

ASIC Technology Handbook

Renesas Electronics

www.renesas.eu

2011.02

ARM, ARM7TDMI-S, ARM926EJ-S, ARM946E-S, ARM966E-S, ARM11 and ARM Cortex are trademarks of ARM Ltd. 4KEc, 24KEm, 24KEc, 24KEf and 74Kf are trademarks of MIPS Technolgies. All other product, brand, or trade names used in this pamphlet are the trademarks or registered trademarks of their respective owners.

Products and specifications in this brochure are subject to change without notice. To ensure that you have the latest product data, please contact your local Renesas sales office.

Contents

1	Technology		
	1.1	Description	4
	1.2	Overview	5
	1.3	Gate Array Technology Details	6
	1.4	Embedded Array Technology Details	8
	1.5	Customizable MCU Technology Details	9
	1.6	Cell-based (Standard Cell) ASICs Technology Details	10
	1.7	Multi-Transistor-Type Concept	12
	1.8	High-k Transistors	
	1.9	eDRAM	13
2	Packa	ges	14
	2.1	QFP (Quad Flat Pack)	14
	2.2	BGA (Plastic & Fine Pitch Ball Grid Array)	15
	2.3	QFN (Quad Flat-pack No leads)	16
	2.4	FCBGA (Flip-Chip BGA)	17
	2.5	SiP (System in Package)	
3	Design Services		
	3.1	RTL-Handover	19
	3.2	Design for Test	19
	3.3	Design Planing	20
	3.4	Physical Synthesis combined with CTS	
	3.5	SI known Routing / Shielding – RC Extraction / Delay Calculation	22
	3.6	Static Timing Analysis - STA sign-off	22
	3.7	DSM effects counter measurements	22
4	IP Ma	cro Blocks	23
5	Acron	yms	25

RENESAS

1 Technology

1.1 Description

Renesas Electronics supports two types of technologies:

Gate Array ASICs:

- · Renesas is number 1 provider worldwide
- · Very low unit cost
- · Lowest NRE cost ideally suited for cost-saving FPGA replacements
- · Easy and fast design flow
- · Copy protection of sensitive customer IP

Cell-based IC (Standard Cell ASICs):

- · Optimum design flexibility
- · Highest performance
- · Extremely low power for highest complexity designs
- · Optimum silicon efficiency
- · Rich IP portfolio

1.2 Overview

Technology Node	Product	Туре
0.5µm	CMOS-N5	Gate Array
	CMOS-9HD	Gate Array
0.35µm	EA-9HD	Embedded Array
	System-on-Chip Lite	Gate Array + ARM7TDMI
0.25µm	System-on-Chip Lite+	Gate Array + ARM7TDMI-S
	CB-12	Cell-based
150 nm	CMOS-12M	Structured Array
	PfESiP-EP1	Customizable MCU
130 nm	CB-130	Cell-based
00.00	CB-90	Cell-based
90 nm	PfESiP-EP3	Customizable MCU
55 nm	CB-55	Cell-based
40 nm	CB-40	Cell-based

1.3 Gate Array Technology Details

FAMILY	CMOS-N5 (0.5 µm)	CMOS-9HD (0.35 µm)
RAW GATE COUNT	1.5 – 123 Kgates	11k – 1.6 Mgates (3ML) 585k – 2.5 Mgates (4ML)
# OF METAL LAYERS	2	3 or 4
CORE VOLTAGE	3.3 V or 5 V	3.3 V
I/O VOLTAGES	3.3 V/5 V	3.3 V/5 V tolerant
POWER CONSUMPTION [µW/MHz/gate]	0.405 @ 5 V 0.177 @ 3.3 V	0.048
PROPAGATION DELAY ¹	0.14 ns @ 5 V 0.18 ns @ 3.3 V	94 ps
MAX. SYSTEM FREQUENCY ²	70 MHz @ 5 V 50 MHz @ 3.3 V	100 MHz
PACKAGES	QFP/QFN/TQFP/ LQFP/SSOP/ TFPBGA	QFP/QFN/TQFP/LQFP/ PBGA/FPBGA/TBGA/ ABGA/TFPBGA

- 1) The propagation delay is measured for a 2 input NAND / 1 fan out wiring length 0 mm.
- The system frequency is measured with a test circuit with 25 logic stages between two registers.

CMOS-12M technology is based on a sea-of-gates architecture combined with embedded high-density SRAMs, PLL and DLL macros.

FAMILY		CMOS-12M (0.150 nm)
RAW GATE COUNT		up to 4.0 Mgates
# OF METAL LAYERS		up to 6
CORE VOLTAGE		1.5 V ± 10%
I/O VOLTAGES		3.3 V, 2.5 V, 1.8 V, 1.5 V
POWER CONSUMPTION [µW/MHz/gate]		0.0196
PROPAGATION DELAY		62 ps (2-input NAND, F/O = 1, typical length)
MAX. SYSTEM FREQU	ENCY	200 MHz (333 MHz @ local parts)
PACKAGES		QFP / FPBGA / PBGA / ABGA
SRA		up to 2.6 Mbits
EMBEDDED MACROS	DLL	up to 8 (supports 100 to 175 MHz)
	APLL	1 or 2 SSCG, up to 3 phase shift PLL

1.4 Embedded Array Technology Details

Embedded array technology allows the implementation of highdensity, cell-based memory blocks in a gate array technology.

FAMILY	EA-9HD (0.35 µm)
RAW GATE COUNT	11k – 1.6 Mgates (3ML) 592k – 2.5 Mgates (4ML)
# OF METAL LAYERS	3 or 4
CORE VOLTAGE	3.3 V
I/O VOLTAGES	3.3 V/5 V full swing
POWER CONSUMPTION [µW/MHz/gate]	0.048
PROPAGATION DELAY ¹	94 ps
MAX. SYSTEM FREQUENCY ²	100 MHz
PACKAGES	QFP/QFN/TQFP/LQFP/PBGA/FPBGA/ TBGA/ABGA

- 1) The propagation delay is measured for a 2 input NAND / 1 fan out wiring length 0 mm.
- The system frequency is measured with a test circuit with 25 logic stages between two registers.

1.5 Customizable MCU Technology Details

1.5.1 System-on-Chip Lite+

System-on-gate array / Customizable Microcontroller

FAMILY	System-on-Chip Lite+
EMBEDDED CPU	ARM7TDMI-S
SYSTEM FREQUENCY	133 MHz
EMBEDDED MACROS	SDRAM Controller, 10/100M Ethernet MAC, Interrupt Controller, UART, Timer, Watchdog, APB, AHB
TECHNOLOGY	0.25 μm – CB10VX
GATE COUNT	250K/440 Kgates (raw)
CORE VOLTAGE	2.5 V
I/O VOLTAGES	3.3 V / 5 V tolerant
PACKAGES	FPBGA-240

1.5.1 PfESiP

Platform for Embedded System In Package / Customizable Microcontroller

FAMILY		PfESiP EP-1
EMBEDDE	D CPU	V850E2S
PERFORM	ANCES	430 Mips
TECHNOLO	DGY	150 nm – CB12
EMBEDDED MACROS		Memory controller, USB2.0 Host and Function, UARTs, Timers, A/D converter
EXTERNAL BUS		16- or 32-bit
USER DEFINED	TECHNOLOGY	0.35 µm EA9HD (default)
LOGIC	GATES COUNT	up to 240K
CORE VOLTAGE		1.5 and 3.3 V
PACKAGES		417 to 572 PBGA

FAMILY		PfESiP EP-3
EMBEDDED CPU		V850E2M
PERFORM	ANCES	600 Mips
TECHNOL	DGY	90 nm– CB90
EMBEDDED MACROS		Memory controller, USB2.0 Host and Function, UARTs, A/D and D/A converter, Ethernet MAC, CAN
EXTERNA	LBUS	32-bit
USER DEFINED	TECHNOLOGY	0.35 µm EA9HD (default)
LOGIC	GATES COUNT	up to 600K
CORE VOLTAGE		1.5 and 3.3 V
PACKAGES		417 to 572 PBGA

1.6 Cell-based (Standard Cell) ASICs Technology Details

FAMILY	CB-12 (150 nm)	CB-130 (130 nm)
RAW GATE COUNT	up to 32 Mgates	up to 52 Mgates (@M Library)
# OF METAL LAYERS	up to 8	up to 9
CORE VOLTAGE	1.5 V	1.2 V
I/O VOLTAGES	2.5 V, 3.3 V, 5 V tolerant	1.2 V, 1.8 V, 2.5 V and 3.3 V
POWER CONSUMPTION [nW/MHz/gate]	13 CB-12L 13 CB-12M 24 CB-12H	7 CB-130L 7 CB-130M 9 CB-130H
PROPAGATION DELAY ¹	31.7 ps @ 1.5V CB-12L 21.2 ps @ 1.5 V CB-12M 17.1 ps @ 1.5 V CB-12H	16.2 ps CB-130H 19.0 ps CB-130M
MAX. SYSTEM FREQUENCY ²	400 MHz CB-12H 266 MHz CB-12M 100 MHz CB-12L	500 MHz CB-130H 311 MHz CB130M 100 MHz CB130L
PACKAGES	QFP/ FPBGA/PBGA/ TBGA/ ABGA /FCBGA	QFP/FPBGA/PBGA/TBGA/ ABGA/FCBGA

FAMILY	CB-90 (90 nm)	CB-55 (55 nm)
RAW GATE COUNT	up to 100 Mgates (@H Library)	up to 200 Mgates
# OF METAL LAYERS	up to 9	up to 7
CORE VOLTAGE	1.0 V	1.0/1.2V (@ same architecture)
I/O VOLTAGES	1.0 V, 1.8 V, 2.5 V and 3.3 V	1.8 V, 2.5 V and 3.3 V
POWER CONSUMPTION [nW/MHz/gate]	2.6 CB-90H 1.8 CB-90M	0.29 @ 1.0 V 0.40 @ 1.2 V
PROPAGATION DELAY ¹	14.1 ps CB-90H 16.7 ps CB-90M	11.8 ps @1.2 V 22.8 ps @ 1.0 V
MAX. SYSTEM FREQUENCY ²	1 GHz CB-90H 366 MHz CB90M 200 MHz CB90L	1.2 GHz CB-55H 450 MHz CB-55L (1.2 V) 233 MHz CB-55L (1.0 V)
PACKAGES	FPBGA/PBGA/TBGA/ ABGA/FCBGA	PBGA, FPBGA, FCBGA

FAMILY	CB-40 (40 nm)
RAW GATE COUNT	up to 400 Mgates
# OF METAL LAYERS	up to 7
CORE VOLTAGE	1.0 V and 1.1 V
I/O VOLTAGES	1.8 V, 2.5 V and 3.3 V
POWER CONSUMPTION [nW/MHz/gate]	0.18 @ 1.0 V 0.21 @ 1.1 V
MAX. SYSTEM FREQUENCY ²	1.5 GHz CB-40H 500 MHz CB40L
PACKAGES	PBGA/FPBGA/FCBGA

- 1) The propagation delay is measured for a 2 input NAND / 1 fan out wiring length 0 mm.
- The system frequency is measured with a test circuit with 25 logic stages between two registers.

1.7 Multi-Transistor-Type Concept

Starting from CB-12 all cell based technologies do provide a multitransistor-type concept. The picture below illustrates this concept as an example for the CB-12 technology.

Three different types of transistors are available, which can be mixed by using the different libraries. Thereby the H stands for high speed, M for standard libraries and L for low power libraries.

1.8 High-k Transistors

With CB-55 Renesas introduced the high-K transistors technology in its cell based solutions.

Using this type of transistor over silicon dioxide in CB-55 and further technology allows Renesas to reduce the leakage current at these nodes length significantly.

1.9 eDRAM

Renesas' eDRAM technology eliminates the usual bottleneck between the chip and separate memory with all the benefits of fast memory access and high overall system speeds. The metal/insulator/metal capacitor on the bit line (MIM COB) process from Renesas allows to reduce the cell size and to improve the performances compared to other standards. This technology also facilitates system design by allowing orientationfree cells and signal routes that permit active wires to run over eDRAM macros for optimized integration and performance.

2 Packages

2.1 QFP (Quad Flat Pack)

2.1.1 Description

Quad Flat Package with leads along the edges of the packages. The chip is connected to the leads via tape (TAB: tape automated bonded) or wires. For thermally enhanced QFPs the chip is placed on a heat spreader.

2.1.2 Features

- · Well-established, general purpose packages
- 44 to 376 pins
- 0.4 mm to 1 mm pin pitch
- 1 or 2.7 mm package height

2.2 BGA (Plastic & Fine Pitch Ball Grid Array)

2.2.1 Description

Plastic ball grid array packages are surface mount packages consisting of a plastic substrate, whose input/output connections consist of solder balls in an array on the bottom of the package. Standard substrate of this type of package has two layers, but it can be designed with more layers. The chip is mounted "face up" and connected to the substrate via wires. Also available as fine pitch variation (FPBGA).

2.2.2 Features

- · High-ball count, low cost BGA package
- 61 to 672 balls
- Ball pitch: PBGA 1.0 or 1.5 or 1.27 mm FPBGA 0.8 or 0.65 mm

2.3 QFN (Quad Flat-pack No leads)

2.3.1 Description

QFN packages are ideally suited for applications where a low footprint and low height are important. On the other other hand the 0.5 mm lead-pitch still allows for using cost efficient PCBs.

2.3.2 Features

- · Very small footprint
- · Cost optimized
- 28 to 48 pins
- 0.5 mm lead pitch

2.4 FCBGA (Flip-Chip BGA)

2.4.1 Description

In the Flip-Chip-Ball-Grid-Array-Package the chip has bumped terminations spaced on the device and is intended for a face down attach to a multi-layer substrate to reduce die size and increase signal counts.

2.4.2 Features

- · Optimum thermal and electrical characteristics
- 600 to 3000 balls
- 0.8 or 1 or 1.27 mm ball pitch

2.5 SiP (System in Package)

2.5.1 Description

Systems in Package allow embedding several chips, which are internally connected by fine wires, within one package in order to reduce the size of the board and global cost.

2.5.2 Features

- · Multiple chips/dies in one single package
- · For cost/area balancing
- · High peformance interchip connections

3 Design Services

Our comprehensive expertise in key areas of design implementation is based on a long history of designing ASICs.

Design for Test indover

The European Technology Centre (ETC) supports both established and advanced technologies.

DSM

3.1 RTL-Handover

To save you time in verification and system design, Renesas offers a complete synthesis service. With our extensive knowledge of all Renesas technologies our experts provide individual solutions for all design details from specification to final layout.

3.2 Design for Test

Renesas offers comprehensive test services to improve the quality of your chip.

Full scan insertion including ATPG, boundary scan as well as memory and logic BIST running at the target operating frequency will be inserted using a fully automated script environment. All these DFT services can be mixed, adapted and inserted to your requirements. Formal verification, a complete STA for each test mode and pattern simulation are included in Renesas' DFT service. The hierarchical approach is well established for handling large designs fast and efficiently.

3.3 Design Planing

To bring your multi-million gate design early to market Renesas supports a design planning step with full virtual prototyping. This guarantees reliable feedback on the performance and physical feasibility of your design at the beginning of the implementation phase. Partitioning is also performed to allow concurrent implementation work on the top and block hierarchies.

Partitioning to Top and Block Levels

3.4 Physical Synthesis combined with CTS

With decreasing structure size on silicon, the effects of wire interconnect increasingly dominate the overall path delay. Physical synthesis enables Renesas to take this into account by relying on actual placement information instead of wire load models. This means that timing and routing information can be taken into account concurrently during placement. This, combined with clock tree synthesis (CTS) and timing-driven multi-mode, multi-corner optimization, achieves the best timing correlation compared to post layout results. In this way, Renesas significantly reduces iterations and the overall response time.

3.5 SI known Routing / Shielding – RC Extraction / Delay Calculation

The prevention and fixing of signal integrity (SI) effects is addressed with a dedicated routing engine. Special attention is also given to suppress clock jitter, chattering and cross talk on clock related nets.

3.6 Static Timing Analysis - STA sign-off

STA sign-off is a very fast and efficient method for timing verification of highly complex designs. Renesas' timing calculation considers the different on-chip delay variations like crosstalk and process variation as well as voltage and temperature sensitivity for cell and wire delay. This assures high reliability in the STA sign-off procedure for your project.

3.7 DSM effects counter measurements

Renesas' deep sub-micron activities cover issues like signal integrity, long-term reliability and manufacturability. All these effects are given consideration throughout implementation from design planning, placement and routing, to RC extraction and delay calculation. All currently known DSM effects are considered in the flow. Timing variances due to deep sub-micron effects are also taken into account during static timing analysis.

4 IP Macro Blocks

CPU Cores:

- Renesas: V850E family
- ARM: ARM7TDMI-S™, ARM966E-S™, ARM946E-S™, ARM926EJ-S™, ARM946E-S Supermacro, ARM1136J(F)-S™ ARM1156T2(F)-S™ ARM11 MPCore (multi-processor) ARM Cortex™ (M3, R4, A5, A8, A9)
 MIPS Technologies: 4KEc™, 24KEc™, 24KEc™, 24KEf™, 74K f™ families
- x86 compliant: V30MZ

System Integration Cores:

- SRAM, multiported SRAM
- ROM
- UART, timer, interrupt controller, I2C, PWM, SSI, SPI, etc.
- Memory controller (DDR-SDRAM, SDRAM, SRAM, ROM, Flash)
- DMA controller, LCD controller
- PCI, PCI-X, PCI-Express
- AMBATM bus architecture
- Network-on-Chip (NoC) bus architecture

Networking Cores:

High-speed serial interfaces and SERDES cores

- from 120 Mbps up to 6.5 Gbps

 Various interface options: LVDS, LVDSS, pCML, pECL XAUI, 1G/10G Ethernet, FibreChannel, Serial-ATA, sRIO SPI 4.2, POS L3
10/100 M Ethernet MAC and PHY
10/100/1000 M Ethernet MAC
8B/10B coder/decoder
UTOPIA interface
CAN

Multimedia Cores:

IEEE1394-a, LINK layer and PHY USB1.1, USB2.0 JPEG MPEG Cryptographic cores

Technology Specific Cores:

A/D converter, D/A converter Analogue PLLs Embedded DRAM, CMOS-compatible Embedded Flash Power-on-Reset Voltage regulator

5 Acronyms

•	
A	Analas Disital Concentar
ADC	Analog Digital Converter
AGP	Advanced Graphics Port
AHB	Advanced High-performance Bus
ALU	Arithmetical Logical Unit
AMPS	Advanced Mobil Phone System
ANSI	American National Standards Institute
APB	Advanced Peripheral Bus
APLL	Analog Phase Locked Loop
ASB	Advanced System Bus
ASCII	American Standarad Code for Information Interchange
ASCP	Appliciation-Specific Customer Product
ASIC	Application-Specific Integrated Circuit
ASSP	Application-Specific Standard Part
ATPG	Automatic Test Pattern Generation
В	
BGA	Ball Grid Array
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
BIST	Build in Self-Test
С	
CAD	Computer Aided Design
CAE	Computer Aided Engineering
CAM	Content Addressable Memory
CAN	Controller Area Network
CCIT	Consultive Commitee for International Telephone
CDMA	Code Division Multiple Access
CISC	Complex Instruction Set Computer
CML	Current Mode Logic
CMOS	Complementary Metal-Oxide-Silicon
CPRI	Common Protocol Radio Interface
CPU	Central Processing Unit
CRC	Cyclical Redundancy Check
CSI	Clock Serial Interface
CSP	Chip Size Package
CTS	Clock Tree Synthesis
CTT	Center Tap Terminated Interface

D	
DAC	Digital Analog Converter
DEF	Design Exchange Format (Floorplaner to place and route)
DFT	Design For Testability
DIP	Dual In-Line Package
DLL	Delay-Locked Loop
DMA	Direct Memory Access
DPLL	Digital Phase Locked Loop
DRAM	Dynamic Random Access Memory
DRC	Design Rule Checker
DSM	Deep Sub-micro
DSP	Digital Signal Processor
Е	
ECL	Emitter-Coupled Logic
ECO	Engineering Change Order (bug-fixing during layout)
EDA	Electronic Design Automation
EDIF	Electronic Data Interchange Format
eDRAM	embedded DRAM
EIA	Environmental Impact Assessment
EIAJ	Electronic Industries Association of Japan
EMI	Electromagnetic Interference
EMS	Electromagnetic Susceptibility
ESD	Electro Static Discharge
F	
FDDI	Fiber Distributed Data Interface
FET	Field Effect Transistor
FIFO	First In First Out
FPBGA	Fine Pitch Ball Grid Array
FPGA	Field Programmable Gate Array
FPLD	Field Programmable Logic Device
FSM	Finite State Machine
G	
GPIB	General Purpose Interface Bus
GSM	Global System for Mobile Communication
GTL	Gunning Transceiver Logic
GUI	Graphic User Interface

Н	
HDL	Hardware Description Language
HDLC	High Level Data Link Control
HHBT	High Temperature High Humidity with Biased Test
HSTL	High Speed Transceiver Logic
HTOL	High Temperature Operating Life Test
Ι	
IBIS	Input/Output Buffer Information Specification
IEEE	Institute of Electrical and Electronics Engineers
IMAPS	International Microelectronics and Packaging Society
IPO	In Place Optimization
IrDA	Infrared Data Association
ISA	Industry Standard Architecture
ITRS	International Technology Roadmap for Semiconductor
J	
JEDEC	Joint Electronic Devices Engineering Council
JPEG	Joint Photographic Experts Group
JTAG	Joint Test Action Group
K	
KGD	Known Good Die
L	
LCC	Leadless Chip Carrier
LEF	Library Exchange Format (library data for the place&route tool)
LGA	Land Grid Array
LQFP	Low-profile QFP
LSB	Least Significant Bit
LSD	Least Significant Digit
LSSD	Level Sensitive Scan Design
LUT	Look-Up Table
	Low-Voltage CMOS
LVDS	Low Voltage Differential Signaling
LVPECL	Low-Voltage PECL
LVTTL	Low-Voltage TTL

М	
MAC	Media Access Control
MAC	Multiply Accumulate
MCM	Multi Chip Module
MCP	Multi Chip Package
MDRAM	Multi Port DRAM
MIPS	Million Instructions Per Second
MPEG	Moving Pictures Experts Group
Ν	• • •
NEMI	National Electronics Manufacturing Initiative
NRE	Non-Recurring Engineering (Cost)
NRZ	No-Return Zero
NRZI	No-Return Zero Inverted
NTSC	National Television System Comittee
0	
OBSAI	Open Basestation Architecture Initiative
Р	
PBGA	Plastic Ball Grid Array
PCB	Printed Circuit Board
PCI	Peripheral Controller Interface
PCMCIA	Personal Computer Memory Card International Association
PCT	Pressure Cooker Test
PDEF	Physical Design Exchange Format (Synthesis to Floorplaner)
PECL	Pseudo Emitter Coupled Logic
PGA	Pin Grid Array
PLCC	Plastic Leaded Chip Carrier
PLD	Programmable Logic Device
PLL	Phased Lock Loop
PWB	Printed Wiring Board
Q	Over d Flat De alta an
QFP R	Quad Flat Package
RAM	Random Access Memory
RISC	Reduced Instruction Set Computer
ROM	Read Only Memory
RTL	Register Transfer Level
NIL	Register mansfel Level

RTOS	Paul Time Operating System
S	Real Time Operating System
SATA	Serial ATA
SCSI	Small Computer System Interface
SDF	Standard Delay Format (delay information for synthesis and
SDI	simulator tools)
SDH	Synchronous Digital Hierarchy
SDIP	Shrink Plastic Dual In-line package
SEMI	Semiconductor Equipment and Materials International
SGRAM	Synchronous Graphics Random Access Memory
SIA	Semiconductor Industry Association
SIMM	Single In-Line Memory Module
SiP	System in a Package
SMD	Surface Mount Device
SMT	Surface Mount Technology
SOC	System on a Chip
SOJ	Small Outline J-leaded
SOP	Small Outline Package
SPICE	Simulation Program with Integrated Emphasis
SRAM	Static Random Access Memory
SSCG	Spread Spectrum Clock Generation
SSO	Simultaneously Switching Outputs
SSTL	Stub Series Terminated Transfer Logic
STA	Static Timing Analysis
S-TSOP	Super Thin Small Outline Package
Т	
TAB	Tape Automated Bonded
TBGA	TAB Ball Grid Array
TC	Temperature Cycle Test
TCP	Tape Carrier Package
THT	Through-Hole Technology
TQFP	Thin QFP
TSOP	Thin SOP
U	
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus

USRT	Universal Synchronous Receiver/Transmitter
V	
VHDL	Very High-Speed Integrated Circuit Hardware Description Language
VITAL	VHDL Initiative Towards ASIC Libraries
VPS	Vapor Phase Soldering
W	
WLP	Wafer Level Packaging
WS	Wave Soldering
WSTS	World Semiconductor Trade Statistics Organisation
Х	
Y	
Z	

ASIC Technology Handbook

Before purchasing or using any Renesas Electronics products listed herein, please refer to the latest product manual and/or data sheet in advance.

Cert no. GFA-COC-001502 www.fsc.org © 1996 Forest Stewardship Council

© 2011 Renesas Electronics Europe. All rights reserved. Printed in Germany. Document No. R05CS0001ED0202

Renesas Electronics Europe www.renesas.eu