
FEATURES:

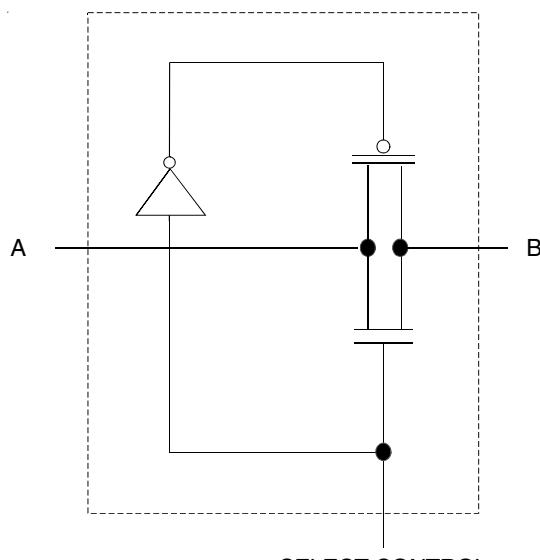
- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- Make-before-break feature
- Over-voltage tolerant
- Internal 500Ω pull-down resistor to GND
- Latch-up performance exceeds 100mA
- V_{CC} = 2.3V - 3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in TSSOP package

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation
- Resource sharing

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.


INDUSTRIAL TEMPERATURE RANGE

DESCRIPTION:

The CBTLV16292 is a single 12-bit multiplexing / demultiplexing bus switch, which provides high speed switching. This device has very low ON resistance, resulting in under 250ps propagation delay through the switch. The demultiplexer side has a 500Ω resistor (R pulldown) termination to GND to eliminate floating nodes.

When the select (S) input is low, the A port is connected to the B1 port, and the R pulldown is connected to the B2 port. Similarly, when the S input is high, A port is connected to B2 port and the R pulldown is connected to B1 port.

SIMPLIFIED SCHEMATIC, EACH SWITCH

SELECT CONTROL
CIRCUITRY

PIN CONFIGURATION

S	1	56	NC
1A1	2	55	NC
NC	3	54	1B1
2A1	4	53	1B2
NC	5	52	2B1
3A1	6	51	2B2
NC	7	50	3B1
GND	8	49	GND
4A1	9	48	3B2
NC	10	47	4B1
5A1	11	46	4B2
NC	12	45	5B1
6A1	13	44	5B2
NC	14	43	6B1
7A1	15	42	6B2
NC	16	41	7B1
Vcc	17	40	7B2
8A1	18	39	8B1
GND	19	38	GND
NC	20	37	8B2
9A1	21	36	9B1
NC	22	35	9B2
10A1	23	34	10B1
NC	24	33	10B2
11A1	25	32	11B1
NC	26	31	11B2
12A1	27	30	12B1
NC	28	29	12B2

TOP VIEW

Package Type	Package Code	Order Code
TSSOP	PAG56	PAG

OPERATING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{CC}	Supply Voltage		2.3	3.6	V
V _{IH}	High-Level Control Input Voltage	V _{CC} = 2.3V to 2.7V	1.7	—	V
		V _{CC} = 2.7V to 3.6V	2	—	
V _{IL}	Low-Level Control Input Voltage	V _{CC} = 2.3V to 2.7V	—	0.7	V
		V _{CC} = 2.7V to 3.6V	—	0.8	
T _A	Operating Free-Air Temperature		-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max.	Unit
V _{CC}	Supply Voltage Range	-0.5 to 4.6	V
V _I	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
I _{IK}	Input Clamp Current, V _I <0	-50	mA
T _{TG}	Storage Temperature Range	-65 to +150	°C

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
S	Select Input
xA _x	Port A Inputs or Outputs
xB _x	Port B Inputs or Outputs

FUNCTION TABLE⁽¹⁾

Input	Operation
S	
L	A Port = B1 Port RPULLDOWN = B2 Port
H	A Port = B2 Port RPULLDOWN = B1 Port

NOTE:

1. H = HIGH Voltage Level
L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$

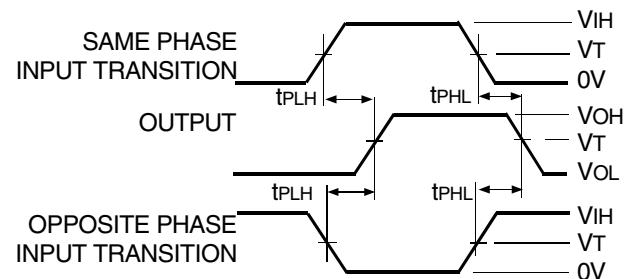
Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IK}	Control Inputs, Data I/O	$V_{CC} = 3\text{V}$, $I_I = -18\text{mA}$		—	—	-1.2	V
I_I	Control Inputs	$V_{CC} = 3.6\text{V}$, $V_I = V_{CC}$ or GND		—	—	± 1	μA
I_{OFF}		$V_{CC} = 0\text{V}$, V_I or $V_O = 0\text{V}$ or 3.6V		—	—	10	μA
I_{CC}		$V_{CC} = 3.6\text{V}$, $I_O = 0$, $V_I = V_{CC}$ or GND		—	—	10	μA
$\Delta I_{CC}^{(2)}$	Control Inputs	$V_{CC} = 3.6\text{V}$, one input at 3V , other inputs at V_{CC} or GND		—	—	300	μA
C_I	Control Inputs	$V_I = 3.3\text{V}$ or 0		—	3.5	—	pF
$C_{IO(OFF)}$	A port or B port	$V_O = 3.3\text{V}$ or 0		—	22.5	—	pF
$R_{ON}^{(3)}$	Max. at $V_{CC} = 2.3\text{V}$ Typ. at $V_{CC} = 2.5\text{V}$	$V_I = 0$	$I_O = 64\text{mA}$	—	5	8	Ω
			$I_O = 24\text{mA}$	—	5	8	
		$V_I = 1.7\text{V}$	$I_O = 15\text{mA}$	—	11	40	
	$V_{CC} = 3\text{V}$	$V_I = 0$	$I_O = 64\text{mA}$	—	3	7	
			$I_O = 24\text{mA}$	—	3	7	
		$V_I = 2.4\text{V}$	$I_O = 15\text{mA}$	—	7	15	

NOTES:

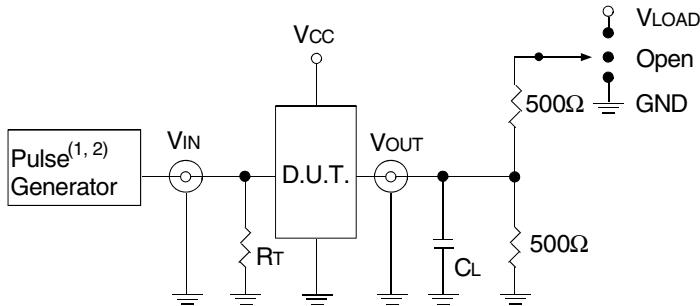
1. Typical values are at 3.3V , $+25^\circ\text{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than V_{CC} or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$V_{CC} = 2.5\text{V} \pm 0.2\text{V}$		$V_{CC} = 3.3\text{V} \pm 0.3\text{V}$		Unit
		Min.	Max.	Min.	Max.	
$t_{PD}^{(1)}$	Propagation Delay A to B or B to A	—	0.15	—	0.25	ns
$t_{PD}^{(2)}$	Propagation Delay S to A	2.5	7.1	2.5	6.7	ns
t_{EN}	Output Enable Time S to B	1	5.6	1	5	ns
t_{DIS}	Output Disable Time S to B	1	5	1	4.5	ns
$t_{MB/B}^{(3,4)}$	Make-Before-Break Time	0	2	0	2	ns


NOTES:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
2. The condition to measure this propagation delay is by observing the change of voltage on the A port introduced by static fields equal to 3V or 0V for $3.3\text{V} \pm 0.3\text{V}$ or V_{CC} or 0 for $2.5\text{V} \pm 0.2\text{V}$ on B₁ and B₂ ports to get the required transition.
3. The make-before-break time is the duration between the make and break, during transition from one selected port to another.
4. This parameter is guaranteed by design but not production tested.

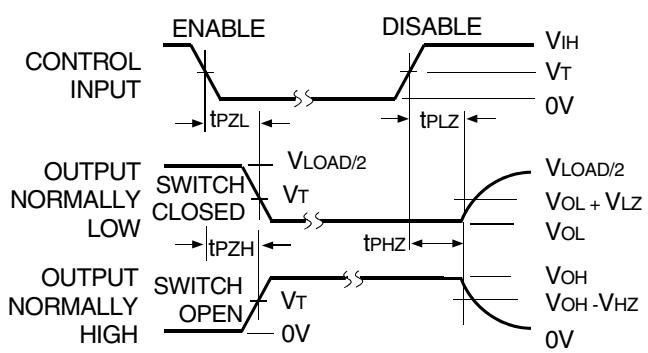

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	$2 \times V_{CC}$	V
V_{IH}	3	V_{CC}	V
V_T	1.5	$V_{CC} / 2$	V
V_{LZ}	300	150	mV
V_{HZ}	300	150	mV
C_L	50	30	pF

Propagation Delay

Test Circuits for All Outputs


DEFINITIONS:

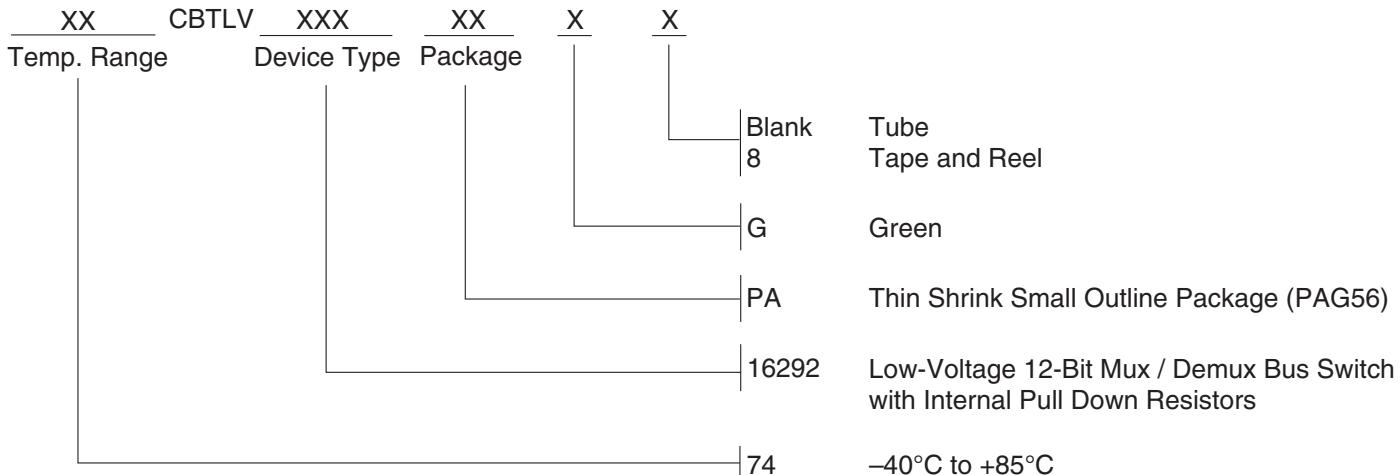
C_L = Load capacitance: includes jig and probe capacitance.

R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2.5ns$; $t_r \leq 2.5ns$.
2. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2ns$; $t_r \leq 2ns$.

NOTES:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Disable Low waveform applies to outputs that are LOW, except when disabled by the output control S.

Enable and Disable Times

SWITCH POSITION

Test	Switch
t_{PLZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND
t_{PD}	Open

ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
	74CBTLV16292PAG	PAG56	TSSOP	I
	74CBTLV16292PAG8	PAG56	TSSOP	I

Datasheet Document History

12/04/2014 Pg. 5 Updated the ordering information by removing the "IDT" notation and non RoHS part and by adding Tape and Reel information.

06/01/2019 Pg. 2,5 Added table under pin configuration diagram with detailed package information and orderable part information table. Updated the ordering information diagram in clearer detail.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.