Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62

Using the Expanded Memory Mode with the M16C/62

1.0 Abstract

The following article introduces and shows an example of how to access external memory using the expanded memory mode of the M16C/62 series of microcontrollers.

2.0 Introduction

The Renesas M16C/62 series of microcontrollers is a 16-bit family of MCUs, based on Renesas' M16C CPU core. These parts provide high memory efficiency, power-saving ability, low noise emission, and improved noise immunity. The M16C/62 part series can be used in many applications such as office equipment, PC peripherals, portable devices, automotive, cameras, audio, and so on.

This application note shows how to configure and use the expanded memory mode on the M16C/62 series of microcontrollers.

3.0 Memory Expansion Mode

There are three processor modes used with the M16C/62 series of microcontrollers. For each processor mode, the memory map functions of some pins and external access space differ. The three processor modes are as follows:

- Single-chip mode—Only internal memory space can be accessed.
- Memory Expansion mode—External memory can be accessed in addition to all the internal memory.
- Microprocessor mode—External memory along with internal SFR and RAM areas can be accessed. Internal ROM cannot be used.

For this application note, memory expansion mode is demonstrated. This allows use of all the internal memory areas (SFR, RAM, ROM) and some external memory. In this mode, some of the pins need to function as the address bus, data bus, and control signals for accessing the external memory. The number of pins affected depends on the bus and register settings. Once expanded memory mode and the control settings are selected, the affected pins become dedicated to external memory and can no longer be used for other I/O functions.

The desired processor mode is set by the processor mode bits in the processor mode register (PM0) and the CNVss pin. To select memory expansion mode, the CNVss pin is tied to Vss and the processor mode bits are set to "012". When programming in C, the processor mode is set in the startup file (ncrt0.a30). Figure 1 is an example for setting the processor mode bits.

start: ;; ; after reset,this progr	ram will start
mov.b #02h,0ah mov.b #05h,04h mov.b #00h,05h mov.b #00h,0ah mov.b #07h,08h ldc #0080h,flg ldc #stack_top, sp	<pre>isp ;set istack pointer ; disable protect reg ; set processer mode pm0 ; set pm1 ; enable protect reg ; enable CS2 & CS1 output with wait stat ;set stack pointer sb ;set sb register</pre>

Figure 1 Setting the Processor Mode Bits in ncrt0.a30

ENESAS

The bus settings and control signals can also be customized for different configurations. The external bus width can be set to either 8 bits or 16 bits by connecting the BYTE pin to Vcc or Vss respectively. This does not affect the internal bus, which is always fixed to 16 bits.

The read/write signal configurations are set in the processor mode register (PM0). There are two combinations of R/W signals. For a 16-bit data bus, select between the RD, WR, and BHE signals or the RD, WRL, and WRH signals. When using an 8-bit bus, always use the RD, WR, and BHE signals.

The chip select area used for the external memory must be enabled in the chip select register (CSR). The chip select register determines if pins P44 to P47 output the chip select or if they are used as GPIO. The chip select register also has bits that determine if a wait state should to be added to each individual chip select area. See the specification for each specific microcontroller for exact chip select memory ranges. Figure 2 is an example of a memory map for an M16C/62 microcontroller in expanded memory mode.

Figure 2 Example Memory Map with Chip Selects for Expanded Memory Mode

Renesas

Other control signals used are the RDY and HOLD signals. The RDY signal is used for any external device that requires a long access time. The HOLD signal is used to transfer the bus privileges from the CPU to an external device.

Note: If the RDY and/or HOLD signals are not used, they must be connected to Vcc or the MCU could be permanently stuck in a wait state.

More detailed information on expanded memory, processor modes, and bus settings can be found in the M16C/62 specification and user's manual.

4.0 Using Expanded Memory with the PC4701 Emulation System

Some special considerations are required when using expanded memory with the PC4701 emulator. To access any external memory with the emulator, the external memory area must first be mapped using the emulator/debugger software PD30. When PD30 is first started, all memory except for the SFR area is mapped as internal memory.

First, determine the external memory range that will be used according to the chip select that is being used. This external memory area must be mapped to external. Open a script window in PD30 and use the map command to change the memory range that is being used to "External" (example: "map 8000, 9000, ext"). This maps the memory range 8000h to 9000h as external memory. To check that the changes have been set, type "map" in the command line and a list of the current memory map is displayed.

There is one precaution to observe when using the emulator and the CS2 memory space. The memory addresses, 0FFFCh to 0FFFFh, are used by the emulator as a stack area. These addresses must remain mapped as internal memory or the program will not reset properly. See the Emulation System manual for more information on this precaution. Figure 3 shows an example of mapping the CS2 memory area around the emulator stack.

😴 Script Window				
Run Step	🔀 Open 🌋 Close	🖹 Log 🕅 Log	Sav 🔀 Clear	e Rec
Script:		Log:		
>map 8000,fffb, >map fffc,ffff, >map 10000,3000 00000-0003FF 000400-007FFF 008000-007FFF 008000-007FFF 008000-007FFF 00900-030000 030001-0FFFFF > 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	int 10,ext EXTERNAL INTERNAL EXTERNAL INTERNAL EXTERNAL INTERNAL			ŀ
•				Þ
Enter Command:				

Figure 3 Mapping External Memory in PD30

5.0 Implementation

A sample program is included to demonstrate the use of expanded memory mode. This program is written to run on Renesas' MDECE0620 evaluation board. This board allows easy evaluation for any M16C/62 microcontroller. The example program samples the voltage of a potentiometer on the evaluation board and stores this data into the external SRAM on the board. The potentiometer is connected to channel 0 of the A/D converter on the M16C. When the push button S2 is pushed, the A/D value is sampled about every 100 ms and written to the SRAM one byte at a time. An LED (D6) blinks to indicate when the A/D is sampling. When the push button is pressed again, the A/D sampling will stop, all of the A/D data stored in memory is read back, and an average A/D value is calculated. Each time the A/D sampling is started, it returns to the beginning of memory and starts storing data. For simplicity, the sample program is limited to storing a total of 8 kbytes of data.

The memory window in PD30 is used to view the A/D data stored in the external memory. Figure 4 is an example of A/D data stored in the external SRAM on the evaluation board. A/D data storage starts at memory address 8000h. The average A/D value (after sampling is stopped) is also found in the memory window at the average variable address or by using a C watch window.

🥙 Memory Window (008000)								
BBIN	D DEC	H HEX	dbc ASCII	a sus	க JIS	Refr	Cache	
Address		EL		DATA				
008000				00				
008001				00				
008002				00				
008003				00				
008004				00				
008005				01				
008006				ØE				
008007				10				
008008				26 36				
008009 00800A				36 44				
00800B				44 4F				
00800C				4F 4E				
00800D				4E				
00800E				4E				
00800F				58				
008010				72				
008011				86				

Figure 4 Mapping External Memory in PD30

The external memory connections used on the evaluation board and for the sample program are shown in Figure 5. The memory is connected using the 16-bit data bus; the lower byte is connected to one memory chip and the upper byte is connected to the second memory chip. The R/W mode is set to use RD, WRL, and WRH. WRL is connected to the lower byte and WRH to the upper byte. With this configuration, address line A0 is not connected to the external memory because WRL and WRH effectively take its place. It is important to make sure that any unused control signals are tied off properly. [Not shown: The RDY and HOLD pins are connected to Vcc.] The sample program accesses the memory in both 8-bit and 16-bit modes. Although the memory chips are configured for a 16-bit data bus, the A/D results are 8-bit and writes to the external memory are done 8 bits at a

time. When A/D sampling stops, the results are read from external memory using 16-bit mode. The data are split into two bytes and added together to calculate the average A/D value.

Chip select 2 is used to address the memory. The effective address range using CS2 is 8000h to 27FFFh; this is a total of 128 Kbytes. Each memory chip in our demo contains 32k x 8 bits or 64 Kbytes total memory (8000h – 17FFFh).

Figure 5 External Memory Connections

KENESAS

The potentiometer on the evaluation board is connected to A/D input AN0 on the M16C/62. The A/D is set up for 8-bit conversion, one-shot mode, software triggered, with sample and hold enabled.

The push button (S2) used to start and stop the A/D sampling is connected to an external interrupt on the M16/62. The interrupt used is INT0. Each time the push button is pressed, an INT0 interrupt is generated. A flag monitors the A/D sampling when it is on or off.

The LCD supplied on the evaluation board views the A/D values as they are sampled and the average A/D value when sampling is stopped. Because some of the LCD connections on the board are used for control signals in expanded memory mode, some circuit modifications are needed for the LCD to work with external memory. Figure 6 shows the LCD connections used in the sample program. This configuration allows the LCD to be accessed similar to any external memory. Chip select 1 addresses the LCD, thus writing to any even address (low byte in 16-bit address bus) in the CS1 memory area writes data to the LCD. Writing to an even address causes the WRL signal to go to a logic low level. Writing to an odd address causes WRH to go to a logic low, and

does not enable the LCD. In the sample program the address 28000h is used.

KENESAS

Figure 6 MDECE0620 LCD Connections When Using External Memory

The sample program is just one way of using expanded memory mode on the M16C/62 series of microcontrollers.

6.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support apl@renesas.com

Data Sheets

• M16C/62 datasheets, 62aeds.pdf

7.0 Software Code

```
*
     File Name: main.c
*
                This program demonstrates using expanded memory on the
    Content:
                MDECE0620 evaluation bd. When S2 is pressed, A/D measurements
                are taken from R11 (pot.) at 100ms intervals and stored in
                 external memory. When S2 is pressed again, the A/D sampling
*
                 stops, the data is read from memory and an average A/D value
*
                 is calculated.
*
*
                Date: 9-28-2001
*
*
    Copyright 2003 Renesas Technology Corporation
     All rights reserved
*_____
     $Log:$
*_____*/
#include "sfr62.h"
                           /* include 620 header file */
#include "lcd_exp.h"
                           /* lcd include file */
/* Setup interrupt routine for INTO
 This must also be setup in the vector table in SECT30.INC */
#pragma INTERRUPT /B INTO ISR
/* Prototypes */
void Get Avg (void);
void LCD write ( far char *, int);
/* Global variables */
unsigned int mem start = 0x8000; /* declare expanded memory start address */
unsigned char *mem ptr;
                                 /* declare memory pointer */
                                 /* declare word memory pointer */
unsigned int *word ptr;
                                 /* A/D sampling flag */
unsigned char ad on = 0;
unsigned int sample cnt = 0;
                                 /* sample counter */
union word define {
                                 /* define word structure */
    struct{
                                /* low 8 bit */
          char low;
           char high;
                                 /* high 8 bit */
     }byte;
     unsigned int word;
} memory;
/* String Messages */
const char msg text2[] = "Demo Program";
```

```
const char msg ad[] = "A/D Value";
const char msg_avg[] = "A/D Average";
Name:
        Main
Parameters:
Returns:
Description: This is the main program
*****
void main() {
      int temp;
     unsigned int delay;
     unsigned char ad data;
     mem ptr = (unsigned char *) mem start;
      /* Initialize Ports */
     pd7 = 0xFF;
                            /* Configure port 7 as all outputs */
                            /* Initialize port7 4 to 7 7, LEDs off */
     p7 |= 0x80;
     pd8 = 0x02;
                            /* port 8 1 output */
                             /* Initialize p8 1 (LCD RS) */
     p8 \ 1 = 0;
     pd10 = 0;
                             /* A/D input */
     /* Use A/D for reading pot. value */
     adcon0 = 0x00; /* AN0 ,one shot mode, software trigger, freq /4*/
                    /* Set up 8 bit conversion & Vref connected */
     adcon1 = 0x20;
     adcon2 = 0x01;
                             /* Set up sample and hold */
      /* Initialize Timer A4 for S2 switch debounce */
     ta4ic = 0x00; /* make sure that the interrupt is not active */
     ta4mr = 0x82;
                      /* set for one shot timer mode */
     ta4 = 0xffff; /* Debounce time delay */
     ta4s = 1;
                            /* get ready */
                            /* start timer once */
     ta4os = 1;
     LCD init();
                            /* Initialize LCD display */
     int0ic = 0x05;
                            /* Enable INTO interrupt */
     asm("FSET I");
                            /* Enable all interrupts */
     LCD write( msg text1, 1 ); /* Intial LCD message */
      LCD write( msg text2, 2 );
      while (1) {
      if (ad on == 1) {
           p7_7 = ~p7 7;
                                 /* blink LED to indicate A/D sampling */
           L2homeLCD();
                                   /* Home LCD on line 2 */
           adst = 1;
                                   /* Start A/D conversion */
     while(adst == 1);
                                  /* wait for A/D conversion start bit to
return to 0 */
```

RENESAS

```
/* read value from A/D register */
           ad data = ad0;
           *mem ptr = ad data;
                                  /* save A/D data to memory */
                                  /* increment memory pointer */
           mem ptr++;
                                  /* increment sample counter */
           sample cnt++;
                                  /* Output data to LCD */
           LCD DisplayHex(ad data);
           if (sample cnt >= 0x2000) { /* limit samples to 8k bytes */
                ad_on = 0; /* stop sampling */
                                 /* stop LED blinking */
                 p7 7 = 1;
                 Get Avg (); /* calculate average A/D value */
           }
     }
     for (delay=0x2aff; delay>0; delay--); /* sampling delay ~100ms */
 }
}
Name: INTO ISR
Parameters:
Returns:
Description: INTO interrupt routine, S2 is connected to INTO
          S2 controls when A/D sampling starts and stops
void INTO ISR(void)
{
     if (ir ta4ic == 0)
                                       /* Switch Debounce timer timeout?
* /
                                              /* If not return, do
          return;
nothing */
     int0ic = 0x00;
                                              /* disable INTO interrupt
*/
     /* Start A/D sampling */
     if(ad on == 0){
                                             /* A/D sampling currently
off?*/
                                              /* turn on */
           ad on = 1;
           mem ptr = (unsigned char *) mem start;
                                             /* Reset memory to begining
*/
          sample cnt = 0;
                                             /* Reset sample counter */
                                             /* clear LCD */
           clrLCD ();
           LCD write( msg ad, 1 );
                                             /* change LCD display */
     }
     /* Stop A/D sampling */
     else if (ad on == 1){
                                       /* A/D sampling currently on ? */
          ad on = 0;
                                       /* turn off */
           p7 7 = 1;
                                       /* stop LED blinking */
                                        /* calculate average A/D value */
           Get Avg ();
```

KENESAS

}

```
ir ta4ic = 0;
                                      /* reset debounce timer */
                                       /* start debounce timer */
     ta4os = 1;
     intOic = 0x05;
                                       /* Enable INTO interrupt */
}
Name:
           Get Avg
Parameters:
Returns:
Description: Read A/D data from external memory and calculate average
void Get Avg (void)
{
     unsigned int avg = 0;
     int count;
                                 /* clear LCD */
     clrLCD ();
     LCD_write(msg_avg, 1); /* change LCD display */
                                 /* Home LCD on line 2 */
     L2homeLCD();
                                      /* get number of samples */
     count = sample cnt;
     word ptr = (unsigned int *) mem start; /* Reset memory to begining */
     for
          (total = 0; count > 1; count -= 2) {
          memory.word = *word_ptr; /* read word from memory */
total += memory.byte.low; /* add lower byte to total */
total += memory.byte.high; /* add upper byte to total */
                                       /* increment word memory pointer */
           word ptr ++;
     }
if (count == 1) {
                                       /*if odd number of data,get last one*/
           memory.word = *word_ptr;
total += memory.byte.low;
                                       /* read word from memory */
                                      /* add lower byte to total */
           count --;
     }
     avg = total / sample cnt; /* calculate average value */
     LCD DisplayHex(avg); /* Output average to LCD */
}
Name: LCD write
Parameters:
Returns:
Description: This routine outputs some text to the LCD display
void LCD write ( far char * data string, int line )
{
     int p;
     if(line == 1)
```


}

```
L1homeLCD(); /* home display on line 1*/
else
L2homeLCD(); /* home display on line 2*/
for (p=0; data_string[p]; p++){ /* This loop reads in the text string */
SendChar(data_string[p]);
}
```

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.