

Data Path Interface (DPI) to Utopia Level 1 Translation Device

Features

- Single chip ATM Layer UTOPIA Level 1 to 4-bit DPI interface.
- Supports ATM Forum UTOPIA Level 1 interface.
- Supports ATM device interface in Cell mode.
- Capable of full-duplex operation up-to 160 Mbps.
- Utility bus interface to access PHY registers.
- In-stream control to access PHY registers.

Description

The 77010 interfaces a UTOPIA PHY device to a device that uses a Data Path Interface (DPI). Examples of PHY devices may include the IDT77105, and the IDT77V400 Switching Memory is an example of a component that utilizes a DPI interface. Figure 1 illustrates a typical application using the IDT77010.

The UTOPIA level 1 bus interface runs at speeds up to 155 Mbps, with the DPI-4 interface capable of full duplex operation at 160 Mbps.

In-stream programming is used to read and write to the PHY registers, with the Control Cells being generated from a remote controlling agent. The Control Cells are used to configure, control and retrieve status of the PHY device.

Theory of Operation

UTOPIA receive cells are transferred to the DPI-4 interface one cell at a time. The DPI-4 clock rate is twice the frequency of receive UTOPIA clock.

DPI-4 transmit cells are transferred to the UTOPIA transmit bus one cell at a time. Transmit flow control is used to match the transmit cell rate to the PHY's transmit cell rate.

Control cells are inserted and decoded by the control cell decoder. The control cells are filtered and will not be transferred to the UTOPIA transmit bus.

The control cell decoder block identifies the control cells and signals the Utility Bus Interface to execute the commands. For a Utility bus write command cell, the Utility bus does a one byte write to the specified Utility bus address. For a Utility bus read command cell, the Utility bus reads one byte from the specified Utility bus address and loads this byte to the Cell Generator logic. The Cell Generator makes a request to the receive cell arbiter to process the cell, and generates a status cell if no UTOPIA receive cell is detected.

A status cell is a complete ATM cell generated and loaded to the Receive DPI-4 I/F logic.

A receive cell on the DPI-4 bus is either an ATM cell from the receive UTOPIA bus or a status ATM cell locally generated. Internally generated ATM cells are output to the Receive DPI-4 Interface only when there are no UTOPIA Receive cell. Figure 2 below shows the device data flow.

Block Diagram

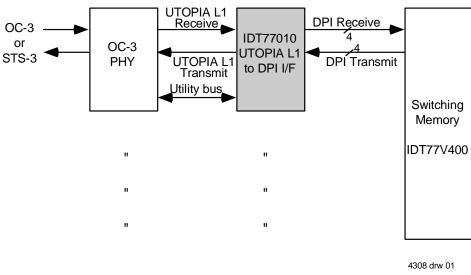


Figure 1 Typical IDT77010 Application

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

Block Diagram

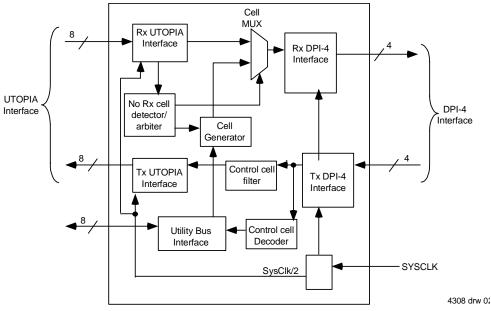
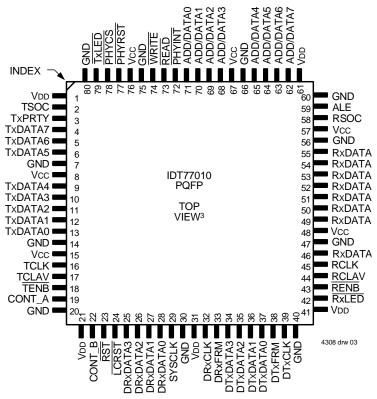



Figure 2 Functional Block Diagram

Pin Configuration^{1,2}

¹.All power pins must be connected to the appropriate power supply. Vcc pins to 5.0V ± 0.25V; VDD pins to 3.3V ± 0.3V.

² All GND pins must be connected to ground supply.

^{3.}This text does not indicate orientation of the actual part-marking.

Pin Definitions

Signal Name	Pin Number	Input/ Output	Description	
SysClk	29	I	System Clock. All the device circuits are synchronized to this clock.	
RST	23	1	System Reset. When low the 77010 and the PHY are reset. This is used as a global line card reset where the RST signals from all line cards are connected together.	
LCRST	24	1	Line Card reset. When low the 77010 and the PHY are reset. This is a local line card reset used to reset a specific 77010 and PHY on a specific line card.	
CONT_A	19	0	Output Control Pin A. This pin is controlled by a receive control cell. Default output = low.	
CONT_B	22	0	Output Control Pin B. This pin is controlled by a receive control cell. Default output = low.	
RxLED	42	0	Active low. When low a receive cell is being transferred. This pin may be used for receive activity LED.	
TxLED	79	0	Active low. When low a transmit cell is being transferred. This pin may be used for transmit activity LED.	
READ	73	0	Utility bus read signal.	
WRITE	74	0	Utility bus write signal.	
ALE	59	0	Utility bus address latch enable. Used for latching the address on the address phase of the Add/Data bus.	
Add/Data0	71	I/O	Utility bus multiplexed address and data bus.	
Add/Data1	70	I/O	Utility bus multiplexed address and data bus.	
Add/Data2	69	I/O	Utility bus multiplexed address and data bus.	
Add/Data3	68	I/O	Utility bus multiplexed address and data bus.	
Add/Data4	65	I/O	Utility bus multiplexed address and data bus.	
Add/Data5	64	I/O	Utility bus multiplexed address and data bus.	
Add/Data6	63	I/O	Utility bus multiplexed address and data bus.	
Add/Data7	62	I/O	Utility bus multiplexed address and data bus.	
PHYCS	78	0	Utility bus PHY chip select.	
PHYINT	72	1	Utility bus PHY interrupt signal	
PHYRST	77	0	Utility bus PHY reset.	
RCLK	45	0	UTOPIA bus receive clock.	
RSOC	58	1	UTOPIA bus receive start of cell.	
RENB	43	0	UTOPIA bus receive enable.	
RCLAV	44	1	UTOPIA bus receive cell available.	
RxData0	46	1	UTOPIA bus receive data bit.	
RxData1	49	1	UTOPIA bus receive data bit.	
RxData2	50	1	UTOPIA bus receive data bit.	
RxData3	51	1	UTOPIA bus receive data bit.	
RxData4	52	1	UTOPIA bus receive data bit.	
RxData5	53	1	UTOPIA bus receive data bit.	
RxData6	54	1	UTOPIA bus receive data bit.	

Signal Name	Pin Number	Input/ Output	Description	
RxData7	55	I	UTOPIA bus receive data bit.	
TENB	18	0	UTOPIA bus Transmit enable.	
TCLK	16	0	UTOPIA bus transmit clock.	
TCLAV	17	I	UTOPIA bus transmit cell available.	
TSOC	2	0	UTOPIA bus transmit start of cell.	
TxData0	13	0	UTOPIA bus transmit data bit.	
TxData1	12	0	UTOPIA bus transmit data bit.	
TxData2	11	0	UTOPIA bus transmit data bit.	
TxData3	10	0	UTOPIA bus transmit data bit.	
TxData4	9	0	UTOPIA bus transmit data bit.	
TxData5	6	0	UTOPIA bus transmit data bit.	
TxData6	5	0	UTOPIA bus transmit data bit.	
TxData7	4	0	UTOPIA bus transmit data bit.	
TxPrty	3	0	UTOPIA bus transmit data parity bit.	
DTxClk	39	0	DPI-4 bus transmit clock. 3.3V Interface.	
DTxFRM	38	I	DPI-4 bus transmit start of frame. 3.3V Interface.	
DTxData0	37	I	DPI-4 bus transmit data bit. 3.3V Interface.	
DTxData1	36	I	DPI-4 bus transmit data bit. 3.3V Interface.	
DTxData2	35	I	DPI-4 bus transmit data bit. 3.3V Interface.	
DTxData3	34	I	DPI-4 bus transmit data bit. 3.3V Interface.	
DRxClk	32	0	DPI-4 bus receive clock. 3.3V Interface.	
DRxFRM	33	0	DPI-4 bus receive start of frame. 3.3V Interface.	
DRxData0	28	0	DPI-4 bus receive data bit. 3.3V Interface.	
DRxData1	27	0	DPI-4 bus receive data bit. 3.3V Interface.	
DRxData2	26	0	DPI-4 bus receive data bit. 3.3V Interface.	
DRxData3	25	0	DPI-4 bus receive data bit. 3.3V Interface.	
Vcc	8,15,48,57,67,76	Power	5.0V Power Supply Pins.	
Vdd	1,21,31,41,61	Power	3.3V Power Supply Pins for DPI Interface.	
GND	7,14,20,30,40,47 ,56,60,66,75,80	GND	Ground Pins.	

 $^{1}\mbox{All}$ signals are 5.0V unless otherwise indicated.

^{2.}3.3V signals are 5.0V tolerant.

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
Vcc	5V Digital Supply Voltage	-0.3	6.0	V
Vdd	3.3V Digital Supply Voltage	-0.3	4.6	V
Vin	Digital Input Voltage	Vss	Vcc + 0.5	V
Ιουτ	Output Current		50	mA
Tstg	Storage Temperature	-55	140	°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	5V Digital Supply Voltage	4.75	5.25	V
Vdd	3.3V Digital Supply Voltage	3.0	3.6	V
Vin	TTL Input Voltage	-0.3	VCC+0.3	V
Та	Operating Temperature	0	70	°C
titr	Input TTL rise time		2	ns
titf	Input TTL fall time		2	ns
Viн	TTL Input High Voltage	2.0		V
VIL	TTL Input Low Voltage		0.8	V

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	770	Unit	
Symbol	Parameter	Test conditions	Min	Max	Unit
[[L]]	Input Leakage Current	VCC = 5.5V, VIN = 0V to VCC	10	10	μA
[ILO]	Output Leakage Current	VOUT = 0V to VCC	10	10	μA
Vон	TTL Output High Voltage	Юн = -4mA	2.4		V
Vol	TTL Output Low Voltage	IOL = +4mA		0.4	V
Idd	Power Supply Current	155.52 Mbps		60	mA
lcc	Power Supply Current	155.52 Mbps		12	mA

Capacitance

Symbol	Parameter	Test Conditions	Min	Туре	Max	Unit
Cin	Input Capacitance	All Inputs		4		pF
Соит	Output Capacitance	All Outputs		6		pF
CBID	Bi-Directional Capacitance	All Bi-directional Pins		10		pF

Device Interface

This 77010 uses a UTOPIA level 1 interface to receive and transmit ATM cells to and from the PHY device. It mirrors the ATM layer as shown in Figure 3 below.

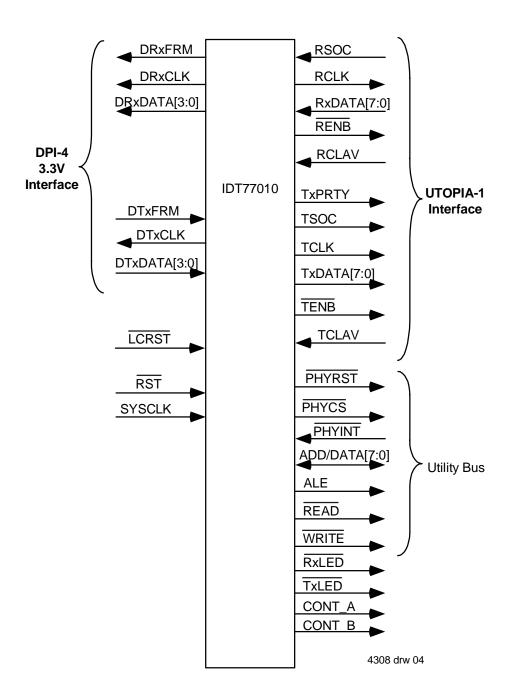


Figure 3 DPI-4 to UTOPIA 1 Interface Device

UTOPIA Receive Interface Operation

UTOPIA cell level handshake is used to receive an ATM cell from a UTOPIA PHY device. The UTOPIA Receive Clock (RCLK) is a continuous clock generated from the System Clock (SYSCLK) and is half the frequency of the DPI Receive Clock (DRxCLK).

The receive cell header, including the HEC, and payload are transferred over the Receive Data bus (RxDATA[7:0]), which is 8-bits wide. Receive Parity (RxPRTY) is not supported by the 77010, nor does it calculate the HEC in the header field.

The 77010 will assert Receive Enable (RENB) low two clock cycles after detecting a high Receive Cell Available (RCLAV), if it is not executing a control cell. Refer to the UTOPIA Receive Flow Control section for description on muxing internally generated control cells with UTOPIA receive cells.

Once Receive Start Of Cell (RSOC) is detected the 77010 will receive the entire cell without interruption.

UTOPIA Receive Flow Control

The UTOPIA data rate is higher than the cell rate on the transport media. This provides additional bandwidth for the insertion of control cells.

The 77010 will only generate an internal control cell when RCLAV and RENB are de-asserted and a cell transfer is not taking place. When a control cell is inserted RENB is de-asserted high for 55 RCLK cycles, which prevents the PHY from transferring a cell. During this 55 clock period the 77010 inserts the control cell and sends it out to the DPI receive interface.

Internally generated control cells should be paced so that the sum of receive UTOPIA status cells and internally generated control cells do not exceed 160 Mbps.

The PHY is expected to buffer at least two receive cells for the flow control to function without the loss of a cell. Figure 4 shows the receive cell muxing with the internally generated status cells.

UTOPIA Transmit Interface Operation

UTOPIA cell level handshake is used to transfer an ATM cell to a UTOPIA PHY device. The UTOPIA Transmit Clock (TCLK) is a continuous clock generated from the System Clock (SYSCLK) and is half the frequency of the DPI Transmit Clock (DTxCLK).

Two TCLK cycles after detection of a high Transmit Cell Available (TCLAV) the 77010 will assert TENB low. One TCLK cycle after TENB assertion the 77010 will assert Transmit Start Of Cell (TSOC) and the first valid byte of data. TSOC is one TCLK cycle long and coincides with the first valid byte of data (TxDATA[7:0]). When the entire cell has been transferred the 77010 will sample TCLAV for cell availability.

The PHY will de-assert TCLAV if it cannot accept another cell. The 77010 will continue transferring the current cell and store up to nine bytes of the next cell in its pipeline if TCLAV is de-asserted during a cell transfer.

Control cells from the DPI interface are filtered and not forwarded to the transmit UTOPIA bus.

Figure 5 shows UTOPIA transmit data flow.

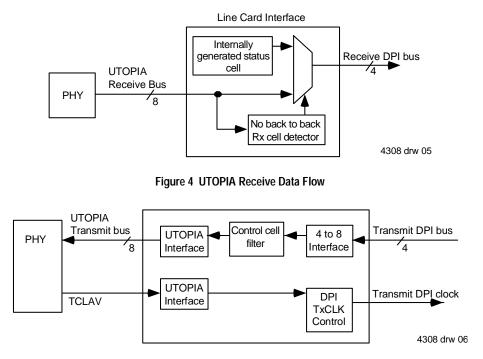


Figure 5 UTOPIA Transmit Data Flow

Input Control Cell Formatting

Control cells are generated by a remote computer and are used to configure and monitor the PHY registers. All cells having the header VPI = 0x00 hex and VCI = 0x1F hex (VCI bits 11-4) are decoded and executed as control cells by the 77010.

Control Cell Filter Operation

All cells transferred over the DTxDATA[3:0] bus are tested to see if they are control cells.Cells containing the header VPI = 00 Hex and VCI = 1F Hex (VCI bits 11-4) are filtered as control cells and not forwarded to the TxDATA[7:0] bus. The filter ignores the GFC, PTI and CLP bits. The default control cell identifier value is 00x1F. It can be programmed to a user defined value via the Change Control Cell Address Command (see page 16).

Control Cell Frequency

The control cells arrive multiplexed with data cells in random combinations, and are terminated (filtered) by the 77010.

The RxDATA[3:0] bus multiplexes the receive UTOPIA cells and any internally generated control cells. The control cell is ignored if a previous control cell is being executed at that time. A gap in the UTOPIA cell stream must occur before the new control cell is processed, because the UTOPIA receive cells have higher priority.

Control cells may be input back-to-back. However, the second control cell will not be processed and could be dropped, even though the 77010 can filter both of them. Worst case condition is when the receive

UTOPIA bus is at full rate. In this case it is recommended that the control cells be at least 50 cells apart.

DPI Interface Operation

Data Path Interface (DPI) is a synchronous bus interface designed to transfer ATM cells between two devices. The 77010 contains a DPI-4 bus interface, which contains a four bit wide data bus. Therefore, 107 clock cycles are required to transfer a 53 byte ATM cell.

The 77010 has separate DPI-4 transmit and receive interfaces, with each requiring six signals. The signals are a clock, a start of cell marker and a four bit data bus. All signals are sampled on the rising edge of their respective clock.

Transmit DPI Bus Interface

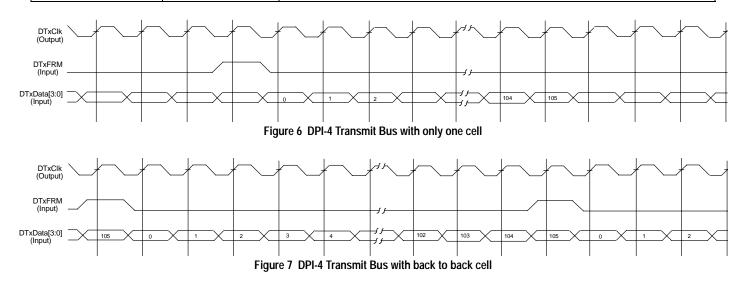
The Transmit DPI Clock (DTxCLK) is generated from SYSCLK and is twice the frequency of TCLK. This clock is not continuous and is used to control data flow to the PHY device. DTxCLK is initially low and not driven until the 77010 detects a high TCLAV from the PHY device. On the rising edge of DTxCLK the 77010 samples Transmit Start of Cell (DTxFRM), which is generated by the transmitting device for one DTxCLK cycle. When DTxFRM is asserted high the 77010 will sample valid data (DTxDATA[3:0]) on the next rising edge of DTxCLK. Cell transfer will continue without interruption once it has started.

When TCLAV is de-asserted low the current cell is transferred and DTxCLK goes low until another high TCLAV is detected.

 DTxFRM and $\mathsf{DTxDATA}[3:0]$ are sampled on the rising edge of $\mathsf{DTxCLK}.$

Cell Byte Number	Bit Number	Function Name	Bit Contents	Description
0	7-4	GFC	0xX	Don't care.
0	3-0	VPI 7-4	0x0	Must be set to 0x0.
1	7-4	VPI 3-0	0x0	Must be set to 0x0.
1	3-0	VCI 15-12	0x0	Must be set to 0x0.
2	7-0	VCI 11-4	0xYY	Special VCI value for control and status cells. Default is 0x1F. ¹
3	7-4	VCI 3-0	0x0	Don't care.
3	3-1	PTI	000'b	Don't care.
3	0	CLP	0'b	Don't care.
4	7-0	HEC	0x00	Don't care.
5	7-0	Command	00-FF Hex	Command cell byte.
6	7-0	Data A	0x0 - 0xFF	Parameter for control cell.
7	7-0	Data B	0x0 - 0xFF	Parameter for control cell.
8	7-0	reserved	0x00	Always set to 0x00.

Control ATM Cell Format


Cell Byte Number	Bit Number	Function Name	Bit Contents	Description
	7-0	reserved	0x00	Always set to 0x00.
	7-0	reserved	0x00	Always set to 0x00.
52	7-0	reserved	0x00	Always set to 0x00.

^{1.} This value can be programmed by instream control cells.

DPI Bus Data Sequence

For Transmit and Receive DPI bus in the 53 byte configuration, the following table shows the data nibble sequence.

DPI Nibble Count	DPI Content	Comments
0	GFC [3:0]	GFC bits for the ATM cell header. First nibble to be transmitted/received.
1	VPI [7:4]	VPI bits MSB of the ATM cell header.
2	VPI [3:0]	VPI bits LSB of the ATM cell header.
3	VCI [15:12]	VCI bits MSB of the ATM cell header.
4	VCI [11:8]	VCI bits of the ATM cell header.
5	VCI [7:4]	VCI bits of the ATM cell header.
6	VCI [3:0]	VCI bits of the ATM cell header.
7	PTI [2:0], CLP	PTI and CLP bits of the ATM cell header.
8	HEC [7:4]	HEC Most Significant nibble.
9	HEC [3:0]	HEC Least Significant nibble.
10	First data byte [7:4]	First data Most Significant nibble of the ATM cell header.
11	First data byte [3:0]	First data Least Significant nibble of the ATM cell header.
104	Last data byte [7:4]	Last data byte Most Significant nibble of the ATM cell.
105	Last data byte [3:0]	Last data byte Least Significant nibble of the ATM cell.

Receive DPI Bus Interface

The Receive DPI Clock (DRxCLK) is a continuous clock generated from SYSCLK and is twice the frequency of RCLK. The Receive Start of Cell marker (DRxFRM) is also generated by the 77010 and is asserted for one clock cycle prior to the first nibble of valid data (DRxDATA[3:0]).

There is no flow control in the receive DPI path. It is assumed that the receiving device can accept the incoming cell.

DRxFRM and DRxDATA[3:0] are sampled on the rising edge of DRxCLK.

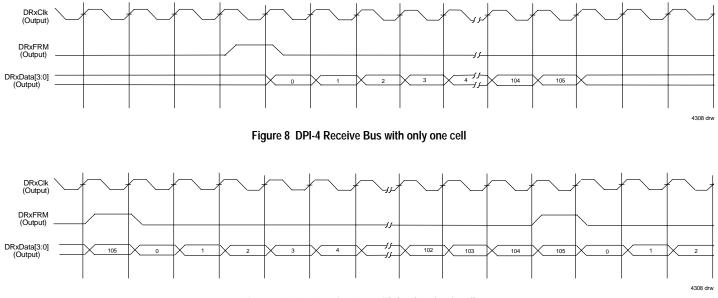


Figure 9 DPI-4 Receive Bus with back to back cell

Utility Bus

The Utility bus is used for accessing the internal PHY registers. An 8-bit read or write command is implemented via instream (in-band) programming to access the registers. The commands are input to the 77010 via the DPI-4 transmit path. The PHY register commands are decoded by the 77010 and executed using the Utility bus.

Figure 10 shows the Utility bus interface.

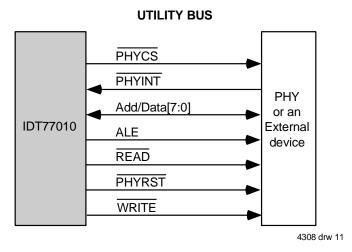


Figure 10 Utility Bus Interface

Utility Bus Read Operation

When the <u>77010</u> decodes the command cells for a Utility bus read operation, it drives the PHY chip select (PHYCS), Address Latch Enable (ALE),Read(READ) and the Address Data bus (Add/Data[7:0]). At the falling edge of ALE, the PHY samples the address phase of the Add/Data[7:0]. The 77010 then floats the Add/Data[7:0] bus. The PHY drives the Add/Data[7:0] bus until rising edge of PHYCS or READ. See Figure 11 below.

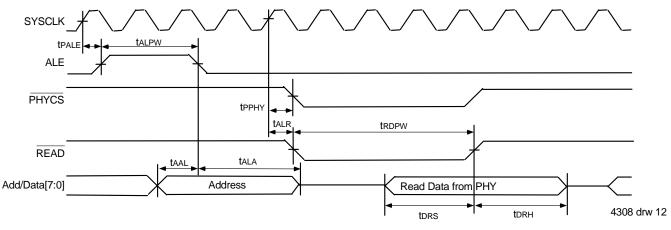


Figure 11 Utility Bus Read Operation

Utility Bus Write Operation

When the 77010 decodes the command cell for a Utility bus write operation, it drives the PHY chip select (PHYCS), Address Latch Enable (ALE), Write (WRITE), and the Address Data bus (Add/Data[7:0]). At the falling edge of ALE, the PHY samples the address phase of the Add/Data[7:0]. The PHY samples the write data byte on the Add/Data[7:0] bus at the rising edge of PHYCS or WRITE. See Figure 12 below.

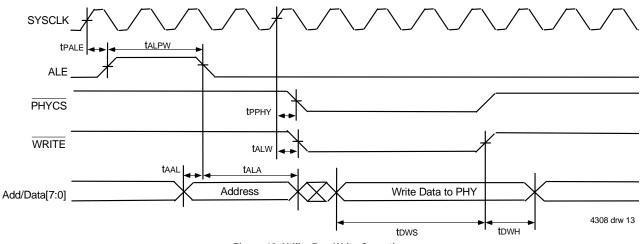


Figure 12 Utility Bus Write Operation

Reply Command Cell

Interrupt Reply Cell Notification

Return command cell indicating an interrupt has occurred on the Utility bus.

Command Fields	Field Value (Hex)	Description
Command	00	Interrupt Cell Return Command
DataA	ХХ	See Data A and Data B Tables on page 14.
DataB	ХХ	See Data A and Data B Tables on page 14.

Command Cells

Reset PHY Chip Command

Resets the PHY device and the Utility bus. PHYRST will assert low for 16 SYSCLK cycles. This command does not generate nor return a command cell.

Command Fields	Field Value (Hex)	Description
Command	01	Reset Phy Chip.
DataA	ХХ	Don't care. It may contain any number.
DataB	ХХ	Don't care. It may contain any number.

Utility Bus Write Command

Writes one byte per command cell to the Utility bus. The Utility bus is used to write to the PHY registers. This command does not generate nor return a command cell.

Command Fields	Field Value (Hex)	Description
Command	02	Write to Utility bus.
DataA	00 - FF	Utility bus address.
DataB	00 - FF	Utility bus data byte to be written.

Utility Bus Read Command

Reads one byte per command cell from the Utility bus. The Utility bus is used to read the PHY registers. This command generates a return command cell. See Reply Cell Format Table.

Command Fields	Field Value (Hex)	Description
Command	03	Read to Utility bus.
DataA	00 - FF	Utility bus address.
DataB	ХХ	Don't care on command. Will return value from Data B Table.

Output Pin Control Command

This command controls the output pins CONT_A and CONT_B, and causes an internally generated cell. See internally generated cell format section.

Command Fields	Field Value (Hex)	Description		
Command	04	Define CONT_A and CONT_B Output State.		
DataA	ХХ	Don't Care.		
DataB	00 01 02 03	Control pins output state. <u>CONT_A</u> <u>CONT_B</u> Low Low Low High High Low High High		

Status Read Command

This command reads the 77010 Revision number and the Interrupt pin state, and causes an internally generated cell. See internally generated cell format section.

Command Fields	Field Value (Hex)	Description
Command	05	Status cell.
DataA	XX	See Data A and Data B Tables on page 14.
DataB	ХХ	See Data A and Data B Tables on page 14.

Change Control Cell Address Command

This command is used to change the control cell address. Once modified the IDT77010 will not filter old (default = 0x1Fx) values from the ATM cell stream. The command does not return a command cell.

Command Fields	Field Value (Hex)	Description		
Command	06	Status cell.		
DataA	00FF	New Control Cell Address; placed in lower byte of VCI Field		
DataB	ХХ	Don't care.		

Internally Generated Reply Cell Format

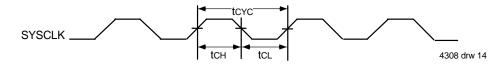
Internal cells are generated in response to a command cell or PHY interrupt. The cells are remotely sent and switched to the 77010. The cell format of an internally generated cell is as follows:

Cell Byte Number	Bit Number	Function Name	Bit Contents	Description
0	7-4	GFC	0x0	Always set to 0x0
0	3-0	VPI 7-4	0x0	Always set to 0x0
1	7-4	VPI 3-0	0x0	Always set to 0x0
1	3-0	VCI 15-12	0x0	Always set to 0x0
2	7-0	VCI 11-4	0x02	Special VCI value for control and status cells.
3	7-4	VCI 3-0	0x0	Special VCI value for control and status cells.
3	3-1	PTI	000'b	Always set to 000'b.
3	0	CLP	0'b	Always set to 0.
4	7-0	HEC	0x00	Transmit HEC byte, always set to 0x00. The PHY device generates and calculates the HEC byte.
5	7-0	Command	00-FF Hex	This returned cell value is the same as the command cells Command byte. For interrupt cell this byte = 00 hex.
6	7-0	Data 1	See below	See below.
7	7-0	Data 2	See below	See below.
8	7-0	reserved	0x00	Always set to 0x00.
	7-0	reserved	0x00	Always set to 0x00.
	7-0	reserved	0x00	Always set to 0x00.
52	7-0	reserved	0x00	Always set to 0x00.

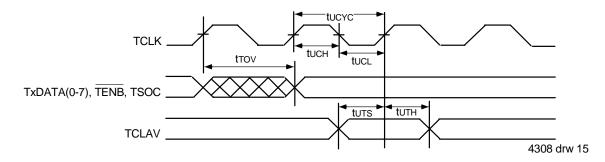
13 of 21

Internally Generated Reply Cell Table - Data A

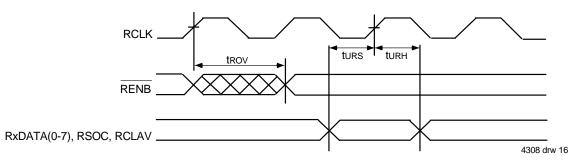
Internally Generated Cell Type	Data A Byte Bit Number	Description
Utility Bus Read	7-0	Address of the Utility bus read.
Status Read Cell	7 6-0	This bit has the value of the interrupt pin at the time of this cell's generation. Reserved. Set to 0.
Interrupt Cell Return	7 6-0	This bit has the value of the interrupt pin at the time of this cell's generation. Reserved. Set to 0.

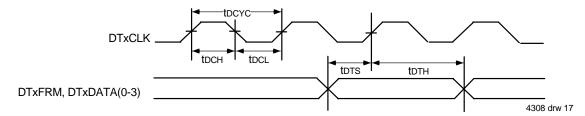

Internally Generated Reply Cell Table - Data B

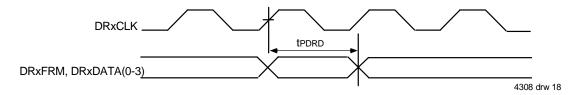
Internally Generated Cell Type	Data A Byte Bit Number	Description	
Utility Bus Read	7-0	Data value of the Utility bus read.	
Status Read Cell	7-0	Revision number of the device.	
Interrupt Cell Return	7-0	Revision number of the device.	

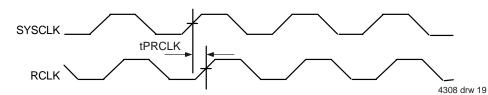

		77	77010		
Symbol	Parameter	Min	Max	Unit	
tcyc	SCLK Cycle Time	20		ns	
tсн	SCLK High Time	8		ns	
tCL	SCLK Low Time	8		ns	
tucyc	UTOPIA TCLK/RCLK Cycle Time	50		ns	
tucн	UTOPIA TCLK/RCLK High Time	20		ns	
tucl	UTOPIA TCLK/RCLK Low Time	20		ns	
tτον	TxDATA, TxPRTY, TENB, TSOC Output Valid from TCLK	1	20	ns	
tuts	TCLAV to TCLK Setup Time	10		ns	
tuth	TCLAV to TCLK Hold Time	1		ns	
trov	RENB Output Valid from RCLK	1	20	ns	
turs	RxDATA, RSOC, RCLAV to RCLKSetup Time	10		ns	
turh	RxDATA, RSOC, RCLAV to RCLK Hold Time	1		ns	
tdcyc	DPI DTxCLK/DRxCLK Cycle Time	25		ns	
tdch	DPI DTxCLK/DRxCLK High Time	9		ns	
tdcl	DPI DTxCLK/DRxCLK Low Time	9		ns	
tdts	DTxFRM, DTxDATA to DTCLK Setup Time	6		ns	
tdth	DTxFRM, DTxDATA to DTCLK Hold Time	2		ns	
tpdrd	DRxCLK to DRxDATA(0-3), DRxFRM Propagation Delay		13	ns	
talpw	ALE Pulse Width	40		ns	
talr	System Clock to READ Low Propagation Delay		22	ns	
talw	System Clock to WRITE Low Propagation Delay		22	ns	
trdpw	Read Pulse Width	80		ns	
taal	Address to ALE Falling Edge Setup Time	20		ns	
tala	Address to ALE Falling Edge Hold Time	10		ns	
tdrs	Data to rising edge of READ Setup Time	5		ns	
tdrh	Data to rising edge of READ Hold Time	1		ns	
tdws	Data to rising edge of WRITE Setup Time	5		ns	
tdwн	Data to rising edge of WRITE Hold Time	1		ns	
twrpw	Write Pulse Width	40		ns	
T PINTS	System Clock to PHYINT Setup Time	10		ns	
tpinth	System Clock to PHYINT Hold Time	1		ns	
TPALE	ALE to System Clock Propagation Delay		22	ns	
tррну	System Clock to PHYCS Propagation Delay		22	ns	
t PPHYR	System Clock to PHYRST Propagation Delay		22	ns	
t PRCLK	System Clock to Utopia Receive Clock Propagation Delay		20	ns	

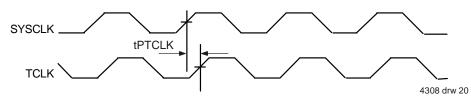
Symbol	Parameter	77010		Unit
Symbol	Faiametei	Min	Max	Onit
T PTCLK	System Clock to Utopia Transmit Clock Propagation Delay		20	ns
t PDRxCLK	System Clock to DPI Receive Clock Propagation Delay		10	ns
t PDTxCLK	System Clock to DPI Transmit Clock Propagation Delay		10	ns
t PRLED	System Clock to RxLED Propagation Delay		19	ns
t PTLED	System Clock to TxLED Propagation Delay		9	ns
t PCNTA	System Clock to CONT_A Propagation Delay		22	ns
tрслтв	System Clock to CONT_B Propagation Delay		22	ns
t PRSTS	Rising Edge of RST and LCRST to Rising Edge of System Clock Setup Time	10		ns
t PRSTH	Rising Edge of RST and LCRST to Rising Edge of System Clock Hold Time	3		ns


System Clock Timing Waveform

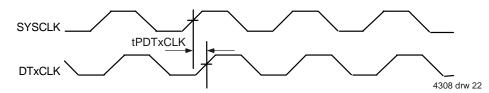

UTOPIA Transmit Timing Waveform

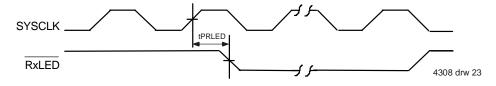

UTOPIA Receive Timing Waveform

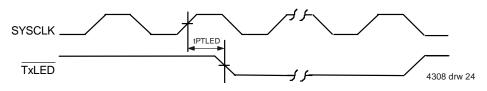

DPI Transmit Timing Waveform

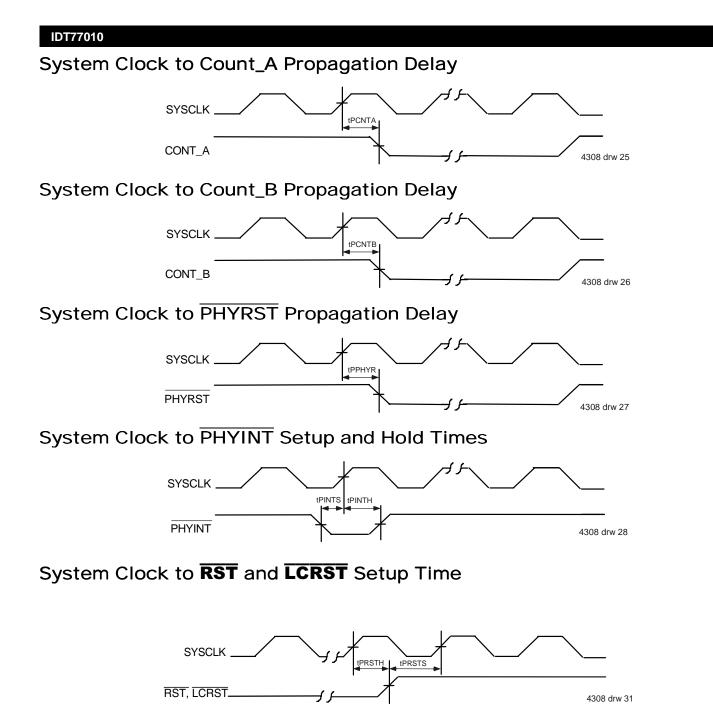

DPI Receive Timing Waveform


System Clock to UTOPIA Receive Clock Propagation Delay


System Clock to UTOPIA Transmit Clock Propagation Delay

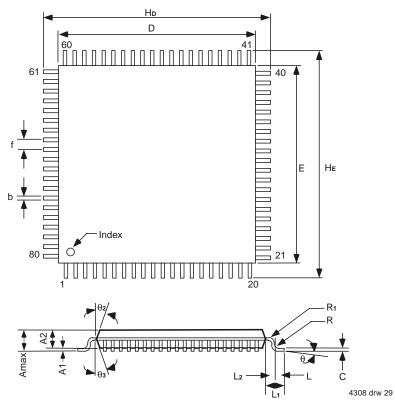

System Clock to DPI Receive Clock Propagation Delay


System Clock to DPI Transmit Clock Propagation Delay



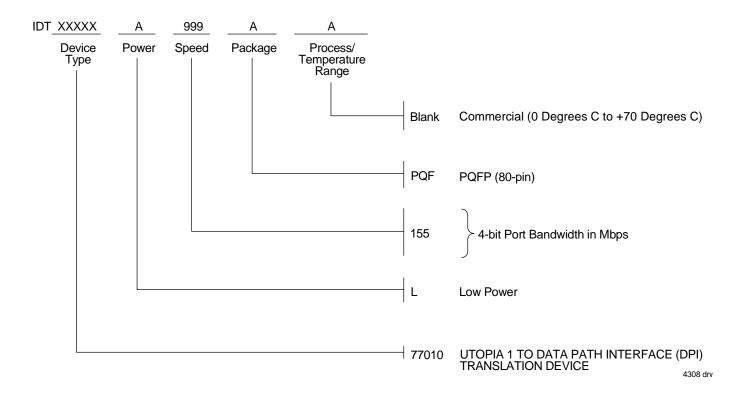
System Clock to RxLED Propagation Delay

System Clock to TxLED Propagation Delay



19 of 21

Package Information


Plastic QFP 80pin Body size 12 x 12 x 1.4mm (QFP14)

Symbol	Dimension in Millimeters			Dimension in Inches ¹		
	Min	Norm	Мах	Min	Norm	Max
E	11.9	12	12.1	(0.469)	(0.472)	(0.476)
D	11.9	12	12.1	(0.469)	(0.472)	(0.476)
A			1.7			(0.066)
A1		0.1			(0.004)	
A2	1.3	1.4	1.5	(0.052)	(0.055)	(0.059)
f		0.5			(0.020)	
b	0.13	0.18	0.28	(0.006)	(0.007)	(0.011)
С	0.1	0.125	0.175	(0.004)	(0.005)	(0.006)
q	00		100	(00)		(100)
L	0.3	0.5	0.7	(0.012)	(0.020)	(0.027)
L1		1			(0.039)	
L2		0.5			(0.020)	
HE	13.6	14	14.4	(0.536)	(0.551)	(0.566)
HD	13.6	14	14.4	(0.536)	(0.551)	(0.566)
q2						
q3						
R		0.2			(0.008)	
R1		0.2			(0.008)	

^{1.} for reference

Ordering Information

Data Sheet Document History

4/02/99	Changed format
5/18/99	Changed tDTH from 6ns to 2ns, changed tALPW from 20ns to 40ns, added TxPRTY prop. delay.
6/24/99	Changed tDCH and tDCL from 8ns to 9ns, added tTOV and tROV min of 1ns.
7/06/99	Changed tPTCLK from 11ns to 20ns to match RCLK.
2/12/01	Changed to Final. Made general corrections. No parameters changed.
6/24/02	Added drawing 4308d31, System Clock to RST and LCRST Setup Time. Added tPRSTS and tPRSTH timing

6/24/02 Added drawing 4308d31, System Clock to RST and LCRST Setup Time. Added tPRSTS and tPRSTH timing to timing parameters table. Changed e-mail URL from atmhelp@idt.com to switchstarhelp@idt.com.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.