
 Application Note

R11AN0336EU0105 Rev.1.05 Page 1 of 53
Jan.29.21

Renesas Synergy™ Platform

Synergy MQTT/TLS AWS Cloud Connectivity Solution
Introduction
This application note describes IoT Cloud connectivity solution in general, introduces you briefly to IoT Cloud
providers, like Amazon Web Services (AWS), and covers the Synergy MQTT/TLS module, its features, and
operational flow sequence (Initialization/Data flow). The application example provided in the package uses
AWS IoT Core. The detailed steps in this document show first-time AWS IoT Core users how to configure the
AWS IoT Core platform to run this application example demonstration.

This application note enables you to effectively use the Synergy MQTT/TLS modules in your own design.
Upon completion of this guide, you will be able to add the MQTT/TLS module to your own design, configure it
correctly for the target application, and write code using the included application example code as a
reference and efficient starting point.

References to detailed API descriptions, and other application projects that demonstrate more advanced
uses of the module, are in the Synergy Software Package (SSP) User’s Manual, which serves as a valuable
resource in creating more complex designs.

This Synergy MQTT/TLS AWS Cloud Connectivity solution is supported on AE-CLOUD1 and AE-CLOUD2
kits.

Required Resources
To build and run the MQTT/TLS application example, you need:

Development tools and software
• e2 studio ISDE v7.5.1 or later, or IAR Embedded Workbench® for Renesas Synergy™ v8.23.3 or later,

available at www.renesas.com/synergy/tools .
• Synergy Software Package (SSP) 1.7.8 or later (www.renesas.com/synergy/ssp)
• Synergy Standalone Configurator (SSC) 7_3_0 or later (www.renesas.com/synergy/ssc)
• SEGGER J-link® USB driver (www.renesas.com/synergy/jlinksynergy)

Hardware
• Renesas Synergy™ AE-CLOUD1 kit (www.renesas.com/synergy/ae-cloud1), which includes Wi-Fi

board; and, AE-CLOUD2 kit (www.renesas.com/synergy/ae-cloud2), which includes a Pillar board, Wi-Fi
board and BG96 Cellular shield.
Note: A CAT-M1, NB-IoT, or EGPRS SIM card should be procured separately for cellular functionality.

• Renesas Synergy™ Application Example kit PMOD based Wi-Fi Module
(www.renesas.com/synergy/kits/ae-wifi1).

• PC running Windows® 10; the Tera Term console or similar application, and an installed web browser
(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).

• Micro USB cables
• Ethernet cable

Prerequisites and Intended Audience
This application note assumes that you have some experience with the Renesas e2 studio ISDE and
Synergy Software Package (SSP). Before you perform the procedures in this application note, follow the
procedure in the SSP User Manual to build and run the Blinky project. Doing so enables you to become
familiar with e2 studio and SSP, and validates that the debug connection to your board functions properly. In
addition, this application note assumes you have some knowledge of MQTT/TLS and its communication
protocols.

The intended audience is users who want to develop applications with MQTT/TLS modules using
Renesas Synergy™ S5 or S7 MCU Series.

http://www.renesas.com/synergy/tools
http://www.renesas.com/synergy/ssp
http://www.renesas.com/synergy/ssc
http://www.renesas.com/synergy/jlinksynergy
http://www.renesas.com/synergy/ae-cloud1
http://www.renesas.com/synergy/ae-cloud2
https://www.renesas.com/synergy/kits/ae-wifi1

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 2 of 53
Jan.29.21

Contents

1. Introduction to Cloud Connectivity ... 4
1.1 Overview .. 4
1.2 Major Components .. 4
1.3 Cloud Provider Overview ... 5
1.3.1 Amazon Web Services IoT Core ... 5
1.3.1.1 Key Features ... 5
1.4 MQTT Protocol Overview .. 6
1.5 TLS Protocol Overview .. 7
1.5.1 Device Certificates, and Keys ... 8
1.5.1.1 Device Certificates .. 8
1.5.1.2 Loading Certificates onto your Device .. 8
1.5.2 Device Security Recommendations .. 8

2. Synergy MQTT/TLS Cloud Solution ... 9
2.1 MQTT Client Overview .. 9
2.2 Design Considerations .. 9
2.2.1 Supported Features ... 9
2.2.2 Operational Flow Sequence .. 10
2.3 TLS Session Overview .. 10
2.3.1 Design Considerations .. 10
2.3.2 Supported Features ... 11
2.3.3 Operational Flow Sequence .. 11
2.3.3.1 TLS Handshake ... 11
2.3.3.2 Initialization Flow Sequence .. 12
2.3.3.3 Data Communication Flow Sequence ... 13

3. MQTT/TLS Application Example .. 13
3.1 Application Overview ... 13
3.2 Software Architecture Overview .. 14
3.2.1 Console Thread ... 14
3.2.2 MQTT Thread .. 15
3.2.3 MQTT Rx Thread... 15
3.3 IoT Cloud Configuration (AWS) ... 15
3.3.1.1 AWS IoT Policies ... 15
3.3.2 Creating a Device on AWS IoT Core... 16
3.3.2.1 Open AWS IoT Core Service .. 16
3.3.2.2 Create a Thing ... 16
3.3.3 Generating Device Certificate and Keys ... 23
3.3.4 Creating a Policy for your Device .. 26
3.3.5 Connecting the Certificate to the Policy .. 28

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 3 of 53
Jan.29.21

4. Running the MQTT/TLS Application .. 30
4.1 Importing, Building, and Loading the Project .. 30
4.2 Manually Adding the Board Support Package for the AE-CLOUD1/AE-CLOUD2 Kit 30
4.3 Powering up the Board .. 31
4.4 Connect to AWS IoT Cloud ... 31
4.4.1 Configuration Wizard Menu ... 32
4.4.1.1 Network Interface Selection .. 32
4.4.1.2 AWS IoT Core Configuration ... 39
4.4.1.3 Dump Previous Configuration ... 45
4.4.2 Demo Start/Stop Command .. 46
4.5 Verifying the Demo .. 46
4.5.1 Starting the Synergy Cloud Connectivity Demonstration .. 46
4.5.2 Opening the MQTT Client on AWS IoT Core .. 47
4.5.3 Publishing the MQTT Message from AWS MQTT Client .. 50
4.5.4 Stopping the Synergy Cloud Connectivity Demonstration .. 51
4.6 Customizing the demo delays ... 51

5. Next Steps ... 51

6. MQTT/TLS Reference ... 51

7. Known Issues and Limitations ... 51

Revision History .. 53

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 4 of 53
Jan.29.21

1. Introduction to Cloud Connectivity
1.1 Overview
Internet of Things (IoT) is a sprawling set of technologies described as connecting everyday objects, like
sensors or smart phones, to the World Wide Web. IoT devices are intelligently linked together to enable new
forms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they gather
from the environment or allow other systems to reach out and act on the world through actuators. In the
process, IoT devices generate massive amounts of data, and cloud computing provides a pathway, enabling
data to travel to its destination.

1.2 Major Components
The IoT Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors
2. Gateway
3. IoT Cloud services
4. End user application/system

IoT Cloud

Devices

Sensors
Gateway

Figure 1. IoT Cloud Connectivity Architecture
Devices or Sensors
A device includes hardware and software that interact directly with the world. Devices connect to a network
to communicate with each other, or to centralized applications. Devices may connect to the Internet either
directly or indirectly.

Gateway
A gateway enables devices that are not directly connected to the Internet to reach cloud services. The data
from each device is sent to the Cloud Platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular.

IoT Cloud
Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage those
devices, handle all that information, and make it work for you. When it comes to storing, processing, and
analyzing data, especially big data, it is hard to surpass the cloud.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 5 of 53
Jan.29.21

1.3 Cloud Provider Overview
1.3.1 Amazon Web Services IoT Core
The AWS IoT Core service provides secure, bi-directional communication between IoT devices and the AWS
Cloud over MQTT, HTTPS, and Web Sockets, enabling you to collect telemetry from multiple things, store
the data, and analyze it.

AWS IoT Core is authenticated using TLS mutual authentication with X.509 certificates. Once a certificate is
provisioned and activated, it can be installed on a device that then uses the certificate for all requests to
device gateway.

The following diagram summarizes the service components and the flow of data.

Figure 2. AWS IoT Cloud Solution

1.3.1.1 Key Features
(1) AWS IoT Device SDK
The AWS IoT Device SDK enables your devices to connect, authenticate, and exchange messages with the
IoT Core using MQTT, HTTPS, or Web Sockets protocols. The AWS IoT Device SDK supports C, C++, Java,
Node.JS, Python, and Arduino Yun. It includes the client libraries, the developer guide, and the porting guide
for manufacturers.

(2) Device Gateway
The AWS IoT Device Gateway enables devices to securely and efficiently communicate with the AWS IoT
Core. The Device Gateway can exchange messages using a publish-subscribe model, enabling one-to-one
and one-to-many communications. With this one-to-many communication pattern, the AWS IoT Core makes
it possible for a connected device to broadcast data to multiple subscribers for a given topic.

The Device Gateway supports MQTT, Web Sockets, and HTTPS 1.1 protocols. The Device Gateway scales
automatically to support over a billion devices without provisioning infrastructure.

(3) Authentication and Authorization
AWS IoT Core offers mutual authentication and encryption at all points of connection, so that data is never
exchanged between devices and the AWS IoT Core without a proven identity. The AWS IoT Core supports
the AWS method of authentication (called ‘SigV4’), X.509 certificate-based authentication, and customer
created token-based authentication (through custom authorizers). Connections using HTTPS can use any of
these methods, while connections using MQTTS use certificate-based authentication, and connections using
Web Sockets can use SigV4 or custom authorizers.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 6 of 53
Jan.29.21

(4) Registry
The Registry establishes an identity for devices and tracks metadata such as the devices’ attributes and
capabilities. To each device, the Registry assigns a unique identity that is consistently formatted, regardless
of the type of device or how it connects. The Registry also supports metadata that describes the capabilities
of a device, for example, whether a sensor reports temperature data, and if the temperature scale is
Fahrenheit or Celsius.

(5) Device Shadows
With the AWS IoT Core, you can create a persistent, virtual version, or a “shadow,” of each device that
includes the device’s latest state. Applications, or other devices, can read these messages and interact with
the device. Device Shadows persist in reporting the last state and the desired future state of each device,
even when the device is offline. You can retrieve the device’s last reported state, or set a desired future
state, through the API, or using the Rules Engine.

(6) Rules Engine
The Rules Engine makes it possible to build IoT applications that gather, process, analyze, and act on data
generated by connected devices at a global scale, without having to manage any infrastructure. The Rules
Engine evaluates inbound messages published into the AWS IoT Core and then transforms and delivers
them to another device or a cloud service, based on business rules you define. A rule can apply to data from
one or many devices, and it can take one or many actions in parallel.

The Rules Engine can also route messages to AWS endpoints, including AWS Lambda, Amazon Kinesis
streams, Amazon S3, Amazon DynamoDB, Amazon CloudWatch, and Amazon Elasticsearch with built-in
Kibana integration. External endpoints can be reached using AWS Lambda, Amazon Kinesis, and Amazon
Simple Notification Service (SNS).

1.4 MQTT Protocol Overview
MQTT stands for MQ Telemetry Transport. MQTT is a Client Server publish-subscribe messaging transport
protocol. It is an extremely light weight, open, simple messaging protocol, designed for constrained devices,
as well as low-bandwidth, high-latency, or unreliable networks. These characteristics make it ideal for use in
many situations, including constrained environments, such as communication in Machine to Machine (M2M)
and IoT contexts, where a small code footprint is required, and/or network bandwidth is at a premium.

A MQTT client can publish information to other clients through a broker. A client, if interested in a topic, can
subscribe to the topic through the broker. A broker is responsible for authentication, authorization of clients,
as well as delivering published messages to any of its clients who subscribe to the topic. In this
publisher/subscriber model, multiple clients may publish data with the same topic. A client will receive the
messages published if the client subscribes to the same topic.

Thing 1

MQTT
Broker

PUBLISH to Thing N/Data Thing 2

PUBLISH to Thing N/Data

Thing N

SUBSCRIBE to Thing 1/Data

SUBSCRIBE to Thing 2/Data

Figure 3. MQTT Client Publish/Subscribe Model

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 7 of 53
Jan.29.21

In this model, there is no direct connection between a publisher and the subscriber. To handle the
challenges of a pub/sub system, the MQTT generally uses quality of service (QoS) levels. There are three
QoS levels in MQTT:

• At most once (0)
• At least once (1)
• Exactly once (2)

At most once (0)
A message will not be acknowledged by the receiver or stored and redelivered by the sender.

At least once (1)
It is guaranteed that a message will be delivered at least once to the receiver. But the message can also be
delivered more than once. The sender will store the message until it gets an acknowledgment in form of a
PUBACK command message from the receiver.

Exactly once (2)
It is guaranteed that each message is received only once by the counterpart. It is the safest and the slowest
quality of service level. The guarantee is provided by two flows there and back, between sender and
receiver.

AWS IoT Core does not support QoS level 2.

1.5 TLS Protocol Overview
Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

The TLS/SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. Symmetric cryptography mechanism such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery to ensure that connection is reliable.
Message Authentication Code (MAC) such as Secure Hash Algorithm (SHA) is used to ensure message
integrity.

TLS/SSL uses TCP but provides secure communication for application layer protocols, such as HTTP and
MQTT.

Figure 4. TLS/SSL Hierarchy

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 8 of 53
Jan.29.21

1.5.1 Device Certificates, and Keys
Devices certificates, public and private keys, and the ways they can be generated are discussed in this
section.

1.5.1.1 Device Certificates
Security is a critical concern when deploying and managing IoT devices. In general, each of the IoT devices
needs an identity before they can communicate with the cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union, though other formats for certificates may be used, if the TLS hosts can agree on the format to be
used. X.509 defines a specific format for certificates and various encoding that can be used to produce a
digital document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1 Basic Encoding Rules (BER) that is designed to be unambiguous, making parsing
easier.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. PEM is the
most common of the alternative certificate encodings. The PEM format (from Privacy-Enhanced Mail) is a
base64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided with certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

1.5.1.2 Loading Certificates onto your Device
To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally, convert the associated private key into a binary format; typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you to load the certificate and the
private key on to the device. Possible options include using a flash-based file system or generating a C array
from the data (using a tool such as “xxd” from Linux® with the “-i” option), and then compiling the certificate
and key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

1.5.2 Device Security Recommendations
The following security recommendations are not enforced by Cloud IoT Core but help you secure your
devices and connections.

• The private key should be kept secret.
• Use TLS 1.2 when communicating with IoT Cloud to verify that the server certificate is valid using root

certificate authorities.
• Each device should have a unique public/private key pair. If multiple devices share a single key and one

of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

• Keep the public key secure when registering it with Cloud IoT Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

• The key pair used to authenticate the device to Cloud IoT Core should not be used for other purposes or
protocols.

• Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

• If your device runs an operating system, make sure that you have a way to securely update it. Android
Things provides a service for secure updates. For devices that do not have an operating system, ensure
that you can securely update the device’s software if security vulnerabilities are discovered after
deployment.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 9 of 53
Jan.29.21

2. Synergy MQTT/TLS Cloud Solution
2.1 MQTT Client Overview
The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP and therefore the MQTT client is
implemented on top of the NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or cellular.

The NetX Duo MQTT client module can be used in normal or in secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT Client and broker is secured using the TLS protocol.

2.2 Design Considerations
• By default, the MQTT client does not use TLS; communication is not secure between a MQTT client and

the broker.
• The Synergy MQTT client does not add the NetX Duo TLS session block. It only adds the NetX Duo TLS

common block. This block defines/controls the common properties of NetX secure.
• It is the responsibility of the user/application code to create the TLS session, configure the security

parameters, and load the relevant certificates manually under the TLS setup callback provided by
nxd_mqtt_client_secure_connect () API.

2.2.1 Supported Features
NetX Duo MQTT Client supports the following features:
• Compliant with OASIS MQTT Version 3.1.1 Oct 29th, 2014. The specification can be found at

http://mqtt.org/.
• Provides an option to enable/disable TLS for secure communication using NetX Secure in SSP.
• Supports QoS and provides the ability to choose the levels that can be selected while publishing the

message.
• Internally buffers and maintains the queue of received messages.
• Provides a mechanism to register callback when a new message is received.
• Provides a mechanism to register callback when connection with the broker is terminated.

http://mqtt.org/

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 10 of 53
Jan.29.21

2.2.2 Operational Flow Sequence

Application MQTT Client

Creates MQTT Client instance by calling nxd_mqtt_client_create()

Connect to MQTT broker using nxd_mqtt_client_connect()

Subscribe to topics using nxd_mqtt_client_subscribe() API

Publish to MQTT topics using nxd_mqtt_client_publish() API

Register callback on incoming MQTT messages using
nxd_mqtt_client_receive_notify_set() API

Receive_notify_callback() invoked on incoming MQTT messages

Retrieve incoming MQTT messages using nxd_mqtt_client_message_get()

Disconnect MQTT client service using nxd_mqtt_client_disconnect()

Terminate MQTT client service using nxd_mqtt_client_delete()

Figure 5. Synergy MQTT Client Flow Sequence

2.3 TLS Session Overview
The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It uses
services provided by the Synergy Crypto Engine (SCE) to carry out hardware-accelerated encryption and
decryption.

The NetX Duo TLS Session module is based on Express Logic’s NetX Secure which implements the Secure
Socket Layer (SSL) and its replacement, TLS protocol, as described in RFC 2246 (version 1.0) and 5246
(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280) format. NetX Secure is
intended for applications using ThreadX RTOS in the project.

2.3.1 Design Considerations
• NetX Secure TLS performs only basic path validation on incoming server certificates.

Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

• It is the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

• Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines are optimized for performance, but depending on the
power of the target processor, may result in very long operations. When hardware-based cryptography is
available, it should be used for optimal performance of the NetX secure TLS.

• Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 11 of 53
Jan.29.21

2.3.2 Supported Features
• Support for RFC 2246, TLS Protocol Version 1.0
• Support for RFC 5246, TLS Protocol Version 1.2
• Support for RFC 5280 X.509 PKI Certificates (v3)
• Support for RFC 3268 AES Cipher suites for TLS
• RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1
• RFC 2104 HMAC: Keyed-Hashing for Message Authentication
• RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
• RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3.3 Operational Flow Sequence
This section describes the TLS handshake operational sequence.

2.3.3.1 TLS Handshake
The following figure shows a typical TLS handshake between the TLS Server and Client.

Figure 6. TLS Handshake
• A TLS handshake begins when the TLS client sends a ClientHello message to a TLS server, indicating

its desire to start a TLS session.
• The message contains information about the encryption the client would like to use for the session, along

with information used to generate the session keys.
• The TLS server responds to the ClientHello with a ServerHello message, indicating a selection from

the encryption options provided by the client.
• It is followed by a Certificate message, in which the server provides a digital certificate to authenticate its

identity to the client.
• Finally, the server sends a ServerHelloDone message to indicate that it has no more messages to

send.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 12 of 53
Jan.29.21

• Once Client has received all the server’s messages, it has enough information to generate the session
keys. TLS does this by creating a shared bit of random data called the Pre-Master Secret, which is a
fixed size and is used as a seed to generate all the keys needed once encryption is enabled.

• The Pre-Master Secret is encrypted using the public key algorithm (such as RSA) specified in the Hello
messages and the public key provided by the server in its certificate.

• The encrypted Pre-Master Secret is sent to the server in the ClientKeyExchange message. The server,
upon receiving the ClientKeyExchange message, decrypts the Pre-Master Secret using its private key
and proceeds to generate the session keys in parallel with the TLS client.

• Once the session keys are generated, all further messages can be encrypted using the private-key
algorithm (such as AES) selected in the Hello messages. One final un-encrypted message called
ChangeCipherSpec is sent by both the client and server to indicate that all further messages will be
encrypted.

• The first encrypted message sent by both the client and server is also the final TLS handshake
message, called Finished. This message contains a hash of all the handshake messages received and
sent. This hash is used to verify that none of the messages in the handshake have been tampered with
or corrupted.

• Now the application begins sending and receiving data. All data — sent by either side — is first hashed
using the hash algorithm chosen in the Hello messages, and then encrypted using the chosen
private -key algorithm with the generated session keys.

• Finally, a TLS session can only be successfully ended if either the Client or Server chooses to do so.
Both the client and server must send and process a CloseNotify alert for a successful session
shutdown.

2.3.3.2 Initialization Flow Sequence
A typical TLS session initialization flow sequence is shown in the following figure.

Initialize the NetX TCP/IP stack

Create TCP Socket using nx_tcp_socket_create() API

Create TLS Session using nx_secure_tls_session_create()
API

Initialize a X.509 certificate and private RSA Key using
Nx_secure_x509_certificate_initialize() API

TLS Server mode TLS Client mode

Add the initialized certificate as a local identity certificate
using nx_secure_tls_add_local_certificate() API

Initialize a trusted CA or ICA certificate, using
Nx_secure_x509_certificate_initialize() API

Add the trusted certificate to trusted control block using
nx_secure_tls_trusted_certificate_add() API

Allocate space for the incoming server certificate using
nx_secure_tls_remote_certificate_allocate()

API

Figure 7. Synergy TLS Session Initialization

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 13 of 53
Jan.29.21

2.3.3.3 Data Communication Flow Sequence

Create a TCP connection using NetX/NetX Duo API

Establish connection using nx_tcp_server_socket_listen() and
nx_tcp_server_socket_accept() services (for TLS Server mode) or
the nx_tcp_client_socket_connect() service (for TLS Client mode)

Start the TLS session using nx_secure_tls_session_start() API

TLS Session Start

Allocate space for TLS header using nx_secure_tls_packet_allocate()
API

TLS Packet Allocation

Application send data using nx_secure_tls_session_send() API TLS Session Send

Application receive data using nx_secure_tls_session_receive() API TLS Session Receive

Application close TLS session using nx_secure_tls_session_end() API TLS Session End

Figure 8. Synergy TLS Session Data Flow Sequence

3. MQTT/TLS Application Example
3.1 Application Overview
This example application project demonstrates the Renesas Synergy™ IoT Cloud Connectivity solution using
the onboard Synergy MQTT/TLS modules. For demonstration purposes, this application uses Amazon Web
Services (AWS) as the cloud provider. Ethernet or Wi-Fi or Cellular (supported only on AE-CLOUD2 kit) is
used as the primary communication interface between the Thing and AWS IoT Core.

In this example, the AE-CLOUD1 and AE-CLOUD2 kit acts as an MQTT node/Thing, connects to the AWS
IoT Core, and it periodically reads on-board sensor values and publishes this information to the AWS IoT
Core. It also subscribes to its User LED state MQTT topic. You can turn the User LEDs ON/OFF by
publishing the LED state remotely. This application reads the updated LED state and turns the User LEDs
ON/OFF.

The steps here use the MQTT Client from AWS IoT Core to subscribe to the MQTT topics published by AE-
CLOUD1/AE-CLOUD2 kit. Follow the instructions in section 3.3 to setup the MQTT client on AWS IoT Core
and run this demonstration. However, you are free to use any known MQTT client to subscribe to the MQTT
topics published by AE-CLOUD1/AE-CLOUD2 Synergy MCU kit.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 14 of 53
Jan.29.21

3.2 Software Architecture Overview
Figure 9 shows the software architecture for the Synergy Cloud Connectivity Application Example Project.

Synergy MCU

BSP

ThreadX®
RTOS

Application Console Thread

Framework

MQTT Rx Thread MQTT Thread

Console
Framework

Communication
Framework

Shared
Interface

HAL

UART Driver

DMAC

MQTT Client

NetX Duo Network Stack

NetX Duo Network (Wi-Fi/
Ethernet/Cellular) Driver

r_spi ADC Flash IRQI2C

Figure 9. Synergy Cloud Connectivity Application Software Architecture
The main software components of this application are:

• MQTT Client
• NetX Duo IP Stack and its underlying driver components for Ethernet, Cellular and Wi-Fi.
• Console Framework

This application contains the following application threads:

• Console Thread
• MQTT Thread
• MQTT Rx Thread

3.2.1 Console Thread
This thread handles the function related to Command Line Interface (CLI). It uses the console framework,
which in-turn, uses the communication framework and its underlying USBX CDC device module
components.

This thread reads the user inputs and stores them in the internal data flash. The stored information is read
later by the MQTT Thread when it tries to run the Synergy Cloud connectivity demo.

This thread presents you with the following CLI command options.

• Cwiz
• Demo start/stop

Cwiz command option

Using this command option, you can select the following configurations:
• Network interface such as Ethernet, Wi-Fi, and its associated IP mode (DHCP/Static).

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 15 of 53
Jan.29.21

• IoT cloud selection (AWS).
• Dump the existing configuration from flash.
• Exit the menu.

Demo start/stop command option

Using this command option, you can run/stop the Synergy Cloud Connectivity Demonstration.

3.2.2 MQTT Thread
The MQTT thread is the main control thread that handles the following major functions:
• Initialize communication interface (Ethernet/Wi-Fi).
• Initialize IoT Cloud interface.
• Read sensor data and publish the data periodically on MQTT topics.
• Update the user LED state based on the type of MQTT message received.

On wakeup, this thread periodically checks (every 5 seconds) for user input event flag state set once you
enter the demonstration start/stop command on the CLI. If the demonstration start command is issued from
the CLI, this thread will read the pre-configured user information from internal flash and check its validity. If
the content is valid, it then starts the Synergy Cloud connectivity demonstration. If a demo stop command is
issued, it de-initializes the IoT cloud interface.

3.2.3 MQTT Rx Thread
This thread handles the incoming MQTT messages from the MQTT broker. On receiving the new MQTT
message, the user callback receive_notify_callback()will be invoked by the MQTT thread. This
callback in turn sets the semaphore on which the MQTT Rx Thread is polling periodically.

On receiving the new MQTT message, it uses the nxd_mqtt_client_message_get() API to read the
message, parses it, and acts on it based on the type of the message received.

3.3 IoT Cloud Configuration (AWS)
3.3.1.1 AWS IoT Policies
AWS IoT Core policies are JSON (JavaScript Object Notation) documents that authorize your device to
perform AWS IoT Core operations. AWS IoT defines a set of policy actions describing the operations and
resources for which you can grant or deny access. For example:

• IoT:Connect represents permission to connect to the AWS IoT message broker.
• IoT:Subscribe represents permission to subscribe to an MQTT topic or topic filter.
• IoT:GetThingShadow represents permission to get a thing shadow.

JSON
JSON is an open standard, lightweight, data-interchange format. As a text document, it is easy for users to
read and write, and for machines to parse and generate.

JSON is completely language independent, using conventions that are familiar to C-family programmers,
including C, C++, C#, Java, JavaScript, Perl, Python, and many others. The following example shows a
JSON script used to turn on an LED.
{
 “state”: {
 “desired”: {
 “LED_value”: “On”
 }
 }
}

AWS IoT Thing Shadow
A Thing Shadow (also referred to as a Device Shadow) is a JSON document used to store and retrieve
current state information for a Thing (device, application, and so on).

The Thing Shadow service maintains a thing shadow for each thing you connect to AWS IoT Core. You can
use thing shadows to get and set the state of a thing over MQTT or HTTP, regardless of whether the thing is
connected to the Internet. Each thing shadow is uniquely identified by its name.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 16 of 53
Jan.29.21

Amazon Web Services Signup
Amazon Web Services offers a free account (12 months) for each user. It is expected that you create an
account on the AWS IoT Cloud service before continuing to the next section.

To create an AWS account, open to the following link in your web browser:
https://portal.aws.amazon.com/billing/signup#/start

Fill in the required details and create a user account.

Note: While creating the project, certificates and policies, the screenshots may look slightly different from
what is shown in the document and users need to navigation in the AWS IoT core environment to find
corresponding attributes while working on this project.

3.3.2 Creating a Device on AWS IoT Core
The following steps show you how to create a device on the IoT Core user account. It is assumed that you
created a user account in the AWS IoT Core and have followed the AWS signup procedure.

3.3.2.1 Open AWS IoT Core Service
1. Connect to the AWS IoT service by typing IoT Core in the AWS services search bar.
2. Click IoT Core.

Figure 10. Synergy Cloud Connectivity Application Software Architecture

3.3.2.2 Create a Thing
1. Start creating your device by selecting Manage. Be sure to select the appropriate region in the AWS

console on the top right corner.

Note: A Thing created in one region will not be seen in another region.

https://portal.aws.amazon.com/billing/signup#/start

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 17 of 53
Jan.29.21

2. Now select Things.
3. Next, select Register a thing to create a thing.

4. Then select the Create a single thing button.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 18 of 53
Jan.29.21

5. Enter the Thing Name. In the example, a Thing by name Thing_01 is created.

Note: Remember to store the Thing Name. This information is passed to firmware using the serial console

during configuration.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 19 of 53
Jan.29.21

6. Create a Thing type by clicking the Create a type button.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 20 of 53
Jan.29.21

7. Enter the Type Name and Description. Add the attributes by clicking the button Add another in the Set
searchable thing attributes section.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 21 of 53
Jan.29.21

8. Add the attribute key and click the Create thing type button.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 22 of 53
Jan.29.21

9. Select the Thing Type and enter the attribute value. Click the Next button.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 23 of 53
Jan.29.21

10. Click the option, Create thing without certificate, to create a thing in AWS IoT.

3.3.3 Generating Device Certificate and Keys
At this point, it is assumed that the AWS IoT Thing has been created following the above instructions. Now
you can generate device certificates and keys for the AWS IoT Thing (Thing) created.

The Thing you created appears in the Things section, as shown in the following screen.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 24 of 53
Jan.29.21

1. Click the Thing you created. It will open in a new window with the Thing information.
In the example, the Thing created is called Thing_01.

2. Go to the Security tab and click Create certificate button, as shown in the following screen.

It generates the following for the Thing you created, as shown in the following screen.
 A device certificate
 A public key
 A private key
 A root CA for AWS IoT

3. To download certificates, click the Download button next to each of the certificates and keys, as shown in
the following screen.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 25 of 53
Jan.29.21

4. Click the Download button. The root CA for AWS opens the link
https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html#server-
authentication. Click RSA 2048 bit key: Amazon Root CA 1, as shown in the following figure to open the
certificate in a new tab.

Note: Certificate generated by right clicking and downloading it to the PC might not work.

https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html#server-authentication
https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html#server-authentication

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 26 of 53
Jan.29.21

5. Go back to the AWS console and click the Activate button to activate the certificate just created.
6. After certificate activation, click the Done button to complete the certification/keys creation.

Note: Since October 2018, AWS has recommended that all users create an Amazon Trust Services (ATS)
endpoint and load these CA certificates onto their devices. The Amazon Root CA1 can be
downloaded from: https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-
certs.html.
For users who created endpoints prior to October 2018 and are still using them to test this AP, it is
recommended to use the rootCA.pem file given as part of this package.

3.3.4 Creating a Policy for your Device
To create a policy, go back to the Thing Hub.

1. Click the Secure option shown in the following screen.
2. Click the Policies option; it opens a window to create a new policy.

https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html
https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 27 of 53
Jan.29.21

3. Click the Create button in the top right corner of the policies window to create new policy.

Note: If the Thing and Policy were created in the past, the Policy creation GUI snapshot may look different

and is similar to the snapshot shown as follows.

4. Enter the Name for your policy in the Name box as shown in the following screen.
5. Under Action, type: iot:*
6. Under Resource ARN, type: *

Note: The examples in this document are intended only for development environments. All devices
in your fleet must have credentials with privileges that authorize only intended actions on specific
resources. The specific permission policies can vary for your use case. Identify the permission policies
that best meet your business and security requirements. For more information, refer to Example policies
and Security best practices.

https://docs.aws.amazon.com/iot/latest/developerguide/example-iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 28 of 53
Jan.29.21

7. Click Allow.
8. Click Create. Your policy has now been created.

3.3.5 Connecting the Certificate to the Policy
1. Click the Secure option as shown in the following screen. Then, click the Certificates option. It will open

a window listing the device certificates created in your AWS IoT Core service.
2. Choose the certificate you had created for your Thing. This can be done by clicking the “…” in the top

right corner of your certificate.
3. Click the Attach policy option from the drop-down menu.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 29 of 53
Jan.29.21

Note: If the Thing and Policy were created in the past on this account, you may notice the existing
certificates. The Certificate attached to the policy GUI snapshot may look different, similar to the
snapshot shown in Figure below

4. Search for the policy on the Search policies window.
5. Choose the policy from the list and click the Attach button, as shown in the following screen.
6. Your policy has now been attached to your device certificate.

Note: If the Thing and Policy were created on an existing AWS account which already has existing
Things, the Certificate attached to the policy GUI snapshot may look different and is similar to the
snapshot shown in the below Figure.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 30 of 53
Jan.29.21

4. Running the MQTT/TLS Application
4.1 Importing, Building, and Loading the Project
See the Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf),
included in this package, for instructions to import the project into e2 studio, build and run the project.

4.2 Manually Adding the Board Support Package for the AE-CLOUD1/AE-CLOUD2
Kit

1. From the project bundle, locate the BSP files, Renesas.S5D9_PILLAR_ARDUINO_MODULE.1.7.0.pack
for AE-CLOUD2 and Renesas.S5D9_IOT_BOARD.1.7.0.pack for AE-CLOUD1.

2. For e2 studio users: Copy the files shown in the following figure to the e2 studio packs folder,
C:\Renesas\e2studio_v7.5.1\internal\projectgen\arm\packs.

Figure 11. Load BSP Pack for AE-CLOUD1/AE-CLOUD2 Kit

3. For IAR users: Copy the files to SCC \packs folder,
C:\Renesas\Synergy\ssc_v7.3.0_ssp_v1.7.8

\internal\projectgen\arm\packs

Note: If e2 studio and IAR SSC are installed in any other location, the same information needs to be
provided to copy the pack.

https://www.renesas.com/jp/ja/doc/products/renesas-synergy/apn/r11an0023eu0121-synergy-ssp-import-guide.pdf

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 31 of 53
Jan.29.21

4.3 Powering up the Board
To connect power to the board, connect the SEGGER J-Link® debugger to the PC, connect the board to the
PC USB port, and run the debug application, using the following instructions.

1. For AE-CLOUD2, connect the micro USB end of the supplied USB cable to the AE-CLOUD2 board’s J6
connector (DEBUG_USB).
Connect the other end of the USB cable to the USB port on your workstation.
Note: The kit contains a SEGGER J-Link® On-board (OB). J-Link provides full debug and programming

for the AE-CLOUD2 board.
2. For the AE-CLOUD1 board, connect the J-Link Lite, supplied with the kit, to the J2 connector on the

AE-CLOUD1 and to the 10-pin header on the J-Link lite using the supplied 10-pin, flat-ribbon cable.
3. Attach the PMOD-based GT-202 Wi-Fi module in the PMOD connector.
4. For the AE-CLOUD2 kit, connect the BG96 Cellular shield on the AE-CLOUD2 Arduino Connector. Next,

attach the Cellular antenna to the LTE antenna connector, and then the GPS antenna to the GNSS
antenna connector on the BG96 shield and attach the PMOD-based GT-202 Wi-Fi module in the PMOD
connector all the time in spite of running the demo using ethernet/cellular interface. This redundant
connection is necessary as a workaround to a known issue in SSP v1.6.3 and v1.7.0.

5. Connect the second micro USB cable as follows:
 AE-CLOUD2/ AE-Cloud1 board’s J9 connector
Connect the other end of the USB cable to the USB port on your workstation. This connection is
necessary for the serial console.

4.4 Connect to AWS IoT Cloud
The following instructions show how to run the Synergy Cloud connectivity application project and connect to
the AWS IoT Cloud.

Note: At this stage, it is assumed you completed the instructions in section 3.3 to create an AWS IoT
account, set up your device on the AWS IoT Core, and downloaded the device certificates and keys.

• Section 4.4 shows how the command line interface can be used to configure the boards; depending
upon the desired interface for cloud connectivity.

• While running the application on these boards, connectivity is done using one interface at a time
(Ethernet or Wi-Fi, or Cellular). Users are required to configure only the desired interface to run the
application. For example, if you use Ethernet, then Wi-Fi or Cellular does not need to be configured
and vice-versa.

• Note that the CLI snapshots shown in some cases may not be applicable to all the boards, such as
Cellular not being applicable to AE-CLOUD1 board.

Table 1. Kit Connectivity Options (only one interface supported at a time)

Board Ethernet Wi-Fi Cellular
AE-CLOUD1 Supported Supported Not Supported
AE-CLOUD2 Supported Supported Supported

1. Connect the USB Device port of the kit to the test PC. The port will be automatically detected as an USB

Serial device in case of Windows 10 PC.
In case of Windows 7/8 PC, refer to the following installation guide to load the Synergy USB CDC driver:
www.renesas.com/en-us/products/synergy/software/add-ons/usb-cdc-drivers.html
https://en-support.renesas.com/knowledgeBase/16977397.

2. Open the serial console application, such as Tera Term, to connect it to the AE-CLOUD1/AE-CLOUD2 kit.
The default Tera Term settings are 8-N-1, and the baud rate is 9600.

http://www.renesas.com/en-us/products/synergy/software/add-ons/usb-cdc-drivers.html
https://en-support.renesas.com/knowledgeBase/16977397

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 32 of 53
Jan.29.21

3. Press Enter. The following command prompt and CLI information appears on the serial console.

Figure 12. Command Prompt

4. Press the ? key on your keyboard to display the available CLI command options shown in the following
figure.

Figure 13. Help Menu

4.4.1 Configuration Wizard Menu
Enter command cwiz. Press the enter key in the serial console to enter the configuration menu. The cwiz
command is used to configure the Network interfaces, the AWS IoT Core Service, and to dump the previous
configuration stored in the internal flash.

Figure 14. Configuration Menu

4.4.1.1 Network Interface Selection
From the configuration menu, press 1 key to configure the Network Interface. It lists the available network
interface options in this application project. Currently this application supports Ethernet, Wi-Fi, Cellular (in
case of AE-CLOUD2 kit) communication interfaces.

Note: The user can select only one network interface at a time. For instance, when Ethernet is selected,
Wi-Fi and Cellular are not available and vice-versa. To change the network interface, the
demonstration should be stopped, and the new interface should be selected through cwiz.

If the user uses the same network interface between power cycles, then the network interface
selection can be skipped since the interface and credentials are stored in the flash.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 33 of 53
Jan.29.21

For example, if the user selects Ethernet Network Interface Configuration as the interface for cloud
connectivity before and after a power cycle, the user can go directly to section 4.4.1.2, AWS IOT Core
Configuration. The same applies for Wi-Fi or Cellular as well.

Figure 15. Network Interface Selection Menu
(1) Ethernet Network Interface Configuration
From the Network Interface Selection menu, press 1 to select the Ethernet Network Configuration.

Figure 15. Ethernet Network Interface Selection
You see the submenu where you choose the IP Address Configuration mode from the available options
(DHCP/Static). Choose the IP Address Configuration mode. The selected Ethernet configuration setting is
stored in internal flash; it is used at a later stage, when communication is initialized.

Note: The Ethernet Static IP configuration does not work with the default project. User needs to add the
NetX Duo source code to the project. This issue will be fixed in future releases.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 34 of 53
Jan.29.21

Figure 16. Ethernet Network Interface Configuration Menu – DHCP Configuration

Figure 17. Ethernet Network Interface Configuration Menu – Static IP Configuration
(2) Wi-Fi Network Interface Configuration
From the Network Interface Selection menu, press 2 to select the Wi-Fi Network Configuration.

Figure 18. Wi-Fi Network Interface Configuration Menu

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 35 of 53
Jan.29.21

You are given the option to enter Wi-Fi Configuration settings, such as SSID, Pass key, Security type, and
IP Address Configuration mode.

The selected Wi-Fi configuration setting is stored in the internal flash to be used at a later stage, when the
communication is initialized.

Figure 19. Wi-Fi Configuration – DHCP Configuration Mode

Figure 20. Wi-Fi Configuration – Static IP Configuration

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 36 of 53
Jan.29.21

(3) Cellular Network Interface Configuration (Applicable for AE-CLOUD2 only)
From the Network Interface Selection menu, press 3 to select the Cellular Network Configuration.

You will be given the two choices:

• Option 1: Enter 1 in case of SIM provisioning. In this case, it is assumed that you already pre-configured
the SIM card. You can only enter the APN, context ID and PDP type of the SIM.

• Option 2: Enter 2 in case of SIM configuration. This option is ideal if you need to configure the SIM card
using the AT shell interface. For example, setting the Scan Mode, IoT OpMode and so forth, on the SIM.

Note: After cellular connects to the cloud using Option 1, user cannot return to the AT shell configuration

window using Option 2 anymore.

Figure 21. Cellular Configuration
(a) Start Provisioning Option

In the cellular modem configuration menu, choose option 1 to enter the Start provisioning sub-menu.

Figure 22. Cellular Modem Provisioning Menu

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 37 of 53
Jan.29.21

You are given the option to enter Cellular Configuration settings, such as APN, Context ID, PDP type.

The selected Cellular configuration setting is stored in the internal flash to be used at a later stage, when the
communication is initialized.

(b) Start SIM Configuration Option
Note: Use this menu item to exercise configuration of a new SIM card and identify the proper settings. This

menu item cannot connect the device to the cloud even if “demo start” is issued. After finishing SIM
card configuration using this menu item, user needs to go back to the main menu and choose option
1 Start Provisioning to connect the device to cloud.

In the Cellular modem configuration menu, choose option 2 to enter the Start SIM Configuration
sub-menu.

Figure 23. Cellular Configuration Menu
You can either choose option 1 to enter Manual Configuration mode using AT command shell or choose
option 2 to enter Auto Configuration from a pre-stored AT command list. You generate this list at the end of
the previous Manual configuration.

Manual Configuration using AT Command Shell
In case you select option 1 in the Cellular Configuration Menu, enter the following AT command shell. You
can experiment with various AT commands to configure the SIM cards.

Figure 24. AT Command Shell

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 38 of 53
Jan.29.21

See the following knowledge base article provided by Renesas as a baseline to provision the SIM card using
the BG96 Cellular modem:

https://en.na4.teamsupport.com/knowledgeBase/18027787

To exit the AT command shell, enter the command exit or EXIT. You will be asked whether to save the AT
command, as shown in the following screen.

If you chose to save the AT commands, which can be later used to auto configure the new SIM cards, enter
Y. When you do, you will be asked to enter the AT command details, as shown in the following screen.

Note: Only the commands you entered after you choose Y for the above query will be saved. See the
following example.

https://en.na4.teamsupport.com/knowledgeBase/18027787

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 39 of 53
Jan.29.21

Auto Configuration from pre-stored AT command list
If you chose option 2 in the Cellular Configuration Menu, enter the Auto configuration from the following
pre-stored AT command list menu.

Figure 25. Auto configuration from pre-stored AT command list
The pre-stored AT commands will be sent to the cellular modem and their responses will be displayed in the
console window.

Note: In case of repeated failures to register to the network, increase the AT command retry count. Set the
appropriate network scan sequence in the Synergy Configurator of the project, then generate and
rebuild the project.

4.4.1.2 AWS IoT Core Configuration
From the Main Menu, press 2 and press Enter to configure the AWS IoT Core service as shown in the
following screen.

Figure 26. AWS IoT Core Configuration Menu

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 40 of 53
Jan.29.21

(1) AWS IoT Core Setting Menu
From the AWS IoT Core configuration menu, press 1 and hit Enter to configure the AWS IoT Core settings,
as shown in the following screen.

In the AWS IoT core configuration menu, you have the option of entering AWS Endpoint information and the
AWS Thing name.

To locate the AWS IoT endpoint information for your MQTT thing, use the following steps.

1. Open the thing you had created for this application. The thing created can be found under Manage tab,
as the following screen shows. Click the Thing name to open it.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 41 of 53
Jan.29.21

2. Open the Thing, then go to the Interact tab shown below. The AWS IoT Endpoint address can be found
under the Rest API Endpoint block.

The selected configuration setting is stored in internal flash; it is used at a later stage during the AWS IoT
Core connection.
Note: If any user created the MQTT Thing and policies in the AWS console before October 2018 and is

still using them to test this AP, they need to manually change the MQTT Endpoint as the shown
below and use the rootCA.pem file given as part of this package.

New MQTT Endpoint name: a12rqy6dvovqfi-ats.iot.us-west-2.amazonaws.com

Modified MQTT Endpoint name: a12rqy6dvovqfi.iot.us-west-2.amazonaws.com

Note: If the MQTT Thing and policies are created new, and in order to use it for testing the AP, no need to
change the endpoint info as well user doesn’t need to use the attached rootCA.pem. Instead use the new
Endpoint as is and root CA can be used as referenced in the section 3.3.3 (4) (Amazon root CA1).

3. At the prompt, enter 1 to enter AWS Endpoint Information.

4. Paste the Endpoint information in the CLI as shown.

5. At the prompt, enter 2 to enter AWS Thing Name.

6. Enter the name of the thing that is created in section 3.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 42 of 53
Jan.29.21

(2) Certificate/Keys Setting Menu
Exit out of the AWS Cloud setting menu by entering 3 at the prompt. Exiting brings the CLI to the following
AWS Core configuration menu.

From the AWS IoT Core configuration menu, press 2 and Enter key to configure the Device
Certificate/Keys settings.

Note: This step should be carried out sequentially. All certificates should be entered sequentially. Any
change to one of the certificates requires all the certificates to be re-entered in the same order.
Be sure to copy the labels indicating the beginning and end of the certificate.

In the Device Certificate/Keys settings menu, you have the option of entering the root CA, device certificates,
and device private key in the .pem format.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 43 of 53
Jan.29.21

Enter 1 at the prompt and paste the root CA certificate downloaded in section 3.3.3.

Figure 27. Certificates/Keys Setting Menu

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 44 of 53
Jan.29.21

Figure 28. Entering Root CA Certificate
Press Enter to return to the Certificate Settings Menu.

Enter 2 to enter the Thing Certificate.

Open the xxxx-certificate.pem.crt file, downloaded in section 3.3.3, in a text editor. Copy and paste
the certificate including the labels to the CLI. Press OK.

Again, press Enter to return to the Certificate Settings Menu and enter 3 to enter the Thing Private Key.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 45 of 53
Jan.29.21

Open the xxxxxxx-private.pem.key, downloaded in section 3.3.3, in a text editor. Copy and paste the
certificate including the labels to the CLI.

The selected configuration setting is stored in the internal flash; it is used at a later stage during the AWS IoT
Core connection.

Exit to the Main Menu by choosing the Exit option from the menu.

4.4.1.3 Dump Previous Configuration
From the Main menu, choose option 3 to display the pre-selected network, the AWS IoT core Service
Configuration options you selected from the internal flash, as shown in the following screen.

Figure 29. Dump Configuration Menu
Note: Ensure that all cloud information is present in the dump from flash. Any empty space in the cloud

information indicates that the cloud information is stored incorrectly.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 46 of 53
Jan.29.21

Note: The first-time project is flashed onto the board; since there is no information stored in flash, dumping
the data using cwiz command may result in garbage being displayed on the CLI. Power cycle the
board and configure before proceeding to dump the data.

Exit out of the Main menu by entering 4 at the prompt.

4.4.2 Demo Start/Stop Command
From the CLI console, enter demo start command to start the Synergy Cloud Connectivity Application
Demonstration.

Figure 30. Help Menu
The application framework reads your pre-configured selection options for the network interface, the IoT
Service from the internal flash, and checks for its validity. If the content is valid, it then initializes the network
interface and establishes a MQTT connection with the AWS IoT Core.

This application wakes up periodically (every 5 seconds) and checks for your input event flag state. The flag
state is set once you have entered the demo start/stop command on the CLI. This application does the
following functions periodically until you enter the demo stop command.

1. Initialize communication interface (Ethernet/Wi-Fi/Cellular).
2. Initialize IoT Cloud interface.
3. Read sensor data and publish them periodically on MQTT topics.
4. Updates your LED state based on the type of MQTT message received.

If the demo stop command is issued, it de-initializes the IoT Cloud interface, which in turn stops MQTT
messages from publishing and clears any pending MQTT messages from its internal queue.

Note: Once the demo starts running (demo start command issued), the cwiz command should not be
used until the demo is stopped using the demo stop command.

4.5 Verifying the Demo
The following instructions verify the functionality of this Synergy Cloud Connectivity Application Project.

4.5.1 Starting the Synergy Cloud Connectivity Demonstration
Use the demo start command to run this application demonstration from the serial console.

Once you run demo start, it begins to configure the network interface, establishes a connection with AWS
IoT Core, and starts publishing sensor data periodically (every 5 seconds).

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 47 of 53
Jan.29.21

4.5.2 Opening the MQTT Client on AWS IoT Core
1. Login to your AWS IoT Core account and select your Thing that you created in section 3.3.

2. Click the Activity tab shown in the following screen.

3. Click MQTT Client in the following screen on the top right corner of the window.

The MQTT Client window opens on the AWS IoT Core. You can subscribe to the topics you want to listen
and publish your MQTT message on the topic you want to publish.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 48 of 53
Jan.29.21

4. In this application, the user can subscribe to 2 different topics –for sensor data and for LED states.
The subscription topics include two topics:
User LED state:
$aws/things/<your thing name>/shadow/update

Type the Subscription topic in the Subscription topic box as shown in the following screen. Click the
Subscribe to topic button. The AWS MQTT Client starts listening to the topic to which you subscribed.

Sensor data (telemetry data):
Click Subscribe to a topic one more time to bring up below interface and input the sensor data
subscription topic.

For AE-Cloud1: renesas/ae_cloud1/<your thing name>

For AE-Cloud2: renesas/ae_cloud2/<your thing name>

When you subscribe to the sensor data topic, you can see the sensor data getting updated every 5
seconds. If there are multiple topics, click the topic (in the left pane shown in the following screen) to see
the updates.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 49 of 53
Jan.29.21

5. You can also enter the MQTT topic that is to be published by the cloud in the Publish box, as shown in

the following screen.
For this application, the following topic is used to publish User LED state:
User LED state is published in the following topic:

 $aws/things/<your thing name>/shadow/update/accepted

 Note: There is no publish topic for sensor data.

6. Enter the MQTT message in JSON format in the message window below the Publish button.
Refer to section 4.5.3 for details about the different JSON messages used in the demonstration.

7. Click the Publish to topic button to publish your MQTT message. Any MQTT clients who are subscribed
to your MQTT publish topics will get your published message.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 50 of 53
Jan.29.21

The published message can be seen on the CLI. The corresponding LED should be turned ON or OFF as
indicated in the JSON message.

4.5.3 Publishing the MQTT Message from AWS MQTT Client
You can publish the MQTT message to turn your LEDs ON/OFF on the AE-CLOUD1/AE-CLOUD2 kit by
using messages from the following table. These messages indicate the states for Red, Green, and Yellow
LEDs.

Note: The Message under Message Column are case sensitive; users need to take care of this while using
them to turn the LEDs ON/OFF.
Only enter one message at a time. Copy the message ‘as-is’ and do not include any extra spaces.

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 51 of 53
Jan.29.21

Table 2. Turning the User LED ON/OFF on your AE-CLOUD1/AE-CLOUD2 kit

LED State Message
RED LED ON {"state":{"desired":{"Red_LED":"ON"}}}
RED LED OFF {"state":{"desired":{"Red_LED":"OFF"}}}
YELLOW LED ON {"state":{"desired":{"Yellow_LED":"ON"}}}
YELLOW LED OFF {"state":{"desired":{"Yellow_LED":"OFF"}}}
GREEN LED ON {"state":{"desired":{"Green_LED":"ON"}}}
GREEN LED OFF {"state":{"desired":{"Green_LED":"OFF"}}}

4.5.4 Stopping the Synergy Cloud Connectivity Demonstration
To stop the demonstration, enter the demo stop command. Issuing this command de-initializes the IoT
Cloud interface, stops it from publishing MQTT messages, and clears any pending MQTT messages from its
internal queue. The demonstration can be restarted by typing demo start command.

Figure 31. Application demo stop sequence

4.6 Customizing the demo delays
This application supports failure recovery for a period specified by certain macros. To increase or reduce the
time for recovery modify the following in the source code (MQTT_Config.h):

Table 3. Delay settings

Macro Purpose Set to
MQTT_UPDATE_DELAY Delay between the updates pushed to the cloud. 5 seconds
IOT_NW_RETRY_DELAY Retry for Network failures 5 seconds
NETWORK_RETRY_CNT Retry count for network connectivity in case of

network failures.
10 seconds

IOT_SERVICE_RETRY_DELAY Delay between retries for IoT Service
connectivity in case of failures.

Currently set to 100

IOT_SERVICE_RETRY_CNT Retry count for IoT Service. 5 seconds

5. Next Steps
• Renesas Synergy Module Guides collateral: www.renesas.com/synergy/applicationprojects
• Setting up a client using a device certificate signed by your CA certificate, refer to the link:

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
• Using a self-signed certificate to configure AWS, refer to the link:

https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

For other links to the Synergy Gallery, development tools, and utilities, see the Website and Support section.

6. MQTT/TLS Reference
• SSP v1.7.8 User’s Manual (www.renesas.com/synergy/ssp).
• AWS IoT documentation (https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html).

7. Known Issues and Limitations
1. Restarting using demo start command may fail on certain networks when using Ethernet or Wi-Fi.
2. Occasional outages in cloud connectivity can be noticed during the demo due to changes in the

cloud server. Contact the Renesas support team for questions.

http://www.renesas.com/synergy/applicationprojects
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html
http://www.renesas.com/synergy/ssp
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 52 of 53
Jan.29.21

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Synergy MQTT/TLS AWS Cloud Connectivity Solution

R11AN0336EU0105 Rev.1.05 Page 53 of 53
Jan.29.21

Revision History

Rev. Date
Description
Page Summary

1.00 Sep.24.18 — Initial version
1.01 Feb.06.19 — Updated links and section 4, Running the MQTT/TLS

Application
1.02 Jun.27.19 — Updated portions of section 4, Running the MQTT/TLS

Application
1.03 Oct.21.19 — Updated for SSP v1.7.0
1.04 Nov.01.19 — Updated section 4.3, step 4
1.05 Jan 29.2021 Fixed the Base64 length issue

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Cloud Connectivity
	1.1 Overview
	1.2 Major Components
	1.3 Cloud Provider Overview
	1.3.1 Amazon Web Services IoT Core
	1.3.1.1 Key Features
	(1) AWS IoT Device SDK
	(2) Device Gateway
	(3) Authentication and Authorization
	(4) Registry
	(5) Device Shadows
	(6) Rules Engine

	1.4 MQTT Protocol Overview
	1.5 TLS Protocol Overview
	1.5.1 Device Certificates, and Keys
	1.5.1.1 Device Certificates
	1.5.1.2 Loading Certificates onto your Device

	1.5.2 Device Security Recommendations

	2. Synergy MQTT/TLS Cloud Solution
	2.1 MQTT Client Overview
	2.2 Design Considerations
	2.2.1 Supported Features
	2.2.2 Operational Flow Sequence

	2.3 TLS Session Overview
	2.3.1 Design Considerations
	2.3.2 Supported Features
	2.3.3 Operational Flow Sequence
	2.3.3.1 TLS Handshake
	2.3.3.2 Initialization Flow Sequence
	2.3.3.3 Data Communication Flow Sequence

	3. MQTT/TLS Application Example
	3.1 Application Overview
	3.2 Software Architecture Overview
	3.2.1 Console Thread
	3.2.2 MQTT Thread
	3.2.3 MQTT Rx Thread

	3.3 IoT Cloud Configuration (AWS)
	3.3.1.1 AWS IoT Policies
	3.3.2 Creating a Device on AWS IoT Core
	3.3.2.1 Open AWS IoT Core Service
	3.3.2.2 Create a Thing

	3.3.3 Generating Device Certificate and Keys
	3.3.4 Creating a Policy for your Device
	3.3.5 Connecting the Certificate to the Policy

	4. Running the MQTT/TLS Application
	4.1 Importing, Building, and Loading the Project
	4.2 Manually Adding the Board Support Package for the AE-CLOUD1/AE-CLOUD2 Kit
	4.3 Powering up the Board
	4.4 Connect to AWS IoT Cloud
	4.4.1 Configuration Wizard Menu
	4.4.1.1 Network Interface Selection
	(1) Ethernet Network Interface Configuration
	(2) Wi-Fi Network Interface Configuration
	(3) Cellular Network Interface Configuration (Applicable for AE-CLOUD2 only)
	(a) Start Provisioning Option
	(b) Start SIM Configuration Option

	4.4.1.2 AWS IoT Core Configuration
	(1) AWS IoT Core Setting Menu
	(2) Certificate/Keys Setting Menu

	4.4.1.3 Dump Previous Configuration

	4.4.2 Demo Start/Stop Command

	4.5 Verifying the Demo
	4.5.1 Starting the Synergy Cloud Connectivity Demonstration
	4.5.2 Opening the MQTT Client on AWS IoT Core
	4.5.3 Publishing the MQTT Message from AWS MQTT Client
	4.5.4 Stopping the Synergy Cloud Connectivity Demonstration

	4.6 Customizing the demo delays

	5. Next Steps
	6. MQTT/TLS Reference
	7. Known Issues and Limitations
	Revision History

