PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES SEPEMBER 7, 2016 DATA SHEET # **General Description** The IDT5T9302I 2.5V differential clock buffer is a user-selectable differential input to two LVDS outputs. The fanout from a differential input to two LVDS outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The IDT5T9302I can act as a translator from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input can also be used to translate to LVDS outputs. The redundant input capability allows for an asynchronous change-over from a primary clock source to a secondary clock source. Selectable reference inputs are controlled by SEL. The IDT5T9302I outputs can be asynchronously enabled/ disabled. When disabled, the outputs will drive to the value selected by the GL pin. Multiple power and grounds reduce noise. # **Applications** Clock distribution #### **Features** - Guaranteed low skew: 50ps (maximum) - Very low duty cycle distortion: 125ps (maximum) - High speed propagation delay: 1.5ns (maximum) - Up to 450MHz operation - Selectable inputs - Hot insertable and over-voltage tolerant inputs - 3.3V/2.5V LVTTL, HSTL eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML or LVDS input interface - Selectable differential inputs to two LVDS outputs - Power-down mode - 2.5V V_{DD} - -40°C to 85°C ambient operating temperature - Available in Lead-free (RoHS 6) package - Not Recommended For New Designs - For functional replacement part use 8SLVP1102 # **Pin Assignment** #### IDT5T9302I 20-Lead TSSOP, E-Pad 4.4mm x 6.5mm x 0.925mm package body G Package **Top View** # Block Diagram # **Table 1. Pin Descriptions** | Name | | Туре | Description | |-----------------|--------|------------------------------|--| | A[1:2] | Input | Adjustable (1, 4) | Clock input. A[1:2] is the "true" side of the differential clock input. | | nA[1:2] | Input | Adjustable ^(1, 4) | Complementary clock inputs. nA[1:2] is the complementary side of A[1:2]. For LVTTL single-ended operation, nA[1:2]should be set to the desired toggle voltage for A[1:2]: 3.3V LVTTL VREF = 1650mV 2.5V LVTTL VREF = 1250mV | | nG | Input | LVTTL | Gate control for differential outputs Q1, nQ1 and Q2, nQ2. When nG is LOW, the differential outputs are active. When nG is HIGH, the differential outputs are asynchronously driven to the level designated by GL ⁽²⁾ . See Table 3A. | | GL | Input | LVTTL | Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and "complementary" outputs disable HIGH. See Table 3A. | | Q[1:2] | Output | LVDS | Clock outputs. | | nQ[1:2] | Output | LVDS | Complementary clock outputs. | | SEL | Input | LVTTL | Reference clock select. When LOW, selects A2 and nA2. When HIGH, selects A1 and nA1. See Table 3B. | | nPD | Input | LVTTL | Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both "true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation. ⁽³⁾ | | V _{DD} | | Power | Power supply for the device core and inputs. | | GND | | Power | Power supply return for all power. | | nc | Unused | | No connect; recommended to connect to GND. | #### NOTES: 1. Inputs are capable of translating the following interface standards: Single-ended 3.3V and 2.5V LVTTL levels Differential HSTL and eHSTL levels Differential LVEPECL (2.5V) and LVPECL (3.3V) levels Differential LVDS levels Differential CML levels - 2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry. - 3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting nPD. - 4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal. # **Table 2. Pin Characteristics** (TA = +25°C, F = 1.0MHz) | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 3 | | pF | NOTE: This parameter is measured at characterization but not tested. # **Function Tables** #### **Table 3A. Gate Control Output Table** | Control Output | | Outputs | | | |----------------|----|----------|----------|--| | GL | nG | Q[1:2] | nQ[1:2] | | | 0 | 0 | Toggling | Toggling | | | 0 | 1 | LOW | HIGH | | | 1 | 0 | Toggling | Toggling | | | 1 | 1 | HIGH | LOW | | #### **Table 3B. Input Selection Table** | Selection SEL pin | Inputs | |-------------------|---------| | 0 | A2, nA2 | | 1 | A1, nA1 | # **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|-------------------------------| | Power Supply Voltage, V _{DD} | -0.5V to +3.6V | | Input Voltage, V _I | -0.5V to +3.6V | | Output Voltage, V _O
Not to exceed 3.6V | -0.5 to V _{DD} +0.5V | | Storage Temperature, T _{STG} | -65°C to 150°C | | Junction Temperature, T _J | 150°C | # **Recommended Operating Range** | Symbol | Description | Minimum | Typical | Maximum | Units | |----------|-------------------------------|---------|---------|---------|-------| | Та | Ambient Operating Temperature | -40 | +25 | +85 | °C | | V_{DD} | Internal Power Supply Voltage | 2.3 | 2.5 | 2.7 | V | #### **DC Electrical Characteristics** Table 4A. LVDS Power Supply DC Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |------------------|--|---|---------|------------------------|---------|-------| | I _{DDQ} | Quiescent V _{DD} Power Supply Current | V _{DD} = Max.,
All Input Clocks = LOW ⁽²⁾ ;
Outputs enabled | | | 240 | mA | | I _{TOT} | Total Power V _{DD} Supply Current | V _{DD} = 2.7V;
F _{REFERENCE} Clock = 450MHz | | | 250 | mA | | I _{nPD} | Total Power Down Supply Current | nPD = LOW | | | 5 | mA | NOTE 1: These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions. NOTE 2: The true input is held LOW and the complementary input is held HIGH. Table 4B. LVCMOS/LVTTL DC Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |-----------------|-------------------------------------|---------------------------------|---------|------------------------|---------|-------| | I _{IH} | Input High Current | $V_{DD} = 2.7V$ | | | ±5 | μA | | I _{IL} | Input Low Current | $V_{DD} = 2.7V$ | | | ±5 | μA | | V _{IK} | Clamp Diode Voltage | $V_{DD} = 2.3V, I_{IN} = -18mA$ | | -0.7 | -1.2 | V | | V _{IN} | DC Input Voltage | | -0.3 | | 3.6 | V | | V _{IH} | DC Input High Voltage | | 1.7 | | | V | | V_{IL} | DC Input Low Voltage | | | | 0.7 | V | | V_{THI} | DC Input Threshold Crossing Voltage | | | V _{DD} /2 | | V | | V | Single-Ended Reference Voltage (3) | 3.3V LVTTL | | 1.65 | | V | | V_{REF} | Single-Ended Reference Voltage | 2.5V LVTTL | | 1.25 | | V | NOTE 1: See Recommended Operating Range table. NOTE 2: Typical values are at $V_{DD} = 2.5V$, +25°C ambient. NOTE 3: For A[1:2] single-ended operation, nA[1:2] is tied to a DC reference voltage. Table 4C. Differential DC Characteristics $^{(1)}$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |-----------------|--|---------------------------------|---------|------------------------|----------|-------| | I _{IH} | Input High Current | V _{DD} = 2.7V | | | ±5 | μΑ | | I _{IL} | Input Low Current | V _{DD} = 2.7V | | | ±5 | μΑ | | V_{IK} | Clamp Diode Voltage | $V_{DD} = 2.3V, I_{IN} = -18mA$ | | -0.7 | -1.2 | V | | V _{IN} | DC Input Voltage | | -0.3 | | 3.6 | V | | V_{DIF} | DC Differential Voltage ⁽³⁾ | | 0.1 | | | V | | V _{CM} | DC Common Mode Input Voltage | | 0.05 | | V_{DD} | V | NOTE 1: See Recommended Operating Range table. NOTE 2: Typical values are at $V_{DD} = 2.5V$, +25°C ambient. NOTE 3: VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state. NOTE 4: VCM specifies the maximum allowable range of (VTR + VCP) /2. Table 4D. LVDS DC Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |--------------------|--|------------------------------|---------|------------------------|---------|-------| | V _{OT(+)} | Differential Output Voltage for the True Binary State | | 247 | | 454 | mV | | V _{OT(-)} | Differential Output Voltage for the False Binary State | | 247 | | 454 | mV | | ΔV _{OT} | Change in V _{OT} Between Complementary
Output States | | | | 50 | mV | | V _{OS} | Output Common Mode Voltage
(Offset Voltage) | | 1.125 | 1.2 | 1.375 | V | | ΔV _{OS} | Change in V _{OS} Between Complementary
Output States | | | | 50 | mV | | Ios | Outputs Short Circuit Current | $V_{OUT+ and} V_{OUT-} = 0V$ | | 12 | 24 | mA | | I _{OSD} | Differential Outputs Short Circuit Current | $V_{OUT+} = V_{OUT-}$ | | 6 | 12 | mA | NOTE 1: See Recommended Operating Range table. NOTE 2: Typical values are at $V_{DD} = 2.5V$, +25°C ambient. # **AC Electrical Characteristics** #### Table 5A. HSTL Differential Input AC Characteristics, $T_A = -40$ °C to 85°C | Symbol | Parameter | Value | Units | |---------------------------------|---|----------------|-------| | V _{DIF} | Input Signal Swing ⁽¹⁾ | 1 | V | | V _X | Differential Input Signal Crossing Point ⁽²⁾ | 750 | mV | | D _H | Duty Cycle | 50 | % | | V_{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1: The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2: A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3: In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4: The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5B. eHSTL AC Differential Input Characteristics, $T_A = -40$ °C to 85°C | Symbol | Parameter | Value | Units | |---------------------------------|---|----------------|-------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | 1 | V | | V _X | Differential Input Signal Crossing Point ⁽²⁾ | 900 | mV | | D _H | Duty Cycle | 50 | % | | V_{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1: The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2: A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3: In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4: The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, T_A = -40°C to 85°C | Symbol | Parameter | Maximum | Units | | |---------------------------------|---|---------|----------------|------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | | 732 | mV | | V _X | Differential Input Cross Point Voltage ⁽²⁾ | LVEPECL | 1082 | mV | | | | LVPECL | 1880 | mV | | D _H | Duty Cycle | | 50 | % | | V_{THI} | Input Timing Measurement Reference Level ⁽³⁾ | | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | | 2 | V/ns | NOTE 1: The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2: A 1082mV LVEPECL (2.5V) and 1880 LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3: In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4: The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5D. LVDS Differential Input AC Characteristics, $T_A = -40$ °C to 85°C | Symbol | Parameter | Maximum | Units | |------------------|---|----------------|-------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | 400 | mV | | V _X | Differential Input Cross Point Voltage ⁽²⁾ | 1.2 | V | | D _H | Duty Cycle | 50 | % | | V _{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t_R / t_F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1: The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2: A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3: In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4: The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5E. AC Differential Input Characteristics⁽¹⁾, T_A = -40°C to 85°C | Symbol | Parameter | Minimum | Typical | Maximum | Units | |-----------------|--|---------|---------|-----------------|-------| | V_{DIF} | AC Differential Voltage ⁽²⁾ | 0.1 | | 3.6 | V | | V _X | Differential Input Cross Point Voltage | 0.05 | | V_{DD} | V | | V _{CM} | Common Mode Input Voltage Range ⁽³⁾ | 0.05 | | V _{DD} | V | | V _{IN} | Input Voltage | -0.3 | | 3.6 | V/ns | NOTE 1: The output will not change state until the inputs have crossed and the minimum differential voltage range defined by V_{DIF} has been met or exceeded. NOTE 2: V_{DIF} specifies the minimum input voltage ($V_{TR} - V_{CP}$) required for switching where V_{TR} is the "true" input level and V_{CP} is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state. NOTE 3: V_{CM} specifies the maximum allowable range of $(V_{TR} + V_{CP})/2$. **Table 5E. AC Characteristics** $^{(1,5)}$, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|---|---------------------------|---------|---------|---------|-------| | tsk(o) | Same Device Output Pin-to-Pin Skew (2) | | | | 50 | ps | | tsk(p) | Pulse Skew ⁽³⁾ | | | | 125 | ps | | tsk(pp) | Part-to-Part Skew ⁽⁴⁾ | | | | 350 | ps | | tp _{LH} | Propagation Delay, Low-to-High | A[1:2]/nA[1:2] Crosspoint | | 1.35 | 1.5 | ns | | tp _{HL} | Propagation Delay, High-to-Low | to Qx/nQx Crosspoint | | 1.35 | 1.5 | ns | | fo | Output Frequency ⁽⁶⁾ | | | | 450 | MHz | | t _{PGE} | Output Gate Enable Crossing
VTHI-to-Qx/Qx Crosspoint | | | | 3.5 | ns | | t _{PGD} | Output Gate Enable Crossing
VTHI-to-Qx/Qx Crosspoint Driven to
Designated Level | | | | 3.5 | ns | | t _{PWRDN} | nPD Crossing V_{THI} -to- $Qx = V_{DD}$, $Qx = V_{DD}$ | | | | 100 | μS | | t _{PWRUP} | Output Gate Disable Crossing V _{THI} to Qx/nQx Driven to Designated Level | | | | 100 | μS | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: AC propagation measurements should not be taken within the first 100 cycles of startup. NOTE 2: Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device. NOTE 3: Skew measured is the difference between propagation delay times tp_{HL} and tp_{LH} of any differential output pair under identical input and output interfaces, transitions and load conditions on any one device. NOTE 4: Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions at identical VDD levels and temperature. NOTE 5: All parameters are tested with a 50% input duty cycle. NOTE 6: Guaranteed by design but not production tested. # **Differential AC Timing Waveforms** Output Propagation and Skew Waveforms NOTE 1: Pulse skew is calculated using the following expression: $tsk(p) = |tp_{HL} - tp_{LH}|$ Note that the tp_{HL} and tp_{LH} shown above are not valid measurements for this calculation because they are not taken from the same pulse. NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup. #### Differential Gate Disabled/Enable Showing Runt Pulse Generation NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time the nG signal to avoid this problem. NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting nPD. NOTE 2: The *Power Down Timing* diagram assumes that GL is HIGH. NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to V_{DD} . In the *Power Down Timing* diagram this is shown when Qx/nQx goes to $V_{DIF} = 0$. # **Parameter Measurement Information** **LVDS Output Load AC Test Circuit** Offset Voltage Setup **Differential Output Voltage Setup** # **Applications Information** #### **EPAD Thermal Release Path** In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 1*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology. Figure 1. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale) # **Package Drawing and Dimensions** Table 7. Package Dimensions for 20 Lead TSSOP, E-Pad | All Dimensions in Millimeters | | | | | | |-------------------------------|------------|---------|---------|--|--| | Symbol | Minimum | Nominal | Maximum | | | | N | | 20 | | | | | Α | | | 1.10 | | | | A 1 | 0.5 | | 0.15 | | | | A2 | 0.85 | 0.90 | 0.95 | | | | aaa | | 0.076 | | | | | b | 0.19 | | 0.30 | | | | b1 | 0.19 | 0.22 | 0.25 | | | | bbb | 0.10 | | | | | | С | 0.09 | | 0.20 | | | | c1 | 0.09 | 0.127 | 0.16 | | | | D | 6.40 | 6.50 | 6.60 | | | | E1 | 4.30 | 4.40 | 4.50 | | | | е | 0.65 Basic | | | | | | E | 6.40 Basic | | | | | | L | 0.50 | 0.60 | 0.70 | | | | Р | | | 4.2 | | | | P1 | | | 3.0 | | | | CC | 0° | | 8° | | | NOTE: Reference Document: IDT PSC-4284 EXPOSED PAD VIEW # **Ordering Information** **Table 8. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|---------------|----------------------------------|--------------------|---------------| | 5T9302EJGI | IDT5T9302EJGI | "Lead-Free" 20 Lead TSSOP, E-Pad | Tube | -40°C to 85°C | | 5T9302EJGI8 | IDT5T9302EJGI | "Lead-Free" 20 Lead TSSOP, E-Pad | Tape & Reel | -40°C to 85°C | # **Revision History Sheet** | Rev | Table | Page | Description of Change | Date | |-----|-------|------|--|----------| | Α | Т8 | 13 | Ordering information - Removed leaded devices | 12/16/14 | | Α | | 1 | Product Discontinuation Notice - Last time buy expires September 7, 2016. PDN N-16-02. | 3/10/16 | #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Disclaimer Rev.1.01) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.