

Application Note

System-on-Chip Lite+

Development Board

µC Linux-Kernel 2.4.24 and Application
Software Information

Internal Document No. TPS-HE-A-1046
Date Published August 2005 N

 NEC Electronics (Europe) GmbH

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 2

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 3

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 4

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 5

Table of Contents

1. Quick Start .. 7
2. Configuring uClinux-dist... 15

2.1. Compiler.. 16
2.2. Library ... 16

3. The Linux Kernel ... 17
3.1. Hardware Specific Modifications .. 17

3.1.1. Startup Code... 17
3.1.2. Interrupts and Other Exceptions.. 17
3.1.3. Low Level Debug Output... 18

3.2. New or Modified Drivers... 18
3.2.1. Serial Interface.. 18
3.2.2. Ethernet.. 19
3.2.3. MTD Flash Mapping.. 19
3.2.4. Watchdog ... 20
3.2.5. LED .. 20

4. Userland Application Programs.. 21
4.1. Init ... 21
4.2. BusyBox .. 21
4.3. Boa.. 21

4.3.1. Files Used by Boa... 21
4.3.2. boa.conf Directives ... 22

4.4. MTD-Utilities .. 23
4.5. SMTP-Client .. 24
4.6. MTDW ... 24

4.6.1. mtdw... 24
4.6.2. ksetup... 24

5. Debugger .. 27
5.1. Insight.. 27

5.1.1. Building Insight ... 27
5.1.2. Using Insight ... 27

5.2. gdbserver .. 28
5.2.1. Usage on Target Side ... 28
5.2.2. Usage on Host Side .. 28
5.2.3. Options... 29

6. Adding Kernel Drivers.. 31
6.1. Write the Driver.. 31
6.2. Add a Configuration Option.. 32
6.3. Add a Makefile Entry.. 32
6.4. Add a Device Node.. 32

7. Adding User Applications... 33
7.1. General Approach.. 33
7.2. LED Sample Application .. 34

8. Notes .. 37
8.1. Memory Access Without MMU ... 37
8.2. Creating New Processes.. 37
8.3. File Systems.. 37

9. Tips and Tricks.. 39
9.1. Mounting an nfs Network Drive .. 39
9.2. Fast Update of µcLinux Kernel and JFFS2 File System.. 39
9.3. Changing the Ethernet IP Address Permanently... 39

A. Bibliography .. 41
B. Revision History .. 42

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 6

List of Figures

Figure 1-1: Xconfig main.. 8
Figure 1-2: Vendor/Product setting... 8
Figure 1-3: Kernel/Library settings.. 9
Figure 1-4: System-on-Chip Lite+ board... 10
Figure 2-1: Linux Kernel settings.. 15
Figure 2-2: Application settings .. 16

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 7

1. Quick Start

1. You will need a computer running a version of Intel- resp. i386-Linux, with sufficient RAM and

harddisk space. Make sure a GNU C compiler toolchain is installed. Due to the multitude of
Linux distributions available, we cannot give precise information what packages to install. But if
your installer or setup program offers a predefined setting named like "Software Development",
that might be a good starting point. To use the GUI configuration (make xconfig), you also
need a Tcl/Tk package installed (it's probably part of most standard configurations).
Approximately 1.5 GB additional disk space is needed for the cross-toolchain, uClinux-dist and
the temporary files created during the build.

2. You will need a cross-compiler package for your target. Many binary tool packages exist
specifically for compiling uClinux. As you are targeting ARM systems then you can use the arm-
elf-tools binary packages of www.uclinux.org, which are included on the NEC-µCLinux-
package. To install it, change to super-user mode (su command). Then change to the NEC-
µCLinux-package directory and type in

sh arm-elf-tools-20030314.sh

For all further steps, you should not be logged in as root. Developing as root is not
recommended at all. So leave the super-user mode by the command exit.
If /usr/local/bin is not in your shell's program search path, you should add it (example for
the bash shell):

PATH=$PATH:/usr/local/bin
export PATH

3. If you have not un-archived the source package then do that now. You can do this into any
directory; typically use your own user home directory. So, change to your home directory, then
type:

tar xvzf <NEC-uCLinux-package path>/uClinux-dist.tar.gz

This will dump the source into an uClinux-dist directory.

4. Change into the source tree:

cd uClinux-dist

5. Configure the build target:

make xconfig

You can also use make config or make menuconfig if you prefer. The top level selection is
straight forward if you know the vendor of the board you want to compile for. You can also
choose to modify the underlying default kernel and application configuration if you want (Figure
1-1).

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 8

Figure 1-1: Xconfig main

At first it is suggested that you use the default configuration for your target board. It will almost
certainly work "as is". For the System-on-Chip Lite+ board, you should select vendor "NEC" and
product "SOClite+" in the Vendor/Product selection dialog (Figure 1-2).

Figure 1-2: Vendor/Product setting

In the Kernel/Library selection box you should choose kernel "2.4.x" and library "uClibc" (other
versions are not supported) and check "Default all settings" (Figure 1-3).

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 9

Figure 1-3: Kernel/Library settings

Click <Main Menu> and <Save and Exit>

6. Build the dependencies:

make dep

7. Build the image:

make

That’s it!
The make scripts will generate appropriate binary images for the target hardware specified. The
build process can take some time (15 minutes on a 2 GHz Pentium). Approximately 1.3 GB disk
space are needed for the installed toolchain, uClinux-dist and the temporary files created during
the build. All generated target files will be placed in the images directory. The exact files vary
from target to target, for the System-on-Chip Lite+ board you end up with three binary images,
each available in raw binary form and as Motorola S-record file:

• kernel.bin, kernel.srec

The Linux kernel as a binary image, without any debug information. This image could be
programmed into the flash.

• jffs2.img, jffs2.srec
The root file system in JFFS2 format. JFFS2 (Journalling Flash File System) is a
compressing, rewritable file system especially for flash memory.

• romfs.img, romfs.srec
The same root file system in ROMFS format. ROMFS is a read-only, not compressing file
system, but it is faster than JFFS2.

8. Load the image(s) into the target

Make sure all the jumpers and DIP switches are in their default positions. Switch SW2-3 is of
special interest here, because it selects if the processor boots from internal ROM (On position)
or from external Flash memory (Off position) (Figure 1-4).

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 10

Jumpers JP20 (ANEG), JP21 (DPLX) and JP22 (Speed) select the network connection type
and speed. By default, the board is configured to a full-duplex 10Mbit connection. If you
experience connection problems, you can use these jumpers to set alternative connection
parameters or auto-negotiate. In Figure 1-4, a half duplex, 10 Mbit connection is selected.

How to load and run the generated images will depend on your target system and your
debugging hardware.

Figure 1-4: System-on-Chip Lite+ board

If you want to download the images over the serial interface, you can use the flash load tools
supplied by NEC. You also need a terminal program that can send ASCII files, like minicom,
kermit or Teraterm.

The Flash erase and load programs can be found on the NEC-uCLinux-package in the
/FlashLoad directory, while the Linux kernel and file system images can be found in the
/uCLinux-dist /images directory

• Set your terminal programm to 57600 baud, 8N1
• Set switch SW2-3 to the ON position (Bootloader mode)
• Erase the Flash

• Reset board
• Press '>' to synchronize the UART. The Welcome message will appear.
• Press 's' and <Return> to start the download receive function
• Send the s-record Erase_AMD_Chip.m32 as ASCII file. Wait until the transmission

is finished.
• Type "g 8000000" to execute the flash program.
• Press '>' to synchronize the UART again. The message “erasing” is displayed.

The erase procedure requires several minutes!!! Please wait for the final checks,
displaying ”Verify” followed by several “Address-Data” outputs!!! After the last
address 007F0000 you may continue.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 11

• Program the kernel

• Reset board
• Press '>' to synchronize the UART. The Welcome message will appear.
• Press 's' and <Return> to start the download receive function
• Send the s-record Flash_Load_AMD.m32 as ASCII file. Wait until the transmission

is finished.
• Type "g 8000000" to execute the flash program.
• Press '>' to synchronize the UART again. A download message appears.
• Send the kernel s-record kernel.srec as ASCII file (No other input is allowed before

sending the file!).
When the transmission is finished, the necessary flash sectors will be programmed.

• Program the JFFS2 file system

• Reset board
• Press '>' to synchronize the UART. The Welcome message will appear.
• Press 's' and <Return> to start the download receive function
• Send the s-record Flash_Load_AMD.m32 as ASCII file. Wait until the transmission

is finished.
• Type "g 8000000" to execute the flash program.
• Press '>' to synchronize the UART again. A download message will appear.
• Send the JFFS2 s-record jffs2.srec as ASCII file (No other input is allowed before

sending the file!).
When the transmission is finished, the necessary flash sectors will be programmed.

If you want to download the kernel with a debugger, you will find the kernel in ELF format (with
debug information) under linux-2.4.x/linux. A hardware JTAG interface provides a quick and
easy way to load data on your target system. We found that EPI's JEENI [6] works well with the
GNU debuggers gdb and insight.

For the initial gdb download, you will need a kernel with a builtin file system. To generate one of
your own, in the kernel configuration (Figure 2.1) following steps need to be done:

Make sure that you are working in the uCLinux-dist directory and type in:

make xconfig

You will see the dialog box shown in Figure 1-1. Now proceed as follows:

• press “Load Configuration from File” and enter the following file name:

vendors/NEC/SOClite+/config.linux-2.4.x-romfs-builtin

• press “OK”.
• Make shure that Vendor/Product Selection and Kernel/Library/Defaults Selection are

defined as described in step 5.
• Press “Save and Exit”

To build the image, type:

make dep
make
make

As the ROMFS file system integrated into the kernel is the one generated by the previous make
run, you have to call make twice (compared with step 7) to make sure kernel and applications
are up to date.

Don't try to program this "builtin-FS" kernel into the flash memory; it won't fit into the kernel
partition.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 12

Start the debugger (insight-5.2.1/gdb/gdb), execute the .gdbinit script to initialize the
target board hardware, download and run the kernel. In the GDB/Insight console window, it
would look like this:

(gdb) file binary-images/kernel-builtin-romfs.elf
(gdb) source uClinux-dist/linux-2.4.x/.gdbinit
(gdb) load
(gdb) cont

For the next steps, we need the "default-configuration" kernel without builtin FS image. We
have to transfer the kernel and JFFS2 images to System-on-Chip Lite+’s ramdisk using FTP or
NFS, and program them into the Flash memory using mtdw (section 4.6.1). If your host
computer has for example the IP address 192.168.30.254, is running an NFS server, and
exports your development directory /LinuxSOC, you can execute these steps from your target
system's console like this:

mount -t nfs -o nolock 192.168.30.254:/LinuxSOC /mnt
cd /var
cp /mnt/uClinux-dist/images/jffs2.img
mtdw -e jffs2.img /dev/mtd1
cp /mnt/uClinux-dist/images/kernel.bin
mtdw kernel.bin /dev/mtd0

Start Linux
Set switch SW2-3 to the OFF position (Flash boot mode) and reset the board. Linux should
start.

9. Set the Ethernet MAC and IP address

The System-on-Chip-Lite+ board has an on-board Ethernet controller, for which a MAC
address and an Ethernet IP address have to be set in order to avoid network collisions.

• Set-up the Ethernet IP address

A valid Ethernet IP address must be provided by your network administrator together with
the sub-net mask and gateway address.

For temporary testing, the address can be set on run-time using the ifconfig command
(ifconfig eth0 add <ip-address> netmask <net mask>), however is lost after reset.

A permanent change should be made, after µCLinux is running (after Step 9). See also
chapter 9.3.

• Set-up the Ethernet MAC address

For the on-board Ethernet controller a MAC address has been reserved in order to avoid
network collisions. The MAC addresses are generally given as:

00:00:4C:80:5A:nn

“nn" has to be calculated from your board’s serial number, that can be found on a sticker on
the board itself.

• for serial numbers CA4080011D to CA4080015D:
nn = last 3 numbers of the serial number converted to hex + 70h

• for other serial numbers:
nn = last 3 numbers of the serial number converted to hex + 80h

Note: Please note, that the MAC address is counted up as a hexadecimal number while
the NEC serial number is counted up in decimal.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 13

Here are examples:
NEC serial number CA4080013D first MAC address: 00:00:4C:80:5A:7D
NEC serial number CA4080020D first MAC address: 00:00:4C:80:5A:94

The 3 higher bytes of the MAC address are defined at Kernel compile time and need not be
changed. So nothing to do for them here. Please refer to the chapter 3.2.2.

The lower 3 bytes have to be configured BEFORE connecting the board to the Ethernet
network. These 3 Bytes are implicit part of an 8-Byte serial number, which µCLinux allows to
write into the configuration area.

This µCLinux port uses the JFFS2 file system, and the configuration area is on the rom-device
/dev/mtd2.

The program "ksetup" (See chapter 4.6.2) is used to write the data.

For changing the MAC address of the board use following procedure:

• Enter command "ksetup /dev/mtd2"
• The the kernel command line is requested. The default need not be changed, so

press return.
• The higher serial number part must be entered. Before entering the new value the

software provides a default value. This number is not fixed by NEC. If it shall not be
changed, simply press Return.

• The lower serial number part must be entered. The lower 3 bytes equal the lower 3
bytes of the Ethernet MAC serial number. Enter e.g. 0x00805Ann, with nn=
calculated number from the serial number of the board.

• After return the data is written to the Flash.
• As the data is read by the kernel on start-up, the data becomes valid after the next

µCLinux restart. The current MAC address may then be checked with the command
ifconfig.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 14

[MEMO]

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 15

2. Configuring uClinux-dist

This distribution is based on the package uClinux-dist. Besides the source code for kernel, libraries
and applications, uClinux-dist also contains configuration scripts and a set of make files to build the
complete target system software in one go.

In general, you can select between different kernel versions and libraries, at the top level. Not all
kernel versions support all boards, as a general rule choose 2.4.x. Also typically you would use glibc
only on target processors that support virtual memory (x86, SH4, XSCALE). Most MMUless
processors use uClibc. For the System-on-Chip Lite+ board always choose kernel 2.4.x and uClibc.

Based on what platform you choose in this step the build will generate an appropriate default
application set.1

To set your own configuration, select "Customize Kernel Settings" or "Customize Vendor/User
Settings" in the "Kernel/Library" dialog (Figure 1-3).

Figure 2-1: Linux Kernel settings

After you have pressed "Save and Exit", the Kernel configuration (Figure 2-1) resp. the Application
configuration (Figure 2-2) dialog will open.

Further information about the distribution itself can be found in the file README and in the
Documentation directory.

1 Sometimes a number of questions will appear after you 'Save and Exit'. Do not be concerned, it just
means that some new config options have been added to the source tree that do not have defaults for
the configuration you have chosen. If this happens the safest option is to answer 'N' to each question
as they appear.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 16

Figure 2-2: Application settings

2.1. Compiler

The cross compiler toolchain contains a GNU-C compiler version 2.95.3. It will generate code for the
target platform arm-elf. The toolchain package comes as a shell script with an attached tar archive. To
install it, log in as root and type

sh arm-elf-tools-20030314.sh

This will install the cross compiler toolchain in its standard path /usr/local/. Make sure
/usr/local/bin is in your shell's search path. To deinstall the toolchain, just delete the installed
files:

rm -rf "/usr/local/arm-elf"
rm -rf "/usr/local/lib/gcc-lib/arm-elf"
rm -f /usr/local/bin/arm-elf-*

2.2. Library

uClibc (aka µClibc/pronounced yew-see-lib-see) is a C library for developing embedded Linux
systems. It is much smaller than the GNU C Library, but nearly all applications supported by glibc also
work perfectly with uClibc. Porting applications from glibc to uClibc typically involves just recompiling
the source code.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 17

3. The Linux Kernel
The uClinux-dist package comes with three different kernels, versions 2.0.x, 2.4.x, and 2.6.x
(http://www.uclinux.org/). We are using the kernel version 2.4. The kernel source is based on
the standard Linux kernel 2.4.24. It contains the necessary µClinux patches, i.e. it is already modified
to run on processors without Memory Management Unit (MMU).

3.1. Hardware Specific Modifications

This section will describe the hardware specific modifications of the kernel sources made for the
System-on-Chip Lite+ board.

Hardware specific header files for the System-on-Chip Lite+ system are located in the subdirectory
include/ asm-armnommu/arch-socltplus. Hardware specific new source files (apart from
device drivers) can be found in arch/armnommu/mach-socltplus/.

3.1.1. Startup Code

Many CPU's start execution at a fixed address (for example ARM, x86). Others read a fixed location in
the address space and use that value as the start address (m68k, ColdFire). System-on-Chip Lite+,
like most ARM CPUs, starts executing at offset 0.

To be able to bootstrap, the kernel code must be located in the Flash/ROM memory connected to chip
select signal nXCSS1, and the EA pins must be set to EA(1:0) = 01. The µClinux startup code has
to do all hardware setup, this usually includes setting up chip selects and RAM setup. It then loads
and starts execution of the µClinux kernel properly. The only difficulty with this scheme is arranging
the kernel code to be at the correct offset in the Flash memory so that the CPU will start executing it
on reset. Special care has to be taken if the kernel code is moved before booting, e.g. copied from
Flash to RAM. Any code executed before this relocation has to be position independent.

Linux' entry point is usually defined in a file named head, found in a directory path of pattern arch/
<cpu family>/kernel/head_<cpu type>.S. The startup code for System-on-Chip Lite+ is
located in arch/armnommu/kernel/head_socltplus.S.

At bootup, it first checks the Remap Controller. If the Remap bit is already set, it is assumed that the
kernel was downloaded into memory by a debug monitor and the memory has already been initialized.
If the Remap bit is not set (it is cleared by a reset), the memory controller will be set according to the
settings in soc_sysconf.h and the SDRAM will be initialized. Settings regarding SDRAM are
defined in soc_sdram-config.h. Next, the kernel code will be copied into RAM, and execution
continues there.

Also, the UART will be configured for debug output. Eventually, a jump to start_kernel() starts the
Linux kernel itself.

3.1.2. Interrupts and Other Exceptions

Other hardware specific adaptations had to be done for the interrupt and exception handling. These
routines can be found in a directory path made from the pattern

arch/<cpu family>/kernel/entry_<cpu type>.s

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 18

The file concerning the System-on-Chip Lite+ is

entry_armv.S

One important modification is a new macro definition for get_irqnr_and_base, a code sequence
that reads the appropriate interrupt controller register and identifies the interrupt source.

The first section of the internal RAM mapped to address 0 is used for the exception vectors. After the
vectors and stubs are copied there in the subroutine trap_init, this area, WPA0, will be write
protected using System-on-Chip Lite+’s Write Protection controller.

More hardware specific functions for enabling, disabling and acknowledging IRQs are defined in file
arch/armnommu/mach-socltplus/irq.c.

3.1.3. Low Level Debug Output

The code in head-arm-socltplus.S will output some debug messages on the serial interface
during startup, if CONFIG_SOC_BOOTLOADER_DEBUG is defined in this file. It also uses the 7 segment
LED displays to show codes like "A1", "C3" etc. that could help identify the position if the startup gets
stuck. More diagnostic serial output is activated by defining CONFIG_SOC_BOOTLOADER_VERBOSE.
If both constants are undefined, the startup is (almost) quiet.
Since the startup code makes use of the low level output routines in arch/armnommu/kernel
/debug-armv.S be sure to select "Kernel low-level debugging functions" (CONFIG_DEBUG_LL) in
the kernel configuration dialog. The default baud rate for these low level functions and for the console
output is defined in soc_sysconf.h (constant DEFAULT_BAUD_RATE).

3.2. New or Modified Drivers

3.2.1. Serial Interface

The serial driver serial_socltplus.c is based on the standard driver serial.c. As the System-
on-Chip Lite+ UART only supports 8 data bits, 1 stop bit and no parity, differing settings in ioctl()
and related functions are ignored or return error codes. The driver supports baud rates from 600bd to
115200bd.

The System-on-Chip Lite+ serial driver should be activated in the "Character Devices" kernel
configuration dialog. Optionally, the serial port can be used as the system console (the system
console is the device which receives all kernel messages and warnings and which allows logins in
single user mode). This could be useful if some terminal or printer is connected to that serial port.

You can define a kernel command line option to select which device to use for console output. The
format of this option is:

console=device,options

device: tty0 for the foreground virtual console
ttySx for a serial port

options: depend on the driver. For the serial port this
defines the baudrate/parity/bits of the port, in
the format BBBBPN, where BBBB is the speed, P is
parity (n/o/e), and N is bits.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 19

3.2.2. Ethernet
As the System-on-Chip Lite+ uses a Cadence MACB Ethernet controller, the MACB driver supplied by
Cadence is integrated in the kernel. The sources have been modified for the System-on-Chip Lite+
hardware, and can be found in the subdirectory drivers/net/cadence_macb/. The controller’s
base address is adapted and the driver now can allocate buffer memory dynamically. If the constant
MACB_SHARED_MEM_BASE is defined in file macb_linux_ext.h, a special fixed buffer at this
address will be used. If the constant is undefined, the buffer will be allocated at startup using
kmalloc().

The MAC address of the Cadence MACB Ethernet controller is generated from a base address,
ETH_MACB_BASE_ADDR, defined in soc_sysconf.h, plus the lower 24 bits of the boards serial number
(see chapter 4.6.2).

3.2.3. MTD Flash Mapping

The MTD drivers clearly provide the most powerful support for Flash, so they normally are to be
preferred over blkmem or FTL drivers. They also allow you to run real read/write filesystems
specifically designed for Flash memory, such as JFFS and JFFS2 [11].

The Linux MTD drivers support a huge variety of Flash devices, and offer powerful mechanisms for
defining partitions and mappings. For anything other than trivial setups you create a map driver that
defines your exact Flash layout. It can span multiple Flash devices, with interleaving, and even
different Flash device types in the one system. Most importantly, you can partition a physical Flash
device into several logical devices.

These mapping drivers are located in the subdirectory drivers/mtd/maps. Mappings for the
System-on-Chip Lite+ board can be found in the files socltplus-flash.c and socltplus-
cs0flash.c, the latter contains an example for the currently unused flash memory at nXCSS0.
Additions in the Makefile and Config.in provide the respective options in the configure dialog.

The most important part of a mapping file is the definition of the partition structure:

static struct mtd_partition soc_cs1partitions[3] = {
{

name: "SOClite+ Kernel",
offset: 0x00000000,
size: 0x00180000 /* 1.5 MB should be more than enough */

},
{

name: "SOClite+ Filesystem",
offset: 0x00180000,
size: 0x00660000 /* almost 6.4 MB for files */

},
{

name: "SOClite+ Config",
offset: 0x007e0000,
size: 0x00020000 /* some room for configurations, */

 /* "Top" flash has 8 sectors of 8 KB each here */
}

};

This structure creates 3 Flash partitions. The memory chips on the System-on-Chip Lite+ board, AMD
29DL323GT, have erase sectors of 64 KB size. The bank at chip select signal nXCSS1 uses two
chips in parallel, making the logical erase sector size 128 KB. Flash partitions must begin on sector
boundaries, if you want them to be writeable.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 20

The first partition in this example, /dev/mtd0, holds the kernel in uncompressed state. The second
partition, /dev/mtd1 resp. /dev/mtdblock1, has about 6.375 MB room for a root file system like
JFFS2 or ROMFS.

The third partition, /dev/mtd2, comprises the area of smaller erase sectors (see data sheet [2]), and
can be used for configuration data.

3.2.4. Watchdog

Usually a userspace daemon will notify the kernel watchdog driver via the /dev/watchdog special
device file that userspace is still alive, at regular intervals. When such a notification occurs, the driver
will usually tell the hardware watchdog that everything is in order, and that the watchdog should wait
for yet another little while to reset the system. If userspace fails (RAM error, kernel bug, whatever), the
notifications cease to occur, and the hardware watchdog will reset the system (causing a reboot) after
the timeout occurs.

In the directory linux-2.4.x/drivers/char/ you find a watchdog driver for the System-on-Chip
Lite+ system, wdt_socltplus.c. This driver makes use of the System-on-Chip Lite+'s watchdog
timer hardware and provides support for the device /dev/watchdog.

The timeout period of the watchdog timer hardware in the System-on-Chip Lite+ system is a function
of HCLK (50 MHz) and the WD reload value in the Watchdog Timer Control register. As WDRV is only
12 bits, the maximum interval is approximately 1.3 seconds. Linux watchdog daemons often expect
trigger intervals of about 30 or 60 seconds. So the idea behind this driver is to ping the watchdog
hardware regularly from a timer function, until the software interval runs out. Soft- and hardware
trigger intervals are configurable in the source code.

3.2.5. LED

The same subdirectory holds the LED driver led_socltplus.c. It can output one or two characters,
optionally followed by dots, on the System-on-Chip Lite+ board's 7-segment LED displays. It supports
numbers 0-9, letters A-Z (unfortunately not all of them can be assigned in a unique way to legible 7-
segment patterns), brackets, "-" and "=".

Also see chapter 6.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 21

4. Userland Application Programs

4.1. Init

Init is the parent of all processes. Its primary role is to create processes from a script stored in the
file /etc/inittab. This file usually has entries which cause init to spawn gettys on each line that
users can log in. It also controls autonomous processes like server daemons required by any
particular system.

4.2. BusyBox

BusyBox combines tiny versions of many common UNIX utilities into a single small executable. It
provides minimalist replacements for most of the utilities you usually find in GNU coreutils, util-linux,
etc. The utilities in BusyBox generally have fewer options than their full-featured GNU cousins;
however, the options that are included provide the expected functionality and behave very much like
their GNU counterparts [9].

BusyBox has been written with size-optimization and limited resources in mind. It is also extremely
modular so you can easily include or exclude commands (or features) at compile time. This makes it
easy to customize your embedded systems. BusyBox provides a fairly complete POSIX environment
for any small or embedded system.

BusyBox is extremely configurable. This allows you to include only the components you need, thereby
reducing binary size. Run make xconfig or make menuconfig to select the functionality that you
wish to enable.

4.3. Boa

Boa is a single-tasking HTTP server. That means that unlike traditional web servers, it does not fork
for each incoming connection, nor does it fork many copies of itself to handle multiple connections. It
internally multiplexes all of the ongoing HTTP connections, and forks only for CGI programs (which
must be separate processes), automatic directory generation, and automatic file gunzipping.

The primary design goals of Boa are speed and security. Security, in the sense of "can't be subverted
by a malicious user," not "fine grained access control and encrypted communications". Boa is not
intended as a feature-packed server; if you want one of those, check out WN from John Franks.

4.3.1. Files Used by Boa

• boa.conf
This file is the sole configuration file for Boa. The directives in this file are defined in the
DIRECTIVES section.

• mime.types
The MimeTypes <filename> defines what Content-Type Boa will send in an HTTP/1.0 or better
transaction.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 22

4.3.2. boa.conf Directives

The Boa configuration file is parsed with a lex/yacc or flex/bison generated parser. If it reports an
error, the line number will be provided; it should be easy to spot. The syntax of each of these rules is
very simple, and they can occur in any order.

Note: the "ServerRoot" is not in this configuration file. It can be compiled into the server (see
defines.h) or specified on the command line with the -c option.

The following directives are contained in the boa.conf file, and most, but not all, are required.

Port <integer>
This is the port that Boa runs on. The default port for http servers is 80. If it is less than 1024, the
server must be started as root.

Listen <IP>
Listen: the Internet address to bind(2) to. If you leave it out, it takes the behaviour before 0.93.17.2,
which is to bind to all addresses (INADDR_ANY). You only get one "Listen" directive, if you want
service on multiple IP addresses, you have three choices:

1. Run boa without a "Listen" directive

(a) All addresses are treated the same; makes sense if the addresses are localhost, ppp,
and eth0.

(b) Use the VirtualHost directive below to point requests to different files. Should be good for
a very large number of addresses (web hosting clients).

2. Run one copy of boa per IP address, each has its own configuration with a "Listen" directive.
No big deal up to a few tens of addresses. Nice separation between clients. The name you
provide gets run through inet_aton(3), so you have to use dotted quad notation. This
configuration is too important to trust some DNS.

User <user name or UID>
The name or UID the server should run as. For Boa to attempt this, the server must be started as root.

Group <group name or GID>
The group name or GID the server should run as. For Boa to attempt this, the server must be started
as root.

ServerAdmin <email address>
The email address which server problems should be sent to. Note: this is not currently used.

ErrorLog <filename>
The location of the error log file. If this does not start with /, it is considered relative to the server root.
Set to /dev/null if you don't want errors logged.

AccessLog <filename>
The location of the access log file. If this does not start with /, it is considered relative to the server
root. Comment out or set to /dev/null (less effective) to disable access logging.

VerboseCGILogs
This is a logical switch and does not take any parameters. Comment out to disable. All it does is
switch on or off logging of when CGIs are launched and when the children return.

CgiLog <filename>
The location of the CGI error log file. If specified, this is the file that the stderr of CGIs is tied to.
Otherwise, writes to stderr meet the bit bucket.

ServerName <server_name>
The name of this server that should be sent back to clients if different than that returned by
gethostname.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 23

VirtualHost
This is a logical switch and does not take any parameters. Comment out to disable. Given
DocumentRoot /var/www, requests on interface `A' or IP `IP-A' become /var/www/IP-A. Example:
http://localhost/ becomes /var/www/127.0.0.1

DocumentRoot <directory>
The root directory of the HTML documents. If this does not start with /, it is considered relative to the
server root.

UserDir <directory>
The name of the directory which is appended onto a user's home directory if a user request is
received.

DirectoryIndex <filename>
Name of the file to use as a pre-written HTML directory index. Please make and use these files. On
the fly creation of directory indexes can be slow.

DirectoryMaker <full pathname to program>
Name of the program used to generate on-the-fly directory listings. The program must take one or two
command-line arguments, the first being the directory to index (absolute), and the second, which is
optional, should be the "title" of the document be. Comment out if you don't want on the fly directory
listings. If this does not start with /, it is considered relative to the server root.

DirectoryCache <directory>
DirectoryCache: If DirectoryIndex doesn't exist, and DirectoryMaker has been commented out, the on-
the-fly indexing of Boa can be used to generate indexes of directories. Be warned that the output is
extremely minimal and can cause delays when slow disks are used. Note: The DirectoryCache must
be writable by the same user/group that Boa runs as.

KeepAliveMax <integer>
Number of KeepAlive requests to allow per connection. Comment out, or set to 0 to disable keepalive
processing.

KeepAliveTimeout <integer>
Number of seconds to wait before keepalive connections time out.

MimeTypes <file>
The location of the mime.types file. If this does not start with /, it is considered relative to the server
root. Comment out to avoid loading mime.types (better use AddType!)

DefaultType <mime type>
MIME type used if the file extension is unknown, or there is no file extension.

AddType <mime type> <extension> extension...
Associates a MIME type with an extension or extensions.

Redirect, Alias, and ScriptAlias <path1> <path2>
Redirect, Alias, and ScriptAlias all have the same semantics - they match the beginning of a request
and take appropriate action. Use Redirect for other servers, Alias for the same server, and ScriptAlias
to enable directories for script execution.

4.4. MTD-Utilities

This directory holds a variety of utilities for creating filesystems, testing flash device integrity and other
stuff dealing with Memory Technology Devices.

In particular we find mkfs.jffs2 here, a tool to create JFFS2 (Journaling Flash File System) images.
As the file system images are built on the host, these tools are built for the host machine too
(subdirectory build).

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 24

4.5. SMTP-Client
The program mail is a minimal SMTP client that takes an email message body and passes it on to a
SMTP server (default is the MTA on the local host). Since it is completely self-supporting, it is
especially suitable for use in restricted environments [10].

Message Header Options:
-s, --subject=STR subject line of message
-f, --from=ADDR address of the sender
-r, --reply-to=ADDR address of the sender for replies
-e, --errors-to=ADDR address to send delivery errors to
-c, --carbon-copy=ADDR address to send copy of message to

Processing Options:
-S, --smtp-host=HOST host where MTA can be contacted via SMTP
-P, --smtp-port=NUM port where MTA can be contacted via SMTP
-M, --mime-encode use MIME-style translation to quoted-printable
-L, --use-syslog log errors to syslog facility instead of stderr

Giving Feedback:
-v, --verbose enable verbose logging messages
-V, --version display version string
-h, --help display this page

4.6. MTDW

This directory holds two small programs that make writing to a Memory Technology Device
easier.

4.6.1. mtdw

The MTD writer program mtdw can write an arbitrary file to a logical MT device, like a flash memory
partition.

mtdw [-e] <file> <mt device>

Normally, mtdw will erase only as many blocks of the device as needed for file. With the option -e,
mtdw erases the whole (logical) device. This is necessary when an JFFS2 file system image is to be
written:

mtdw -e jffs2.img /dev/mtd1

The flash memory partitioning is defined in an mtd mapping file (3.2.3). For the System-on-Chip Lite+
board, this is drivers/mtd/maps/socltplus-flash.c. The kernel itself resides in /dev/mtd0,
the JFFS2 file system in /dev/mtd1, and optional configuration data in /dev/mtd2 (mtd2 is the area
of smaller erase sectors, see data sheet [2]).

4.6.2. ksetup

The program ksetup can write some configuration data - a serial number and a kernel command line -
as a tagged list into an MTD partition. The kernel can parse this list at startup and set up the
respective system parameters.

To tell the kernel where to look for this list, the constant SOC_BOOTPARAMS has to bet set to the
appropriate value (here: 0x047e0000) before compilation (see file include/asm-armnommu/arch-
socltplus/soc_sysconf.h).

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 25

The MAC address of the Cadence MACB Ethernet controller will be generated from
ETH_MACB_BASE_ADDR, defined in soc_sysconf.h, plus the lower 24 bits of the serial number (if
available).

ksetup <rom-device> [<serial high> <serial low> <root dev. id> <command
line>]

<rom-device>: MTD device the parameter list will be written to, e.g.
 /dev/mtd2
<serial high>: higher part (32 bit) of the 64-bit serial number
<serial low>: lower part of the serial number
<root dev. id>: ID of the root device, e.g. 0x0300 (ram0), 0x1f01
 (mtdblock1)
<command line>: The kernel command line, e.g. "console=/dev/ttyS0,9600"

Example of a kernel command line (it should actually be one line, linebreak inserted for readability
only):

console=ttyS0,38400 root=/dev/mtdblock1
 ip=192.168.30.21::192.168.30.254:255.255.255.0:socltplus::off

Keywords:

console=port, baudrate
root=rootpartition
ip=own IP :server IP :gateway :netmask :hostname:net device:dynamic
configuration

Arguments for ip may be empty, trailing empty arguments can be left off. Another example, to mount a
root file system via NFS:

console=ttyS0,38400 root=/dev/nfs nfsroot=/LinuxSOC/rootfs
 ip=192.168.30.21:192.168.30.254:192.168.30.254:255.255.255.0:socltplus

Note that this network configuration might be overwritten later by the startup script rc, where the
default configuration defined in vendors/NEC/SOClite+/Makefile is set.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 26

[MEMO]

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 27

5. Debugger

5.1. Insight

Insight is a version of GDB, the GNU Debugger, that uses Tcl/Tk to implement a graphical user
interface. It is a fully integrated GUI, not a separate front-end program. The interface consists of
several separate windows, which use standard elements like buttons, scrollbars, entry boxes and such
to create a fairly easy to use interface. Each window has a distinct content and purpose, and can be
enabled or disabled individually. The windows contain things like the current source file, a disassem-
bly of the current function, text commands (for things that aren't accessible via a button), and so forth.

5.1.1. Building Insight

Building Insight is very straightforward (it is configured by default when you checkout or download
Insight). Right now, Insight must be built using the versions of Tcl, Tk, Itcl, and Tix that come with the
sources.

tar xzvf insight-5.2.1.tar.gz
cd insight-5.2.1
./configure --target=arm-elf-uclinux
make

The new built program could be executed directly from its directory, insight-5.2.1/gdb/gdb. Of
course you can install insight in your system; you will need root permissions to do that:

cd insight-5.2.1
make install

5.1.2. Using Insight

Just run it like you would a normal GDB (in fact, it's actually called ’gdb'). If everything goes well, you
should have several windows pop up. To get going, hit the Run button, and go exploring.

If you want to use GDB in command line mode, just use the -nw option. Or, you can undefine the
DISPLAY environment variable.

Insight comes with all your standard debugger windows, including:

• Console Window
• Source Window
• Register Window
• Memory Window
• Locals Window
• Watch Window
• Stack Window
• Thread/Process Window
• Function Browser Window
• Debug Window (for developers)

Insight also has an extensive (if outdated) online help system which describes all the windows and
explains how to use them. Users are urged to browse this help system for information on using
Insight.

If a script file named .gdbinit is present in the current directory, it will be executed when
GBD/Insight is started. The linux-2.4.x directory contains an init file for the System-on-Chip Lite+
system that sets up the memory controller and initializes the DRAM.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 28

5.2. gdbserver

GDBSERVER is a program that allows you to run GDB on a different machine than the one which is
running the program being debugged.

5.2.1. Usage on Target Side

First, you need to have a copy of the program you want to debug put onto the target system. The
program can be stripped to save space if needed, as gdbserver doesn't care about symbols. All
symbol handling is taken care of by the GDB running on the host system.

To use the server, you log on to the target system, and run the ‘gdbserver' program. You must tell it

(a) how to communicate with GDB,
(b) the name of your program, and
(c) its arguments.

The general syntax is:

target> gdbserver COMM PROGRAM [ARGS...]

For example, using a serial port, you might say:

target> gdbserver /dev/com1 emacs foo.txt

This tells gdbserver to debug emacs with an argument of foo.txt, and to communicate with GDB via
/dev/com1. Gdbserver now waits patiently for the host GDB to communicate with it.
To use a TCP connection, you could say:

target> gdbserver host:2345 emacs foo.txt

This says pretty much the same thing as the last example, except that we are going to communicate
with the host GDB via TCP. The host:2345 argument means that we are expecting to see a TCP
connection from ’host' to local TCP port 2345. (Currently, the ’host' part is ignored.) You can choose
any number you want for the port number as long as it does not conflict with any existing TCP ports on
the target system. This same port number must be used in the host GDB’s ’target remote' command,
which will be described shortly. Note that if you chose a port number, that conflicts with another
service, gdbserver will print an error message and exit.

5.2.2. Usage on Host Side

You need an unstripped copy of the target program on your host system, since GDB needs to
examine its symbol tables and such. Start up GDB as you normally would, with the target program as
the first argument. (You may need to use the --baud option if the serial line is running at anything
except 9600 baud.) Ie: gdb TARGET-PROG, or gdb --baud BAUD TARGET-PROG. After that, the
only new command you need to know about is ’target remote'. Its argument is either a device name
(usually a serial device, like /dev/ttyb), or a HOST:PORT descriptor. For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line /dev/ttyb, and:

(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host ‘the-target', where you previously started up
gdbserver with the same port number. Note that for TCP connections, you must start up gdbserver
prior to using the ’target remote' command, otherwise you may get an error that looks something like
’Connection refused'.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 29

When the connection is established, you should start the execution of your program by selecting
"continue", not "run". Sometimes the source window is blanked after the connection. The source text
will reappear at the first breakpoint.

5.2.3. Options

You have to supply the name of the program to debug and the tty to communicate on; the remote
GDB will do everything else. Any remaining arguments will be passed to the program verbatim.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 30

[MEMO]

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 31

6. Adding Kernel Drivers
Development of Linux kernel drivers can be an extensive task. If you seriously want to delve into it, we
recommend consulting a good book on the topic, like [7].

But for the really adventurous, here's the short version. We will use the simple LED driver mentioned
in chapter 3.2.5 as an example. As µClinux for the ARM-NoMMU architecture does not (yet) support
loadable kernel modules, we will integrate the driver in the kernel source tree. All paths given in this
chapter are relative to the kernel source directory, uClinux-dist/linux-2.4.x/.

6.1. Write the Driver

Since our example device is a character-related device, we will add the driver to the directory
drivers/char/led_socltplus.c.

Have a look at the source code: The functions led7seg_init() and led7seg_exit() are
declared as module_init resp. module_exit. This makes sure they are called automatically at
startup resp. shutdown, even if the driver is not a separate module.

In led7seg_init() our driver is registered as "miscellaneous" device, which seems appropriate for
a driver like this. Two important structures have to be declared:

static struct file_operations soc_led_fops = {
 owner: THIS_MODULE,
 read: soc_led_read,
 write: soc_led_write,
 ioctl: soc_led_ioctl,
 open: soc_led_open,
 release: soc_led_release,
};

static struct miscdevice soc_led_miscdev= {
 minor: LED_MINOR,
 name: "led7seg",
 fops: &soc_led_fops,
};

The miscdevice structure is passed to the registering function and informs it about name, file operation
functions and minor number. The minor number in this case is 151, the major number for misc devices
is always 10.

In the file operations structure you have to define your functions for open and release (close). The
others are optional, but obviously you need at least one of them to make the driver do anything useful.

The primary function here is soc_led_write, which reads up to four characters from user space and
sets the LED output registers accordingly. It is recommended to use the get_user or
copy_from_user functions to read data from the user process, even under µClinux.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 32

6.2. Add a Configuration Option

See drivers/char/Config.in, line 225. This driver works only on the NEC System-on-Chip Lite+
board, so we add the option in the respective if-section:

if ["$CONFIG_MACH_SOCLTPLUS" = "y"]; then
 bool 'SOClite+ serial port support' CONFIG_SERIAL_SOCLTPLUS
 if ["$CONFIG_SERIAL_SOCLTPLUS" = "y"]; then
 bool 'Console on SOClite+ serial port' CONFIG_SERIAL_SOCLTPLUS_CONSOLE
 fi
 bool 'SOClite+ 7-segment LED support' CONFIG_SOCLTPLUS_LED
fi

6.3. Add a Makefile Entry

Now we have to make sure the driver is compiled and linked to the kernel if the option
CONFIG_SOCLTPLUS_LED is set to "y". We add a line to drivers/char/Makefile (line 238):

obj-$(CONFIG_SOCLTPLUS_LED) += led_socltplus.o

By this, led_socltplus.o is added to the obj-y list if selected. The Makefile rules take care of the
rest.

6.4. Add a Device Node

A user application typically makes use of a kernel driver by opening a device file and writing to or
reading from it. These device nodes are files of a special type. By convention, they are kept in the
/dev directory. From a command line, device files can be created using the command mknod
<filename> <type> <major> <minor>, where filename is the device file to be created, type is 'c'
for a character device or 'b' for a block device, and major and minor are the major and minor device
numbers.

To create the device node in the target file system each time it is built, you need to add it to the device
list in the vendor Makefile, located in uClinux-dist/vendors/NEC/SOClite+/ (see line 65).

watchdog,c,10,130 led,c,10,151 \

Besides the watchdog device, this line creates a character device node named "led" with the major
number 10 and the minor number 151.

Now the new driver can be accessed from user level. A very simple display test would be redirecting
the keyboard input to the LED device. On the console, type cat >/dev/led and hit return, then
one or two alphanumeric characters, again followed by return. Stop the cat process with Control-c.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 33

7. Adding User Applications

This chapter gives simple instructions for adding a user-written application to the µClinux configuration
system.

7.1. General Approach
Entries must be added to three files, and an appropriate Makefile must exist in the user application
source directory, which must be put in user/ (all directory names here are given relative to the
µClinux top directory uClinux-dist/).

Files to edit:

• user/Makefile

Add a line to the file like

dir_$(CONFIG_USER_FOO_FOO) += foo

This adds the directory 'foo' to the list of directories to be built. I added mine in alphabetical order.
The order doesn't seem to matter.

• config/Configure.help

This file contains the text which is presented on request during the config. Add a block like

CONFIG_USER_FOO_FOO
 This program does fooey things to your bars.

The text must be indented two spaces, and there must be no empty lines. Lines should be < 70
chars long.

• config/config.in

Add a line in the appropriate menu section (i.e. in the program group you want your app to show up
in during 'make config'; I used 'misc'), like

bool 'foo' CONFIG_USER_FOO_FOO

The repetition of FOO allows for directories which contain multiple executables. Thus, if the user
directory 'foo' contained code to make 'foo' and 'bar', each gets its own config line if an additional
entry is made like

bool 'bar' CONFIG_USER_FOO_BAR

Next, there needs to be a proper user/foo/Makefile. The Makefile should follow the following
template:

EXEC = foo
OBJS = foo.o

all: $(EXEC)

$(EXEC): $(OBJS)
 $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LDLIBS)

romfs:
 $(ROMFSINST) /bin/$(EXEC)

clean:
 -rm -f $(EXEC) *.elf *.gdb *.o

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 34

If more than one executable is built in the foo directory, as above, then the Makefile should look like

EXECS = foo bar
OBJS = foo.o bar.o

all: $(EXECS)

$(EXECS): $(OBJS)
 $(CC) $(LDFLAGS) -o $@ $@.o (LDLIBS)

romfs:
 $(ROMFSINST) -e CONFIG_USER_FOO_FOO /bin/foo
 $(ROMFSINST) -e CONFIG_USER_FOO_BAR /bin/bar

More complex makefiles are of course possible. The reader is encouraged to browse the user tree for
examples.

When all this is set up, doing the standard make xconfig; make dep; make should build the
application and install it in romfs and hence in the target system image.bin.

7.2. LED Sample Application

As an example we will use a little program that scrolls a text through the LED display.

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>

int main (int argc, char *argv[])
{
 int i, l, f;

 if (argc != 2) {
 puts("Usage: ledscroll <text>\n");
 return 1;
 }
 f = open("/dev/led", O_WRONLY);
 l = strlen(argv[1]);
 if (l <= 2) {
 write(f, argv[1], l);
 } else {
 for (i = 0; i <(l-1); i++) {
 write(f, &(argv[1][i]), 2);
 sleep(1);
 }
 }
 close(f);
 return 0;
}

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 35

To test compile this program before integrating it into the µClinux-dist build system, you have to call
the compiler with a lot of options to make it find the correct startup code, include files and libraries (all
on one line, of course):

arm-elf-gcc -mcpu=arm7tdmi -I/LinuxSOC/uClinux-dist/lib/uClibc/include
 -fno-builtin -nostartfiles -Wl,-elf2flt
 /LinuxSOC/uClinux-dist/lib/uClibc/lib/crt0.o
 /LinuxSOC/uClinux-dist/lib/uClibc/lib/crti.o
 /LinuxSOC/uClinux-dist/lib/uClibc/lib/crtn.o -Wl,-move-rodata
 -L/LinuxSOC/uClinux-dist/lib/uClibc/lib -o ledscroll ledscroll.c

In the build system, these options are generated automatically. Note that /LinuxSOC/uClinux-
dist is the path to µClinux-dist on this test machine. If yours is different, adapt the path parameters.

Once the program is tested, we can integrate it into the userland tree, as explained in the previous
section. The source code is installed in the new directory users/ledscroll. A short Makefile is
added:

EXEC = ledscroll
OBJS = ledscroll.o

all: $(EXEC)

$(EXEC): $(OBJS)
 $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LDLIBS)

romfs:
 $(ROMFSINST) /bin/$(EXEC)

clean:
 -rm -f $(EXEC) *.elf *.gdb *.o

Also, we add entries in users/Makefile (Line 145),

dir_$(CONFIG_USER_LEDSCR_LEDSCR) += ledscroll

and in config/config.in (Line 519):

bool 'ledscroll' CONFIG_USER_LEDSCR_LEDSCR

To greet the user with a message at startup, the startup script has to be modified. This startup script,
rc, is generated dynamically by vendors/NEC/SOClite+/make-rc. The lines

if ["$CONFIG_USER_LEDSCR_LEDSCR"]; then
 invis_init_cmd 'ledscroll "dont panic"'
fi

will add a command to the rc script, if the ledscroll application is selected in the configuration.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 36

[MEMO]

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 37

8. Notes
The µClinux system is a port of regular Linux to microprocessors that lack a memory management
unit (MMU). The implications of this on µClinux are primarily that there is no memory protection
(processes can write anywhere in memory), and no virtual memory (swapping etc). For most user
applications the only implication is that the fork() system call is unavailable, and vfork() must be used
instead.

8.1. Memory Access Without MMU

The MMU normally provides a level of protection for applications that run on the platform. Working
without the MMU means that all of the program memory is literally mapped against the physical
memory. This is called a flat memory architecture. An invalid memory pointer in a user application may
trigger an address error which can completely freeze or corrupt an MMU-less system. The code
implemented in MMU-less platforms has to be working properly, which of course means thorough
testing.

Dynamic memory allocation in a flat memory model can also cause fragmentation which can starve
the system. In an ideal case the physical memory is used as continuous memory areas and the
allocation should fail only when the number of free page frames is too small. Otherwise, there might
not be a continuous piece of memory available, although the number of free memory pages in total
would be large enough.

To ease this problem, in the µClinux kernel an optional memory allocating strategy named Non power-
of-2 kernel allocator can be activated. It offers allocations in more flexible block
sizes, at the price of a slight performance loss.

8.2. Creating New Processes

In standard Linux, the fork() system call is used to duplicate the current process by creating a new
entry in the process table. This can be handy if the program handles more than one function at the
time. The created child process is almost identical to the parent executing the same code but with its
own data space, environment and descriptors. The fork command is implemented by using copy-on-
write pages. When the child process tries to write to the page frame, a private copy of the page is
created for this process. The new physical page is mapped into the original logical address space.
Without MMU the system cannot completely and securely clone a process, nor does it have access to
copy-on-write pages.

The µClinux implements BSDs vfork() in order to offer similar functionality. The process created by
this system call shares all their memory space including the stack. To prevent the parent from
overriding the data needed by the child process the parent is suspended until the child exits.

8.3. File Systems

There are a number of choices for root filesystem in µClinux.

Traditionally the ROMfs type has been the most commonly used. It is a simple, compact, read-only
filesystem. It stores all data of a file sequentially, so it allows for application programs to be executed
in place (XIP) in the filesystem on µClinux targets that support this. This can make for a considerable
reduction in memory footprint for a running system.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 38

Cramfs is a new filesystem for 2.4 series Linux kernels. It is designed to be a compact read only
filesystem. Its primary advantage is that it stores all files compressed and decompresses them on the
fly. Because it store files compressed, you cannot run applications in place (no XIP). It is quite space
efficient in terms of Flash usage, but more RAM will be required since all application code needs to be
copied into RAM for execution.

Some systems will need a read/write root filesystem. By using the Linux MTD drivers it is possible to
run a journaled Flash filesystem like JFFS or JFFS2 on top of Flash memory. Journaled filesystems
are safe from sudden power loss (that is an unclean shutdown condition), and don't require a
filesystem check on the next boot up. Since the JFFS and JFFS2 filesystems are specifically designed
for use with Flash memory, they also provide a feature called “wear levelling”. This is where the
filesystem code lays out data and updates it in such a way that all parts of the Flash are erased a
similar number of times. This can dramatically increase the useful lifetime of Flash memory devices.
JFFS2 has the distinct advantage of storing files compressed, so uses much less Flash space. It
should be used in preference to the older JFFS. Something else to be mindful of when using a
journaled filesystem is that some small amount of Flash will be wasted for the journal overhead and
garbage collection system. This wasted space is typically of the order of two Flash segments in size.

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 39

9. Tips and Tricks

9.1. Mounting an nfs Network Drive
For stable and reliable operation network drive usage, the mount should be used with mount options.
Without options, the network connection might get stuck.

Following command line in the uCLinux terminal window resulted in a stable operation:

mount -t nfs -o nolock,rsize=1024,wsize=1024 <network dir> /mnt

Sample for <network dir>: 172.29.29.156:/home/kaiserr/temp

9.2. Fast Update of µcLinux Kernel and JFFS2 File System
Pre-Requisite is an established network connection to a host with the binary images of the kernel and
JFFS2 file system (See 9.1). In that case on-board Flash updates can be managed faster than using
serial upload (See 1)

• Change to the host directory, containing the kernel.bin and the jffs2.img files.

• The command line
mtdw kernel.bin /dev/mtd0

updates the kernel in the on board Flash.

• The command line
mtdw jffs2.img /dev/mtd1

updates the jffs2 file system in the on board Flash.

• After reset the new kernel and file system get valid.

9.3. Changing the Ethernet IP Address Permanently
The IP address can be set using the ipconfig command. However, this is temporary only and lost after
board reset. To set it permanently, the kernel settings must be changed, the kernel must be
recompiled and the kernel + file system must be reflashed.

• The file uClinux-dist\vendors\NEC\SOClite+\makefile contains the settings to be changed:

CONFIG_NET_ADDR = 192.168.25.10 -> IP addres
CONFIG_NET_GATEWAY = 192.168.25.254 -> Gateway
CONFIG_NET_NETMASK = 192.0.0.0 -> Sub-Net mask
CONFIG_HOSTNAME = soc -> Host name

• After the change, follow chapter 1, steps 4 to 7 to recompile the kernel and file system

• Follow chapter 9.2 to update the kernel and file system in the on-board Flash

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 40

[MEMO]

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 41

A. Bibliography

[1] NEC Corporation, "System-on-Chip Lite+ User's Manual", A17158EE2V0UM00, NEC Corporation,
April 2005

[2] Advanced Micro Devices Inc., "Am29DL32xG", Data Sheet, AMD Inc.

[3] Elpida Memory Inc., "EDS2516APTA", Data Sheet, Elpida Memory, Inc., February 2003

[4] Cadence Design Foundry, "Linux API Driver for Ethernet 10/100 MAC", Technical Data Sheet,
Cadence (UK), February 2003

[5] ARM Ltd., "ARM Architecture Reference Manual", Manual, ARM Limited.

[6] Embedded Performance Inc., "JEENI Intelligent Debug Probe",
http://www.epitools.com/products/jeeni.php.

[7] Alessandro Rubini, Jonathan Corbet, "Linux Device Drivers, 2nd Edition", O'Reilly 2001,
http://http://www.oreilly.com/catalog/linuxdrive2/.

[8] Russel King et al., "The ARM Linux Project", http://www.arm.linux.org.uk/.

[9] Erik Andersen, "BusyBox: The Swiss Army Knife of Embedded Linux",
http://www.busybox.net/index.html.

[10] Ralf S. Engelschall, "SMTPclient - simple SMTP client",
http://www.engelschall.com/sw/smtpclient/.

[11] Greg Ungerer, "Using Flash Memory with uClinux",
http://www.cyberguard.com/snapgear/tb20020917.html.

[12] Kimmo Nikkanen, "uClinux As An Embedded Solution", Turku Polytechnic, 2003.

[13] Various (the Open Source community), "READMEs, FAQs, HOWTOs and man pages".

 System-on-Chip Lite+ Development Board with µCLinux

 Application Note TPS-HE-A-1046 Page 42

B. Revision History

Revision Issue Date Changes
1.0 25.08.2005 Initial release

