Introduction of LoRa[®]-based Solutions for RL78 Family

Sep.30, 2024

EP2P-AA-24-0398

EP2 Product Marketing Department Embedded Processing 2nd Business Division Embedded Processing Product Group Renesas Electronics Corporation

Introduction

This guide provides an overview of the protocol stacks, evaluation tools, software development environment for better understanding before starting the development of the LoRaWAN[®] and LoRa[®] based applications. This document covers the following topics:

- LoRa[®]/LoRaWAN[®] Overview
- LoRa[®]-based Solution for RL78 Family (Protocol Stacks, Evaluation Tools)
- Software Development Environment

Note that <u>blue and underlined text</u> indicates a link to a web page or document.

(For your reference)

For RA family, <u>"Introduction of LoRa®-based Solutions for RA Family" (EP2P-AA-24-0396)</u> is also available in the following web page.

LoRa®-based Solutions for RA Family Web Page

https://www.renesas.com/us/en/application/communication-computing-infrastructure/wireless-network/lora-solutions/lora-solution-ra

LoRa[®] / LoRaWAN[®] Overview

About LoRa[®] and LoRaWAN[®]

LoRa[®] is a modulation technique, and LoRaWAN[®] is a standardized protocol that uses the LoRa[®]-based modulation technique.

LoRa[®] (Long Range)

- A spread spectrum modulation technique derived from chirp spread spectrum (CSS) technology developed by Semtech Corporation.
- Suitable for long distance (Up to 20km in line of sight), low data rate (several hundreds of bps to several tens of kbps), low power consumption communication.
- LoRaWAN[®] protocol on top of LoRa[®]-based modulation has been standardized.
- Custom protocol on top of LoRa[®]-based modulation can be adopted.
- LoRaWAN[®] (LoRa[®] Wide Area Network)
 - Communication protocol for low power and long distance targeted for IoT devices, standardized by LoRa Alliance[®].
 - Modulation schemes of LoRa® and GFSK (Gaussian Frequency Shift Keying) are utilized.

Application Examples for LoRa[®] / LoRaWAN[®]

Wireless Data Communication with Low Quantity Data, Low Rate, Less Frequent and Periodic, Wide Range

Metering

- Data gathering for town/propane gas, water flowmeter etc.
- Data gathering of POS system for vending machine e.g. beverage

Industry / Building

- Data management/forwarding of infrastructure for traffic network e.g. bus, taxi, rent-a-car, bicycle, traffic signal, street light, etc.
- Data gathering for monitoring on large structure e.g. tunnel, bridge, buildings, signboard
- Building management related: open/close-door, locking, operation management for air conditioning / lighting / curtain, operation & position management for elevator / escalator, inventory management at warehouse, alarm for alert region
- Centralized data management for agriculture / stockbreeding e.g. watering, positioning system for livestock, monitoring for bird flu etc.

Consumer / Home

- Data management/forwarding for wearable gadget for healthcare
- Tracking system for person e.g. children, elderly people.

Requirements for LPWA Wireless Network

For low-power wide-area (LPWA) network, easy network construction and low-power communications are required.

Easy network construction

LoRaWAN[®] ecosystem provides LoRaWAN[®]-compatible end devices, gateways, network servers, and cloud services. This makes it easy to build a network by preparing them.

Low power communications

Many LPWA applications require less number of batteries and long-term operations.

In this case, applications send notifications once every few hours and transit to sleep state in most of the time.

This requires a microcontroller with lower current consumption in sleep state.

RENESAS EP2P-AA-24-0398

LoRa[®]-based Solutions for RL78 Family

LoRa[®]-based Solutions for RL78 Family Features

RL78 LoRA Alliance™ Wide Area Networks for Io

Super low power solutions suitable for IoT end node required for long-term battery operations

Low Power

- Ultra-low power microcontroller (RL78) + Semtech LoRa[®] Transceiver (SX1261/SX1262)
- Communication software designed for low power consumption fully utilizing power saving features of RL78
 - Achieves less than 1 µA of the current consumption in sleep mode (0.55µA in the case of RL78/G23 and RL78/G22)
 - Enables system cost reduction by reducing capacity/number of batteries and lifetime extension

Easy to Design

- Communication software for LoRaWAN[®] protocol
- Sample applications easily controlled by AT commands
- Sample applications working with cloud services (AWS, Azure, etc.) to visualize sensor data, etc.

Easy to design IoT applications with low power consumption utilizing LoRaWAN[®] communication software designed for low power consumption and optimized to meet timing constraints of LoRaWAN[®]

Easy to Evaluate

 Evaluation tools useful to estimate power consumption before development, evaluate the wireless performance after prototyping, and analyze the protocol in the event of issues.

Easy to evaluate developed wireless boards and applications.

Current in Sleep Mode 0.55µA

Communication Software

Wireless Evaluation Tool

LoRa[®]-based Solutions for RL78 Family Current Consumption and Wireless Performance

Chipset, Software

RL78/G23, RL78/G22, RL78/G14 (Microcontroller) + Semtech SX1261/SX1262 (LoRa® Transceiver)

Lower power consumption suitable for long-term battery operation

 RL78/G23: Operating mode: 0.84mA@8MHz(*1), STOP mode: 390nA(*1)(*3)
 RL78/G22: Operating mode: 0.78mA@8MHz(*2), STOP mode: 390nA(*2)(*3)
 SX1261/SX1262: Tx: 32mA@+15Bm(*4), 118mA@:+22dBm(*5) Rx: 4.6mA(*4)(*5)

High performance LoRa[®] transceiver achieves longer range communication

- Min Rx sensitivity: -148dBm
- Max Tx power: +15dBm(*4), +22dBm(*5)
- Long range: Link budget 170dBm (Max)

Suitable for IoT end node required for long-term battery operation

Support low power Semtech SX1261/SX1262 In comparison with Semtech SX1276,

- Rx current: approx. 50% (max) reduced
- Tx current: approx. 20% (max) reduced
- *1) RL78/G23(R7F100GLG), *2) RL78/G22(R7F102GGE)
- *3) Subsystem clock operation mode, 32bit Interval Timer, LVD0: ON
- *4) Semtech SX1261, *5) Semtech SX1262

LoRaWAN[®] Average Current (Estimation) LoRaWAN[®] Class A operation - Tx + Rx(ACK)

Low power consumption of LoRaWAN[®] stack

- LoRaWAN[®] stack shifts RF part to the most suitable low consumption mode automatically according to the inner operating state.
- MCU part can be shifted to a low consumption mode during frame sending and receiving.
- The timer function of the low consumption optimized in intermittent operations is supported. This can also be used from an application.

	Current ,	/ State						Conditions	
	WA		WAKE-UP RX DELAY		ту			Voltage[V]	3.3
Battery Life 🗧 🕒 👘							JEEL	Clock[MHz]	8
	RL78/	Current	0.84 mA	0.39 uA	0.39 uA	0.39 uA	0.39 uA	TX Power [dBm]	14
Hour 194951.4087	G23							Data payload [byte]	10
Year 22.25472702	(*1)	State	RUN (8MHz)	STOP (32kHz)(*2)	STOP (32kHz)(*2)	STOP (32kHz)(*2)	STOP (32kHz)(*2)	Data rate [bps]	976 SE10/125
22 years, 3 months	RF	Current	0.6 mA	0.6.114	25.5 mA	4.6 mA	0.16.04		31 10/ 123
Average Current / Period [uA]		current	0.0 11A	0.0 4	23.3 MA	4.0 MA	0.10 0		25
Average Current / Period [uA]		State	STORY DC	Marm	τv	DV	Cold	Battery[mAh]	1650
6.58		State	SIDDI_KC	Sleep		KΛ	Sleep	Self discharge[%/year]	1.0
	*1) RI 78/	(G23(R7E1)	00GLG) *2)3	2hit Interval T	imer:ON IVD) ON		Interval [sec]	1800
	*1) RL78/	G23(R7F1	00GLG), *2) 3	32bit Interval T	imer:ON, LVD	ON,		Interval [sec]	1800

LoRa[®]-based Wireless Software Package Contents

- Communication software, evaluation tools and documents are bundled into one package (*1).
 - LoRa®-based Wireless Software Package (Sample Code)

First, please refer to the following application note.

LoRa®-based Wireless Software Package (Application Note)

(Contents)

- Sample Applications (Six Types) Location: samples¥project
 - RadioEvalApp: RF characteristics evaluation program (AT command interface)
 - > **Ping-pong**: Simple application using RF driver
 - LoRaSample: LoRaWAN® sample application (AT command interface)
 - LoRaFuotaSample: LoRaWAN[®] FUOTA sample application (AT command interface)
 - > **PrivateLoRaSample**: Private LoRa[®]-based network sample application (AT command interface)
 - LoraWanPrivateLoRaComboSample: LoRaWAN[®]-Private LoRa[®] combination sample application (AT command interface)
- Evaluation Tools (Two Types) Location: samples¥tools
 - Renesas LPWA Studio: RF characteristics evaluation tool (GUI)
 - Renesas Power Estimator: Power estimation tool (Excel)
- Documents Location: samples¥documents

 LoRaWAN* stack
 Private LoRa*sawd
 RF driver Software

 Software
 Software
 Software

 Sample application program
 Sample application program
 Sample application program

 LoRaWAN* MAC
 Private LoRa*sawd

RE driv

RL78/G23.RL78/G22.RL78/G14

RF driv

RL78/G23,RL78/G22,RL78/G1

Communication Software

Evaluation Tools

RL78/G23,RL78/G22,RL78/G14

Semtech SX1261 SX1262

LoRa[®]-based Communication Software

- Offers three types of software for LoRa[®]-based communication software.
 - > LoRaWAN[®] protocol stack : Compliant to LoRaWAN[®] spec. For interoperability required applications.
 - > Private LoRa[®]-based Network: Proprietary LoRa[®]-based communication spec. For interoperability not required applications.
 - > **RF driver:** Applicable for user custom protocol. For interoperability not required applications.

Network Topology Example

LoRaWAN[®] Stack

Standardized protocol
Interoperable with multi-vendor

Private LoRa-based[®] Network RF Driver

Applicable for custom protocol

Flexible for various application

Comparison of LoRaWAN® and Private LoRa®-based Network

- LoRaWAN[®] uses a communication protocol standardized by LoRa Alliance[®], has high interoperability, and is easily connected to the Internet using third parties, making it suitable for building large networks.
- Private LoRa[®]-based network uses proprietary LoRa[®]-based communication protocol, allowing control of communication speed and frequency to fit the environment, and are suitable for building small-scale networks.

	LoRaWAN®	Private LoRa [®] -based Network
Protocol	LoRa Alliance® Standard	Proprietary (custom)
Interoperability	\checkmark	NG
Cloud Connectivity	\checkmark	Optional
Network Capacity	Large	Small
Building an Ecosystem	\checkmark	Optional
Gateway/Server	Required	Not required
Customizability	Optional	\checkmark
Communication Cost	Optional	\checkmark
Bidirectional Communication	Optional	\checkmark
Low Power Consumption Features	\checkmark	\checkmark
Security Functions (Encryption, Tamper-proof)	\checkmark	\checkmark

LoRaWAN[®] Stack Software Features

- Provides API functions to control LoRaWAN[®] protocol, power mode of MCU block and timer optimized for low power operation
- Application can request to LoRaWAN[®] stack via API functions (ex. Request to TX/RX)
- Application is notified of asynchronous event via callback functions (ex. Notification of TX/RX completion)
- LoRaWAN[®] stack controls power mode of RF block automatically
- OS independent. Easily to implement to various systems

LoRaWAN[®] Stack Software Specification Outline

Function	Specification
LoRaWAN [®] Version	V1.0.4/1.0.3/1.0.2
Device Type	End-device (Class A, Class B ^{*1} , Class C)
Frequency Band	863Mz(EU), 915MHz(US), 920MHz(ASEAN/Japan), 865MHz(India), 915MHz(Australia), 920MHz(Korea)
Modulation	LoRa® / GFSK
Data Rate	Data rate is region specific (e.g. LoRa®: 250 bps - 11 kbps, FSK: 50 kbps for AS923/EU868)
Data Size	Maximum payload size is region specific (e.g. Max: 250 bytes for AS923/EU868)
Tx Options	Listen before talk, ACK request
Frame Type	Join Request, Join Accept, Confirmed/Unconfirmed data message
Security	Authentication (OTAA), Encryption/Decryption(AES-CTR), Integrity check (AES-CMAC)
Radio Regulation Control Support	Check whether configured radio parameters conform to regional radio regulation before frame transmission/reception
Low Power Support	Provides API to control power mode of MCU block and timer optimized for low power operation LoRaWAN [®] stack controls power mode of RF block automatically

*1) Supported for RL78/G23 and RL78/G14

Private LoRa® Network Sample Software Features

- Provides API functions to control private LoRa[®] network protocol, power mode of MCU block and timer optimized for low power operation
- Application can request to private LoRa[®] network stack via API functions (ex. Request to TX/RX)
- Application is notified of asynchronous event via callback functions (ex. Notification of TX/RX completion)
- Private LoRa[®] network stack controls power mode of RF block automatically
- OS independent. Easily to implement to various systems

Private LoRa® Network Sample Specification Outline

Function	Specification
Operation Mode	Intermittent Tx/Rx mode / Continuous Rx mode
Frequency Band	863Mz(EU), 915MHz(US), 920MHz(ASEAN/Japan), 865MHz(India), 915MHz(Australia), 920MHz(Korea)
Modulation	LoRa [®] / GFSK
Data Rate	Data rate is region specific (e.g. LoRa [®] : 250 bps - 11 kbps, FSK: 50 kbps for AS923/EU868)
Data Size	Maximum payload size is region specific (e.g. Max: 250 bytes for AS923/EU868)
Tx Options	Listen before talk, ACK request
Security	Encryption/Decryption(AES-CTR), Integrity check (AES-CMAC)
Radio Regulation Control Support	Check whether configured radio parameters conform to regional radio regulation before frame transmission/reception
Low Power Support	Provides API to control power mode of MCU block and timer optimized for low power operation private LoRa [®] network stack controls power mode of RF block automatically

RF Driver for LoRa[®] Features

- Provides API functions to control LoRa[®] and GFSK PHY layer, power mode of RF block and MCU block and timer optimized for low power operation
- Application can request to RF driver via API functions (ex. Request to TX/RX)
- Application is notified of asynchronous event via callback functions (ex. Notification of TX/RX completion)
- OS independent. Easily to implement to various systems

RF Driver Software Functional Specification Outline

Items	LoRa [®] GFSK						
Radio frequency range	426MHz to 928MHz						
Max payload length	255 bytes						
Data rate	11.4bps to 62.5kbps	600bps to 300kbps					
Bandwidth	7.8kHz to 500kHz	2.6kHz to 250kHz					
Spread factor	SF5 to SF12	-					
Coding rate	4/5, 4/6, 4/7, 4/8	-					
Carrier sense	Yes						
Energy detection	Yes						
RF characteristics evaluation	Continuous unmodulated transmission						
Radio Regulation Control Support	Check whether configured radio parameters conform to regional radio regulation before frame transmission/reception						
Low power support	Provides API to control power mode of RF block, MCU block and timer optimized for low power operation						

RF Driver Support Functions for Regional Radio Regulation

 RF driver supports the functions to make it easier for the protocols and applications on top of the RF driver to control to conform with the regional radio regulation.

Supported country/region: 863MHz(EU), 915MHz(US), 920MHz(ASEAN/Japan), 865MHz(India), 915MHz(Australia), 920MHz(Korea)

- When this functions are enabled, RF driver checks the following radio parameter configurations and transmission intervals before starting the frame transmission/reception. If RF driver determines those are not compliant with the regulation, it will cancel the transmission/reception. In case the carrier sense is required for the regulation, RF driver automatically executes the carrier sense before sending the frame transmission and cancels it if the carrier is detected.
 - Channel frequency / band width
 - Minimum pause duration
 - Maximum sending duration
 - Maximum sending duty cycle

Caution

These functions are intended to make it easier for you to design for compliance with the radio laws and regulations, and does not warrant or guarantee the compliance with the radio laws and regulations. You shall be responsible for using the functions in compliance with the applicable laws and regulations.

Radio Driver Support Functions for Regional Radio Regulations https://www.renesas.com/node/25467896

LoRaWAN[®] Stack Software Sample Program Command List (Excerpt)

- LoRaWAN[®] stack sample program supports AT commands to request to join network and send/receive data messages to/from LoRaWAN[®] stack.
- It also supports the certification test mode that can be used for the LoRaWAN certification test.

Command	Description			
+SAVE	Save parameters to the data flash			
+LOAD	Load parameters from the data flash			
+REGION	Set/get region			
+CLASS	Set/get device class	((o))		
+ACTMODE	Set/get activation mode	$\overline{\mathbf{M}}$		
+DEVEUI	Set/get device EUI (DevEUI)	PI 78/C23		
+APPEUI	Set/get application identifier (AppEUI)	PI 78/C22	UART	
+APPKEY	Set application key (AppKey)	DI 79/C1/		Uport
+JOIN	Activate the device according to the activation mode		AT	HOST
+MTYPE	Set/get message type (confirmed / unconfirmed) of data messages to be sent	SX1261	Command	MCU
+FPORT	Set/get port number (FPort) of data messages to be sent	SX1262		
+RSSI	Enable/disable RSSI display	OATZOZ		
+SENDHEX	Send data message of hexadecimal			
+RCVD	Notify reception of a data message			
+ADR	Enable/disable ADR mode			
+DR	Set/get default data rate in case ADR is disabled			
+DCYCLE	Enable/disable duty cycle control			
+COMPLIANCE	Set/get certification test mode setting or enable certification test mode			

LoRaWAN[®] Stack Software Firmware Update over LoRaWAN[®] (*1)

- FUOTA (Firmware Updates Over The Air) provides a function to remotely update a firmware over wireless communication.
 This function is a key feature for IoT applications deployed widely in the field and that require long term operation.
- The LoRa Alliance[®] standardized the FUOTA process utilizing the application layer protocols on top of the LoRaWAN[®] protocol, such as Clock Synchronization Message Package, Remote Multicast Setup Package and Fragmented Data Block Transport Package. These protocols can deliver a firmware image to multiple devices at the time specified by an application server.
- To update the firmware of the MCU, the application program including the communication part can be updated by switching to the firmware rewrite program using the boot swap of the RL78 MCU.

Private LoRa®-based Network Sample Features

- Private LoRa[®]-based network sample provides a small network environment using LoRa[®]-based protocol.
- It allows direct and indirect transmissions between devices, as well as bidirectional communication.
- AT commands can be used to control intermittent operation and key exchange necessary for security, making it easy to construct a network environment.
- Communication interval can be flexibly changed, which is useful for balancing the amount of data communication and power consumption.

Private LoRa®-based Network Sample LoRaWAN® and Private LoRa®-based Network Combination Sample^{*1}

- LoRaWAN[®] and private LoRa[®]-based network can be switched dynamically (time-division operation), which are suitable for wide-area / large-scale network communication and small / ad-hoc network communication, respectively.
- Resumes communication immediately after network switch by retaining parameters required for LoRaWAN[®] and private LoRa[®]-based network.
- Supports low power function utilizing intermittent operation, frame encryption and frame integrity check functions.
- Use case: automatic meter reading application LoRaWAN[®] is used as main network to collect metering data automatically. Private LoRa[®]-based network can be used as sub network for operator to get metering data directly from a meter in case of bad wireless environment

*1) Supported for RL78/G23 and RL78/G14

Evaluation Tool Renesas LPWA Studio

RF Characteristics Evaluation Function

RF characteristic evaluations such as packet transmission/reception, PER/BER measurement, RSSI measurement can be conducted via the GUI.

Sniffer Function

LoRa[®] / GFSK frames can be captured and analyzed fields of the frames can be shown on the GUI. Analysis of the LoRaWAN[®] protocol frames are also supported.

*1) PER: Packet Error Rate, BER: Bit Error Rate

Renesas LPWA Studio: <u>https://www.renesas.com/node/1400056</u>

Evaluation Tool Renesas Power Estimator

- Evaluation tool to estimate the average current consumption and battery life in case of the intermittent operation (frame transmission/reception, low power mode, etc).
- Shows the current consumption and battery life after the interval of the intermittent operation, the periods for each state, the operation voltage, and the battery capacity are input to the tool.

Please fill in the orange cell.	Current[mA]									
3	30.00									
Device RL78/G23(R7F100GLG)		-								
Voltage[V] MCU:1.8V, RF:1.8V-3.3V 2	20.00									
Clock[MHz] 8 1	10.00									
Temp.[°C] 25	0.00									
Battery[mAh] 1650	0 200	400	600	800	1000	1200	1400	1600	1800	2000
Self discharge rate[%/year] 1	Oi	peration			Duration	Time	(Current [m.	A]	Duration x
Period[ms] 1800000	RF			MCU	[ms]	[ms]	RF	MCU	RF+MCU	Current
0 <mark>.Co</mark>	Id SLEEP(RF OFF)			Sleep	0.07	0.00	0.00016	0.00039	0.00055	0.00
Battery Life	Id SLEEP(RF OFF)			Running	2.37	0.07	0.00016	0.84	0.84016	1.99
	((DC-DC, FSK 4.8kb/s)			Running	9.68	2.44	4.2	0.84	5.04	48.77
Hour 194951.4087 3 ST	DBY_RC(RC13M,XSOC OFF)			Running	3.14	12.12	0.6	0.84	1.44	4.53
Year 22.25472702 4 TX	(SX1261,868/915MHz,PA=+14dB	Bm,+14dBm,VBA	AT=3.3V	Sleep	366.67	15.26	25.5	0.00039	25.50039	9350.23
22 years, 3 months 5 Wa	arm SLEEP(RF Config retainded)			Running	1.81	381.93	0.0006	0.84	0.8406	1.52
Average Current / Period [uA] 6 Wa	arm SLEEP(RF Config retainded)			Sleep	966.81	383.74	0.0006	0.00039	0.00099	0.96
6.58 7 Wa	arm SLEEP(RF Config retainded)			Running	1.81	1350.55	0.0006	0.84	0.8406	1.52
8 RX	((DC-DC, LoRa 125kHz)			Sleep	313.60	1352.37	4.6	0.00039	4.60039	1442.70
9 <mark>Co</mark> l	Id SLEEP(RF OFF)			Running	3.39	1665.97	0.00016	0.84	0.84016	2.85
Estimated nower consumptions	-					1669.36	0	0	0	0.00
are for indication only.	-					1669.36	0	0	0	0.00
DON'T use for the actual products design. 12	-					1669.36	0	0	0	0.00
13 <mark></mark>	-					1669.36	0	0	0	0.00
14	-					1669.36	0	0	0	0.00
30 <mark>Co</mark> l	Id SLEEP(RF OFF)			Sleep	1798330.64	1669.36	0.00016	0.00039	0.00055	989.08
						1800000.00				
							Sum			11844.15
							Ave[mA]			0.00658

Renesas Power Estimator: https://www.renesas.com/node/704381

Example of Application LoRaWAN[®] Sensor Demo

 Application note, LoRaWAN[®] Sensor Demo, introduces you how to visualize sensor data transmitted by the RL78 Sensor Node to the Cloud (AWS/Azure) via LoRaWAN[®] networks.

Contents

- How to setup the evaluation board and demo application
- How to setup the LoRaWAN[®] gateway
- How to setup the LoRaWAN[®] network server
- How to setup of the cloud server (AWS/Azure)

RL78/G23, RL78/G22, RL78/G14 LoRaWAN[®] Sensor Demo https://www.renesas.com/node/1538231

Software Development Environment

Software Development Environment Hardware

- The software development environment consists of the RL78/G23-64p Fast Prototyping Board, RL78/G23-128p Fast Prototyping Board RL78/G22 Fast Prototyping Board or RL78/G14 Fast Prototyping Board and the Semtech SX1261/1262 Shield.
- The development and evaluation of applications can be started immediately by using the providing software.

Software Development Environment Development Tool

- CS+ (CC-RL Comiler) <u>https://www.renesas.com/en/software-tool/cs</u>
- e² studio information for RL78 Family (CC-RL Compiler) <u>https://www.renesas.com/en/software-tool/e2studio-information-rl78-family</u>
- C Compiler Package for RL78 Family (CC-RL)

https://www.renesas.com/en/software-tool/c-compiler-package-rl78-family

RL78 Smart Configurator

https://www.renesas.com/en/software-tool/rl78-smart-configurator

CC-RL Evaluation Edition: Trial Period 60 Days

https://www.renesas.com/en/software-tool/compiler-licenses

Software Development Environment RL78 Smart Configurator^{*1}

- RL78 Smart Configurator automatically generates initial-setting programs for MCUs. It provides a quick and smart way of combining and configuring software to meet your needs, such as by configuring peripheral pins and importing middleware and drivers.
- LoRa[®]-based Wireless Software supports RL78 Smart Configurator^{*2}. Application programs can be developed in combination with LoRa[®]-based Wireless Software and the driver code generated by RL78 Smart Configurator^{*3}.

Generating Driver Code

The Smart Configurator provides you with a GUI environment for generating driver code that handles the details of the settings of peripheral modules.

Clock settings

Component settings

Compare come dege come cade and a dege of the		
Copensite Systems Sense (A. S.		10 10 10 10 10 10 10 10
I have put a by allow		
a transme	tion	-
ner beset er ette berlæte. Netsenner 10.50 avræ		

You can make clock settings by selecting a clock source and making connections in the block diagram.

 Statute
 Statute
 Name

 Note:
 Note:
 Note:
 Note:

 Note:
 Note:
 Note:
 Note:

 Note:
 Note:
 Note:
 Note:

 Note:
 Note:
 Note:
 Note:

Ser Name	Operation limit		1008	- 1			
# 180	Clust North		PERMIT		tinte		
a ∰ how	Randa rusis setteg Winge tanda rusis		C Continuire Insulte Frank				
	Raphophotop O'tele	8114	Orbit.				
	Kanka direction setting @1.38		() vna				
	Party setting Without	Otymity	Onitarity		in set		
	Day followyth safety (#11 sa		()24e.				
	Tendre istalierel selling # filer resent		Ühenni				
	Tande one units Tande one units		and a	-	(depil	Alerest arter \$15%	
	4 million and the second					_	i.

You can make settings for peripheral modules. After selecting the module you wish to set up for use, you can check for errors in settings (with some types indicated on the display) or switch the channels for use by drivers of multi-channel modules.

Pin Settings

The assignments of pins can be set up through a GUI, which also checks and offers solutions for cases of contention for the same pin by multiplexed functions.

[Pins Configuration] window (displayed per peripheral module)

Networkson KONA	Parliant				91日 日日	16.62
(Spechine her)	a per l'ille		ing for any phone	**	A	
Lond Lond		Toreins 6.00 10.00 1	105 2001 2001 2001 2001 2001 2001 2001 2	A PARTING AND	Politandar Politanagura Politanagura Politanagura Politanagura Politangura Politangura Politangura Politangura Politangura Politanag	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Specifying a peripheral module in the window displays the pin functions for use by the module and allows you to set the assignment of the functions to pins.

[MCU Package] window

Displays a symbolic view of the pins, indicating by colors which pins are and are not in use, which have been assigned contending multiplexed functions, and so on. This makes it easy to check the overall situation.

Automatic resolution of contention between pin functions

In cases of contention for a pin, clicking on the pin brings up a list allowing automatic changing of the assignment of the pin to resolve the contention.

*1) RL78 Smart Configurator, *2) Supports RL78/G23 and RL78/G22,*3) Smart Configurator Usage for RL78 LoRa®-based Wireless Software Reference Guide.

LoRaWAN[®] Evaluation Environment

- To try to evaluate LoRaWAN[®] communication, LoRaWAN[®] gateway and LoRaWAN[®] network server need to be prepared.
 - For LoRaWAN[®] gateway, LoRaWAN[®]-compatible product is necessary.
 - For LoRaWAN[®] network server, some vendors offer services that are free to try for proof-of-concept purposes.
 - LoRaWAN[®] network server can be connected to cloud services.
 - Some of cloud services support LoRaWAN[®] network server.

LoRa[®]-based Solutions Web Pages

- LoRa®-based Solutions Web Page https://www.renesas.com/us/en/application/communication-computing-infrastructure/wireless-network/lora-solutions/
- LoRa®-based Solutions for RL78 Family Web Page <u>https://www.renesas.com/us/en/application/communication-computing-infrastructure/wireless-network/lora-solutions/lora-solution-rl</u>
- Video: RL78 LoRa®-based Solutions <u>https://www.renesas.com/us/en/video/rl78-lora-based-solution</u>
- Video: RL78 LoRaWAN® Sensor Demo Tutorial <u>https://www.renesas.com/us/en/video/rl78-lorawan-sensor-demo-tutorial</u>
- Blog: Would You Like to Use a LoRa®-Based Solution from Renesas to Develop IoT Applications with Low Power Consumption? <u>https://www.renesas.com/us/en/blogs/would-you-use-lora-based-solution-renesas-develop-iot-applications-low-power-consumption</u>

Appendix Memory Size

Application RL78/G23-64p FPB*1 RL78/G23-128p FPB*1 **RL78/G22 FPB^{*1} RL78/G14 FPB*1** ROM RAM ROM RAM ROM RAM ROM RAM LoRaSample^{*2 *3 *4} 63.5 5.1 63.6 5.1 3.8 56.0 68.6 5.6 LoRaFuotaSample^{*2 *3 *5} N/A N/A N/A 24.7 N/A 93.5 25.9 86.9 LoRaSensorSample^{*2 *3 *6} N/A N/A 58.4 3.8 65.9 5.1 70.8 5.6 LoRaWanPrivateLoRaComboSample^{*2*3*7} 6.0 85.8 N/A N/A 90.8 6.5 85.9 6.0 PrivateLoRaSample^{*2*8} 3.5 52.1 52.1 3.5 48.8 3.4 55.6 3.9 RadioEvalApp^{*2 *8} 4.2 41.6 41.6 4.2 39.9 4.0 47.1 4.7 Radio Driver Only^{*8} 14.6 0.6 14.7 0.6 14.0 0.6 16.3 0.6 LoRaWAN MAC Only^{*3} 26.2 2.3 26.2 2.3 22.6 1.6 26.2 2.3

Tool: Compiler: CC-RL V1.14.00: Optimize options: -Osize, -goptimize, -OPtimze=SYmbol_delete, Memory model: Medium (RL78/G23, RL78/G14), Small (RL78/G22) RL78 Smart Configurator: V1.11.0 (RL78/G23, RL78/G22)

Note1: FPB stands for Fast Prototyping Board.

Note2: Stack size (1.0KiB) is included in the RAM size.

- Note3: LoRaWAN V1.0.4, Class A/C, multicast and region EU868 are enabled. An additional ROM(9.7KiB) / RAM(0.3KiB) are required when Class B is enabled. (RL78/G23, RL78/G14) LoRaWAN V1.0.4, Class A/C and region EU868 are enabled, and Class B and multicast are not supported. (RL78/G22)
- Note3: ROM/RAM sizes include LoRaWAN MAC, Radio Driver, and the lower layer's code required by LoRaSample.

An additional ROM(11.1KiB(RL78/G23), 11KiB(RL78/G14)) / RAM(0.3KiB) are required when Class B is enabled.

Note5: ROM/RAM sizes include LoRaWAN MAC, Radio Driver, and the lower layer's code required by LoRaFuotaSample. RAM size also includes the fragment data block buffer for FUOTA (16KiB). An additional ROM(11.6KiB) / RAM(0.3KiB) are required when Class B is enabled.

- Note6: ROM/RAM sizes include LoRaWAN MAC, Radio Driver, and the lower layer's code required by LoRaSensorSample. An additional ROM(11.1KiB) / RAM(0.3KiB) are required when Class B is enabled.
- Note7: ROM/RAM sizes include LoRaWAN MAC, Radio Driver, and the lower layer's code required by LoRaWanPrivateLoRaComboSample. An additional ROM(11KiB) / RAM(0.3KiB) are required when Class B is enabled.
- Note8: ROM/RAM size includes .RLIB, .SLIB and the lower layer's code required by PrivateLoRaSample, RadioEvalApp, or Radio driver. An additional ROM(4.8KiB(RL78/G23), 4.5 KiB(RL78/G22), 4.7 KiB(RL78/G14)) / RAM(0.1 KiB) are required when regulatory function is enabled.

Memory Size Unit: KiB(=1024Bytes)

Appendix Peripheral Resource Usage

Resources	Function	RL78/G23-64p FPB*1	RL78/G23-128p FPB ^{*1}	RL78/G22 FPB ^{*1}	RL78G/14 FPB ^{*1}
Timer		TML32 TAU02	TML32 TAU02	TML32 TAU02	RTC Timer RJ 12bit IT
SX126x	CLK MISO MOSI ANTSW NSS DIO1 BUSY XTAL_SEL DEVICE_SEL FREQ_SEL NRESET	SCK11(P30) SI11(P50) SO11(P51) OUT(P73) OUT(P76) INTP11(P77) IN(P42) IN(P25) IN(P24) IN(P23/RFU) OUT(P22)	SCK11(P95) SI11(P96) SO11(P97) OUT(P42) OUT(P46) INTP11(P77) IN(P106) IN(P147) IN(P117) IN(P117) IN(P116/RFU) OUT(P115)	SCK20(P15) SI20(P14) SO20(P13) OUT(P17) OUT(P146) INTP6(P140) IN(P31) IN(P25) IN(P26) IN(P27/RFU) OUT(P147)	SCK31(P54) SI31(P53) SO31(P52) OUT(P03) OUT(P02) INTP11(P77) IN(P75) IN(P23) IN(P24) IN(P25/RFU) OUT(P26)
UART	Tx Rx	TxD0(P12) RxD0(P11)	TxD0(P12) RxD0(P11)	TxD0(P12) RxD0(P11)	TxD0(P51) RxD0(P50)
I ² C for sensor (Option)	SCL SDA	SCLA1(P62) SDAA1(P63)	SCLA1(P62) SDAA1(P63)	SCL21(P70) SDA21(P71)	SCLA0(P14) SDAA0(P15)

Note1: FPB stands for Fast Prototyping Board

- Semtech, LoRa[®], and LoRaWAN[®] are registered trademarks of Semtech Corporation.

© 2024 Renesas Electronics Corporation. All rights reserved.