output		Differential output pairs. LVPECL interface levels.
14	DIV_SELA1	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
15	DIV_SELA0	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
16, 26, 46	V_{CC}	Power		Core supply pins.
18	CLK1	Input	Pulldown	LVCMOS / LVTTL reference clock input.
19	nCLK0	Input	Pullup	Inverting differential clock input.
20	CLK0	Input	Pulldown	Non-inverting differential clock input.
21	CLK_SEL	Input	Pulldown	Clock select input. When LOW, selects CLK0, nCLK0. When HIGH, selects CLK1. LVCMOS / LVTTL interface levels.
22	V_{CCA}	Power		Analog supply pin.
23	nc	Unused		No connect.
24	DIV_SELB1	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
25	DIV_SELB0	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
28, 29, 30, 31	QB0, nQB0, QB1, nQB1	Output		Differential output pairs. LVPECL interface levels.
33	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Q_x to go low and the inverted outputs nQ_x to go high. When LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
35, 36, 37, 38	QB2, nQB2, QB3, nQB3	Output		Differential output pairs. LVPECL interface levels.
41, 42, 43, 44	QFB1, nQFB1, QFB0, nQFB0	Output		Differential feedback output pairs. LVPECL interface levels.
47	FB_IN	Input	Pulldown	Feedback input to phase detector for regenerating clocks with “zero delay”.
48	nFB_IN	Input	Pullup	Feedback input to phase detector for regenerating clocks with “zero delay”.
49	FBDIV_SEL0	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.
50	FBDIV_SEL1	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.
51	FBDIV_SEL2	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
R_{PULLUP}	Input Pullup Resistor			51		k Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			51		k Ω

TABLE 3A. CONTROL INPUT FUNCTION TABLE FOR QA0:QA3 OUTPUTS

Inputs				Outputs
MR	PLL_SEL	DIV_SELA1	DIV_SELA0	QA0:QA3, nQA0:nQA3
1	X	X	X	Low
0	1	0	0	fVCO/2
0	1	0	1	fVCO/4
0	1	1	0	fVCO/6
0	1	1	1	fVCO/8
0	0	0	0	fREF_CLK/2
0	0	0	1	fREF_CLK/4
0	0	1	0	fREF_CLK/6
0	0	1	1	fREF_CLK/8

TABLE 3B. CONTROL INPUT FUNCTION TABLE FOR QB0:QB3 OUTPUTS

Inputs				Outputs
MR	PLL_SEL	DIV_SELB1	DIV_SELB0	QB0:QB3, nQB0:nQB3
1	X	X	X	Low
0	1	0	0	fVCO/2
0	1	0	1	fVCO/4
0	1	1	0	fVCO/8
0	1	1	1	fVCO/12
0	0	0	0	fREF_CLK/2
0	0	0	1	fREF_CLK/4
0	0	1	0	fREF_CLK/8
0	0	1	1	fREF_CLK/12

TABLE 3C. CONTROL INPUT FUNCTION TABLE FOR QFB0, QFB1

Inputs					Outputs
MR	PLL_SEL	FBDIV_SEL2	FBDIV_SEL1	FBDIV_SEL0	QFB0, QFB1 nQFB0, nQFB1
1	X	X	X	X	Low
0	1	0	0	0	fVCO/4
0	1	0	0	1	fVCO/6
0	1	0	1	0	fVCO/8
0	1	0	1	1	fVCO/10
0	1	1	0	0	fVCO/8
0	1	1	0	1	fVCO/12
0	1	1	1	0	fVCO/16
0	1	1	1	1	fVCO/20
0	0	0	0	0	fREF_CLK/4
0	0	0	0	1	fREF_CLK/6
0	0	0	1	0	fREF_CLK/8
0	0	0	1	1	fREF_CLK/10
0	0	1	0	0	fREF_CLK/8
0	0	1	0	1	fREF_CLK/12
0	0	1	1	0	fREF_CLK/16
0	0	1	1	1	fREF_CLK/20

TABLE 4A. Qx OUTPUT FREQUENCY w/FB_IN = QFB0 OR QFB1

Inputs						fVCO	
FB_IN	FBDIV_SEL2	FBDIV_SEL1	FBDIV_SEL0	Output Divider Mode	CLK1 (MHz)		(NOTE 1)
					Minimum	Maximum	
QFB	0	0	0	÷4	62.5	175 (NOTE 2)	fREF_CLK x 4
QFB	0	0	1	÷6	41.67	116.67	fREF_CLK x 6
QFB	0	1	0	÷8	31.25	87.5	fREF_CLK x 8
QFB	0	1	1	÷10	25	70	fREF_CLK x 10
QFB	1	0	0	÷8	31.25	87.5	fREF_CLK x 8
QFB	1	0	1	÷12	20.83	58.33	fREF_CLK x 12
QFB	1	1	0	÷16	15.62	43.75	fREF_CLK x 16
QFB	1	1	1	÷20	12.5	35	fREF_CLK x 20

NOTE 1: VCO frequency range is 250MHz to 700MHz.

NOTE 2: The maximum input frequency that the phase detector can accept is 175MHz.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC}	4.6V
Inputs, V_I	-0.5V to $V_{CC} + 0.5$ V
Outputs, I_O	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	42.3°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ\text{C}$ TO 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V_{CCA}	Analog Supply Voltage		3.135	3.3	3.465	V
V_{CCO}	Output Supply Voltage		3.135	3.3	3.465	V
I_{CC}	Power Supply Current				165	mA
I_{CCA}	Analog Supply Current				15	mA

TABLE 5B. LVCMS/LVTTL DC CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ\text{C}$ TO 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	CLK1		2		$V_{CC} + 0.3$
		CLK_SEL, PLL_SEL, DIV_SELAx, DIV_SELBx, FBDIV_SELx, MR		2		$V_{CC} + 0.3$
V_{IL}	Input Low Voltage	CLK1		-0.3		1.3
		CLK_SEL, PLL_SEL, DIV_SELAx, DIV_SELBx, FBDIV_SELx, MR		-0.3		0.8
I_{IH}	Input High Current	CLK_SEL, MR, CLK1 DIV_SELAx, DIV_SELBx, FBDIV_SELx	$V_{CC} = V_{IN} = 3.465V$		150	μA
		PLL_SEL	$V_{CC} = V_{IN} = 3.465V$		5	μA
I_{IL}	Input Low Current	CLK_SEL, MR, CLK1 DIV_SELAx, DIV_SELBx, FBDIV_SELx	$V_{CC} = 3.465V$, $V_{IN} = 0V$	-5		μA
		PLL_SEL	$V_{CC} = 3.465V$, $V_{IN} = 0V$	-150		μA

TABLE 5C. DIFFERENTIAL DC CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	$V_{CC} = V_{IN} = 3.465V$			150	μA
		$V_{CC} = V_{IN} = 3.465V$			5	μA
I_{IL}	Input Low Current	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μA
		$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μA
V_{PP}	Peak-to-Peak Input Voltage		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		$V_{EE} + 0.5$		$V_{CC} - 0.85$	V

NOTE 1: For single ended applications, the maximum input voltage for FB_IN, nFB_IN is $V_{CC} + 0.3V$.NOTE 2: Common mode voltage is defined as V_{IH} .**TABLE 5D. LVPECL DC CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO} - 1.4$		$V_{CCO} - 0.9$	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CCO} - 2.0$		$V_{CCO} - 1.7$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO} - 2V$.**TABLE 6. PLL INPUT REFERENCE CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$**

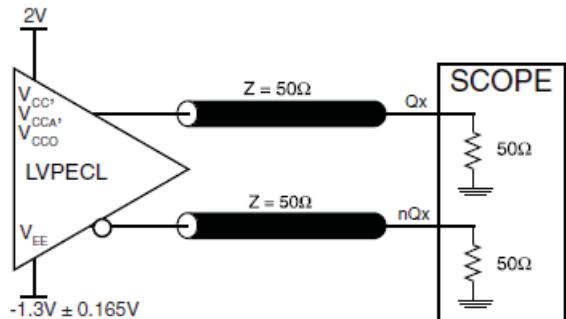
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{REF}	Input Reference Frequency				200	MHz

TABLE 7. AC CHARACTERISTICS, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

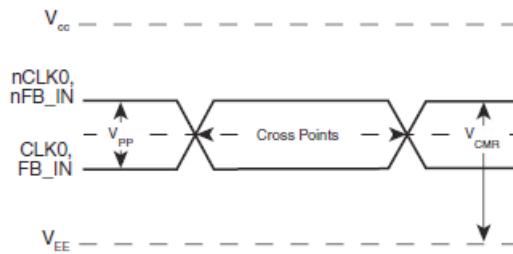
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				350	MHz
$t(\emptyset)$	Static Phase Offset; NOTE 1	$PLL_SEL = 3.3V$, $fREF = 100MHz$, $fVCO = 400MHz$	-150		150	ps
$t_{sk(o)}$	Output Skew; NOTE 2, 3, 4				150	ps
$t_{jit(cc)}$	Cycle-to-Cycle Jitter; NOTE 3	CLK0, nCLK			50	ps
		CLK1			80	ps
t_L	PLL Lock Time				10	ms
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle	$f_{OUT} \leq 175MHz$	48		52	%

All parameters measured at f_{MAX} unless noted otherwise.

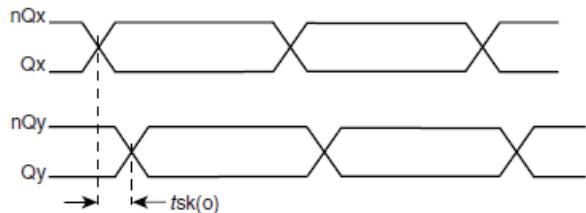
NOTE 1: Defined as the time difference between the input reference clock and the averaged feedback input signal when the PLL is locked and the input reference frequency is stable.

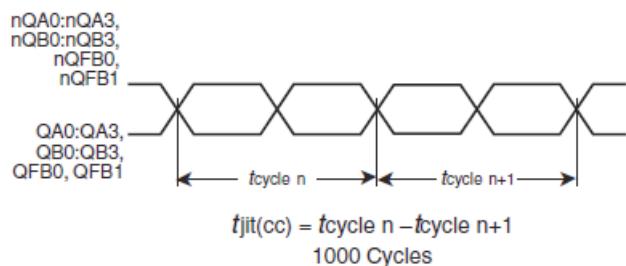

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

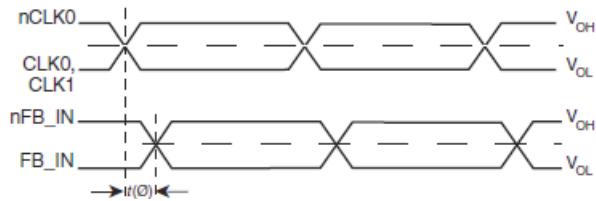
Measured at the output differential cross points.

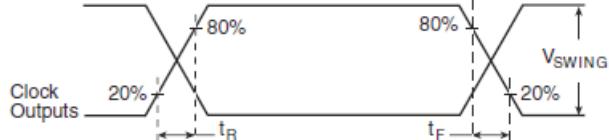

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

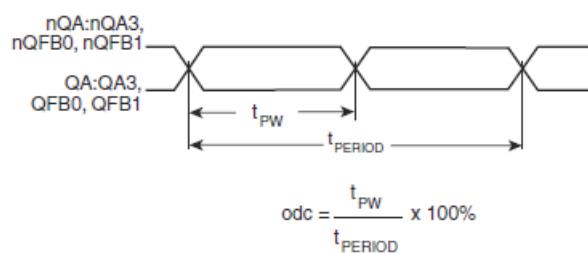
NOTE 4: All outputs in divide by 4 configuration.


PARAMETER MEASUREMENT INFORMATION


3.3V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL


OUTPUT SKEW


CYCLE-TO-CYCLE JITTER

STATIC PHASE OFFSET

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{CC}/2$ is generated by the bias resistors $R1$, $R2$ and $C1$. This bias circuit should be located as close as possible to the input pin. The ratio

of $R1$ and $R2$ might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{CC} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

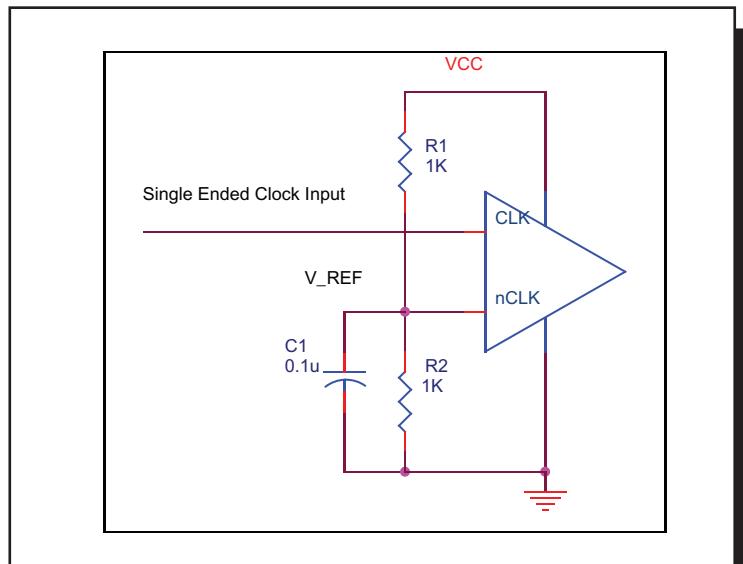


FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

TERMINATION FOR LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

$FOUT$ and $nFOUT$ are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 2A and 2B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

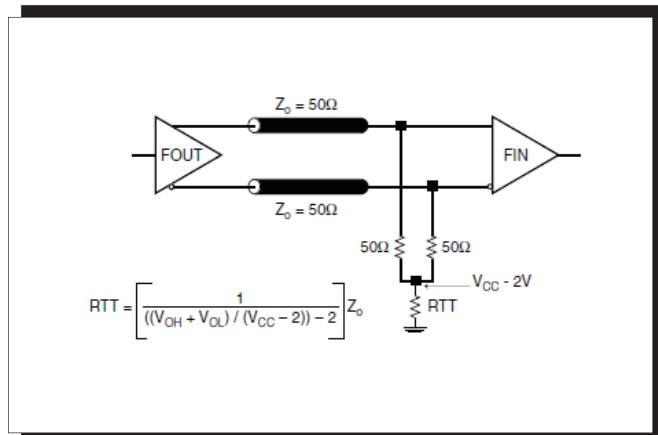


FIGURE 2A. LVPECL OUTPUT TERMINATION

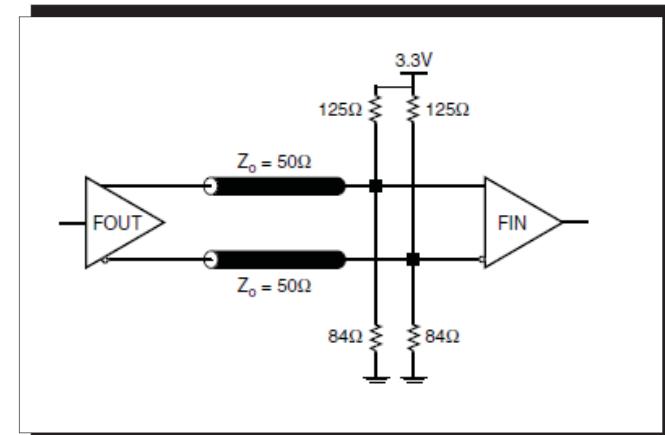


FIGURE 2B. LVPECL OUTPUT TERMINATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 8732-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} , V_{CCA} and V_{CCO} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 3* illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each V_{CCA} pin.

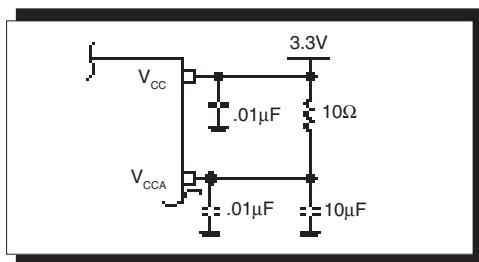


FIGURE 3. POWER SUPPLY FILTERING

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 4A to 4D show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are

examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 4A*, the input termination applies for LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

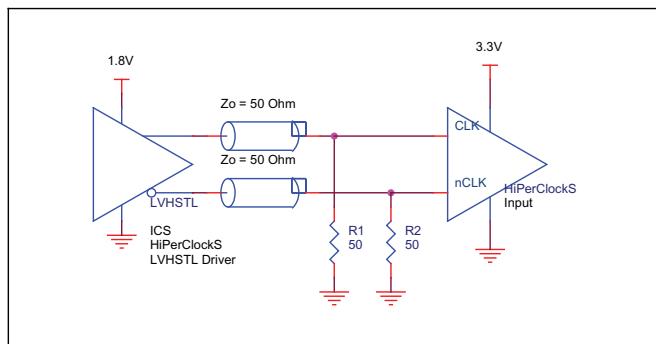


FIGURE 4A. CLK/nCLK INPUT DRIVEN BY LVHSTL DRIVER

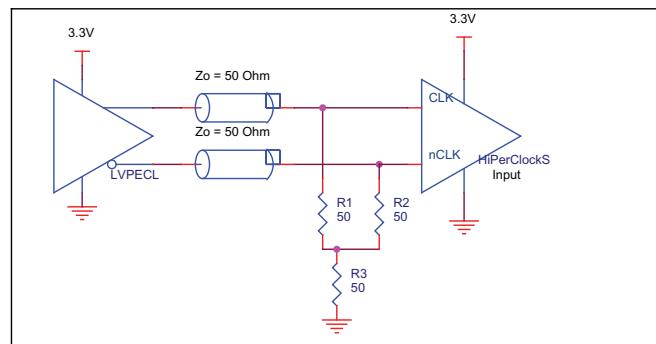


FIGURE 4B. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

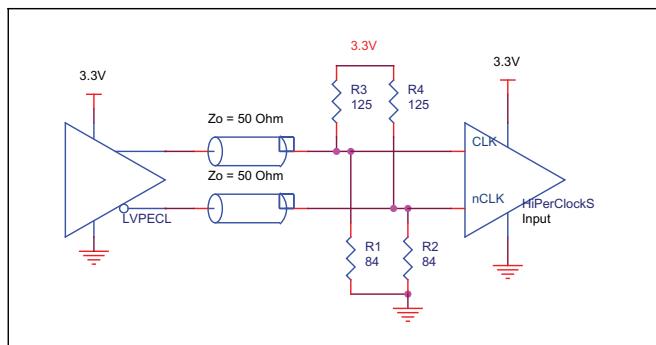


FIGURE 4C. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

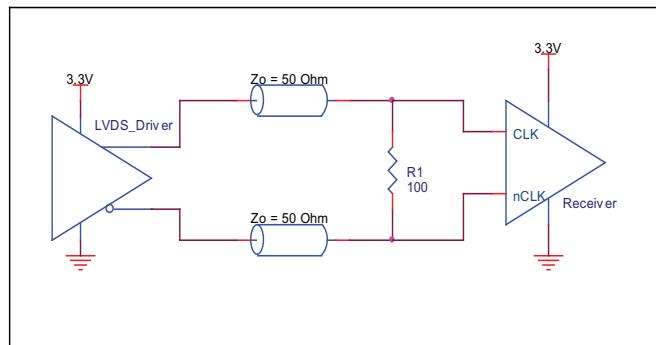


FIGURE 4D. CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

LAYOUT GUIDELINE

Figure 5 shows a schematic example of the 8732-01. In this example, the CLK0/nCLK0 input is selected. The decoupling

capacitors should be physically located near the power pin. For 8732-01, the unused outputs can be left floating.



FIGURE 5. 8732-01 LVPECL BUFFER SCHEMATIC EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 8732-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8732-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{CC_MAX} * I_{EE_MAX} = 3.465V * 165mA = 572mW$
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**
If all outputs are loaded, the total power is $10 * 30mW = 300mW$

Total Power_{MAX} (3.465V, with all outputs switching) = $572mW + 300mW = 872mW$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

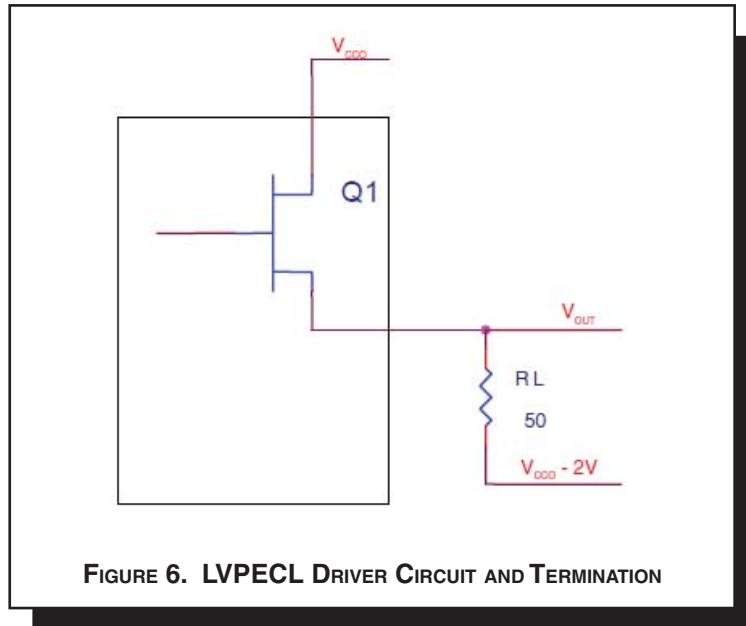
T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 36.4°C/W per Table 8 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$70^\circ C + 0.872W * 36.4^\circ C/W = 101.7^\circ C$. This is well below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).


TABLE 8. THERMAL RESISTANCE θ_{JA} FOR 52-PIN LQFP, FORCED CONVECTION

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	58.0°C/W	47.1°C/W	42.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	42.3°C/W	36.4°C/W	34.0°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 6*.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$

$$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$

- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$

$$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$

P_{d_H} is power dissipation when the output drives high.
 P_{d_L} is the power dissipation when the output drives low.

$$P_{d_H} = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$P_{d_L} = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = $P_{d_H} + P_{d_L} = 30mW$

RELIABILITY INFORMATION

TABLE 9. θ_{JA} vs. AIR FLOW TABLE FOR 52 LEAD LQFP

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	58.0°C/W	47.1°C/W	42.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	42.3°C/W	36.4°C/W	34.0°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 8732-01 is: 4916

PACKAGE OUTLINE - Y SUFFIX FOR 52 LEAD LQFP

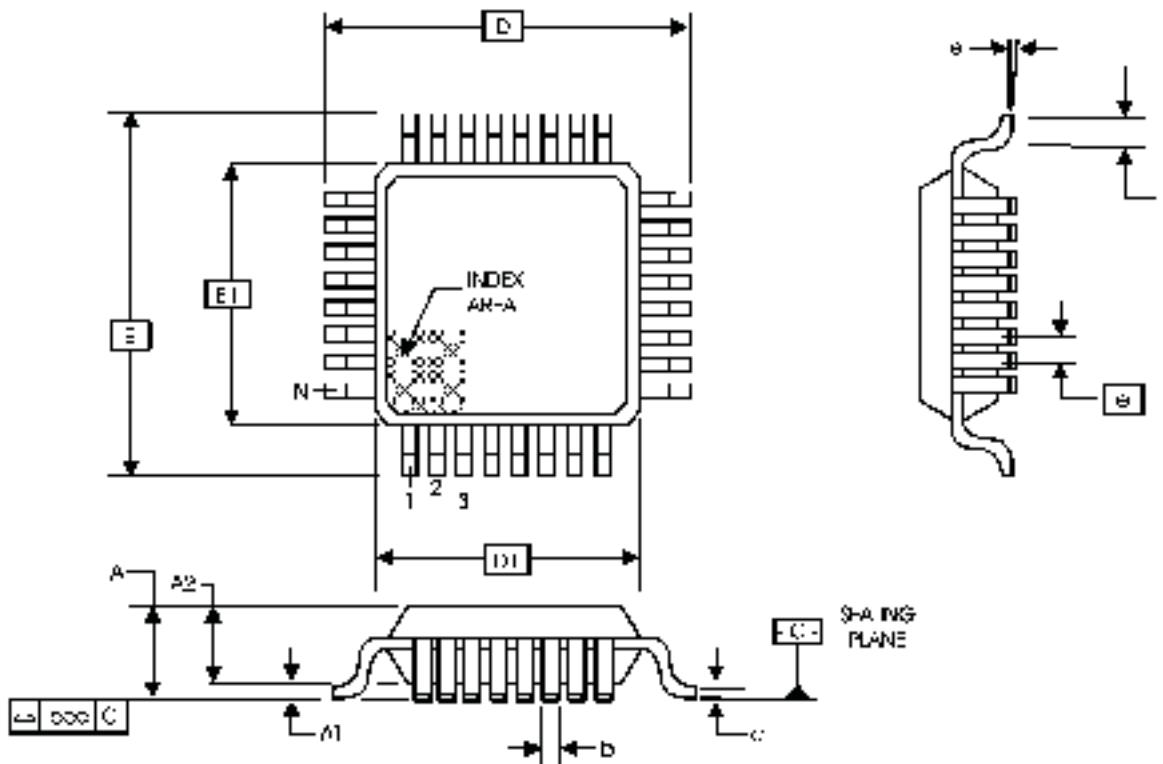


TABLE 10. PACKAGE DIMENSIONS

SYMBOL	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS		
	MINIMUM	NOMINAL	MAXIMUM
N	52		
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.22	0.32	0.38
c	0.09	--	0.20
D	12.00 BASIC		
D1	10.00 BASIC		
E	12.00 BASIC		
E1	10.00 BASIC		
e	0.65 BASIC		
L	0.45	--	0.75
θ	0°	--	7°
ccc	--	--	0.08

Reference Document: JEDEC Publication 95, MS-026

TABLE 11. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8732AY-01LF	ICS8732AY-01LF	52 lead "Lead Free" LQFP	Tube	0°C to +70°C
8732AY-01LFT	ICS8732AY-01LF	52 lead "Lead Free" LQFP	Tape and Reel	0°C to +70°C

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
B	T2 T4A	1	Features Section - changed VCO min. from 200MHz to 250MHz.	
		3	Pin Characteristics Table - changed C_{IN} from max. 4pF to typical 4pF.	
		4	Qx Output Frequency Table - changed the CLK1 min. column to correlate with the VCO change.	
		5	Absolute Maximum Ratings - changed V_o to I_o and included Continuous Current and Surge Current	
		8	Added Differential Clock Input Interface in the Application Information section.	5/20/03
C	T5A	5	Power Supply DC Characteristics Table - changed IEE from 240mA max. to 165mA max., and ICCA from 14mA max. to 15mA max. Power Considerations - recalculated Power Dissipation and Junction Temperatures to correspond with Table 5A.	6/23/03
C		8	Updated LVPECL Output Termination diagrams.	9/24/03
C		10	Added Schematic Layout.	
C		1	Block Diagram - changed REF_SEL to CLK_SEL.	3/3/04
C	T11	15	Ordering Information Table - corrected Tape & Reel Count to read 500 from 1000.	4/29/04
C	T4A	4	Qx Output Frequency Table - changed NOTE 2 from "200MHz" to "175MHz".	10/19/04
C	T11	1	Features Section - added Lead Free bullet.	5/23/05
C	T11	15	Ordering Information Table - added Lead Free part number and note.	
C	T5A	5	Power Supply DC Characteristics Table - corrected I_{EE} to read I_{CC} .	5/31/05
D	T5D	6	LVPECL DC Characteristics Table -corrected V_{OH} max. from V_{CCO} - 1.0V to V_{CCO} - 0.9V.	
		11 - 12	Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 5D.	4/13/07
E	T11	15	Updated datasheet's header/footer with IDT from ICS.	
E	T11	17	Removed ICS prefix from Part/Order Number column.	7/31/10
E	T5D	9	Added Contact Page.	
E	T5D	9	VOH Maximum = V_{CCO} - 0.9	5/2/13
E	T11	15	Removed ICS in the part number where needed. Ordering Information - removed quantity from tape and reel. Deleted LF note below the table. Update header and footer.	1/22/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.