Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

3819 Group

SINGLE-CHIP 8-BIT MICROCOMPUTER

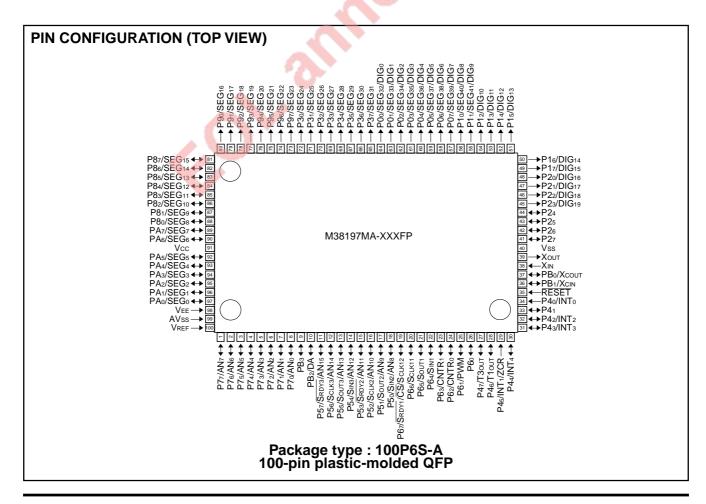
DESCRIPTION

The 3819 group is a 8-bit microcomputer based on the 740 family core technology.

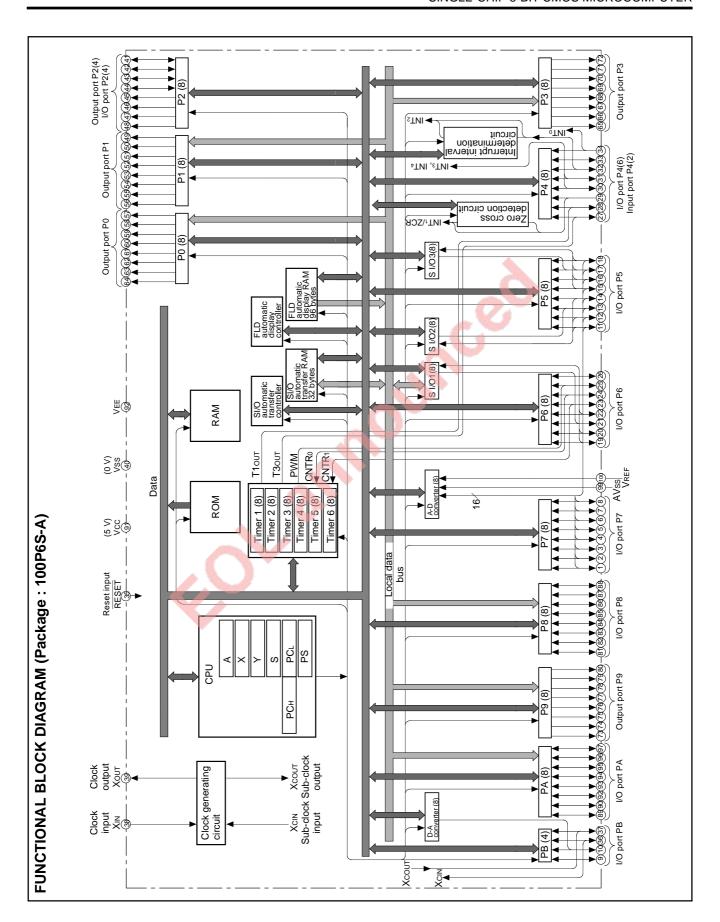
The 3819 group has a flourescent display automatic display circuit and an 16-channel 8-bit A-D converter as additional functions.

The various microcomputers in the 3819 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.

For details on availability of microcomputers in the 3819 group, refer to the section on group expansion.


FEATURES

FEATURES
●Basic machine-language instructions
\bullet The minimum instruction execution time 0.48 μs
(at 8.4 MHz oscillation frequency)
●Memory size
ROM 4K to 60 K bytes
RAM 192 to 2048 bytes
● Programmable input/output ports
● High-breakdown-voltage output ports
●Interrupts
●Timers
● Serial I/O (Serial I/O1 has an automatic transfer function)
8-bit X 3(clock-synchronized)
●PWM output circuit 8-bit X 1(also functions as timer 6)
● A-D converter 8-bit X 16 channels

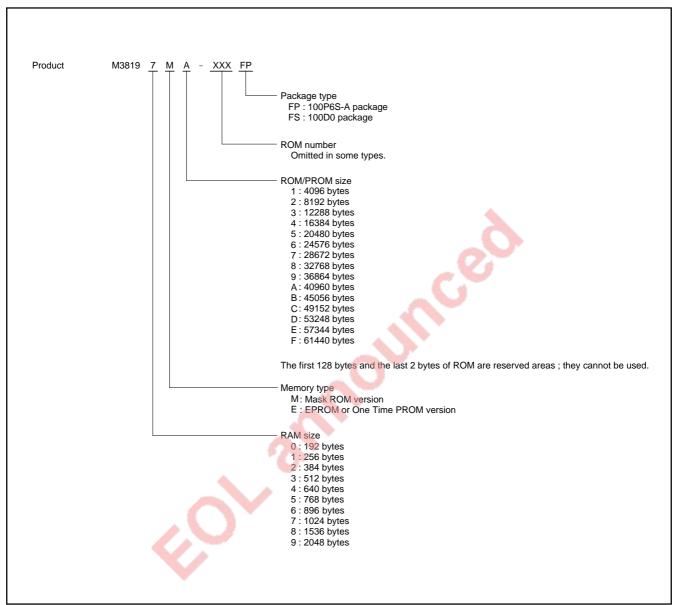

● D-A converter	8-bit X 1 channels
●Zero cross detection input	1 channel
●Fluorescent display function	
Segments	16 to 42
Digits	6 to 16
●2 Clock generating circuit	
Clock (XIN-XOUT)	Internal feedback resistor
Sub-clock (XCIN-XCOUT) Withou	t internal feedback resistor
(connect to external ceramic resona	ator or quartz-crystal oscil-
lator)	
●Power source voltage	
In high-speed mode	4.0 to 5.5 V
(at 8.4 MHz oscillation frequency ar	nd high-speed selected)
In middle-speed mode	2.8 to 5.5 V
(at 8.4 MHz oscillation frequency)	
In low-speed mode	2.8 to 5.5 V
(at 32 kHz oscillation frequency)	
●Power dissipation	
In high-speed mode	35 mW
(at 8.4 MHz oscillation frequency)	
In low-speed mode	60 μW
(at 3 V power source voltage and 32	kHz oscillation frequency)
Operating temperature range	10 to 85°C
A B *	
ADDLICATION	

APPLICATION

Musical Instruments, household appliance, etc.

PIN DESCRIPTION

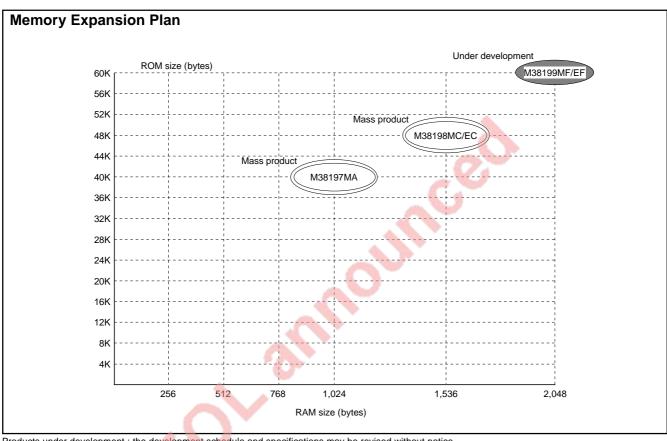
Pin	Name	Function			
Vcc, Vss	Power source	•Apply voltage of 4.0 to 5.5 V to Vcc, and 0 V to	Function except a port function		
VEE VEE	Pull-down Power source	•Applies voltage supplied to pull-down resistors			
VREF	Analog reference voltage	•Reference voltage input pin for A-D converter a	and D-A converter		
AVss	Analog power source	•GND input pin for A-D converter and D-A conve •Connect AVss to Vss.	erter		
RESET	Reset input	•Reset input pin for active "L"			
XIN	Clock input	 Input and output pins for the main clock genera Feedback resistor is built in between XIN pin ar Connect a ceramic resonator or a quartz-crysta set oscillation frequency. 	ting circuit ld Xout pin. al oscillator between the XIN pin and Xout pin to		
Хоит	Clock output		s source to the XIN pin and leave the XOUT pin ystem clock.		
P00/SEG32/ DIG0-P07/ SEG39/DIG7	Output port P0	*8-bit output port *This port builds in pull-down resistor between port P0 and the VEE pin. *At reset this port is set to VEE level. *The high-breakdown-voltage P-channel open-drain	FLD automatic display pins		
P10/SEG40/ DIG8-P17/ DIG15	Output port P1	•8-bit output port with the same function as port P0	FLD automatic display pins		
P20/DIG16- P23/DIG19	Output port P2	•4-bit output port with the same function as port P0	FLD automatic display pins		
P24-P27	I/O port P2	•4-bit I/O port •I/O direction register allows each pin to be individually programmed as either input or output. •At reset this port is set to input mode. •TTL input level •CMOS 3-state output			
P30/SEG24- P37/SEG31	Output port P3	•8-bit output port with the same function as port P0	FLD automatic display pins		
P40/INT0, P45/INT1/ ZCR	Input port P4	•2-bit input port •CMOS compatible input level	External interrupt input pins A zero cross detection circuit input pin (P45)		
P42/INT2- P44/INT4		•6-bit CMOS I/O port with the same function as ports P24–P27			
P41	I/O port P4	S ports P24–P27 •CMOS compatible input level			
P46/T10UT, P47/T30UT		•CMOS 3-state output	Timer output pins		



PIN DESCRIPTION (Continued)

Pin	Name	Function	Function except a port function
P50/SIN2/AN8, P51/SOUT2/AN9, P52/SCLK2/AN10, P53/SRDY2/AN11	NO next DE	•8-bit CMOS I/O port with the same function •8-bit CMOS I/O port with the same function A-D conversion input p	
P54/SIN3/AN12, P55/SOUT3/AN13, P56/SCLK3/AN14, P57/SRDY3/AN15	I/O port P5	CMOS compatible input level CMOS 3-state output	Serial I/O3 function pins A-D conversion input pins
P60			
P61/PWM		O his OMOO NO most with the second for all an	PWM output pin (Timer output pin)
P62/CNTR0, P63/CNTR1	I/O port P6	•8-bit CMOS I/O port with the same function as ports P24–P47	Timer input pins
P64/SIN1, P65/SOUT1, P66/SCLK11, P67/SRDY1/CS/ SCLK12	·	CMOS compatible input level CMOS 3-state output	Serial I/O1 function pins
P70/AN0— P77/AN7	I/O port P7	•8-bit CMOS I/O port with the same function as ports P24–P27 •CMOS compatible input level •CMOS 3-state output	A-D conversion input pins
P80/SEG8- P87/SEG15	I/O port P8	*8-bit I/O port with the same function as ports P24–P27 *CMOS compatible input level *The high-breakdown-voltage P-channel open-drain	
P90/SEG16- P97/SEG23	Output port P9	•8-bit output port with the same function as port P0	FLD automatic display pins
PA0/SEG0— PA7/SEG7	I/O port PA	*8-bit I/O port with the same function as ports P24–P27 *CMOS compatible input level *The high-breakdown voltage P-channel opendrain	
PB0/XCOUT, PB1/XCIN	I/O port PB	•4-bit CMOS I/O port with the same function as ports P24–P27	I/O pins for sub-clock generating circuit (connect a ceramic resonator or a quarts-crystal oscillator)
PB2/DA		CMOS compatible input level CMOS 3-state output	D-A conversion output pin
PB ₃		,	

PART NUMBERING


GROUP EXPANSION

Mitsubishi plans to expand the 3819 group as follows:

(1) Support for mask ROM, One Time PROM, and EPROM versions

ROM/PROM capacity	. 40 K to 60 K bytes
RAM capacity	1024 to 2048 bytes

(2) Packages 100P6S-A 0.65 mm-pitch plastic molded QFP 100D0 Ceramic LCC(built-in EPROM version)

Products under development : the development schedule and specifications may be revised without notice.

Currently supported products are listed below.

As of May 1996

Product	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38197MA-XXXFP			100P6S-A	Mask ROM version
M38197MA-XXXKP	40960	1024		Mask ROM version
M38198MC-XXXKP	(40830)	1024	100P6P-E	Mask ROM version
M38199MF-XXXKP			Mask ROM version	
M38198MC-XXXFP				Mask ROM version
M38198EC-XXXFP	49152	1536	100P6S-A	One Time PROM version
M38198ECFP	(49022)	1330		One Time PROM version (blank)
M38198ECFS			100D0	EPROM version
M38199MF-XXXFP				Mask ROM version
M38199EF-XXXFP	61440	2048	100P6S-A	One Time PROM version
M38199EFFP	(61310)	2046		One Time PROM version (blank)
M38199EFFS			100D0	EPROM version

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The 3819 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set.

Machine-resident 740 family instructions are as follows:

The FST, SLW instruction cannot be used.

The MUL, DIV, WIT and STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated at address 003B16. The CPU mode register contains the stack page selection bit and the internal system clock selection bit.

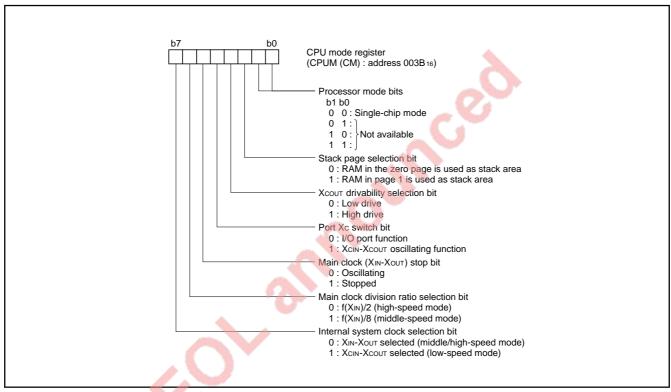


Fig. BA-1 Structure of CPU mode register

Memory Special function register (SFR) area

The special function register (SFR) area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the reset is user area for storing programs.

Interrupt vector area

The interrupt vector area contains reset and interrupt vectors.

Zero page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

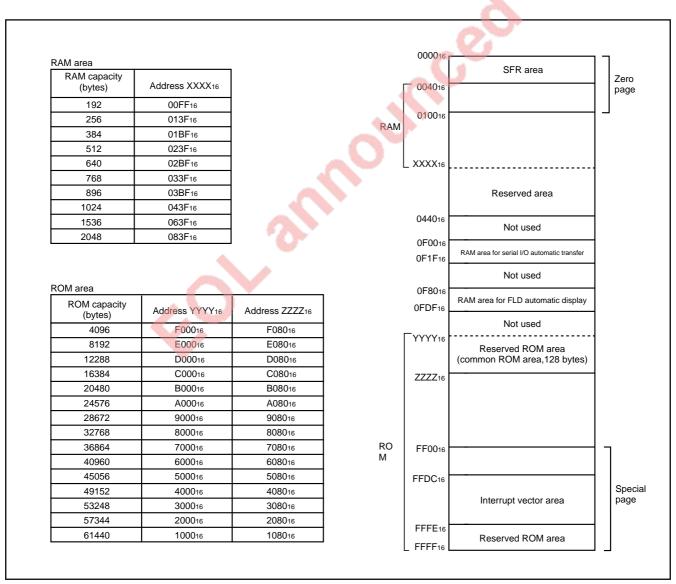


Fig. CA-1 Memory map

000016 000116	Port P0 (P0)	0020 ₁₆ 0021 ₁₆	Timer 1 (T1) Timer 2 (T2)
000716	Port P1 (P1)	002116	Timer 3 (T3)
000316		002316	Timer 4 (T4)
000416	Port P2 (P2)	002416	Timer 5 (T5)
000516	Port P2 direction register (P2D)	002516	Timer 6 (T6)
000616	Port P3 (P3)	002616	Serial I/O3 register (SIO3)
000716		002716	Timer 6 PWM register (T6PWM)
000816	Port P4 (P4)	002816	Timer 12 mode register (T12M)
000916	Port P4 direction register (P4D)	002916	Timer 34 mode register (T34M)
000A16	Port P5 (P5)	002A ₁₆	Timer 56 mode register (T56M)
000B ₁₆	Port P5 direction register (P5D)	002B ₁₆	D-A conversion register (DA)
000C ₁₆	Port P6 (P6)	002C ₁₆	AD-DA control register (ADCON)
000D16	Port P6 direction register (P6D)	002D ₁₆	A-D conversion register (AD)
000E16	Port P7 (P7)	002E ₁₆	
000F16	Port P7 direction register (P7D)	002F ₁₆	
001016	Port P8 (P8)	003016	Interrupt interval determination register (IID)
001116	Port P8 direction register (P8D)	003116	Interrupt interval determination control register (IIDCON)
001216	Port P9 (P9)	003216	Port P0 segment/digit switch register (P0SDR)
001316		003316	Port P2 digit/port switch register (P2DPR)
001416	Port PA (PA)	003416	Port P8 segment/port switch register (P8SPR)
001516	Port PA direction register (PAD)	003516	Port PA segment/port switch register (PASPR)
001616	Port PB (PB)	003616	FLDC mode register 1 (FLDM1)
001716	Port PB direction register (PBD)	003716	FLDC mode register 2 (FLDM2)
001816	Serial I/O automatic transfer data pointer (SIODP)	003816	FLD data pointer (FLDDP)
001916	Serial I/O1 control register (SIO1CON)	003916	Zero cross detection control register (ZCRCON)
001A ₁₆	Serial I/O automatic transfer control register (SIOAC)	003A ₁₆	1 0 0 7
001B ₁₆	Serial I/O1 register (SIO1)	003B ₁₆	
001C ₁₆	Serial I/O automatic transfer interval register (SIOAI)	003C ₁₆	1 1 0 1
001 D ₁₆	Serial I/O2 control register (SIO2CON)	003D ₁₆	1 1 3 1 7
001E ₁₆	Serial I/O3 control register (SIO3CON)	003E ₁₆	
001F16	Serial I/O2 register (SIO2)	003F16	Interrupt control register 2 (ICON2)

Fig. CA-2 Memory map of special function register (SFR)

I/O PORTS Direction Registers

The 3819 group has 54 programmable I/O pins arranged in 8 I/O ports (ports P24–P27, P41–P44, P46, P47, P5–P8, PA, and PB). The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin which is set for output, the value of the port latch is read, not the value of the pin itself. A pin which is set for input the value of the pin itself is read because the pin is in floating state. If a pin set for input is written to, only the port latch is written to and the pin remains floating.

High-Breakdown-Voltage Output Ports

The 3819 group microprocessors have 7 ports with high-break-down-voltage pins (ports P0, P1, P20–P23, P3, P8, P9, PA). The high-breakdown-voltage ports have P-channel open-drain output with Vcc -40 V of breakdown voltage.

Each pin in ports P0, P1, P20–P23, P3, and P9 has an internal pull-down resistor connected to VEE. Ports P8 and PA have no internal pull-down resistors, so that connect an external resistor to each port. At reset, the P-channel output transistor of each port latch is turned off, so it becomes VEE level ("L") by the pull-down resistor.

Writing "1" (weak drivability) to bit 7 of the FLDC mode register 1 (address 003616) shows the rising transition of the output transistors for reducing transient noise. At reset, bit 7 of the FLDC mode register 1 is set to "0" (strong drivability).

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
P00/SEG32/ DIG0- P07/SEG39/ DIG7	Port P0	Output	High-breakdown-voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register 1 FLDC mode register 2 Port P0 segment/digit switch register	(1)
P10/SEG40/ DIG8- P17/DIG15	Port P1	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register 1 FLDC mode register 2	(1) (2)
P20/DIG16- P23/DIG19	Port P2	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register 1 FLDC mode register 2 Port P2 digit/port switch register	(3)
P24-P27		Input/output, individual bits	TTL level input CMOS 3-state output			(4)
P30/SEG24- P37/SEG31	Port P3	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register 1 FLDC mode register 2	(5)
P40/INT0 P45/INT1/ ZCR		Input	CMOS compatible input level	External interrupt input Zero cross detec-	Interrupt edge selection register	(6)
P42/INT2- P44/INT4	42/INT2- Port P4	CMOS compatible input level	tion circuit input (P45)	Zero cross detection control register	(7)	
P41 P46/T10UT, P47/T30UT		individual bits	CMOS 3-state output	Timer output	Timer 12 mode register Timer 34 mode register	(8)

3819 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
P50/SIN2/ AN8						(9)
P51/SOUT2/ AN9, P52/SCLK2/ AN10				Serial I/O2 function I/O A-D conversion input	Serial I/O2 control register AD/DA control regis- ter	(10)
P53/SRDY2/ AN11			CMOS compatible input level			(11)
P54/SIN3/ AN12	Port P5		CMOS 3-state output			(9)
P55/SOUT3/ AN13, P56/SCLK3/ AN14				Serial I/O3 function I/O A-D conversion input	Serial I/O3 control register AD/DA control regis- ter	(10)
P57/SRDY3/ AN15		Input/output,		0		(11)
P60		individual bits		And the same		(4)
P61/PWM				PWM (timer) out- put	Timer 56 mode register	(8)
P62/CNTR0, P63/CNTR1	Port P6		CMOS compatible input level	Timer input	Interrupt edge selection register	(7)
P64/SIN1 P65/SOUT1,	Poli Po		CMOS 3-state output	Serial I/O1 func-	Serial I/O1 control register	(9) (10)
P66/SCLK11 P67/SRDY1/ CS/SCLK12		in		tion I/O	Serial I/O automatic transfer control register	(11)
P70/AN0- P77/AN7	Port P7		CMOS compatible input level CMOS 3-state output	A-D conversion input	AD/DA control register	(12)
P80/SEG8- P87/SEG15	Port P8	0	CMOS compatible input level High-breakdown-voltage P-channel open-drain output with pull-down resistor	FLD automatic	FLDC mode register Segment/port switch register	(13)
P90/SEG16- P97/SEG23	Port P9	Output	High-breakdown- voltage P-channel open-drain output with pull-down resistor	display function	FLDC mode register	(5)
PA0/SEG0- PA7/SEG7	Port PA	Input/output, individual bits	CMOS compatible input level High-breakdown- voltage P-channel open-drain output		FLDC mode register Segment/port switch register	(13)
PB ₀ /XCOUT, PB ₁ /XCIN		Innut/outs it	CMOS compatible	I/O for sub-clock generating circuit	CPU mode register	(14) (15)
PB2/DA	Port PB	Input/output, individual bits	input level CMOS 3-state output	D-A conversion output	AD/DA control register	(16)
PB ₃						(4)

Note: Make sure that the input level at each pin is either 0 V or Vcc during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow from Vcc to Vss through the input-stage gate.

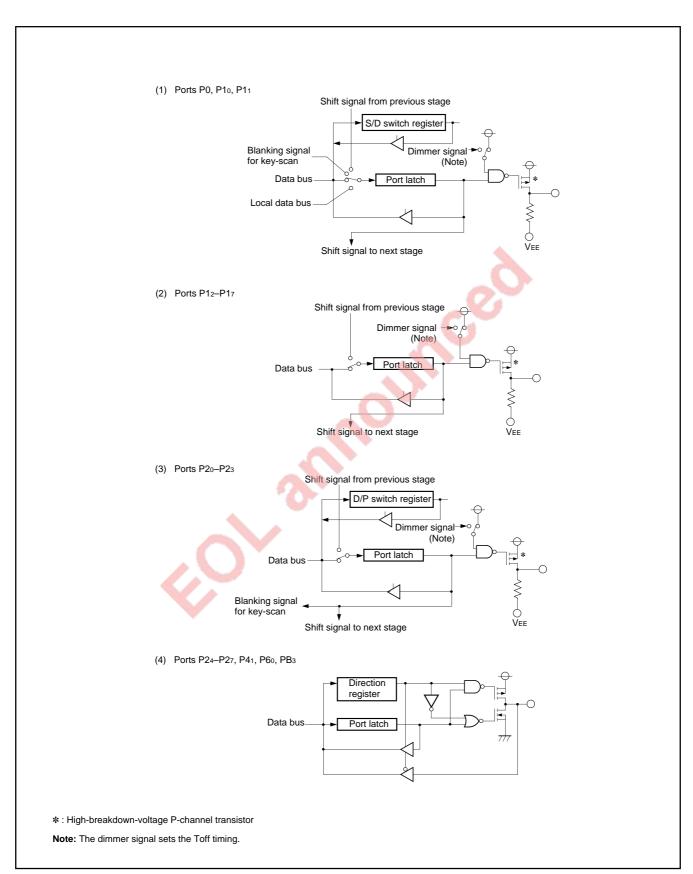


Fig. UA-2 Port block diagram (1)

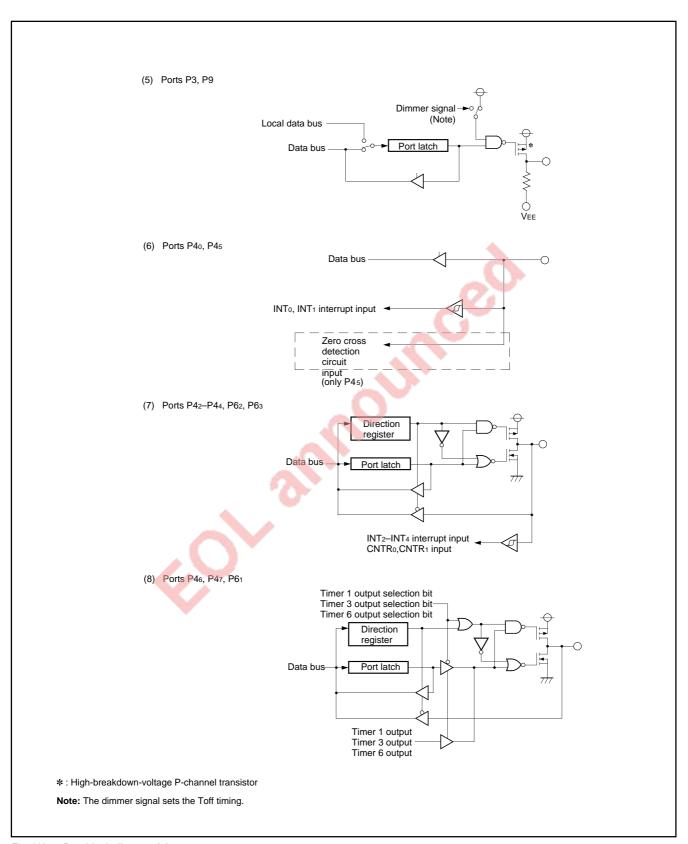


Fig. UA-3 Port block diagram (2)

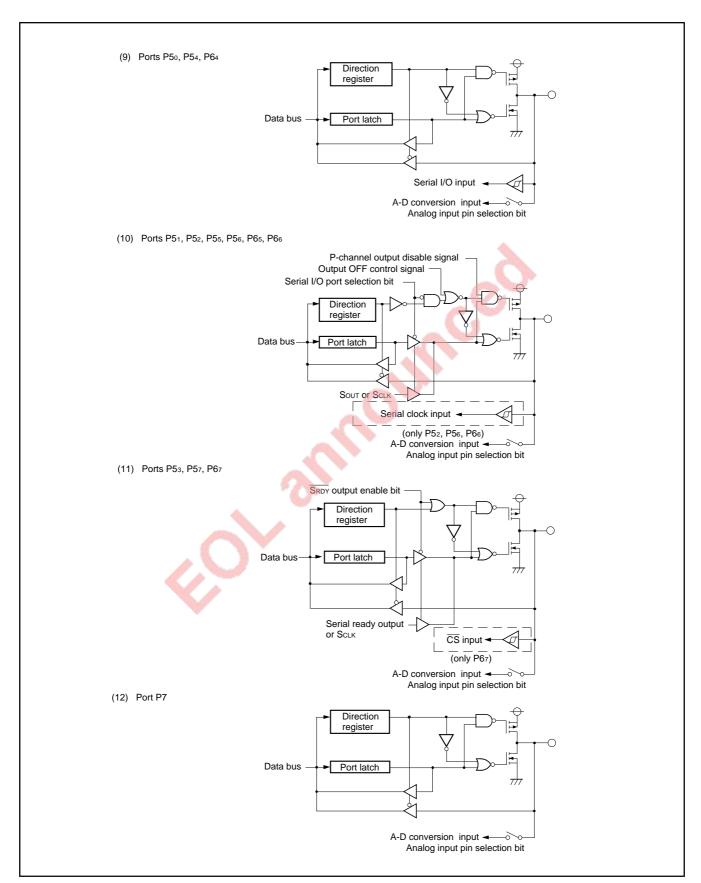


Fig. UA-4 Port block diagram (3)

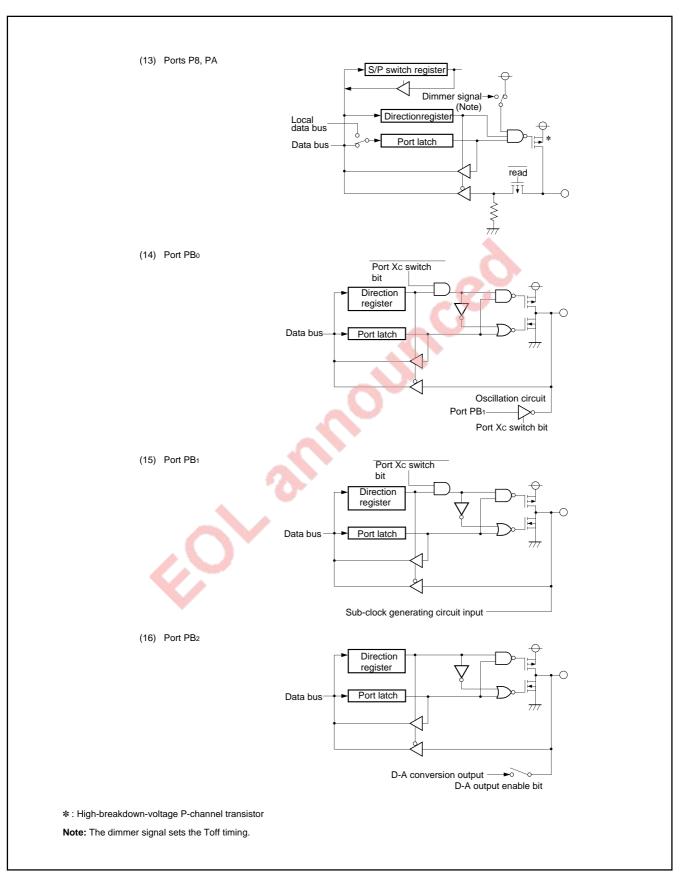


Fig. UA-5 Port block diagram (4)

INTERRUPTS

Interrupts occur by 20 sources: 5 external, 14 internal, and 1 soft-ware

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The BRK instruction cannot be disabled with any flag or bit.

The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt.

Interrupt Operation

When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

When the active edge of an external interrupt (INTo to INT4) is changed or when switching interrupt sources in the same vector address, the corresponding interrupt request bit may also be set. Therefore, please take following sequence;

- (1) Disable the external interrupt which is selected.
- (2) Change the active edge.
- (3) Clear the interrupt request bit which is selected to "0".
- (4) Enable the external interrupt which is selected.

Table 1. Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addre High	sses (Note 1)	Interrupt Request Generating Conditions	Remarks
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INTo	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
INT1/ZCR	3	FFF916	FFF816	At detection of either rising or falling edge of INT1/ZCR input	External interrupt (active edge selectable)
INT2	4	FFF716	FFF616	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)
Remote control/ counter overflow	4	FFF/16	FFF016	At 8-bit counter overflow	Valid when interrupt interval determination is operating
Serial I/O1	5	FFF516	FFF416	At completion of data transfer	Valid when serial I/O ordinary mode is selected
Serial I/O automatic transfer	3	FFF316	FFF416	At completion of the last data transfer	Valid when serial I/O automatic transfer mode is selected
Serial I/O2	6	FFF316	FFF216	At completion of data transfer	Valid when serial I/O2 is selected
Serial I/O3	7	FFF116	FFF016	At completion of data transfer	Valid when serial I/O3 is selected
Timer 1	8	FFEF16	FFEE16	At timer 1 underflow	STP release timer underflow
Timer 2	9	FFED16	FFEC16	At timer 2 underflow	
Timer 3	10	FFEB16	FFEA ₁₆	At timer 3 underflow	
Timer 4	11	FFE916	FFE816	At timer 4 underflow	
Timer 5	12	FFE716	FFE616	At timer 5 underflow	
Timer 6	13	FFE516	FFE416	At timer 6 underflow	
INT3	14	FFE316	FFE216	At detection of either rising or falling edge of INT3 input	External interrupt (active edge selectable)
INT4	15	FFE116	FFE016	At detection of either rising or falling edge of INT4 input	Valid when INT4 interrupt is selected External interrupt (active edge selectable)
A-D conversion				At completion of A-D conversion	Valid when A-D conversion interrupt is selected
FLD blanking	16	FFDF16	FFDE16	At falling edge of the last digit immediately before blanking period starts	Valid when FLD blanking interrupt is selected
FLD digit				At rising edge of each digit	Valid when FLD digit interrupt is selected
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software inter- rupt

Notes 1: Vector addresses contain interrupt jump destination addresses.

^{2:} Reset function in the same way as an interrupt with the highest priority.

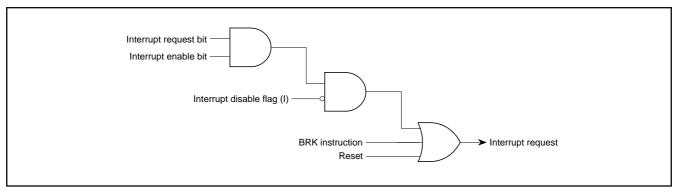


Fig. DD-1 Interrupt control

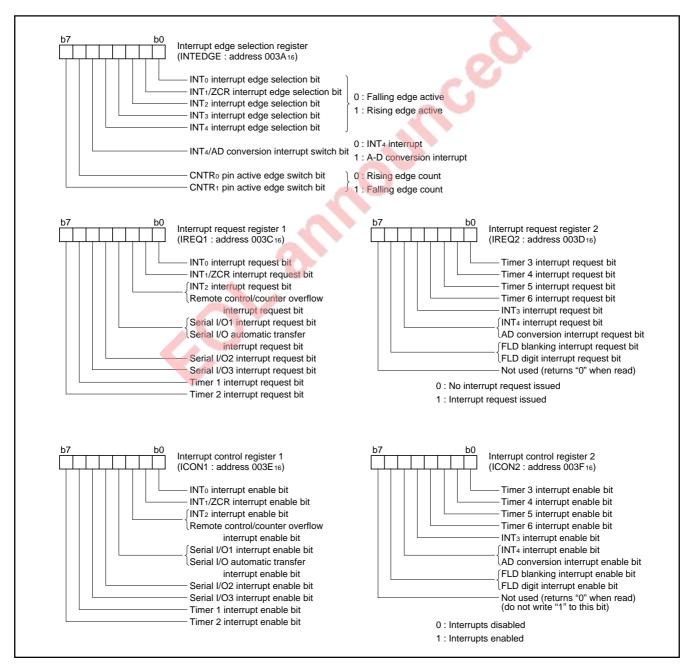


Fig. DD-2 Structure of interrupt-related registers

TIMERS

The 3819 group has 6 built-in timers: timer 1, timer 2, timer 3, timer 4, timer 5, and timer 6.

Each timer has the 8-bit timer latch. The timers count down.

Once a timer reaches 0016, at the next count pulse the contents of each timer latch is loaded into the corresponding timer, and sets the corresponding interrupt request bit to "1".

The count can be stopped by setting the stop bit of each timer to "1". The internal clock ϕ can be set to either the high-speed mode or low-speed mode with the CPU mode register. At the same time, timer internal count source is switched to either f(XIN) or f(XCIN).

Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register. A rectangular waveform of timer 1 underflow signal divided by 2 is output from the P46/T10UT pin. The waveform polarity changes each time timer 1 overflows. The active edge of the external clock CNTRo can be switched with the bit 6 of the interrupt edge selection register.

At reset or when executing the STP instruction, all bits of the timer 12 mode register are cleared to "0", timer 1 is set to "FF16", and timer 2 is set to "0116".

Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register. A rectangular waveform of timer 3 underflow signal divided by 2 is output from the P47/T3OUT pin. The waveform polarity changes each time timer 3 overflows.

The active edge of the external clock CNTR1 can be switched with the bit 7 of the interrupt edge selection register.

Timer 5 and Timer 6

The count sources of timer 5 and timer 6 can be selected by setting the timer 56 mode register.

A rectangular waveform of timer 6 underflow signal divided by 2 is output from the P61/PWM pin. The waveform polarity changes each time timer 6 overflows.

Timer 6 PWM Mode

Timer 6 can output a rectangular waveform with duty cycle n/(n+m) from the P61/PWM pin by setting the timer 56 mode register (refer to fig. FB-3). The n is the value set in timer 6 latch (address 002516) and m is the value in the timer 6 PWM register (address 002716). If n is "0", the PWM output is "L", if m is "0", the PWM output is "H"(n=0 is prior than m=0). In the PWM mode, interrupts occur at the rising edge of the PWM output.

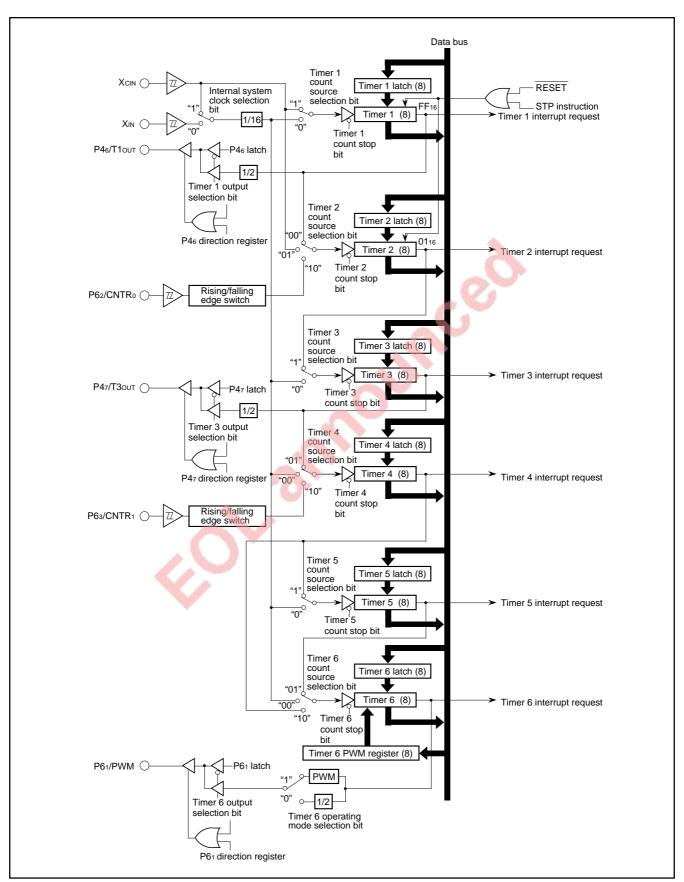


Fig. FB-1 Timer block diagram

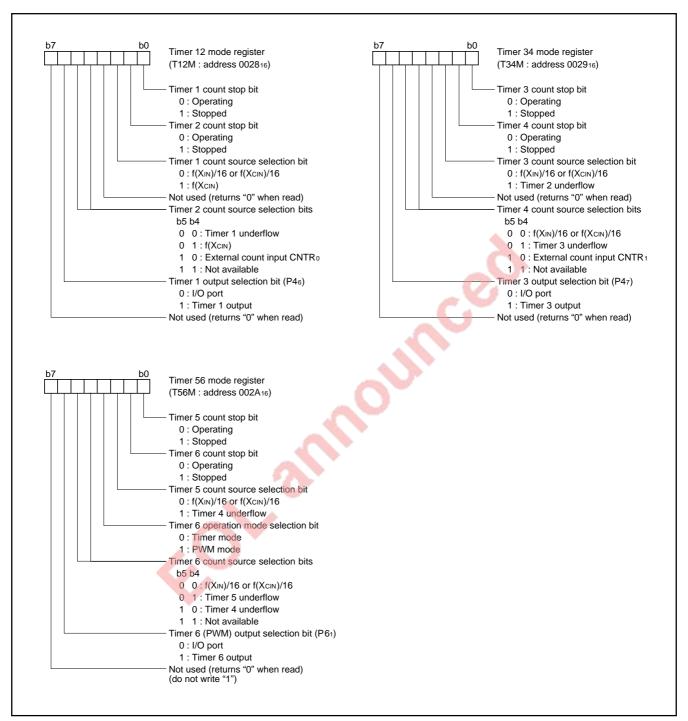


Fig. FB-2 Structure of timer-related registers

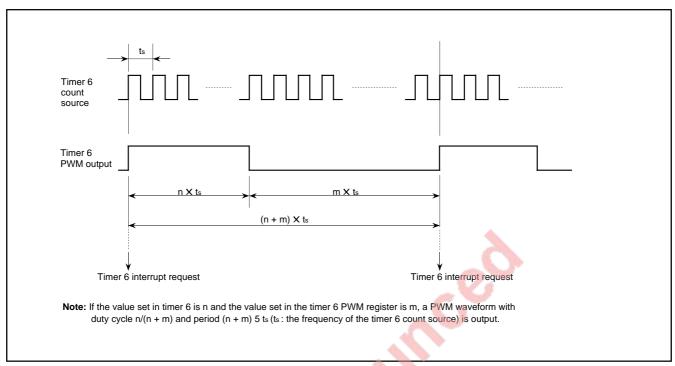


Fig. FB-3 Timing in timer 6 PWM mode

SERIAL I/O

The 3819 group has built-in 8-bit clock synchronized serial I/O \times 3 channels (serial I/O1, serial I/O2, and serial I/O3).

Serial I/O1 builds in the automatic transfer function. The function can be switched to the serial I/O ordinary mode with the serial I/O automatic transfer control register (address 001A₁₆).

Serial I/O2 and Serial I/O3 can be used only in the serial I/O ordinary mode.

The I/O pins of the serial I/O function are also used as I/O ports P5 and P64–P67, and their operation is selected with the serial I/O control registers (addresses 001916, 001D16, and 001E16).

Serial I/O Control Registers (SIO1CON, SIO2CON, SIO3CON) 001916, 001D16, 001E16

Each of the serial I/O control registers (addresses 001916, 001D16, and 001E16) consists of 8 selection bits which control the serial I/O function.

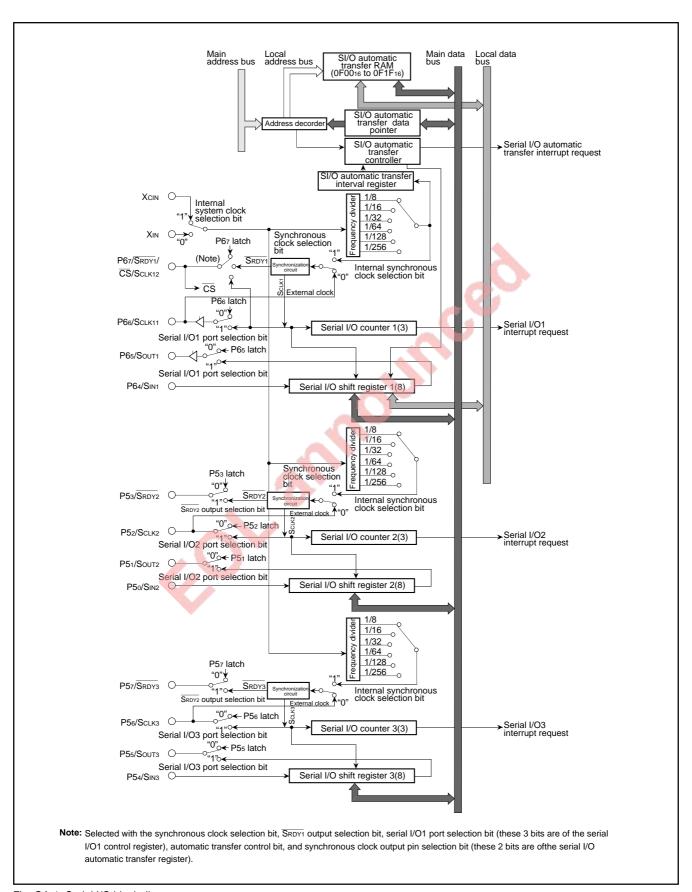


Fig. GA-1 Serial I/O block diagram

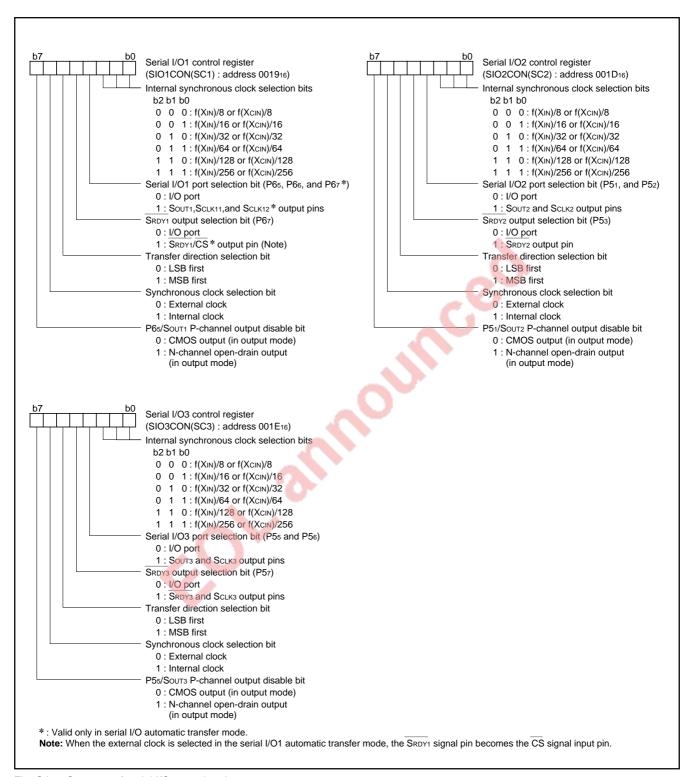


Fig. GA-2 Structure of serial I/O control registers

(1) Serial I/O Ordinary Mode

Either an internal clock or an external clock can be selected as the synchronous clock for serial I/O transfer. A dedicated divider is built in as the internal clock for selecting of 6 clocks. If internal clock is selected, transfer starts with a write signal to a serial I/O register (addresses 001B16, 001F16, or 002616). After 8 bits have been transferred, the SOUT pin goes to high impedance state.

If external clock is selected, control the clock externally because the contents of the serial I/O register continue to shift during inputting the transfer clock. In this case, note that the SOUT pin does not go to high impedance state at the completion of data transfer.

The interrupt request bit is set at the completion of the transfer of 8 bits, regardless of whether the internal or external clock is selected.

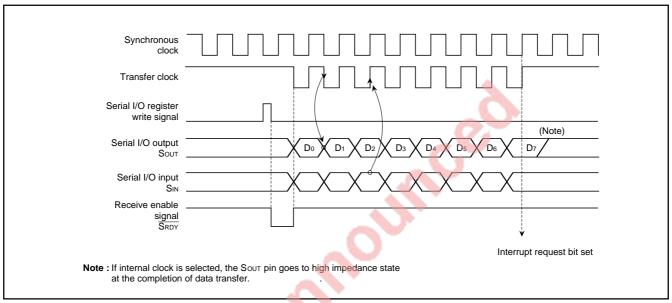


Fig. GA-3 Serial I/O timing in the serial I/O ordinary mode (for LSB first)

(2) Serial I/O Automatic Transfer Mode

The serial I/O1 has the automatic transfer function. For automatic transfer, switch to the automatic transfer mode by setting the serial I/O automatic transfer control register (address 001A16).

The following memory spaces and registers used to enable automatic transfer mode:

- 32-byte serial I/O automatic transfer RAM
- A serial I/O automatic transfer control register
- A serial I/O automatic transfer interval register
- A serial I/O automatic transfer data pointer

When using serial I/O automatic transfer, set the serial I/O1 control register (address 001916) in the same way as the serial I/O ordinary mode. However, note that when external clock is selected, port P67 becomes the $\overline{\text{CS}}$ input pin by setting the bit 4 (the $\overline{\text{SRDY1}}$ output selection bit) of the serial I/O1 control register to "1".

Serial I/O Automatic Transfer Control Register (SIOAC) 001A16

The serial I/O automatic transfer control register (address 001A₁₆) consists of 4 bits which control automatic transfer.

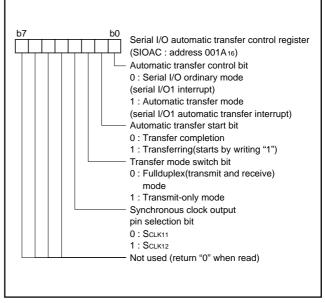


Fig. GA-4 Structure of serial I/O automatic transfer control register

Serial I/O Automatic Transfer Data Pointer (SIODP) 001816

The serial I/O automatic transfer data pointer (address 001816) consists of 5 bits which indicate addresses in serial I/O automatic transfer RAM (the value which adds 0F0016 to the serial I/O automatic transfer data pointer is actual address in memory).

Set the value (the number of transfer data-1) to the serial I/O automatic transfer data pointer for specifying the storage address of first data.

Serial I/O Automatic Transfer RAM

The serial I/O automatic transfer RAM is the 32 bytes from address 0F0016 to address 0F1F16.

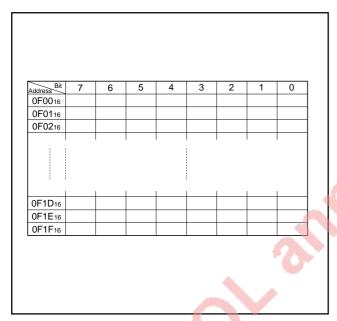


Fig. GA-5 Bit allocation of serial I/O automatic transfer RAM

Setting of Serial I/O Automatic Transfer Data

When data is stored in the serial I/O automatic transfer RAM, store the first data at the address set with the serial I/O automatic transfer data pointer so that the last data can be stored at address 0F0016.

Serial I/O Automatic Transfer Interval Register (SIOAI) 001C16

The serial I/O automatic transfer interval register (address 001C16) consists of a 5-bit counter that determines the transfer interval Ti during automatic transfer.

When writing the value n to the serial I/O automatic transfer interval register, Ti=(n+2) X Tc (Tc: the length of one bit of the transfer clock) occurs. However, note that this transfer interval setting is valid only when selecting the internal clock as the clock source.

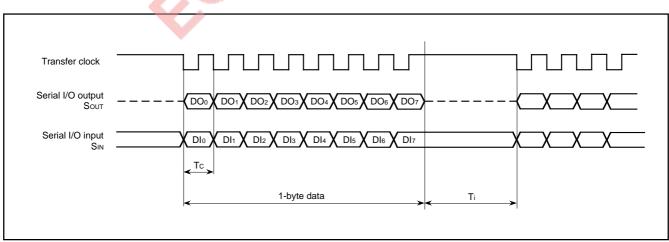


Fig. GA-6 Serial I/O automatic transfer interval timing

Setting of Serial I/O Automatic Transfer Timing

The timing of serial I/O automatic transfer is set with the serial I/O1 control register (address 001916) and the serial I/O automatic transfer interval register (address 001C16).

The serial I/O1 control register sets the transfer clock speed, and the serial I/O automatic transfer interval register sets the serial I/O automatic transfer interval. This setting of transfer interval is valid only when selecting the internal clock as the clock source.

Start of Serial I/O Automatic Transfer

Automatic transfer mode is set by writing "1" to the bit 0 of the serial I/O automatic transfer control register (address 001A16), then automatic transfer starts by writing "1" to the bit 1.

The bit 1 of the serial I/O automatic transfer control register is always "1" during automatic transfer; writing "0" can complete the serial I/O automatic transfer.

Operation in Serial I/O Automatic Transfer Modes

There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external clock can be selected for each of these modes.

(2.1) Operation in Full Duplex Mode

In full duplex mode, data can be transmitted and received at the same time. Data in the automatic transfer RAM is transmitted in sequence in accordance with the serial I/O automatic transfer data pointer and simultaneously reception data is written to the automatic transfer RAM.

The transfer timing of each bit is the same as that in ordinary operation mode, and the transfer clock stops at "H" after eight transfer clocks are counted.

When selecting the internal clock, the transfer clock remains at "H" for the time set with the serial I/O automatic transfer interval register, then the data at the next address (the address is indicated with the serial I/O automatic transfer data pointer) are transferred.

If when selecting the external clock, the setting of the automatic transfer interval register is invalid, so control the transfer clock externally.

The last data transfer completes when the contents of the serial I/O automatic transfer pointer reach "0016". At that point, the serial I/O automatic transfer interrupt request bit is set to "1" and the bit 1 of the serial I/O automatic transfer control register is cleared to "0" to complete the serial I/O automatic transfer.

(2.2) Operation in Transmit-Only Mode

The operation in transmit-only mode is the same as that in full duplex mode, except for that data is not transferred from the serial I/O1 register to the serial I/O automatic transfer RAM.

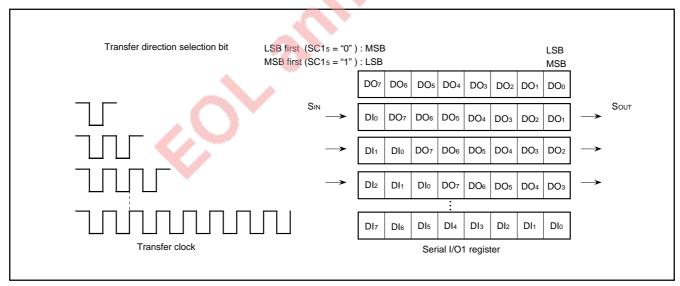


Fig. GA-7 Serial I/O1 register transfer operation in full duplex mode

(2.3) When Selecting the Internal Clock

When selecting the internal clock, the P67/ $\overline{S}RDY1/\overline{C}S/SCLK12$ pin can be used as the $\overline{S}RDY1$ pin by setting SC14 to "1".

When selecting the internal clock, the P67 pin can be used as the synchronous clock output pin SCLK12 by setting SIOAC3 to "1". In this case, the SCLK11 pin goes to high impedance state.

Select the function of the P67/SRDY1/CS/SCLK12 and P66/SCLK11 with the following registers (refer to Table GA-1):

- the bit 3 (SC13), the bit 4(SC14), and the bit 6(SC16) of the serial I/O1 control register
- the bit 3 (SIOAC3) of the serial I/O automatic transfer control register

When using both the Sclk11 and Sckl12 by switching, switch the P67/ $\overline{S}RDY1/\overline{C}S/Sclk12$ to the P67 (SC14=0) and set the P67 direction register to input mode. Note that switch SIOAC3 during "H" of transfer clock at the completion of automatic transfer.

Table GA-1. SCLK11 and SCLK12 selection

SC16	SC14	SC33	SIOAC3	P66/SCLK11	P67/SCLK12
			0	SCLK11	P67
1	0	1	1	High impedance	SCLK12

Note: SC13: Serial I/O1 port selection bit SC14: SRDY1 output selection bit

SC16: Synchronous clock selection bit

SIOAC3: Synchronous clock output pin selection bit

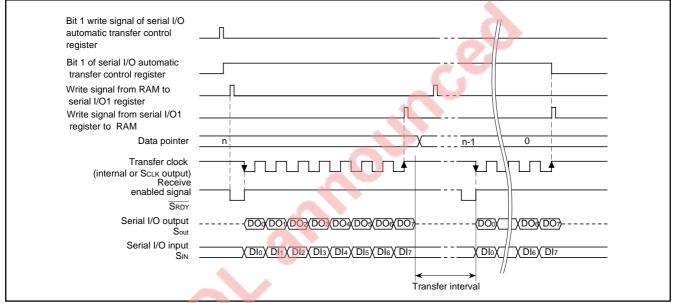


Fig. GA-8 Timing diagram during serial I/O automatic transfer (internal clock selected, SRDY used)

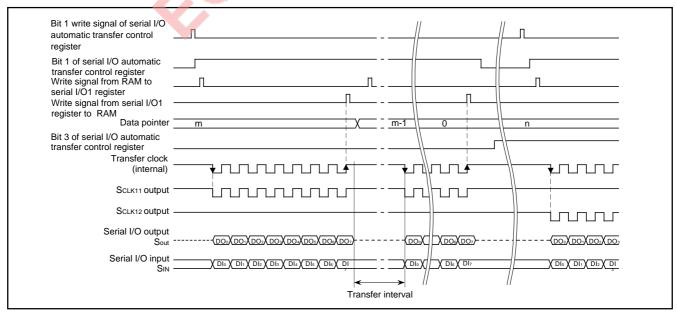


Fig. GA-9 Timing during serial I/O automatic transfer (internal clock selected, SCLK11 and SCLK12 used)

(2.4) When Selecting the External Clock

When selecting the external clock, the internal clock and the setting of transfer interval with the serial I/O automatic transfer interval register are invalid, but the serial I/O output pin SOUT1 and the internal transfer clock can be controlled from the outside by setting the $\overline{\text{SRDY1}}$ pin to the $\overline{\text{CS}}$ (input) pin.

When the $\overline{\text{CS}}$ input is "L", the SOUT1 pin and the internal transfer clock are enabled.

When the $\overline{\text{CS}}$ input is "H", the SOUT1 pin goes to high impedance state and the internal transfer clock goes to "H".

Select the function of the P67/SRDY1/CS/SCLK12 with the following registers (refer to Table GA-2):

- •the bit 4 (SC14) and the bit 6 (SC16) of the serial I/O1 control register
- the bit 0 (SIOAC₀) of the serial I/O automatic transfer control register

Switch the $\overline{\text{CS}}$ pin from "L" to "H" or from "H" to "L" during "H" of the transfer clock (SCLK11 input) after transferring 1-byte data.

When selecting the external clock, set the external clock to "L" after 9 cycles or more of the internal clock ϕ after setting the start bit. After transferring 1-byte data, leave 11 cycles or more of the internal clock ϕ free for the transfer interval.

When not using the $\overline{\text{CS}}$ input, note that the SOUT pin will not go to high impedance state, even after transfer is completed.

When not using the \overline{CS} input, or when \overline{CS} is "L", control the external clock because the data in the serial I/O register will continue to shift while the external clock is input, even after the completion of automatic transfer (Note that the automatic transfer interrupt request bit is set and the bit 1 of the serial I/O automatic transfer register is cleared at the point when the specified number of bytes of data have been transferred.)

Table GA-2. P67/SRDY1/CS selection

SC16	SC14	SIOAC ₀	P67/SRDY1/CS
	0	X	P67
0	4	0	SRDY1
	l	1	CS

Note: SC14: SRDY1 output selection bit SC16: Synchronous clock selection bit SIOAC0: Automatic transfer control bit

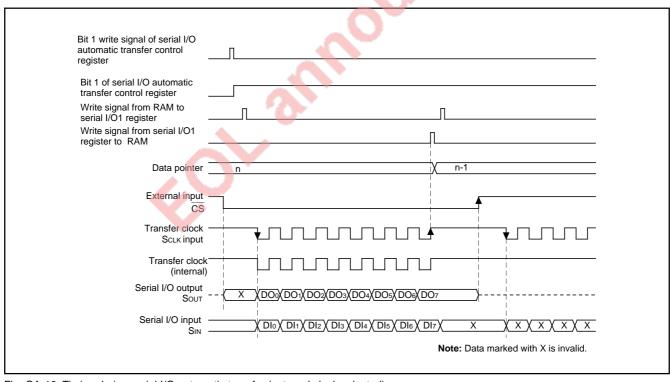


Fig. GA-10 Timing during serial I/O automatic transfer (external clock selected)

A-D CONVERTER

The functional blocks of the A-D converter are described below.

A-D Conversion Register (AD) 002D16

The A-D conversion register is a read-only register that stores the result of an A-D conversion. This register should not be read during A-D conversion.

AD/DA Control Register (ADCON) 002C16

The AD/DA control register controls the A-D and the D-A conversion process. Bits 0 to 3 of this register select analog input pins. Bit 4 is the AD conversion completion bit. The value of this bit remains at "0" during an A-D conversion, then changes to "1" when the A-D conversion is completed.

The A-D conversion starts by writing "0" to this bit. Bit 6 controls the output of D-A converter.

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVss and VREF by 256, and outputs the divided voltages.

Channel Selector

The channel selector selects one of the input ports P77/AN7–P70/AN0, P57/SRDY3/AN15–P50/SIN2/AN8, and inputs to the comparator.

Comparator and Control Circuit

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD conversion interrupt request bit to "1".

Note that the comparator is constructed linked to a capacitor, so set f(XIN) to 500 kHz or more during A-D conversion.

Note: When using the A-D conversion interrupt, set the INT4/AD conversion interrupt switch bit (the bit 5 of the interrupt selection register) to "1".

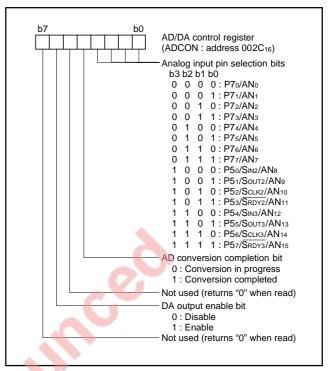


Fig. JA-1 Structure of A-D control register

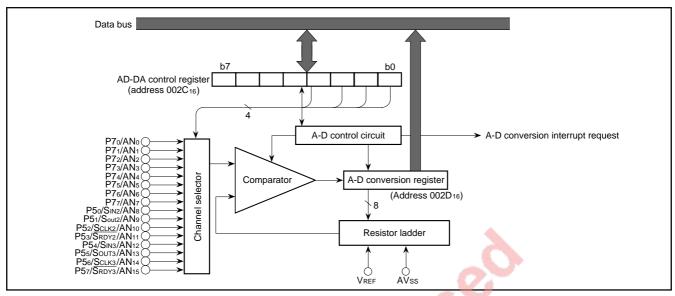


Fig. JA-2 A-D converter block diagram

D-A CONVERTER

The 3819 group has internal D-A converter with 8-bit resolutions X 1 channel.

D-A conversion is performed by setting the value in the D-A conversion register. The result of D-A conversion is output from the DA pin by setting the DA output enable bit to "1" . At this time, the corresponding bit (PB2/DA) of the port PB direction register should be set to "0" (input status).

The output analog voltage V is determined with the value n (n: decimal number) in the D-A conversion register as follows:

V=VREF X n/256 (n=0 to 255)
*VREF: the reference voltage

At reset, the D-A conversion register is cleared to "0016", the DA output enable bits are cleared to "0", and the PB2/DA pin goes to high impedance state. The D-A output does not build in a buffer, so connect an external buffer when driving a low-impedance load. Set VCC to 3.0 V or more when using the D-A converter.

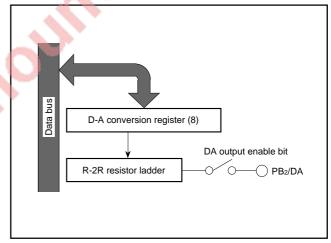


Fig. JB-1 D-A converter block diagram

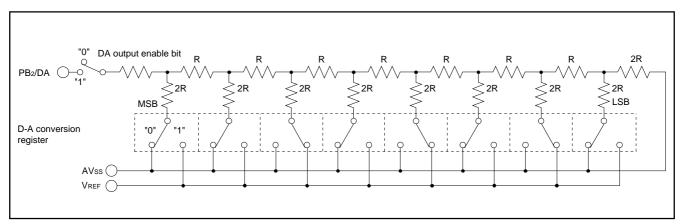


Fig. JB-2 Equivalent connection circuit of D-A converter

FLD CONTROLLER

The 3819 group has fluorescent display (FLD) drive and control circuits.

The FLD controller consists of the following components:

- 42 pins for segments
- 20 pins for digits
- FLDC mode register 1
- FLDC mode register 2
- FLD data pointer
- FLD data pointer reload register

- Port P0 segment/digit switch register
- Port P2 digit/port switch register
- Port PA segment/port switch register
- Port P8 segment/port switch register
- 96-byte FLD automatic display RAM

The segment pins can be used from 16 up to 42 pins (maximum) and the digit pins can be used from 6 up to 16 pins (maximum).

The segment and the digit pins can be used up to 52 pins (maximum).

The segment and the digit pins can be used up to 52 pins (maximum) in total.

In the FLD automatic display mode ports P12 to P17 become digit pins DIG10 to DIG15 automatically.

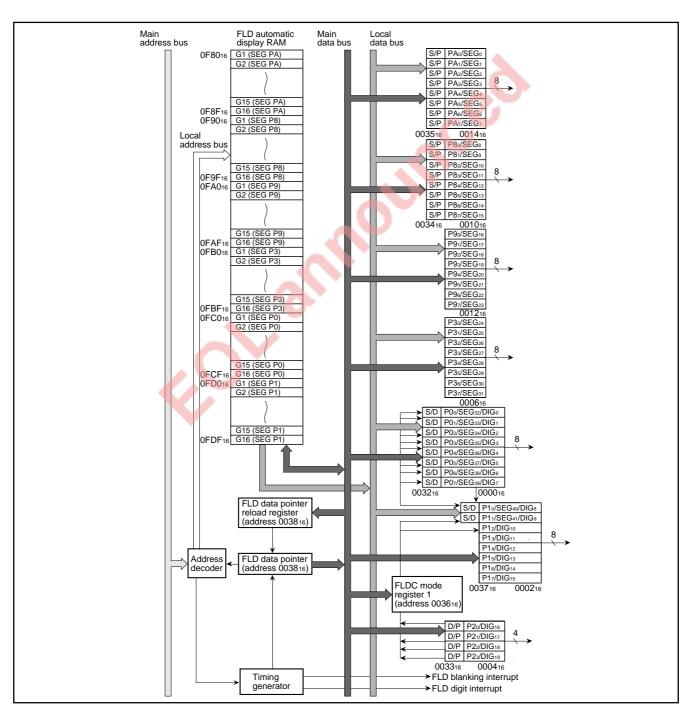


Fig. KA-1 FLD control circuit block diagram

FLDC Mode Registers (FLDM 1, FLDM 2) 003616, 003716

The FLDC mode register 1 (address 003616) and FLDC mode register 2 (address 003716) are a seven bit register and an eight bit

register respectively which are used to control the FLD automatic display and set the blanking time Tscan for key-scan.

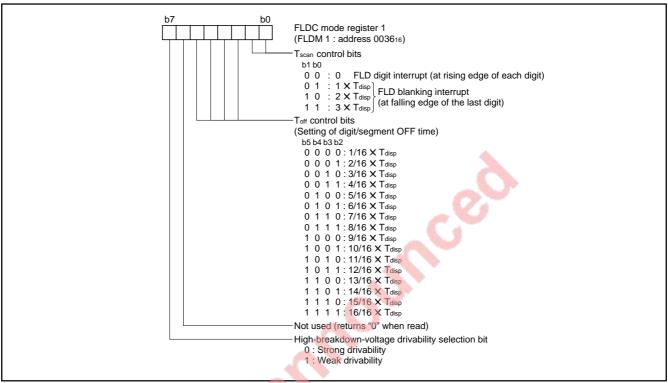


Fig. KA-2 Structure of FLDC mode register 1

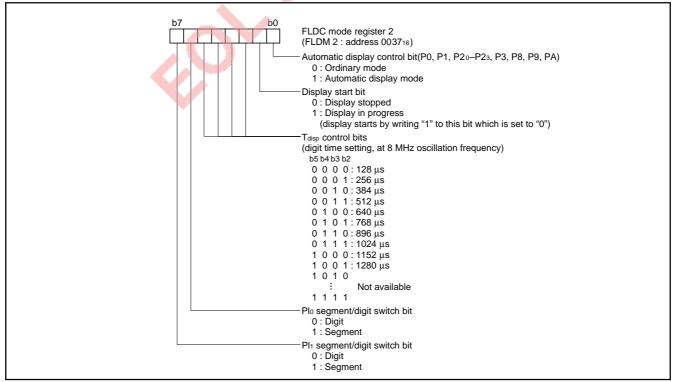


Fig. KA-3 Structure of FLDC mode register 2

Pins for FLD Automatic Display

Ports P0, P1, P20–P23, P3, P8, P9, and PA is selected for the FLD automatic display function by setting the automatic display control bit of the FLDC mode register 2 (address 003716) to "1".

When using the FLD automatic display mode, set the number of segments and digits for each port.

Table L-1. Pins in FLD automatic display mode

Port Name	Automatic Display Pins	Setting Method
	SEG0-SEG7	The individual hits of the comment/port quitch register (address 003546) can be set each air
PA0-PA7	or	The individual bits of the segment/port switch register (address 003516) can be set each pin to either segment ("1") or general-purpose I/O port ("0").
	PA0-PA7	
	SEG8-SEG15	Ti : 1: 1 11: 6:
P80-P87	or	The individual bits of the segment/port switch register (address 003416) can be used to set each pin to either segment ("1") or general-purpose I/O port ("0").
	P80-P87	cach pin to chile segment (1) of general purpose 1/0 port (0).
P90-P97	SEG16-SEG23	None (segment only)
P30-P37	SEG24-SEG31	None (segment only)
P00-P07	SEG32-SEG41	TI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	or	The individual bits of the segment/digit switch register (address 003216) and the bit 6, 7 of the FLDC mode register 2 can be used to set each pin to segment ("1") or digit ("0"). (Note)
P10, P11	DIG0-DIG9	the reportion register 2 can be used to set each pin to segment (1) or digit (0). (Note)
P12-P17	DIG10-DIG15	None (digit only)
	DIG16-DIG19	
P20-P23	or	The individual bits of the digit/port switch register (address 003316) can be used to set each pin to digit ("1") or general-purpose output port ("0"). (Note)
	P20-P23	pin to digit (1) or general purpose output port (0). (Note)

Note: Be sure to set digits in sequence.

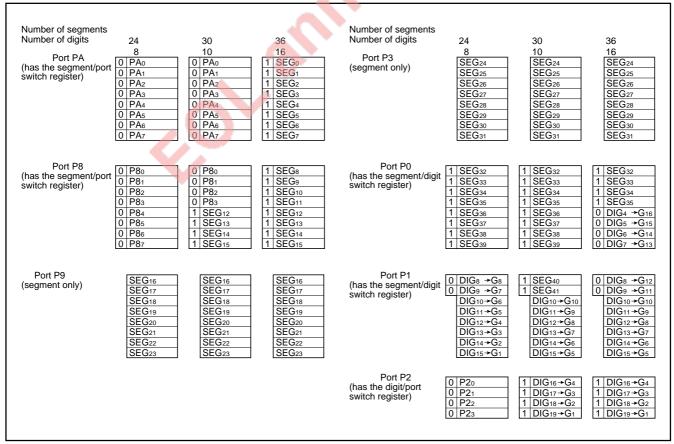


Fig. KA-4 Segment/digit setting example

FLD Automatic Display RAM

The FLD automatic display RAM area is the 96 bytes from addresses 0F8016 to 0FDF16. The FLD automatic display RAM area can store 6-byte segment data up to 16 digits (maximum). Addresses 0F8016 to 0F8F16 are used for PA segment data, addresses 0F9016 to 0F9F16 are used for P8 segment data, addresses 0FA016 to 0FAF16 are used for P9 segment data, addresses 0FB016 to 0FBF16 are used for P3 segment data, addresses 0FC016 to 0FCF16 are used for P0 segment data, and addresses 0FD0 to 0FDF16 are used for P1 segment data.

FLD Data Pointer and FLD Data Pointer Reload Register (FLDDP) 003816

Both the FLD data pointer and FLD data pointer reload register are 7-bit registers allocated at address 003816. When writing data to this address, the data is written to the FLD data pointer reload register, when reading data from this address, the value in the FLD data pointer is read.

The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment. The FLD data pointer reload register indicates the first digit address of the most significant segment.

The value which adds 0F8016 to these data is actual address in memory.

The contents of the FLD data pointer indicate the first address of segment P1(the contents of the FLD data pointer reload register) at the start of automatic display. The FLDC data pointer content changes repeatedly as follows: when transferring the segment P1 data to the segment, the content decreases by –16; when transferring the segment P0 data, it decreases by –16; when transferring the segment P3 data, it decreases by –16; when transferring the segment P9 data, it decreases by –16; when transferring the segment P8 data, it decreases by –16; when transferring the segment PA data, it increases by +79. Once it reaches "00", at the next timing the value in the FLD data pointer reload register is transferred to the FLD data pointer. In this way, the 6-byte data of P1, P0, P3, P9, P8 and PA segments for 1 digit are transferred.

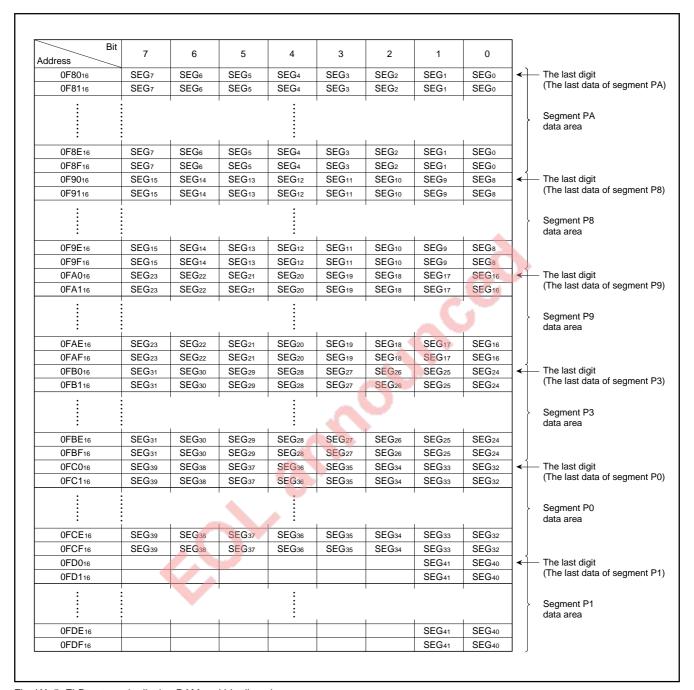


Fig. KA-5 FLD automatic display RAM and bit allocation

Data Setup

When data is stored in the FLD automatic display RAM, the last data of segment PA is stored at address 0F8016, the last data of segment P8 is stored at address 0F9016, the last data of segment P9 is stored at address 0FA016, the last data of segment P3 is stored at address 0FB016, the last data of segment P0 is stored at address 0FC016, and the last data of segment P1 is stored at address 0FD016 to allocate in se-

quence from the last data respectively. The first data of the segment PA, P8, P9, P3, P0, and P1 is stored at an address which adds the value of (the digit number–1) to the corresponding address 0F8016, 0F9016, 0FA016, 0FB016, 0FC016, and 0FD016.

Set the low-order 4 bits of the FLD data pointer reload register to the value given by the number of digits—1. "1" is always written to bit 6 and bit 4, and "0" is always written to bit 5. Note that "0" is always read from bits 6, 5 and 4 when reading.

For 30 segments and 15 digits (FLD data pointer reload register = 14)

7	6	5	4	3	2	1	0
///	777	///	777	///	777	777	777
							///
						///	H
		///	///	///			///
///	///	///		///	\mathcal{H}	\mathcal{H}	+/-
///	$\mathcal{V} \mathcal{V}$		///				///
///	\mathcal{U}	///	\mathcal{U}		///		HH
///	///	///	///	///	///	///	///
///	V//	///	///	///	///	///	///
///	H/H	///	///	///	///	///	///
///	H/H	///	H/H	///	H/H	///	///
///	H/H	///	H/H	///	H/H	///	HH
			///	///			///
///							///
///	<u> </u>	///	///	///	///	///	
ļ , , , ,	ļ,,,	ļ , , , ,	ļ.,	ļ,,,,	ļ,,,,	,,,	
<i>V//</i> ,	<i>V//</i> ,	<i>V//</i>	<i>V//</i>	V/L	V/L	V//,	///
\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	
Y/L	V/L	V/L	V/L	V/L			
	///			///	///		
				///	///		///
							///
							///
///			///			///	///
///	///	///	///	///	///	///	///
							///
///	///	1//	///	///	///	///	///
///	///	///	///	///	///	///	///
///	///	///	///	///	///	///	///
///	\mathbb{W}	///	\mathbb{W}	///	///	///	$\forall \prime \prime$
/// .	///	///	///	/// .	/// .	/// .	$\forall /\!/$
V//.	V//.	V//.	V//.	V//,	V//.	///	$/\!/\!/$
<i>\</i>	<i>\</i>	<i>\</i>	<i>\</i>	<i>\</i>	<i>\</i>	///	<i>\</i>
<i>\//</i>	<i>\//</i>	H/H	<i>\//</i>	<i>///</i>	<i>\//</i>	///	<i>\</i>
///	$/\!/\!/$	///	///	///	$\langle // \rangle$	///	///
$\forall //$	///	H/H	///	///	///	///	///
Y//	<i>{//</i>	H/H	<i>{//</i>	\mathbb{Z}	///	///	///
///	///	///	<i>{///</i>	///	///		<i> </i>
				///			
		7 6	7 6 5	7 6 5 4	7 6 5 4 3	7 6 5 4 3 2	

For 30 segments and 15 digits (FLD data pointer reload register = 14)

Bit								
Address	7	6	5	4	3	2	1	0
0FB0 ₁₆			///	///	///	///	777	777
0FB116							///	
0FB2 ₁₆							///	
0FB316								
0FB416			///		///	///	///	///
0FB516		- 6	///	///	///		///	
0FB616		7		///			///	
0FB7 ₁₆	- 6	- 1	///	///	///	///		
0FB816		1000	///	///	///	///	///	///
			///	///	///	///	///	///
0FB916				H/H		H/H		
0FBA ₁₆				H/H		H/H		///
0FBB ₁₆				H/H		H/H		///
0FBC16								
0FBD ₁₆								///
0FBE ₁₆			///	<i>///</i>	///	///	///	///
0FBF16								
0FC016								
0FC1 ₁₆								
0FC2 ₁₆								
0FC3 ₁₆								
0FC4 ₁₆								
0FC516								
0FC6 ₁₆								
0FC7 ₁₆								
0FC8 ₁₆								
0FC9 ₁₆								
0FCA ₁₆								
0FCB ₁₆								
0FCC ₁₆								
0FCD ₁₆								
0FCE ₁₆								
0FCF ₁₆								
0FD016								
0FD1 ₁₆								
0FD216								
0FD316								
0FD416								
0FD516								
0FD616								
0FD7 ₁₆								
0FD816								
0FD616								
0FD916 0FDA16								
0FDB ₁₆								
0FDC ₁₆								
0FDD ₁₆								
0FDE ₁₆								
0FDF ₁₆								

Fig. KA-6 Example of using the FLD automatic display RAM (1)

Note: Shaded areas are used.

For 42 segm FLD data po				7)					For 42 segme (FLD data poir				7)				
Bit Address	7	6	5	4	3	2	1	0	Bit Address	7	6	5	4	3	2	1	0
0F80 ₁₆	///	1///	////	1///	///	///	777	1///	0FB016	///	///	///	///	///	///	///	77
0F81 ₁₆									0FB116	///	///	///		///			
0F82 ₁₆									0FB216	///	///	$\overline{///}$	///	///			1/
0F83 ₁₆	///	$\overline{///}$	$\overline{///}$	$\overline{///}$	1///		$\overline{///}$		0FB316	///	H	///					1/
0F84 ₁₆		1//	$\overline{///}$	1///	\mathcal{H}		$\overline{///}$		0FB4 ₁₆	$//\Lambda$	///	///		///		///	1//
0F8516	$\overline{///}$	1///	$\mathcal{V} / \mathcal{I}$	$\mathcal{V} / \mathcal{I}$	$\mathcal{V} / \mathcal{I}$	///	$\mathcal{V} / \mathcal{I}$	\mathcal{W}	0FB516	//A	///	///	///	///		///	1//
	$\overline{///}$	\mathcal{W}	$\mathcal{V} / /$	\mathcal{W}	///	$\mathcal{V} \mathcal{V}$	///	4///	0FB516 0FB616	44	///	///		///	///	///	//
0F86 ₁₆	$\overline{///}$	///	///	///	$\mathcal{V}//$	///	///	\// /		44	///	///		///	///	\mathcal{W}	//
0F87 ₁₆	///	1///	1///	///	///	///	///	1///	0FB7 ₁₆	///		///	///	///	///	///	1//
0F88 ₁₆									0FB816								
0F89 ₁₆									0FB916								
0F8A ₁₆									0FBA ₁₆								
0F8B ₁₆									0FBB ₁₆								
0F8C ₁₆									0FBC ₁₆								
0F8D ₁₆									0FBD ₁₆			April					
0F8E ₁₆									0FBE ₁₆			35	37				
0F8F ₁₆	_	<u> </u>		ļ.,.,.				ļ.,.,.	0FBF16	, ,					, ,		ļ.,,
0F90 ₁₆	V//	V//			\mathbb{Z}/\mathbb{Z}			Y/Z	0FC016							\mathbb{Z}/\mathbb{Z}	\mathbb{Z}
0F91 ₁₆					\mathbb{Z}			\mathbb{Z}/\mathbb{Z}	0FC1 ₁₆							$V\!$	
0F92 ₁₆	V//			\mathbb{Z}	\mathbb{Z}/\mathbb{Z}			\mathbb{Z}/\mathbb{Z}	0FC216								
0F93 ₁₆	V//	\mathbb{Z}/\mathbb{Z}	X/Z	\mathbb{Z}/\mathbb{Z}	X//			X//	0FC316								
0F94 ₁₆	1///	<i>Y//</i> .	X//	<i>Y//</i>	X///		///	X///	0FC4 ₁₆							///	///
0F95 ₁₆	1///	177	///	1//	///		///		0FC5 ₁₆		777				///	///	777
0F96 ₁₆	1///	1//	///	1//	////		///	////	0FC616	///	///						1//
0F97 ₁₆		1//		1///					0FC716	///	777						1//
0F98 ₁₆									0FC816			, , , ,				Ĭ -	
0F99 ₁₆									0FC916								
0F9A ₁₆									0FCA ₁₆								
0F9B ₁₆								Allh	0FCB ₁₆								
0F9C ₁₆									0FCC ₁₆								
0F9D ₁₆							All		0FCD ₁₆								
0F9E ₁₆							57		0FCE ₁₆								
0F9F ₁₆							- 6	1	0FCF16								
0FA0 ₁₆	///	777	///	///	///	///	///	////	0FD016							///	//
0FA1 ₁₆	1//	1//	V/ /	1//	1//				0FD1 ₁₆							///	//
0FA2 ₁₆	1//	1//	1//	1//	1//	///	1//	1///	0FD216							///	1//
0FA3 ₁₆	V//	1//	V//	1//	1//	///	///	1///	0FD316							V//	//
0FA4 ₁₆	$\forall //$	1//	$\forall //$	1//	///	///	///	\// /	0FD4 ₁₆							$\forall //$	//,
0FA516	1//	\//				///	///	/// /	0FD516							///	///
0FA616	$\forall //$	Y//		1//	///	///	$\mathbb{Y}//$		0FD616							V//.	//
0FA7 ₁₆	\//	///	$\mathbb{Y}//$		///	///	$\forall //$		0FD716							/// ,	///
0FA816	+///	+	<u> </u>		///	/-/-	 	 	0FD816							+	-
0FA9 ₁₆	1				+				0FD916								<u> </u>
0FAA ₁₆					+				0FDA ₁₆								
0FAB ₁₆					+				0FDB16								
0FAC ₁₆									0FDC16								-
0FAC16	1		1						0FDC16 0FDD16								-
0FAE ₁₆					+			-	0FDE16 0FDF16								-
UFAF16	1							1	UFDF16								

Fig. KA-6 Example of using the FLD automatic display RAM (2) (continued)

Timing Setting

The digit time (Tdisp) can be set with the FLDC mode register 2 (address 003716). The Tscan and digit/segment OFF time (Toff) can be set with the FLDC mode register 1 (address 003616). Note that flickering will occur if the repetition frequency (1/ (Tdisp X number of digits + Tscan)) is an integral multiple of the digit timing Tdisp.

FLD Automatic Display Start

To perform FLD automatic display, set the following registers.

- Port P0 segment/digit switch register
- Port P2 digit/port switch register
- Port P8 segment/port switch register
- Port PA segment/port switch register
- FLDC mode register 1
- FLDC mode register 2
- FLD data pointer

Automatic display mode is selected by writing "1" to the bit 0 of the FLDC mode register 2 (address 003716), and the automatic display is started by writing "1" to the bit 1. During automatic display bit 1 of the FLDC mode register 2 always keeps "1", automatic display can be interrupted by writing "0" to the bit 1.

Key-scan

If key-scan is performed with the segment during the key-scan blanking period Tscan, take the following sequence:

- Write "0" to the bit 0 (automatic display control bit) of the FLDC mode register 2 (address 003716).
- 2. Set the port corresponding to the segment for key-scan to the output port.
- 3. Perform the key-scan.
- After the key-scan is performed, write "1" (automatic display mode) to the bit 0 of FLDC mode register 2 (address 003716).

Note on performance of key-scan in the above 1 to 4 sequence.

- Do not write "0" to the bit 1 of FLDC mode register 2 (address 003716).
- 2. Do not write "1" to the port corresponding to the digit.

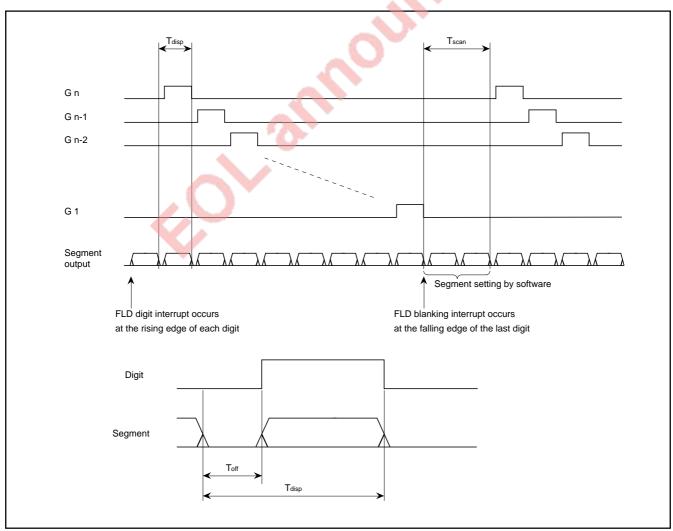


Fig. KA-7 FLDC timing

INTERRUPT INTERVAL DETERMINATION FUNCTION

The 3819 group builds in an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary up counter. Using this counter, it determines a duration of time from the rising transition (falling transition) of an input signal pulse on the P42/INT2 pin to the rising transition (falling transition) of the signal pulse that is input next.

How to determine the interrupt interval is described below.

- ① Enable the INT2 interrupt by setting the bit 2 of the interrupt control register 1 (address 003E16). Select the rising interval or falling interval by setting the bit 2 of the interrupt edge selection register (address 003A16).
- ② Set the bit 0 of the interrupt interval determination control register (address 003116) to "1" (interrupt interval determination operating).
- ③ Select the sampling clock of 8-bit binary up counter by setting the bit 1 of the interrupt interval determination control register. When writing "0", f(XIN)/256 is selected (the sampling interval: 32 μs at f(XIN) = 8.38 MHz); when "1", f(XIN)/512 is selected (the sampling interval: 64 μs at f(XIN) = 8.38 MHz).
- When the signal of polarity which is set on the INT2 pin (rising or falling transition) is input, the 8-bit binary up counter starts counting up of the selected counter sampling clock.

- determination register (address 003016), and the remote control interrupt request occurs. Immediately after that, the 8-bit binary up counter is cleared to "0016". The 8-bit binary up counter continues to count up again from "0016".
- ® When count value reaches "FF16", the 8-bit binary up counter stops counting up. Then, simultaneously when the next counter sampling clock is input, the counter sets value "FF16" to the interrupt interval determination register to generate the counter overflow interrupt request.

Noise filter

The P42/INT2 pin builds in the noise filter.

The noise filter operation is described below.

- Select the sampling clock of the input signal with the bits 2 and
 3 of the interrupt interval determination control register. When
 not using the noise filter, set "002".
- The P42/INT2 input signal is sampled in synchronization with the selected clock. When sampling the same level signal in series, the signal is recognized as the interrupt signal, and the interrupt request occurs.

When setting the bit 4 of interrupt interval determination control register to "1", the interrupt request can occur at both rising and falling edges.

When using the noise filter, set the minimum pulse width of the INT2 input signal to 2 cycles or more.

Note: In the low-speed mode (CM7=1), the interrupt interval determination function can not operate.

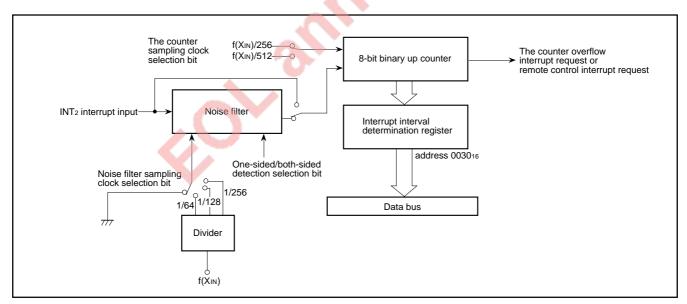


Fig. DE-1 Block diagram of interrupt interval datermination circuit

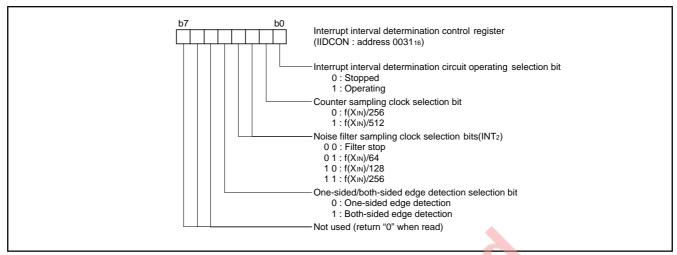


Fig. DE-2 Structure of interrupt interval determination control register

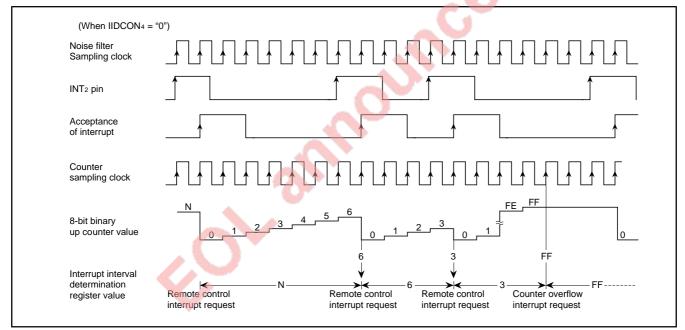


Fig. DE-3 Interrupt interval determination operation example (at rising edge active)

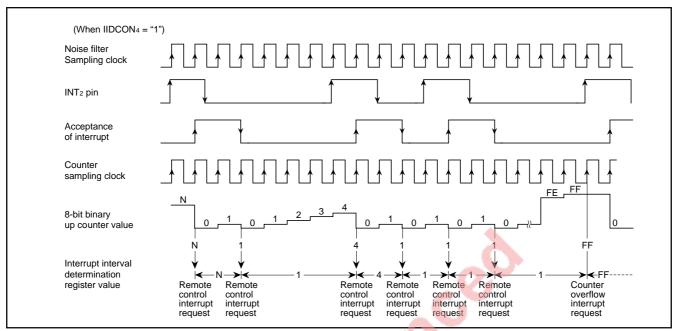


Fig. DE-4 Interrupt interval determination operation example (at both-sided edge active)

ZERO CROSS DETECTION CIRCUIT

The zero cross detection circuit compares the voltage applied to P45/INT1/ZCR pin and Vss. The result can be read from the zero cross detection circuit input bit (bit 7) of the zero cross detection control register. It is set to "1" when the input voltage is higher than Vss and to "0" when it is lower than Vss. The input signal to P45/INT1/ZCR pin can select to either pass through the zero cross detection comparator or not to do.

When using 100 V AC as input signal, insert an external circuit between it and P45/INT1/ZCR pin. Set the input current limiting resistors used in the external circuit to a value which satisfies the absolute maximum rating of port P45.

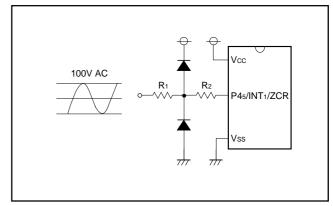


Fig. JE-1 External circuit example for zero cross detection

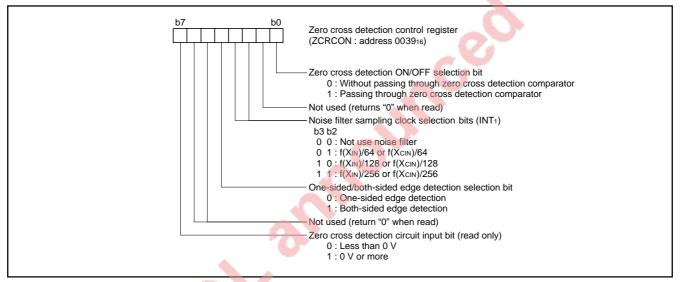


Fig. JE-2 Structure of zero cross detection control register

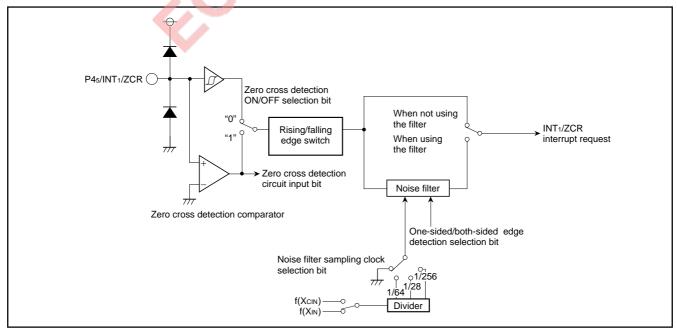


Fig. JE-3 Block diagram of zero cross detection circuit

NOISE FILTER

The noise filter uses a sampling clock to remove the noise component digitally from the input signal of P45/INT1/ZCR pin. The sampling clock can be selected from 8 μs , 16 μs , or 32 μs (at f(XIN)= 8.38 MHz) and this is used to change the noise component to be removed. It is also possible to generate an internal trigger and INT1/ZCR interrupt request directly without passing through

the noise filter. When passing through the noise filter, either bothsided edge detection or one-sided edge detection can be selected as the interrupt request generating source. The zero cross detection control register is used for this selection. Furthermore, switch between rising edge and falling edge is performed with the bit 1 of the interrupt edge selection register (address 003A16).

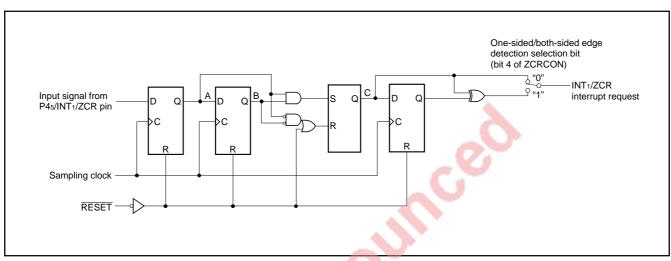


Fig. JE-4 Noise filter circuit diagram

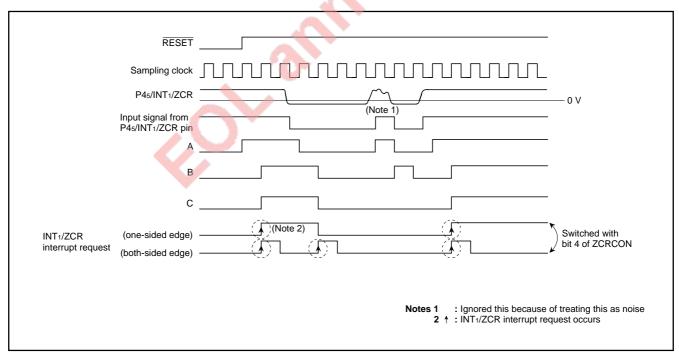


Fig. JE-5 Timing of noise filter circuit

RESET CIRCUIT

To reset the microcomputer, $\overline{\text{RESET}}$ pin should be held at an "L" level for 2 μs or more. Then the $\overline{\text{RESET}}$ pin is returned to an "H" level (the power source voltage should be between 2.8 V and 5.5 V, and XIN oscillation is stable), reset is released. In order to give the XIN clock time to stabilize, internal operation does not begin until after about 4000 XIN clock cycles (256 cycles of f(XIN)/16) are completed. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order) and address FFFC16 (low-order). Make sure that the reset input voltage is 0.5 V or less for 2.8 V of Vcc.

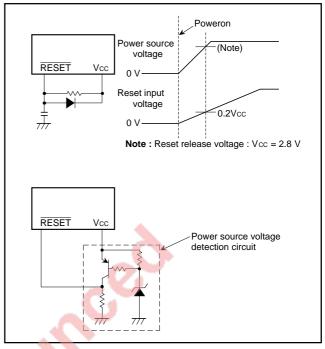


Fig. VB-2 Example of reset circuit

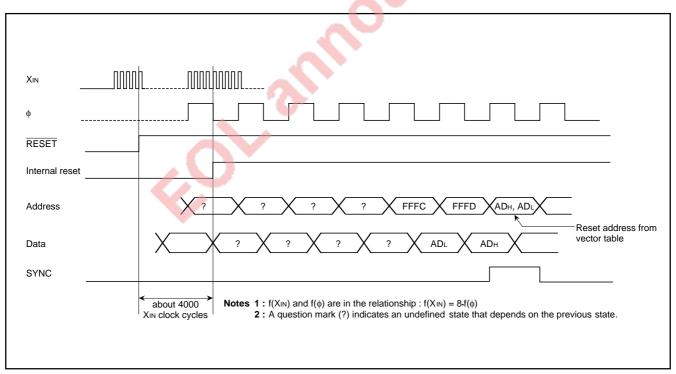


Fig. VB-2 Reset sequence

3819 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(1) Port P0	(000016)•••	0016	(31) Timer 6	(002516)•••	FF16
(2) Port P1	(000216) • • •	0016	(32) Timer 12 mode register	(002816)•••	0016
(3) Port P2	(000416) • • •	0016	(33) Timer 34 mode register	(002916)•••	0016
(4) Port P2 direction register	(000516) • • •	0F16	(34) Timer 56 mode register	(002A ₁₆)•••	0016
(5) Port P3	(000616) • • •	0016	(35) D-A conversion register	(002B ₁₆)••••	0016
(6) Port P4	(000816) • • •	0016	(36) AD/DA control register	(002C ₁₆)••••	1016
(7) Port P4 direction register	(000916)	0016	(37) Interrupt interval determination	(003116)•••	0016
(8) Port P5	(000A ₁₆)···	0016	control register		
(9) Port P5 direction register	(000B ₁₆)•••	0016	(38) Port P0 segment/digit	(003216)•••	0016
(10) Port P6	(000C ₁₆)···	0016	switch register		
(11) Port P6 direction register	(000D ₁₆)•••	0016	(39) Port P2 digit/port switching	(003316)•••	0016
(12) Port P7	(000E ₁₆)•••	0016	register		
(13) Port P7 direction register	(000F ₁₆)•••	0016	(40) Port P8 segment/port	(003416)•••	0016
(14) Port P8	(001016) • • •	0016	switch register		
(15) Port P8 direction register	(001116)•••	0016	(41) Port PA segment/port switch	(003516)•••	0016
(16) Port P9	(001216) • • •	0016	(42) FLDC mode register 1	(003616)•••	0016
(17) Port PA	(001416) • • •	0016	(43) FLDC mode register 2	(003716)•••	0016
(18) Port PA direction register	(001516) • • •	0016	(44) Zero cross detection control	(003916)•••	0016
(19) Port PB	(001616)•••	0016	register		
(20) Port PB direction register	(001716) • • •	0016	(45) Interrupt edge selection register	(003A ₁₆)•••	0016
(21) Serial I/O1 control register	(001916) • • •	0016	(46) CPU mode register	(003B ₁₆)•••	0 1 0 0 1 0 0
(22) Serial I/O automatic transfer	(001A ₁₆)•••	0016	(47) Interrupt request register 1	(003C ₁₆)•••	0016
control register			(48) Interrupt request register 2	(003D ₁₆)•••	0016
(23) Serial I/O automatic transfer	(001C ₁₆)···	0016	(49) Interrupt control register 1	(003E ₁₆)•••	0016
interval register			(50) Interrupt control register 2	(003F ₁₆)•••	0016
(24) Serial I/O2 control register	(001D ₁₆)···	0016	(51) Processor status register	(PS) • • • [x x x x x 1 x >
(25) Serial I/O3 control register	(001E ₁₆)•••	0016	(52) Program counter		Contents of address FFFD ₁
(26) Timer 1	(002016) • • •	FF16		(PCL)•••	Contents of address FFFC
(27) Timer 2	(002116) • • •	0116			
(28) Timer 3	(002216)•••	FF16			
(29) Timer 4	(002316) • • •	FF16			
	(002416)	FF16			

Fig. VB-3 Internal status at reset

CLOCK GENERATING CIRCUIT

The 3819 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT.

Immediately after poweron, only the XIN oscillation circuit starts oscillation, and XCIN and XCOUT pins function as I/O ports.

Frequency Control

Middle-speed mode

The internal clock ϕ is the frequency of XIN divided by 8. After reset, this mode is selected.

High-speed mode

The internal clock ϕ is half the frequency of XIN.

Low-speed mode

The internal clock ϕ is half the frequency of XCIN.

Note: If you switch the mode between middle/high-speed and low-speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the XCIN oscillation to stabilize, especially immediately after poweron and at returning from stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that f(XIN) > 3-f(XCIN).

Low-power dissipation mode

When stopping the main clock XIN in the low-speed mode, the low-power dissipation operation starts. To stop the main clock, set the bit 5 of the CPU mode register to "1". When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming.

The low-power dissipation operation 200 μA or less (at f(XIN) = 32 kHz) can be realized by reducing the XCIN–XCOUT drivability. To reduce the XCIN–XCOUT drivability, clear the bit 3 of the CPU mode register to "0". At reset or when executing the STP instruction, this bit is set to "1" and strong drivability is selected to help the oscillation to start.

Oscillation Control

Stop mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillators stop. Timer 1 is set to "FF16" and timer 2 is set to "0116". Either XIN or XCIN divided by 16 is input to timer 1, and the output of timer 1 is connected to timer 2. The bits of the timer 12 mode register are cleared to "0". Set the timer 1 and timer 2 interrupt enable bits to disabled ("0") before executing the STP instruction.

Oscillator restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 1 underflows. When using an external resonator, it is necessary for oscillating to stabilize.

Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level. The states of XIN and XCIN are the same as the state before executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

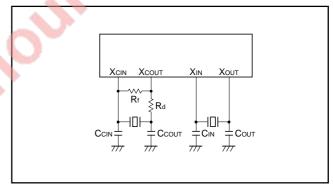


Fig. WA-1 Ceramic resonator external circuit

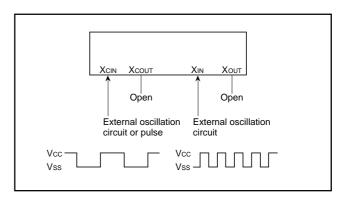


Fig. WA-2 External clock input circuit

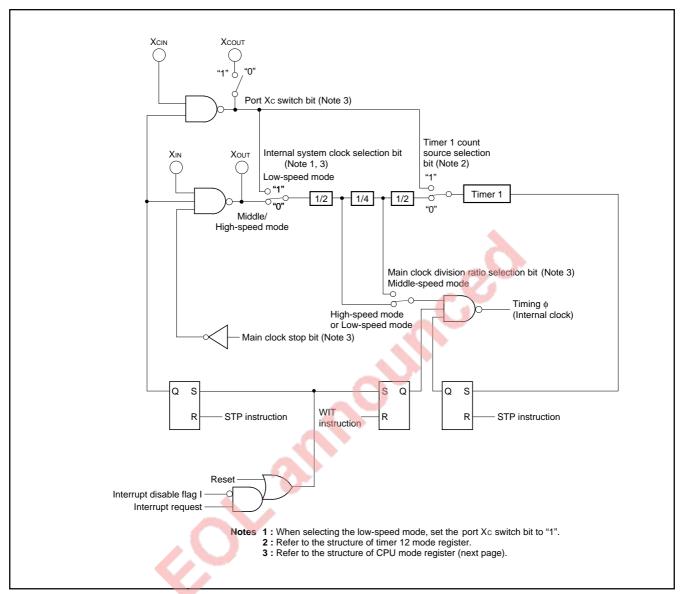


Fig. WA-3 Clock generating circuit block diagram

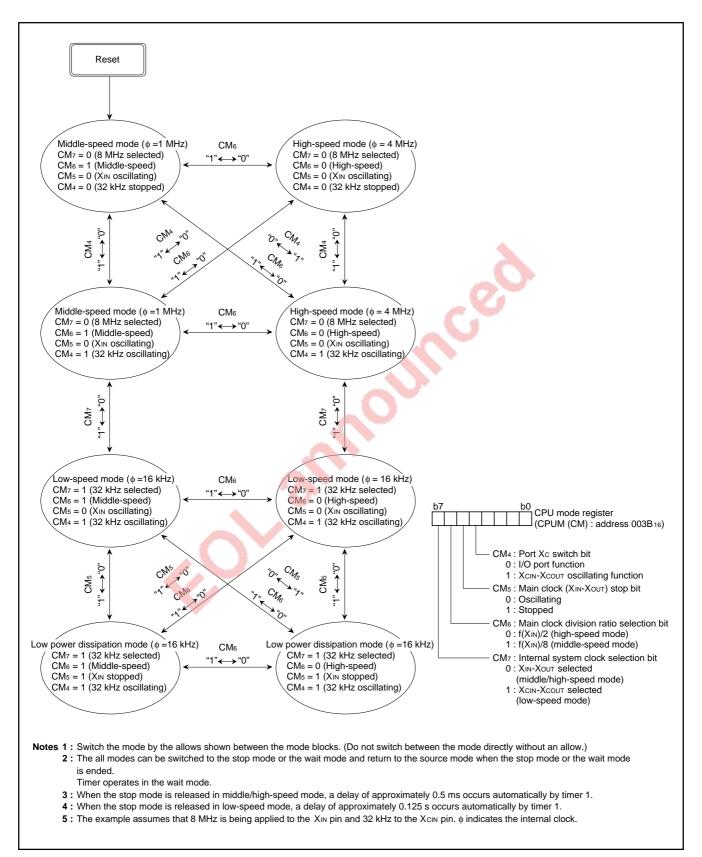


Fig. WA-4 State transitions of system clock

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flag are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).

Multiplication and Division Instructions

- The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
- The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- the data transfer instruction (LDA, etc.)
- the operation instruction when the index X mode flag (T) is "1"
- the addressing mode which uses the value of a direction register as an index
- the bit-test instruction (BBC or BBS, etc.) to a direction register
- the read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.

Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

When using an external clock, input "H" to the external clock input pin and clear the serial I/O interrupt request bit before executing serial I/O transfer and serial I/O automatic transfer.

When using the internal clock, set the synchronous clock to internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer and serial I/O automatic transfer.

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.

Make sure that f(XIN) is 500 kHz or more during an A-D conversion

Do not execute the STP or WIT instruction during an A-D conversion

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock ϕ is half of the XIN or XCIN frequency.

At the STP Instruction Release

At the STP instruction release, all bits of the timer 12 mode register are cleared.

The XCOUT drivability selection bit (the CPU mode register) is set to "1" (high drive) in order to start oscillating.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies)

PROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter.

Package	Name of Programming Adapter
100P6S-A	PCA4738F-100A
100D0	PCA4738L-100A

Set the address of PROM programmer in the user ROM area. The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after writing, the procedure shown in Figure XC-1 is recommended to verify programming.

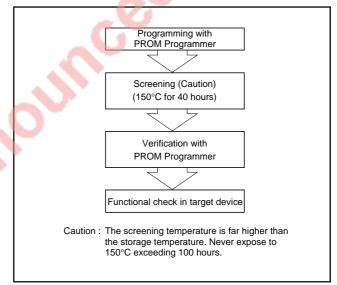


Fig. XC-1 Programming and testing of One Time PROM version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VEE	Pull-down power source voltage		Vcc -40 to Vcc +0.3	V
Vı	Input voltage P24-P27, P41-P44, P46, P47,		0.24-1/00.00	V
VI	P50-P57, P60-P67, P70-P77, PB0-PB3		-0.3 to VCC +0.3	\ \
Vı	Input voltage P40, P45		-0.3 to Vcc +0.3	V
Vı	Input voltage P80-P87, PA0-PA7		Vcc -40 to Vcc +0.3	V
Vı	Input voltage RESET, XIN	All voltages are based on Vss.	-0.3 to Vcc +0.3	V
Vı	Input voltage XCIN	Output transistors are cut off.	-0.3 to Vcc +0.3	V
Vo	Output voltage P00-P07, P10-P17, P20-P23,		Vcc 40 to Vcc 10 3	V
VO	P30-P37, P80-P87, P90-P97, PA0-PA7		-0.3 to 7.0 Vcc -40 to Vcc +0.3 -0.3 to Vcc +0.3 -0.3 to Vcc +0.3 Vcc -40 to Vcc +0.3 -0.3 to Vcc +0.3	V
	Output voltage P24-P27, P41-P44, P46, P47, P50-P57,		-0.3 to 7.0 Vcc -40 to Vcc +0.3 -0.3 to Vcc +0.3 -0.3 to Vcc +0.3 Vcc -40 to Vcc +0.3 -0.3 to Vcc +0.3 -0.3 to Vcc +0.3 Vcc -40 to Vcc +0.3 Vcc -40 to Vcc +0.3 -0.3 to Vcc +0.3	
Vo	P60-P67, P70-P77, PB0-PB3, XOUT,			V
	Хсоит			
Pd	Power dissipation	Ta = 25°C	600	mW
Topr	Operating temperature	02	-10 to 85	°C
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS (Vcc = 4.0 to 5.5 V, Ta = -10 to 85°C, unless otherwise noted)

Cumbal		Deservator		Limits		Unit
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Dower course veltage	High-speed mode	4.0	5.0	5.5	V
VCC	Power source voltage	Middle/Low-speed mode	2.8	5.0	5.5	V
Vss	Power source voltage			0		V
VEE	Pull-down power source	Pull-down power source voltage			Vcc	V
VREF	Analog reference voltage (when using A-D converter)		2.0		Vcc	V
VKEF	Analog reference volta	Analog reference voltage (when using D-A converter Analog power source voltage			Vcc	V
AVss	Analog power source		0		V	
VIA	Analog input voltage	AN0-AN15	0		Vcc	V
ViH	' '	P40–P47, P50–P57, P60–P67, P70–P77, PB0–PB3	0.75Vcc		Vcc	V
ViH	"H" input voltage	P24-P27	0.4Vcc		Vcc	V
ViH	"H" input voltage	P80-P87, PA0-PA7	0.8Vcc		Vcc	V
VIH	"H" input voltage	RESET	0.8Vcc		Vcc	V
ViH	"H" input voltage	XIN, XCIN	0.8Vcc		Vcc	V
VIL	' '	P40–P47, P50–P57, P60–P67, P70–P77, PB0–PB3	0		0.25Vcc	V
VIL	"L" input voltage	P24-P27	0		0.16Vcc	V
VIL	"L" input voltage	P80-P87, PA0-PA7	0		0.2Vcc	V
VIL	"L" input voltage	RESET	0		0.2Vcc	V
VIL	"L" input voltage	XIN, XCIN	0		0.2Vcc	V

RECOMMENDED OPERATING CONDITIONS (Vcc = 4.0 to 5.5 V, Ta = -10 to 85°C, unless otherwise noted)

ا م دا دست	Dore	ameter		Limits		Unit
Symbol	Pala	ametei	Min.	Тур.	Max.	Unit
	"H" total peak output current	P00-P07, P10-P17, P20-P27,				
		P30-P37, P80-P87, P90-P97,			-240	mA
	(Note 1)	PA6, PA7				
ΣIOH(peak)	"H" total peak output current	P41-P44, P46, P47, P50-P57,				
		P60-P67, P70-P77, PA0-PA5,			-60	mA
	(Note 1)	PB0-PB3				
	"L" total peak output current	P24-P27, P41-P44, P46, P47,				
Σ IOL(peak)		P50-P57, P60-P67, P70-P77,			100	mA
	(Note 1)	PB0-PB3				
	"H" total average output current	P00-P07, P10-P17, P20-P27,				
		P30–P37, P80–P87, P90–P97,			-120	mA
ΣIOH(avg)	(Note 1)	PA6, PA7				
21011(avg)	"H" total average output current	P41-P44, P46, P47, P50-P57,			{	
		P60–P67, P70–P77, PA0–PA5,			-30	mA
	(Note 1)	PB0-PB3			1	
Elou (c)	"L" total average output current	P24–P27, P41–P44, P46, P47,			44	
Σ IOL(avg)		P50–P57, P60–P67, P70–P77,		1	50	mA
	(Note 1)	PB0-PB3	4			
	"H" peak output current	P00–P07, P10–P17, P20–P23,		0		
IOH(peak)		P30–P37, P80–P87, P90–P97,			-40	mA
	(Note 2)	PA0-PA7				
IOH(peak)	"H" peak output current	P24–P27, P41–P44, P46, P47,			-120 -30	A
іоп(реак)	(1)	P50–P57, P60–P67, P70–P77,			-10	mA
	(Note 2) "L" peak output current	PB0-PB3 P24-P27, P41-P44, P46, P47,				
IOL(peak)	L peak output current	P50-P57, P60-P67, P70-P77,			40	0
102(pod.t)	(Nata 2)				10	mA
	(Note 3) "H" average output current	PB0–PB3 P00–P07, P10–P17, P20–P23,				
IOH(avg)	a read output outroit	P30-P37, P80-P87, P90-P97,			_18	mA
ion(avg)	(Note 3)	PA0-PA7			10	1117
	"H" average output current	P24-P27, P41-P44, P46, P47,				
IOH(avg)	arerage surpar surren	P50-P57, P60-P67, P70-P77,			-5.0	mA
(0)	(Note 3)	PB0-PB3				
	"L" average output current	P24–P27, P41–P44, P46, P47,				
IOL(avg)	3.11	P50–P57, P60–P67, P70–P77,			5.0	mA
	(Note 3)	PB0-PB3			0.0	
f(CNTR ₀)	Clock input frequency for time				050	
f(CNTR1)	(duty cycle 50%)				250	kHz
f(XIN)	Main clock input oscillation fr	equency (Note 4)			8.4	MHz
f(Xcin)	Sub-clock input oscillation fre			32.768	50	kHz

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

- 2: The peak output current is the peak current flowing in each port.
- 3: The average output current in an average value measured over 100 ms.
- 4: When the oscillation frequency has a 50% duty cycle.
- 5: When using the microcomputer in low-speed operation mode, set the sub-clock input oscillation frequency on condition that f(Xcin) < f(Xin)/3.

ELECTRICAL CHARACTERISTICS (Vcc = 4.0 to 5.5 V, $T_a = -10$ to 85°C, unless otherwise noted)

		T . 100		Limits		1.126
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Voн	"H" output voltage P00–P07, P10–P17, P20–P23, P30–P37, P80–P87, P90–P97, PA0–PA7	IOH=-18 mA	Vcc-2.0			V
Voн	"H" output voltage P24–P27, P41–P44, P46, P47, P50–P57, P60–P67, P70–P77, PB0–PB3	Іон=–10 mA	Vcc-2.0			V
VoL	"L" output voltage P24-P27, P41-P44, P46, P47, P50-P57, P60-P67, P70-P77, PB0-PB3	IOL=10 mA			2.0	V
VT+-VT-	Hysteresis INTo-INT4, SIN1, SIN2, SIN3, SCLK11, SCLK2, SCLK3, CS, CNTR0, CNTR1	When using a non-port function		0.4		V
VT+-VT-	Hysteresis RESET, XIN			0.5		V
VT+-VT-	Hysteresis XCIN		6.70	0.5		V
lн	"H" input current P24–P27, P40–P47, P50–P57, P60–P67, P70–P77, PB0–PB3	VI=VCC	7		5.0	μА
ΙH	"H" input current P80–P87, PA0–PA7 (Note)	VI=VCC	1		5.0	μΑ
lн	"H" input current RESET, XCIN	VI=VCC			5.0	μΑ
lн	"H" input current XIN	VI=VCC		4.0		μA
IL	"L" input current P24–P27, P40–P47, P50–P57, P60–P67, P70–P77, PB0–PB3	VI=VSS			-5.0	μΑ
IL	"L" input current P80-P87, PA0-PA7 (Note)	VI=VSS			-5.0	μΑ
IL	"L" input current RESET, XCIN	VI=VSS			-5.0	μΑ
L	"L" input current XIN	VI=VSS		-4.0		μΑ
ILOAD	Output load current P00–P07, P10–P17, P20–P23, P30–P37, P90–P97	VEE=VCC-36 V, VOL=VCC, Output transistors "off"	150	500	900	μА
ILEAK	Output leakage current P00–P07, P10–P17, P20–P23, P30–P37, P80–P87, P90–P97, PA0–PA7	VEE=VCC-38 V, VOL=VCC-38 V, Output transistors "off"			-10	μА
VRAM	RAM hold voltage	When clock is stopped	2		5.5	V

Note: Except when reading ports P8 or PA.

ELECTRICAL CHARACTERISTICS (Vcc = 4.0 to 5.5 V, Ta = -10 to 85°C, unless otherwise noted)

Comments and	Davarrata	Took oon ditions		Limits		l lmia
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		High-speed mode				
		f(XIN) = 8.4 MHz		7.5	15	mA
		f(Xcin) = 32 kHz		7.5	13	l IIIA
		Output transistors "off"				
		High-speed mode				
		f(XIN) = 8.4 MHz (in WIT state)		1		mA
		f(XCIN) = 32 kHz		'		'''
		Output transistors "off"				
		Middle-speed mode				
		f(XIN) = 8.4 MHz		3		mA
		f(XCIN) = stopped				IIIA
		Output transistors "off"				
		Middle-speed mode	30			
		f(XIN) = 8.4 MHz (in WIT state)	10000	1		mA
	D	f(XCIN) = stopped		'		IIIA
		Output transistors "off"				
Icc	Power source current	Low-speed mode				
		f(XIN) = stopped, f(XCIN) = 32 kHz				
		Low-power dissipation mode set		60	200	μΑ
		(CM3) = 0				i i
		Output transistors "off"				
		Low-speed mode				
		f(XIN) = stopped				
		f(XCIN) = 32 kHz (in WIT state)				
		Low-power dissipation mode set		20	40	μΑ
		(CM3) = 0				
		Output transistors "off"				
		Increase at A-D converter operating		0.6		mA
		f(XIN) = 8.4 MHz		0.6		'''
		Increase at zero cross detection		1		mA
		(P45 = VCC)		'		IIIA
		All oscillation stopped Ta = 25°C	0.1		1	
		(in STP state)				μΑ
		Output transistors "off" Ta = 85°C			10	

ZERO CROSS DETECTION INPUT CHARACTERISTICS

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -10 to 85°C, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Syllibol	Falametei	rest conditions	Min.	Тур.	Max.	
fzcr	Input frequency of zero cross detection			50, 60	1000	Hz
ΔVΤ	Voltage error of zero cross detection distinction	50 Hz or 60 Hz	-100	0	100	mV

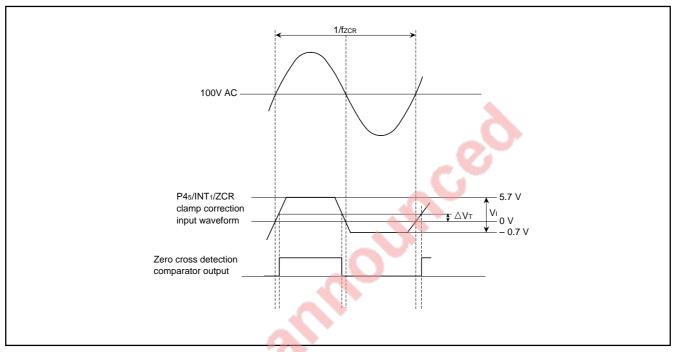


Fig. ZA-1 Zero cross detection input characteristics

A-D CONVERTER CHARACTERISTICS

(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -10 to 85°C, high-speed operation mode f(XIN) = 500 kHz to 8.4 MHz, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			- Unit
Symbol			Min.	Тур.	Max.	Offic
_	Resolution				8	Bits
_	Absolute accuracy (excluding quantization error)	VCC = VREF = 5.12 V		±1	±2.5	LSB
TCONV	Conversion time		49		50	tc (φ)
IVREF	Reference power source input current	VREF = 5 V	50	150	200	μΑ
lia	Analog port input current			0.5	5.0	μΑ
RLADDER	Ladder resistor			35		kΩ

D-A CONVERTER CHARACTERISTICS

(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 to VCC, Ta = -10 to 85°C, unless otherwise noted)

Symbol	Parameter		Test conditions	Limits			Linit
				Min.	Тур.	Max.	Unit
_	Resolution					8	Bits
	Absolute accuracy	Vcc = 4.0 to 5.5 V				1.0	%
_		Vcc = 3.0 to 5.5 V				2.5	%
Tsu	Setting time					3	μs
Ro	Output resistor			1	2.5	4	kΩ
IVREF	Reference power source	ce input current (Note)				3.2	mA

Note: Exclude currents flowing through the A-D converter ladder resistor

TIMING REQUIREMENTS	(VCC = 4.0 to 5.5 V)	Vss = 0 V	. $T_a = -10 \text{ to } 85^{\circ}\text{C}$. unless otherwise noted)
---------------------	-------------------------	-----------	--	---------------------------

Cumbal	Parameter	Limits		Unit	
Symbol	Parameter	Min. Typ. Max.			
tW(RESET)	Reset input "L" pulse width	2.0			μs
tC(XIN)	Main clock input cycle time (XIN input)	119			ns
tWH(XIN)	Main clock input "H" pulse width	30			ns
tWL(XIN)	Main clock input "L" pulse width	30			ns
tC(Xcin)	Sub-clock input cycle time (XCIN input)	20			μs
tWH(Xcin)	Sub-clock input "H" pulse width	5.0			μs
tWL(Xcin)	Sub-clock input "L" pulse width	5.0			μs
tC(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	4.0			μs
tWH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	1.6			μs
tWL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	1.6			μs
tWH(INT)	INT0-INT4 input "H" pulse width	80			ns
tWL(INT)	INT0-INT4 input "L" pulse width	80			ns
tC(Sclk)	Serial I/O clock input cycle time	1.0			μs
tWH(Sclk)	Serial I/O clock input "H" pulse width	400			ns
tWL(Sclk)	Serial I/O clock input "L" pulse width	400			ns
tsu(Sclk-Sin)	Serial I/O input setup time	200			ns
th(Sclk-Sin)	Serial I/O input hold time	200			ns

SWITCHING CHARACTERISTICS (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -10 to 85°C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Farametei	rest conditions	Min.	Тур.	Max.	Offit
tWH(Sclk)	Serial I/O clock output "H" pulse width	CL = 100 pF	tc(Sclк) /2-160			ns
tWL(Sclk)	Serial I/O clock output "L" pulse width	CL = 100 pF	tc(Sclk) /2-160			ns
td(Sclk-Sout)	Serial I/O output delay time				0.2tc(Sclk)	ns
tv(Sclk-Sout)	Serial I/O output hold time		0			ns
tr(Sclk)	Serial I/O clock output rising time	CL = 100 pF			40	ns
tf(Sclk)	Serial I/O clock output falling time	CL = 100 pF			40	ns
tr(Pch–strg)	High-breakdown-voltage P-channel open- drain output rising time (Note 1)	CL = 100 pF VEE = VCC -36 V		55		ns
tf(Pch–weak)	High-breakdown-voltage P-channel open- drain output falling time (Note 2)	CL = 100 pF VEE = VCC -36 V		1.8		μs

Notes 1: When the bit 7 of the FLDC mode register 1 (address 003616) is at "0".

2: When the bit 7 of the FLDC mode register 1 (address 003616) is at "1".

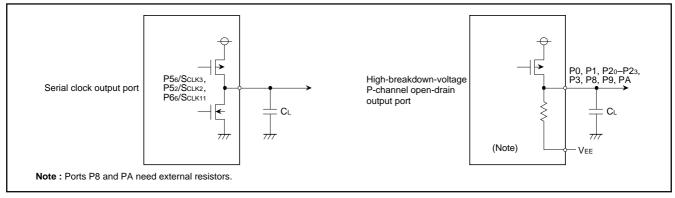
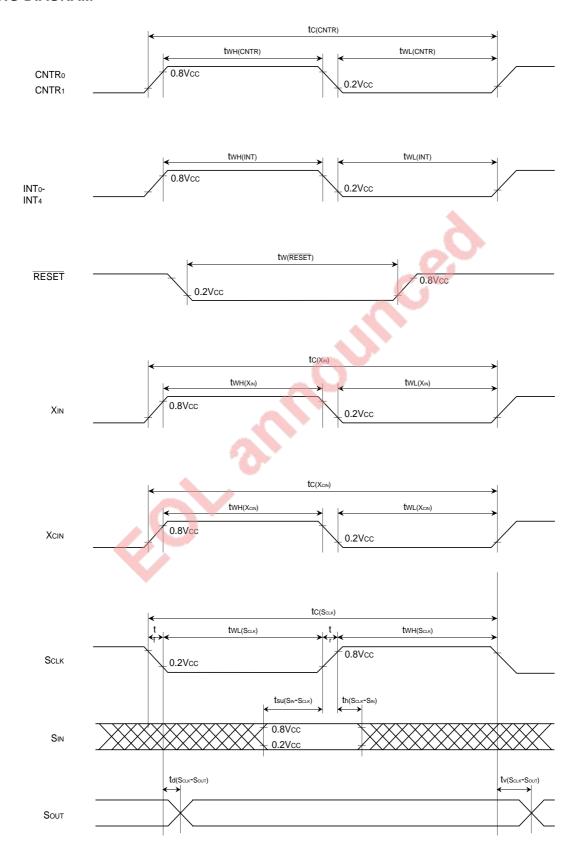



Fig. ZA-2 Circuit for measuring output switching characteristics

TIMING DIAGRAM

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Missubish Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the consequence of existence o

- approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST	3819 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	980109
	EOL amnounced	