NEC
Application Note

Using a PWM Timer as a
Digital to Analogue
Converter

Documen t No. U19096EE1VOANOO
Date published December 2007
© NEC Electronics 2007

Printed in Germany

Legal Notes

U The information in this document is current as of November,
2007. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC
Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please
check with an NEC Electronics sales representative for
availability and additional information.

. No part of this document may be copied or reproduced in any form
or by any means without the prior written consent of NEC
Electronics. NEC Electronics assumes no responsibility for any
errors that may appear in this document.

. NEC Electronics does not assume any liability for infringement of
patents, copyrights or other intellectual property rights of third
parties by or arising from the use of NEC Electronics products listed
in this document or any other liability arising from the use of such
products. No license, express, implied or otherwise, is granted under
any patents, copyrights or other intellectual property rights of NEC
Electronics or others.

. Descriptions of circuits, software and other related information in this
document are provided for illustrative purposes in semiconductor
product operation and application examples. The incorporation of
these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer.
NEC Electronics assumes no responsibility for any losses incurred
by customers or third parties arising from the use of these circuits,
software and information.

. While NEC Electronics endeavors to enhance the quality, reliability
and safety of NEC Electronics products, customers agree and
acknowledge that the possibility of defects thereof cannot be
eliminated entirely. To minimize risks of damage to property or injury
(including death) to persons arising from defects in NEC Electronics
products, customers must incorporate sufficient safety measures in
their design, such as redundancy, fire-containment and anti-failure
features.

. NEC Electronics products are classified into the following three
quality grades: "Standard", "Special" and "Specific".

e The "Specific" quality grade applies only to NEC Electronics
products developed based on a customer-designated "quality
assurance program" for a specific application. The recommended
applications of an NEC Electronics product depend on its quality
grade, as indicated below. Customers must check the quality grade
of each NEC Electronics product before using it in a particular
application.

"Standard": Computers, office equipment, communications
equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships,
etc.), traffic control systems, anti-disaster systems, anti-crime

Application Note U19096EE1VOANOO

systems, safety equipment and medical equipment (not specifically
designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters,
nuclear reactor control systems, life support systems and medical
equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise
expressly specified in NEC Electronics data sheets or data books, etc. If
customers wish to use NEC Electronics products in applications not intended by
NEC Electronics, they must contact an NEC Electronics sales representative in
advance to determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics
Corporation and also includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured
by or for NEC Electronics (as defined above).

Application Note U19096EE1VOANOO 3

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.

Santa Clara, CA 95050-2554,

U.S.A.
Tel: 408 5886000
http://www.am.necel.com/

Regional Information

Some information contained in this document may vary from country to country. Before
using any NEC product in your application, please contact the NEC office in your country

to obtain a list of authorized representatives anddistributors. They will verify:

Device availability
Ordering information
Product release schedule

Availability of related technical literature
Development environment specifications (for example, specifications for

third-party tools and components, host computers, power plugs, AC

supply voltages, and so forth)
. Network requirements

In addition, trademarks, registered trademarks, export restrictions, and otherlegal

issues may also vary from country to country.

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044 4355111
http://www.necel.com/

[Europe]

Arcadiastrasse 10

40472 Disseldorf, Germany
Tel: 0211 65030

http://www.eu.necel.com/

United Kingdom Branch

Cygnus House, Sunrise Parkway

Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908 691133

Succursale Francgaise
9, rue Paul Dautier, B.P. 52

78142 Velizy-Villacoublay Cédex

France
Tel: 01 30675800

Sucursal en Espaia
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091 5042787

Tyskland Filial

Taby Centrum
Entrance S (7th floor)
18322 Taby, Sweden
Tel: 08 6387200

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, ltaly
Tel: 02 667541

Branch The Netherlands
Steijgerweg 6

5616 HS Eindhoven,

The Netherlands

Tel: 040 2654010

Application Note U19096EE1VOANOO

NEC Electronics (Europe) GmbH

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27
ZhiChunlLu Haidian District,
Beijing 100083, P.R.China

Tel: 010 82351155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China
Tower,

200 Yincheng Road Central,
Pudong New Area,

Shanghai 200120, P.R. China
Tel: 021 58885400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,

12 Taikoo Wan Road, Hong Kong
Tel: 2886 9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.

Tel: 02 27192377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,

#12-08 Novena Square,

Singapore 307684

Tel: 6253 8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku, Seoul,
135-080, Korea Tel: 02-558-3737
http://www.kr.necel.com/

Table of Contents

Chapter1 Introduction ... 6
Chapter2 Theory 8
Chapter3 DACResolution ... 9
Chapter 4 Analogue Low PassFilters 10
Chapter 5 Circuit Diagramsand Signals 12
Chapter 6 Appendix A - Software Listings 15
6.1 Dl Level ... e e 15
6.2 Voltage Ramp e 16
6.3 SINE WAV ... o e e e 21

Application Note U19096EE1VOANOO 5

Chapter 1

Figure 1-1

Figure 1-2

Introduction

Many embedded microcontroller applications need to generate DC and AC
analogue signals. Some microcontrollers have integrated Digital to Analogue
Converters (DAC), if not, then a discrete DAC device could be used, or a DAC
could be constructed using PWM signals and a few low cost components.

This application note discusses using a PWM timer and a low pass filter to
generate a DC level, a ramp and a sine wave.

NEC Electronics microcontrollers can generate PWM signals with a fixed
frequency, varying duty cycle and amplitude of 2.2 V < Vpym < 5.5 V. An example

of a PWM signal is shown below.
|"T—’| 1‘—\’1/:”

Fixed Period Yariahle Duty
Cycle

Example of a PWM signal

The PWM signals can be decomposed to a D.C. component plus a square wave
with identical duty cycle but with time average amplitude of zero. The amplitude
of the D.C. component is directly proportional to the PWM cycle. This is shown
in the next figure.

P Signal D.C. Component Souare Wave with
zero time average
amplitude

Amplitude of the D.C. component

The PWM method of constructing a DAC is not new and in general has been
confined to low bandwidth, low resolution applications.

Given that the PWM signal is a sum of a D.C. component which is directly
proportional to the duty cycle and a square wave with zero time average
amplitude, a low pass filter can be used to filter the signal, remove most of the
high frequency components and leave the D.C. component i.e. a DAC can be
realised.

Application Note U19096EE1VOANOO

Introduction Chapter 1

The performance of such a DAC is dependant on the PWM frequency and also
on the ability of the low pass filter to remove unwanted high frequency
components. If a filter with a low bandwidth is used then the bandwidth of the
DAC will be limited, if the cut off frequency is too high or the roll off is too slow
then the resolution of the DAC will be compromised. Both of these problems can

be resolved by increasing the PWM frequency but then the reduced digital
resolution reduces the resolution of the DAC.

Application Note U19096EE1VOANOO

Chapter 2 Theory

Figure 2-1

Fourier theory states that any periodic waveform can be decomposed into an
infinite sum of harmonics at integer multiples of the periodic frequency. The
Fourier series representation of the PWM signal can be simplified by placing the
time origin so that the signal becomes an even mathematical function as shown
in Figure 2-1.

.
[rem] [z [[o] [r2] [reew

¥ 3

PWM signal time-shifted for even symmetry

P is the PWM duty cycle 0 < P < 1 and T denotes the period of the carrier
frequency.

The Fourier series representation of an even periodic function f(t) is:

f(t) = Ag + =Y n=1[An cos@nmit/T) + B, sin(2nit/T)] (1)
where:

Ag = 1/2T T[1 f(t)dt ()
A, = 1/T T 1 f(t) cos(@2nmit/T)dt 3)
B, = 1/T T[_1 f(t) sin@nmt/T)dt (4)

Let K be the amplitude of the signal in Figure 2-1, then after performing the
integrals (2) — (4) you get:

Ag=K-P ©)
A, = K- 1/nm[sin(nttP) — sin@2nmt(1 — P/2))]
B,=0

By, = 0 for an even function.

Ag is the D.C. component, and is the product of the signal amplitude and the duty

cycle. By varying the duty cycle of the PWM signal, we will be able to achieve an
output voltage where 0 < Ag < K.

The A, term represents the amplitudes of the high frequency harmonic
components of the PWM signal. The harmonics exist at integer multiples of the
PWM carrier frequency 21n/T Hz. If an ideal low pass filter with a cut of frequency
which is equal to the PWM carrier frequency is used, then all the high frequency
components will be removed and only the D.C. component will be left. In reality,
filters do not have ideal characteristics and they will always allow some of the
harmonics to pass, which will then appear as ripple voltage in the output.

Application Note U19096EE1VOANOO

Chapter 3 DAC Resolution

In most microcontrollers, the PWM signal will be generated by a timer which has
a compare register. The timer can be 8 or 16 bits long and will be driven by a clock
of frequency fg,. The duty cycle P is set by a value stored in the compare register
and the PWM period T is set by the frequency of the clock and the length of the
counter.

T = 2"/ f,,x Where n is the length of the counter in number of bits. (6)

The output of the PWM is initially set to 1 or 0, the timer counts up (or down) and
when the timer output is equal to the value stored in the compare register, the
output of the PWM toggles, and when the timer overflows (or underflows), the
PWM output toggles again. This generates a PWM signal of a frequency 1/T and
duty cycle P.

The resolution of the DAC is specified by number of bits and this is directly
equivalent to the length of the timer counter. The LSB of the PWM DAC is one
count and the resolution is the total number of counts.

The desired D/A output is affected by two main sources of errors. The PWM cycle
can only be specified with finite resolution is the first source, e.g. if an 8-bit timer
is being used and the amplitude of the generated PWM signal is 3.3 V, then the
smallest voltage that can be resolved is 3.3 V/28 = 12.89 mV i.e. the output voltage
can only be varied in steps of 12.89 mV. The second source of error is the ripple
voltage generated by harmonics that have not been filtered out. The sum of the
two sources of error is the Total Uncertainty.

Total Uncertainty = duty cycle resolution + harmonic ripple voltage (7)

The Total Uncertainty can be reduced by increasing the resolution of the counter
as well as by reducing the harmonics in the output voltage.

Application Note U19096EE1VOANOO 9

10

Chapter 4 Analogue Low Pass Filters

Figure 4-1

A complete analysis of low pass filters will not be carried out, as this can easily
be obtained from other sources but some properties that are relevant to this
application note will be highlighted.

The performance of the PWM based DAC is heavily dependant on the choice of
the low pass filter. Passive filters are designed using components such as
resistors, capacitors and inductors. Active filters are designed using operational
amplifiers. The cost of implementing the filter and the number of components
used need to be kept to a minimum otherwise it can soon become more cost
effective to use an integrated DAC device.

Unlike passive filters, active filters are not affected by input and output impedance
loading. However, the operational amplifiers used in active filters, need to have a
gain bandwidth product of 5 to 10 times greater than that of the highest expected
input frequency, otherwise the operational amplifier will not be able to filter out
the higher frequencies. The cost of operational amplifiers with a high gain
bandwidth product might be prohibitive.

There are two critical properties of low pass filters used in PWM DAC applications
and these are the bandwidth and the stop-band roll off. The bandwidth of the filter
defines the highest frequency the filter will allow to pass before the gain falls to
-3dB (0.707). The stop-band roll off defines how quickly, after the -3dB point, the
gain decreases with increasing frequency. The combination of the bandwidth and
the stop-band roll off determines how much harmonic ripple voltage will be seen
in the output.

A passive low pass filter can be constructed using a single capacitor and resistor
as shown in Figure 4-1.

1st Order passive low pass filter

The transfer function for a 15t order filter is given by the equation

Vout Vin = 1/(1 + jwRC) (8)
The filter bandwidth is given by the equation

BW = 1/RC ©)

The stop-band roll off of the filter is -20dB/decade, which is slow and would allow
alot off harmonics to be seen in the output voltage as ripple. However, a 2" order
passive filter (shown in Figure 4-2) giving a stop band roll off of -40dB/decade can
be constructed.

Application Note U19096EE1VOANOO

Analogue Low Pass Filters Chapter 4

Figure 4-2 2nd Order passive low pass
It can be shown that for the 2"? order filter:

The Cut Off frequency is: w = 1//(R{R,C1Cy) (10)
The Damping factor is: { = (R{C4 + R1Cs + RxC5)/2/(R1R>C1C») (11)

Where w is the un-damped natural frequency in units of (rad/s)?, and C is the
damping factor. C is non dimensional.

The filter’'s damping ratio C is an important parameter as it determines the filters
step response to changing the DACs output voltage from one level to another. In
order to have fast rise times it is desirable to have as low a value for the damping
ratio as possible. However, low damping ratios produce a large step response,
overshoots and long settling times. The smallest damping factor with no
overshoot in the step response is when C = 1, and the smallest damping factor
with no resonant peak in the response of the filter is when g = 0.707 (1/4/2). When
G = 0.707 the bandwidth BW = w.

As can be seen from equation (11) it is not possible to have a damping ratio of
less than 1, and so this filter is not suitable where a small settling time is required
for large step changes in the output voltage. However, in this application where
only small step changes are made, a Damping factor = 1 is not a problem.

Application Note U19096EE1VOANOO 11

12

Chapter 5 Circuit Diagrams and Signals

Figure 5-1

=K* R2=Fa0k?
P 46/To0S | — | | | %

| - S |
| |
~ 11

m C1=0.1pF _V|_ C2=200pF I

P1221K2

Circuit diagram

Figure 5-1 shows the diagram of the circuit used to generate the Sine Wave,
Voltage Ramp and DC level.

The Cut Off frequency for the filter = 5363 Hz and the Damping factor = 1.

The same filter is used for all three examples and therefore is not optimised for
any of them. In practice the filter would be designed for the particular waveform
and frequency required.

The performance of the PWM DAC could be affected by loading, especially
dynamic loads and so it would be advisable to buffer the output of the filter e.g.
with an operational amplifier buffer.

Measure
value
status

P fregic1)
149 6336 kHz

Figure 5-2 DC level

The DC level in Figure 5-2 was produced by setting the PWM signal duty cycle
and not altered until a different DC level is required.

A PWM frequency of 5 KHz was chosen.

The value to be loaded into the timer controlling the PWM frequency will be:
20 MHz/5 KHz = 4000 = OFAQH.

Application Note U19096EE1VOANOO

Circuit Diagrams and Signals Chapter 5

12. The duty cycle of the PWM waveform can vary from 0% to 100%.
% Duty Cycle = {(Value of Slave Timer Data Register)/(Value of
Master Timer Data Register + 1)} x 100.

Therefore, the register controlling the duty cycle can vary between 0 and 4001
(OFA1H).

The maximum DC voltage is 3 Volts i.e. each increment has a resolution of:
3 Volts/4000 = 750pV.

e.g. To generate a DC level of 0.75 V the value of the duty cycle register will be
equal to:

(0.75/3 Volts) x 4000 = 1000 (O3E8H).

The register controlling the PWM duty cycle is incremented or decremented to
achieve the desired DC level.

Measure
Ve
i

P fracCT)
AXT A0E0ED He

Figure 5-3 64 samples per cycle

The ramp in Figure 5-3 was produced using 64 samples per cycle.

If a ramp frequency of 125 Hz is required with 32 times oversampling:
The PWM frequency will be:
125 Hz x 64 = 8 KHz

The value to be loaded into the timer controlling the PWM frequency will be:
20 MHz/8 KHz = 2500 = 09C4H

Since the ramp is increasing linearly, each increment up to the maximum value
09C4H will be:
2500/64 = 39.06 = 27H

The sample values are contained in an array at the beginning of the program. The
data register of the timer used to set the PWM duty cycle is updated during the
timer’s interrupt service routine.

Application Note U19096EE1VOANOO 13

Chapter 5 Circuit Diagrams and Signals

200 makdre §2and
2100 M5 100 M=

Figure 5-4 74 samples per cycle

The sine wave in Figure 5-4 was produced using 74 samples per cycle.

The PWM frequency required for a sine wave of 125 Hz is:

125 Hz x 74 = 9250 Hz

The value to be loaded into the timer controlling the PWM frequency will be:
20 MHz/9250 Hz = 2162.161 = 0872 Hz

A sine wave of 3.0 V pk-pk is required i.e. the voltage is resolved to:
3.0v/2162 = 1.39 mV

13. The formula used to generate the values for a sine wave of 125 Hz
and 3.0 V pk-pk is:
{[sin® + 1] x 1.5}/1.39 mV.

The sample values are contained in an array at the beginning of the program. The
data register of the timer used to adjust the PWM duty cycle is updated during
the timer’s interrupt service routine.

14 Application Note U19096EE1VOANOO

Chapter 6 Appendix A - Software Listings

6.1 DC Level

S
// PROJECT = 78KOR - PWM DAC

// MODULE = pwm_init DC.c

// DEVICE = 78KOR/KG3 (uPD78F1166)

// VERSION =1.0

// DATE = 04.10.2007

// LAST CHANGE = -

/] mmmsmmmmcmcccmmcsscmsmssssssmscssosmmcsssssmsssssssscsssosmsssssssosssssoscss
// Description: 1Initialization of peripherals and variables
S ——
// By NEC Electronics (Europe) GmbH
S
/= e e
// Include files
T e

#include "defines.h"
#include "lcd.h"

#include <intrinsics.h>

#include "io78f1166_a0.h"
#include "io78f1166_al0_ext.h"

extern saddr unsigned char menu;

extern _ saddr volatile unsigned char swl_in;

// Module: HardwarelInit
// Description: This module initialize peripheral hardware.

T
void HardwareInit (void) // hardware inizialization
{
[
// clock generator setting
/]
OSMC = 0x01; // Operation speed mode control register
// frequency higher than 10MHz
OSTS = 0x07; // Set osc. stabilization time selection
// to 2718/fx
CMC = 0x51; // Clock operation mode register
// X1 osc. mode, XTl osc. mode, fx > 10MHz
CKC = 0x08; // System clock control register
// fclk = fih
csc = 0x00; // enable X1 , XT1l operation
while (OSTC < OxFF) // Wait until £X1 clock stabilization
{ // time has been elapsed
_ no_operation() ;
1
CKC = 0x18; // System clock control register

// fclk = fmx = 20MHz

Application Note U19096EE1VOANOO

15

Chapter 6 Appendix A - Software Listings

CSC = 0x01; // stop internal high speed oscillator
PERO_bit.no0 = 1; // supply input clock to timer array
[mmm e
// PORT setting
[mmm
PM8=0x00; // Port initalization for LC display

PM5 bit.no0=0;
PM6_bit.no6=0;
PM6_bit.no5=0;

PM7 |=0x1f; // Port initalization for SW2
PU7 =0x1f;
KRM =0x1f;
// KRMK = 0; // enable key interrupt
KRMK = 1; // disble key interrupt

PM14 bit.no5 = 0; // Port initalization for LED1
PM4 bit.no6 = 0; // Port initalization for LED2
LED1 = 0;
LED2 = 0;
[mmm
// Timer4,5 and Timer6,7 initialization
[mmm e
TPSO = 0x0070; // Timer clock selection register
// CKSO01 = 156.2kHz; CKS00 = 20MHz
TMR04 = 0x0800; // Timer4 mode register, set master mode
TMRO5 = 0x0409; // Timer5 mode register, set slave mode
TDR04 = 0x0fao0; // Timer4 data register, set PWM period (16-bit) 5KHz
TDRO5 = 0x0; // Timer5 data register, set initial duty cycle = 0
TMRO6 = 0x0800; // Timer6 mode register, set master mode
TMRO7 = 0x0409; // Timer7 mode register, set slave mode
TDR0O6 = 0x00ff; // Timer6 data register, set PWM period (8-bit)
TDRO7 = 0x00ff; // Timer7 data register, set duty cycle
TOEO = 0x00AO0; // Timer output enable register Timer 5 output enabled
TOMO = 0x00AO0; // Timer output mode register Timer 5 set to use interrupt from Timer 4
/==

// Module: vSoftwareInit
// Description: This module initialize variables.

void SoftwareInit (void)

{

swl in = 0;
menu = 0;
}

6.2 Voltage Ramp
f/emmmmsmsssccsmcmmmmmssssssmomsmmmsssssssssssssmsssssssssssossmssssssssssmoas
// PROJECT = 78KOR - PWM DAC
// MODULE = pwm_init_ ramp.c
// DEVICE = 78KOR/KG3 (uPD78F1166)

// VERSION =1.0
// DATE = 04.10.2007

16 Application Note U19096EE1VOANOO

Appendix A - Software Listings

Chapter 6

// LAST CHANGE = -

#include "defines.h"
#include "lcd.h"

#include <intrinsics.h>

#include "io78f1166_a0.h"
#include "io078f1166_al0_ext.h"

extern saddr unsigned char menu;

extern _ saddr volatile unsigned char swl_in;

// Module: Hardwarelnit
// Description: This module initialize peripheral hardware.

e r B L
void HardwarelInit (void) // hardware inizialization
{
[/ mmm
// clock generator setting
s
OSMC = 0x01; // Operation speed mode control register
// frequency higher than 10MHz
OSTS = 0x07; // Set osc. stabilization time selection
// to 2718/fx
CMC = 0x51; // Clock operation mode register
// X1 osc. mode, XT1l osc. mode, fx > 10MHz
CKC = 0x08; // System clock control register
// fclk = fih
Ccsc = 0x00; // enable X1 , XT1l operation
while (OSTC < OxFF) // Wait until £X1 clock stabilization
{ // time has been elapsed

__no_operation() ;

}

CKC = 0x18; // System clock control register
// fclk = fmx = 20MHz

CSC = 0x01; // stop internal high speed oscillator
PERO_bit.no0 = 1; // supply input clock to timer array
R
// PORT setting
[/ mmm
PM8=0x00; // Port initalization for LC display

PM5 bit.no0=0;
PM6_bit.no6=0;
PM6_bit.no5=0;

PM7 |=0x1f; // Port initalization for SW2
PU7 =0x1f;

Application Note U19096EE1VOANOO

17

Chapter 6

Appendix A - Software Listings

KRM =0x1f;
KRMK 0;

PM14 bit.no5 = 0;
PM4 bit.no6 = 0;
LED1 = 0;
LED2 = 0;
S EEEEEEEEEEEEEEEEEEE R

clock

// Timer4 mode register,
// Timer5 mode register,

// Timer4 data register,
// Timer5 data register,

data
data

mode
mode

data
data

20MHz ;

// enable key interrupt

// Port initalization for LED1
// Port initalization for LED2

selection register
CKSO00 20MHz

set master mode
set slave mode

// Enable timer 4 interrupt

set PWM period (1l6-bit)
set initial duty cycle 0%

register, set PWM period (1l6-bit) 8KHz
register, set initial duty cycle 0%
register, set master mode

register, set slave mode

register, set PWM period (8-bit)
register, set duty cycle

5 & 7 outputs enabled

Timer output mode 0
set by Master int,

toggle, 1= combination mode
reset by Slave int

TPSO = 0x0000; // Timer
// CKSO01

TMR04 = 0x0800;
TMRO5 = 0x0409;
TMMKO04 = 0;
MK2H = Oxff;

// TDR04 = 0x1389;

// TDRO5 = 0x0000;
TDR04 = 0x9c4; // Timer4
TDRO5 = 0x0000; // Timers
TMRO6 = 0x0800; // Timeré6
TMRO7 = 0x0409; // Timer7
TDRO6 = 0x00ff; // Timeré6
TDRO7 = 0x00ff; // Timer7
TOEO = 0x00AO0; // Timer
TOMO = 0x00AO0; //

//

1

//

// Module: vSoftwareInit

// Description: This module initialize variables.

//

void SoftwareInit (void)

{
swl in = 0;
menu = 0;

// PROJECT = 78KOR - PWM DAC

// MODULE = pwm_main ramp.c

// DEVICE = 78KOR/KG3 (uPD78F1166)
// VERSION = 1.0

// DATE = 04.10.2007

// LAST CHANGE = -

//

// Description:

//

This sample program demonstrates the generation
16-bit PWM and it's use to construct a DAC.

//

// Include files

//

#include "defines.h"
#include "lcd.h"
#include <intrinsics.h>
#include <stdlib.hs>

18

Application Note U19096EE1VOANOO

4KHz

Appendix A - Software Listings

Chapter 6

#include "io78f1166_a0.h"

#include "io078f1166_a0_ext.h"

#pragma location = "OPTBYTE"
__root const unsigned char opbytes[3]={0x00, 0XFF, 0x85};

/= e e oo
// Security ID CODE: for OCD on-chip debugging

/= e e e
#pragma location = "SECUID"

__root const unsigned char secuid[lO]={Oxff,Oxff,Oxff,Oxff,Oxff,
oxff,0xff,0xff, Oxff, Oxff};

void HardwareInit (void) ;
void SoftwareInit (void) ;

___saddr unsigned char menu;
__saddr volatile unsigned char swl_in;

__saddr unsigned char direction;
__saddr unsigned char Wavetable index;

// Constants

const char *stext00 ="**
const char *stext0l ="**
const char *stext02 ="**
const char *stext03 ="**

PWM DAC

Press SW1
78K0R/KG3

AL
7
AL
7

AL
7

125Hz RAMP **";

unsigned char Wavetable end;

__near int Wavetable[] =

// Module: wait n 1lms
// Function: waits for a

{Ox27,0x4e,Ox75,0x09c,Oxc3,0xea,0x111,0x138,0x15f,
0x186,0x1a0,0x1d4, 0x1fb, 0x222,0x249,0x270,0x297, 0x2be, 0x2e5,
0x30c,0x333,0x35a,0x381,0x3a8,0x3cf,0x3f6,0x41d,0x444,0x46b,
0x492,0x4b9, 0x4e0, 0x507, 0x52e, 0x555, 0x57¢c, 0x5a3, 0x5ca, 0x5f1,
0x618,0x63f,0x666,0x68d, 0x6b4, 0x6db, 0x702, 0x729, 0x750, 0x777,
0x79e, 0x7c5,0x7ec, 0x813,0x83a,0x861,0x888,0x8af, 0x8d6, 0x8fd,

0x924,0x94b, 0x972,0x999} ;

time 1ms

void wait n 1ms(unsigned char n)

{

unsigned char i;

TDR01 = 0x009C;
TMRO1 = 0x8000;
TSOL_bit.nol = 1;
for(i=0; i < n; i++)
{
while (! TMIFO1) ;
TMIFO01 = 0;

}

TTOL_bit.nol = 1;

// Module: main

/7
/7
/7
/7
/7

// Function: main function

Timerl data register

Timerl mode register, 1lms interval time

start Timerl

wait for TMO1l Interrupt
clear interrupt flag

stop Timerl

Application Note U19096EE1VOANOO

(TK-78KOR + QB-MINIZ2)

19

Chapter 6 Appendix A - Software Listings

void main(void)

{

HardwareInit () ;

SoftwareInit () ;

LCD_init () ; // LCD Initialization
LCD_inst (dclear) ; // clear display

0x0) ;
&stext00[0]) ;
0x40) ;
&stext01[0]) ;

LCD_cursor
LCD_string
LCD_cursor
LCD_string

direction = 0;
Wavetable index = 0;

__enable interrupt () ; // enable all interrupts
while(!swl_in); // wait for key press on SW1
swl in = 0;

0x0) ;
&stext02[0]) ;
0x40) ;
&stext03[0]) ;

LCD_cursor
LCD_string
LCD_cursor
LCD_string

Wavetable end = (sizeof (Wavetable)/sizeof (int));

TDRO5 = Wavetable [Wavetable index];

TS0 |= 0x00FO0; // start Timer4, 5 and Timeré6, 7

while (1)

{

swl in=0;

1
1
e S REEEEEEE R
// ISR: isr_INTTMO4

// Function: Timer interrupt service routine - Timer underflow - countdown

#pragma vector = INTTMO04 vect
__interrupt void isr INTTMO04 (void)
++Wavetable index;
if (Wavetable index < Wavetable end)
TDRO5 = Wavetable [Wavetable index];

else
{
TDRO5 = O;
Wavetable index = 0;
!
1
J /=
// ISR: isr INTKR

// Function: Key interrupt service routine / navigator switch / key debouncing

#pragma vector = INTKR vect
__interrupt void isr INTKR (void)

{

unsigned char swl first,swl second;

swl first= (~P7) & Ox1f; // read SW1 first time

TDROO = 0x061A; // Timer data register

TMROO = 0x8000; // Timer mode register

TSOL _bit.no0 = 1; // start Timer

while (! TMIFO0O) ; // wait for TMO0O Interrupt, interval time = 10ms
TMIFO00 = 0;

TTOL bit.no0 = 1; // stop timer

swl second= (~P7) & Ox1f; // read SW1 second time

if (swl_first==swl_second) swl_ in=swl first; // debounce SW1l
else swl_in=0;

20 Application Note U19096EE1VOANOO

Appendix A - Software Listings

Chapter 6

6.3 Sine Wave

//=m======m==mm==m==mmmmmmmmmsmmmmmmmmsmmmmsmmsmms—mmmmsmmmmmsmmmmmmsme
// PROJECT = 78KOR - PWM DAC

// MODULE = pwm_init_sine.c

// DEVICE = 78KOR/KG3 (uPD78F1166)

// VERSION = 1.0

// DATE = 04.10.2007

// LAST CHANGE -

//

// Description: Initialization of peripherals and variables

// ===mmmmmmmmmmmmm oo
// By: NEC Electronics (Europe) GmbH

[/ ===mm=mmmmmmmmmmmmmmmmmm oo
/=== oo

// Include files
#include "defines.h"
#include "lcd.h"
#include <intrinsics.h>

#include "io78£1166 a0.h"
#include "io78£1166 a0 ext.h"

extern _ saddr unsigned char menu;

extern _ saddr volatile unsigned char swl_in;

// Module: HardwareInit
// Description: This module initialize peripheral hardware.

T
void HardwareInit (void) // hardware inizialization
{
[/ mm e
// clock generator setting
[/ = e
OSMC = 0x01; // Operation speed mode control register
// frequency higher than 10MHz
0STS = 0x07; // Set osc. stabilization time selection
// to 2718/fx
CMC = 0x51; // Clock operation mode register
// X1 osc. mode, XTl osc. mode, fx > 10MHz
CKC = 0x08; // System clock control register
// fclk = fih
csc = 0x00; // enable X1 , XT1l operation
while (OSTC < OxFF) // Wait until £X1 clock stabilization
{ // time has been elapsed
__no_operation() ;
1
CKC = 0x18; // System clock control register
// fclk = fmx = 20MHz
CSC = 0x01; // stop internal high speed oscillator
PERO_bit.no0 = 1; // supply input clock to timer array

Application Note U19096EE1VOANOO

21

Chapter 6

Appendix A - Software Listings

[mmm e
// PORT setting
[mmm
PM8=0x00; // Port initalization for LC display
PM5 bit.no0=0;
PM6_bit.no6=0;
PM6_bit.no5=0;
PM7 |=0x1f; // Port initalization for SW2
PU7 =0x1f;
KRM =0x1f;
KRMK = 0; // enable key interrupt
PM14 bit.no5 = 0; // Port initalization for LED1
PM4 bit.no6 = 0; // Port initalization for LED2
LED1 = 0;
LED2 = 0;
[mmm
// Timer4,5 and Timer6,7 initialization
[mmm e
TPSO = 0x0000; // Timer clock selection register

// CKS01l = 20MHz; CKS00 = 20MHz

TMR0O4 = 0x0800;
TMRO5 = 0x0409;

// Timer4 mode register, set master mode
// Timer5 mode register, set slave mode

TMMKO4 = 0;
MK2H = Oxff;

// Enable timer 4 interrupt

TDR04 = 0x872;
// TDR04 = 0x1389;
// TDR04 = 0x9c4;

// Timer4 data register, set PWM period (16-bit) 9.25KHz
// Timer4 data register, set PWM period (16-bit) 4KHz
// Timer4 data register, set PWM period (16-bit) 8KHz

TDRO5 = 0x0000; // Timer5 data register, set initial duty cycle 0%
TMRO6 = 0x0800; // Timer6 mode register, set master mode

TMRO7 = 0x0409; // Timer7 mode register, set slave mode

TDR0O6 = 0x00ff; // Timer6 data register, set PWM period (8-bit)
TDRO7 = 0x00ff; // Timer7 data register, set duty cycle

TOEO = 0x00AO0; // Timer 5 & 7 outputs enabled

TOMO = 0x00AO0; // Timer output mode 0 = toggle, 1= combination mode
// set by Master int, reset by Slave int

// Module: vSoftwareInit
// Description: This module initialize variables.

void SoftwareInit (void)

{

swl in = 0;
menu = 0;
1
//=ss==s==ss==s==cssscsscsssssscssssssossssssossssssossssssosssssssssssssossssas
// PROJECT = 78K0OR - PWM DAC
// MODULE = pwm_sine main.c
// DEVICE = 78KOR/KG3 (uPD78F1166)
// VERSION = 1.0
// DATE = 04.10.2007
// LAST CHANGE = -
// ss==s==ss==s=scsssosscssoosscssoossosssossossoossossoossosssossossssssosseaes
// Description: This sample program demonstrates the generation
// 16-bit PWM and it's use to construct a DAC.
// =s==s==ss==s=scsssosscssoosscssoossosssossosssossossosssosssossossosssossseas
// By NEC Electronics (Europe) GmbH
// ====s==ss==s=scsssosscsssosscssoossosssossosssossossosssossoossossosssossoeas

29 Application Note U19096EE1VOANOO

Appendix A - Software Listings

Chapter 6

#include "defines.h"
#include "lcd.h"

#include <intrinsics.h>
#include <stdlib.h>

#include "io78f1166_a0.h"
#include "io78f1166_al0_ext.h"

#pragma location = "OPTBYTE"

__root const unsigned char opbytes[3]={0x00, 0xFF, 0x85};

/= e e e e
// Security ID CODE: for OCD on-chip debugging (TK-78KOR + QB-MINI2)

/= e e e
#pragma location = "SECUID"

__root const unsigned char secuid[lO]={Oxff,Oxff,Oxff,Oxff,Oxff,

void HardwareInit (void) ;
void SoftwareInit (void) ;

saddr unsigned char menu;

oxff,0xff,0xff, Oxff, Oxff};

__saddr volatile unsigned char swl_in;

__saddr unsigned char direction;
__saddr unsigned char Wavetable index;

J == e e
// Constants

J == e e e
const char *stext00 ="** PWM DAC *k M.

const char *stext0l ="** Press SW1 **".;

const char *stext02 ="** 78KOR/KG3 **";

const char *stext03 ="125Hz Sine Wave ";

unsigned char Wavetable end;

__near int Wavetable[] = {OxO0,0x04,0xl0,0x24,0x41,0x65,0x90,0xc3,0xfc,0x13c,0x181,0xlcc,

0x21b, 0x26f,0x2c6,0x31f, 0x37b, 0x3d9, 0x437,0x495,0x4f2, 0x54e,
0x5a8,0x5ff,0x652, 0x6a2, 0x6ec, 0x732,0x771,0x7ab, 0x7dd, 0x809,
Ox82d,Ox849,0x85d,0x86a,0x86e};

// Module: wait n 1lms

// Function: waits for a time 1lms

void wait n 1ms(unsigned char n)

{

unsigned char i;

TDR0O1 = 0x009C;
TMRO1 = 0x8000;
TSOL_bit.nol = 1;
for(i=0; i < n; i++)
{
while (! TMIFO1) ;
TMIFO01 = 0;

}

TTOL_bit.nol = 1;

/7
/7

/7

Timerl data register
Timerl mode register, 1lms interval time
start Timerl

wait for TMO1l Interrupt
clear interrupt flag

stop Timerl

Application Note U19096EE1VOANOO

23

Chapter 6

Appendix A - Software Listings

// Module: main
// Function: main function

void main(void)

{

HardwareInit () ;
SoftwareInit () ;

// LCD Initialization
// clear display

LCD_init();
LCD_inst (dclear) ;

0x0) ;
&stext00([0]) ;
0x40) ;
&stext01[0]) ;

LCD_cursor
LCD_string
LCD_cursor
LCD_string

direction = 0;
Wavetable index = 0;

__enable interrupt () ; // enable all interrupts

while(!swl_in); // wait for key press on SW1
swl in = 0;

0x0) ;
&stext02[0]) ;
0x40) ;
&stext03[0]) ;

LCD_cursor
LCD_string
LCD_cursor
LCD_string

(sizeof (Wavetable) /sizeof (int)) ;
Wavetable end - 1;

Wavetable end =
Wavetable end =

TDRO5 = Wavetable [Wavetable index];
TS0 |= 0x00FO0; // start Timer4, 5 and Timer6,
while (1)
{
swl in=0;

if (direction ==
direction = 1;

&& Wavetable index >= Wavetable_ end)

if (direction ==1 && Wavetable_ index == 0)
direction = 0;
}
}
/=== == e eeeeooooooooooooo-
// ISR: isr INTTMO4

// Function:

#pragma vector = INTTMO4 vect
__interrupt void isr INTTMO04 (void)

{

switch(direction)

{

case 0: // direction = down the Wavetable array
if (Wavetable index != Wavetable_ end)

{

++Wavetable index;

TDRO5 = Wavetable [Wavetable index];
break;

1

else

{
TDR0O5 = Wavetable [Wavetable index];
++Wavetable index;
break;

1

case 1: // direction = up the Wavetable array
if (Wavetable index != 0)

{

24 Application Note U19096EE1VOANOO

7

Timer interrupt service routine - Timer underflow - countdown

Appendix A - Software Listings Chapter 6

-- Wavetable index;

TDRO5 = Wavetable [Wavetable index];
!
else

TDRO5 = Wavetable [Wavetable index];
break;

default: break;

// ISR: isr INTKR
// Function: Key interrupt service routine / navigator switch / key debouncing

#pragma vector = INTKR vect
__interrupt void isr INTKR (void)

{

unsigned char swl first,swl second;

swl first= (~P7) & Ox1f; // read SW1 first time

TDROO = 0x061A; // Timer data register

TMROO = 0x8000; // Timer mode register

TSOL _bit.no0 = 1; // start Timer

while (! TMIFO0O) ; // wait for TMO0O Interrupt, interval time = 10ms
TMIFO00 = 0;

TTOL bit.no0 = 1; // stop timer

swl_second= (~P7) & Ox1f; // read SW1l second time

if (swl_first==swl_second) swl_in=swl_ first; // debounce SW1l
else swl_in=0;

Application Note U19096EE1VOANOO 25

	1 Introduction
	2 Theory
	3 DAC Resolution
	4 Analogue Low Pass Filters
	5 Circuit Diagrams and Signals
	6 Appendix A - Software Listings
	6.1 DC Level
	6.2 Voltage Ramp
	6.3 Sine Wave

