To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

>
©
S
=
Q
=
o
-
Z
)
—+
)
7))

W
N

RENESANS

SH7727 USB Function Module
Mass Storage Class
(Bulk-Only Transport)

Application Notes
Renesas SuperH™ RISC Engine

HD6417727

Renesas Electronics Rev.1.0 2002.04

www.renesas.com

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party'$
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that
have received the latest product standards or specifications before final design, purchase ol
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’'s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directl
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment fo
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristi
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation o
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docume
without written approval from Hitachi.

7. Contact Hitachi’'s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 04/02, page ii of vi
RENESAS

Preface

These application notes describe the Mass Storage Class (Bulk-Only Transport) firmware that
the USB Function Module in the SH7727. They are provided to be used as a reference when
user creates USB Function Module firmware.

These application notes and the described software are application examples of the USB Fun
Module, and their contents and operation are not guaranteed.

In addition to these application notes, the manuals listed below are also available for referenc
when developing applications.

[Related manuals]

* Universal Serial Bus Specification Revision 1.1

« Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1
¢ Universal Serial Bus Mass Storage Class(Bulk-Only Transport) Revision 1.0

e SH7727 Hardware Manual

e SH7727 Solution Engine (MS7727SEO01) Instruction Manual

e SH7727 E10A Emulator User’'s Manual

[Caution] The sample programs described in these application notes do not include firmware

related to interrupt transfer, which is a USB transport type. When using this transfer
type (see page 23-1 of the SH7727 Hardware Manual), the user needs to create the
program for it.
Also, the hardware specifications of the SH7727 and SH7727 Solution Engine, whic
will be necessary when developing the system described above, are described in th
application notes, but more detailed information is available in the SH7727 Hardwar
Manual and the SH7727 Solution Engine Instruction Manual.

Rev. 1.0, 04/02, page iii of vi
RENESAS

Rev. 1.0, 04/02, page iv of vi
RENESAS

Contents

SECHON L OV IVIBW e e e e et et e e e e e e e e e e e e e neanaaen

Section 2 Overview of the USB Mass Storage Class (Bulk-Only Transport)....

2.1 USB MaSS StOrage ClasSuuueiiiieiiiiiiiie ettt ettt e et e e e e s e eeee s
2.2 SUD-CIASS COUE ..oeeiiiiiiiiieee ettt et e e e e e e e e e e e s e s s e s s et eaeeeee e e s o b
2.3 BUIK-ONIY TraNSPOI ...t e e e e e e e e e e e e s e aeeaaaesd VR
P22 70 R o 1 0] .0 F= 1 To I I = g < o Lo) O
ARG B S - | LU S I = 1015 o [0 SO PSP
2.3.2 DAtA TraANSPOI. ...ttt e e e et e e e e e e e e e e e
P22 TR T O - 11 @] 1 41 1. F= 1 (o £
2.4 SCSI Transparent Command Set Sub-Class COdeccooiiiiiiiiiiiiiiiiieee e
Section 3 Development ENVIFONMENT.........cooiiiiiiiiiiiiiiiiiieeeee e
3.1 Hardware ENVIFONMENTcooiiiiiiii ittt e e e e e e e e e e e e e as
3.2 SOftware ENVIFONMENT.......oiiiiiie oo eee et e e e e e e e e e e e e s e eeeeeeeees 2
32,1 SAMPIE PrOGIamM oottt ettt e e
3.2.2 Compiling and LINKINGcoouveiiiieiiiiiieee et 1
3.3 Loading and Executing the Programccccoooi oo e e e e e ae e
3.3.1 Loading the Program...........ouuuiuiiiiiiei e et e e e e e e e s e e e e e e e e e e eaneaneans
3.3.2 EXeCULiNG the PrOQIraMuuu it e e e e e e e e e e e e e,
3.4 USING the RAM DISKuiiiiiiiiiiiiiiie ettt YA
Section 4 Overview of the Sample Programcccooiiiiiiiiiiiiiiiecceiee,
4.1 State Transition Diagram............uuuiiiiiiii e e e e e e e e e e e eeaaaannn 9.
4.2 USB COMMUNICAION STALE.....ciiiiiiiiiiiiii ittt e e e e e e e e e aeeas
4.2.1 CoNtrol TrANSTEI ... et e e e e e e e e e e e e e
4.2.2 BUIK TTANSPOIT ...ttt e ettt e e e et b b e e e e e s rabneeeeeeaees :
o T 1 oIS U o (1 (= SRR 21..
4.4 PUrpoSes Of FUNCHONSoiiiiiiiiiiiieei ittt 24.........
A5 RAM DISK .ottt r et e e s aaeeaan 29...
4.6 Operation of SCSI Commands That Are SUPPOIEd..........cceeeiiiieeeiiiiieeccee e
4.7 Processing If @n ErrOr OCCUIS.........ccviiiiiiiiiiie i e e e eeee et ss s e e e e e e e et e e e aeaanb e s e e aaaaaeeeeannns
Section 5 Sample Program Operationueeieeeiiiiiiiieeeeeeiiiie e e eeeiiin e eeeenns
L0 A Y = V] I e T o PO P P PPPPPRPY 43...
5.2 TyPesS Of INTEITUPLS ..o e e e e e e e e e e e e e aereesanas 43......
5.2.1 Method of Branching to Different Transfer Processes........cccceevveveeeiiiiiviiiinvnnnnnnn. y
5.3 Interrupt on Cable Connection (VBUS, BRST)coiiiiiiiiiiii e ‘
L 0o g1 o] B = 153 (=1 £ a7......

Rev. 1.0, 04/02, Page v of vi

L o ST (U] o] =T PSPPI .

5.4.2 DALA STAGEuueueriiiiiiiiei ettt e e e e e e e e e e
5.4.3 SHAIUS STAGE ...ttt a e e e e e e
LT = 10 |G I = g) 1= £ SR 54....
LR T0 R o 1] .0 F= g To I I = g < o o] o PSS E
N TV B L= L= N I = 1 015 o To] SR SRR £
LN TR B = | U LS I = 1 015 o 1o A PSP TUPPTPN (
Section 6 ANAlyzer Data............coiiiiiiiiiii e

Rev. 1.0, 04/02, page vi of vi
RENESAS

Section 1 Overview

These application notes describe how to use the USB Function Module that is built into the
SH7727, and contain examples of firmware programs.

The features of the USB Function Module contained in the SH7727 are listed below.

¢ Aninternal UDC (USB Device Controller) conforming to USB 1.1
» Automatic processing of USB controls

* Automatic processing of USB standard commands for endpoint O (some commands need t
processed through the firmware)

* Full-speed (12 Mbps) transfer supported

« Various interrupt signals needed for USB transmission and reception are generated.
» Internal system clock based on EXCPG or external input (48 MHz) can be selected.
« Low power consumption mode provided.

« Internal USB transceiver

In addition to the internal transceiver, the USB function module can be connected to the
PDIUSBP11 series transceiver manufactured by Philips

Endpoint Configurations

Endpoint Name Transfer M.ax. Packet FIFO Buffer DMA
Name Type Size Capacity Transfer

EPOs Setup 8 bytes 8 bytes -
Endpoint 0 EPOI Control In 8 bytes 8 bytes -

EPOoO Control Out 8 bytes 8 bytes -
Endpoint 1 EP1 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 2 EP2 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 3 EP3 Interrupt 8 bytes 8 bytes -

Rev. 1.0, 04/02, page 1 of 74
RENESAS

Figure 1.1 shows an example of a system configuration.

Host PC equipped with USB

Windows 200
Windows Millennium Edition
Mac OS9

SH7727 Solution Engine

Figure 1.1 System Configuration Example

This system is configured of the SH7727 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the SH7727SE) and a PC containing Windows 2000/Windows
Millennium Edition or Mac OS9 operating system.

By connecting the host PC and the SH7727SE through USB, the SD-RAM in the SH7727SE cc
be accessed as a RAM disk, enabling data in the SD-RAM of the SH7727SE to be stored in an
loaded from the host PC.

Itis also possible to use the USB Mass Storage Class (Bulk-Only Transport) device driver that
comes as an accessory with the operating systems listed above.

This system offers the following features.

P wbdPE

The sample program can be used to evaluate the USB module of the SH7727 quickly.
The sample program supports USB control transfer and bulk transport.

An E10A (PC card-type emulator) can be used, enabling efficient debugging.
Additional programs can be created to support interrupt transfer. *

Note: * Interrupt transfer programs are not provided, and will need to be created by the user.

Rev. 1.0, 04/02, page 2 of 74

RENESAS

Section 2 Overview of the USB Mass Storage Class
(Bulk-Only Transport)

This section describes the USB Mass Storage Class (Bulk-Only Transport).

We hope that it will provide a convenient reference for use when developing USB storage-rele
systems. For more detailed information on standards, please see the following:

« Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1
» Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0

2.1 USB Mass Storage Class

USB Mass Storage Class is a class of standards that apply to large-scale memory (storage) d
that are connected to a host PC and handle reading and writing of data.

In order to let the PC know that a function is in this class, a value of 0x08 must be entered in t
binterface Class field of the Interface Descriptor.

When transferring data between the host PC and the function, four transport methods defined
the USB are used (control transfer, bulk transport, interrupt transfer, and isochronous transfer
Protocol codes determine the transport method and how it is used.

There are two types of data transport protocols:

» USB Mass Storage Class Bulk-Only Transport
» USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport

As its name indicates, USB Mass Storage Class Bulk-Only Transport is a data transport proto
that only uses bulk transport.

USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport is a data transport protocol th
uses control transfer, bulk transport, and interrupt transfer. CBI Transport is further subdividec
into a data transport protocol that uses interrupt transfer, and one that does not use interrupt
transfer.

The sample programs provided here use USB Mass Storage Class Bulk-Only Transport as th
transport protocol.

When the host PC uses a device in order to load and save data, instructions (commands) are
provided by the host PC to the function. The function then executes those commands to load
save data. The commands sent by the host PC to the function are defined in the form of sub-c
code.

Rev. 1.0, 04/02, page 3 of 74
RENESAS

2.2 Sub-Class Code

Sub-class codes are values that indicate the command format sent from the host PC to a funct
by means of command transport. There are seven types of command formats, described in tab
2.1.

Table 2.1
Sub-Class Code Command Standards
0x01 Reduced Block Commands (RBC), T10/1240-D
0x02 Attachment Packet Interface (ATAPI) for CD-ROMs. SFF-8020i,
Multi-Media Command Set 2 (MMC-2)
0x03 Attachment Packet Interface (ATAPI) for Tape. QIC-157
0x04 USB Mass Storage Class UFI Command Specification
0x05 Attachment Packet Interface (ATAPI) for Floppies. SFF-8070i
0x06 SCSI Primary Commands —2 (SPC-2), Revision 3 or later

In order to tell the host PC the command format supported by the device, a sub-class code valt
must be entered in the bINterface SubClass field of the Interface Descriptor.

The sample programs used here use a sub-class code value of 0x06, which indicates the SCS|
Primary Commands.

2.3 Bulk-Only Transport

With Bulk-Only Transport, data is transferred between the host PC and a function using bulk de
transport only.

Bulk transport can be divided into two types, depending on the direction in which the data is se
If data is sent from the host controller to the function, bulk-out transport is used. If data is being
sent to the host controller from the function, bulk-in transport is used.

With Bulk-Only Transport, a combination of bulk-out transport and bulk-in transport determined
in advance is used to transfer data between the host and the function. Bulk-Only Transport alw
uses the combination of bulk transports shown in figure 2.1. These bulk transports have differel
meanings, but they are handled as stages (transports).

Rev. 1.0, 04/02, page 4 of 74
RENESAS

Command

transport (CBW) | Bulk-out transport |
Data Bulk-out Bulk-in
transport transport transport

Status |
transport (CSW)

Bulk-in transport |

End

Figure 2.1 Relationship between Transfer Methods and Transports

In order to tell the host PC that the Bulk-Only Transport protocol is being used, a value of 0x5(
must be entered in the binterface Protocol field of the Interface Descriptor.

2.3.1 Command Transport

In command transport, commands are sent from the host PC to the function using bulk-out
transport. This command packet is defined as the Command Block Wrapper (CBW), and Bulk
Only Transport must always begin with the CBW.

The CBW is sent from the host PC as a 31-byte packet, using bulk-out transport.

It is sent using the format shown in table 2.2.

Table 2.2
7 6 5 4 3 2 1 0
00-03 dCBWSignature
04-07 dCBWTag
08-0B dCBWDataTransferLength
oC bmCBWFlags
0D Reserved (0) ‘ bCBWLUN
OE Reserved (0) ‘ bCBWCBLength
OF-1E CBWCB

Rev. 1.0, 04/02, page 5 of 74
RENESAS

The fields are explained below.

dCBWSignature: This field identifies the data packet as a CBW.
The value is 43425355h (Little Endian).

dCBWTag: This is the command block tag. It is used to connect the CSW with
its corresponding CBW, and is specified by the host PC.

dCBWDataTransferLength: This is the length of the data planned for transport.
If this is 0, no data transport exists.

bmCBWFlags: If bit 7 of this field is 0, data is transported using bulk-out transport,
and if it is 1, bulk-in transport is used. Bits 0 to 6 are fixed at O.

bCBWLUN: This is the Logical Unit Number of the device sending the command
block.

bCBWCBLength: This indicates the number of valid bytes for the next CBWCB field.

CBWCB: This field stores the command block to be executed by the function.

The command that the host PC wants to execute (the SCSI commar
in this sample program) is entered in this field.

2.3.2 Status Transport

Status transport is used to send the results of command execution from the function to the host
using bulk-in transport.

This status packet is defined by the Command Status Wrapper (CSW). Bulk-Only Transport mt
always end with the CSW.

The CSW is sent to the host as a 13-byte packet, using bulk-in transport.

It is sent in the format shown in table 2.3.

Table 2.3
7 6 5 4 3 2 1 0
0-3 dCSWSignature
4-7 dCSWTag
8-B dCSWbDataResidue
C bCSWStatus

The fields are explained below.

Rev. 1.0, 04/02, page 6 of 74
RENESAS

dCSWSignature: This field identifies the data packet as the CSW.
The value is 53425355h (Little Endian).

dCSWTag: This is the command block tag. It ties the CBW to the CSW, and the sam
value is entered here as that of the dCBWTag field of the CBW.

dCSWDataResidue: This reports any differences in the value of the CBW
dCBWDataTransferLength and the actual amount of data processed by th
function.

bCSWStatus: This indicates whether or not a command has been successfully execute
the command was executed successfully, the function sets 0x00 in this fie
Any value other than 0 indicates that the command was not executed
successfully. Error values are as follows: 0x01 indicates a failed commanc
and 0x02 indicates a phase error.

2.3.3 Data Transport

Data transport is used to transfer data between the host PC and the function. For example, wi
Read/Write command (see section 4.6), the actual data of the various storage sectors is sent
data transport.

Data transport is configured of multiple bus transactions.

Data transfers carried out using data transport use either bulk-out or bulk-in transport. The
bmCBWFlags field of the CBW data determines which type of transport is used.

Data transport (bulk-out transport)
This section explains how data is transferred when bulk-out data transport is used.

This status is set if bit 7 of the bmCBWFlags field of the CBW data is 0, and the
dCBWDataTransferLength field of the CBW data is not 0.

Here, the function receives the anticipated length of the data indicated by the
dCBWDataTransferLength field of the CBW data. The data transferred at this point is needed
when the SCSI command specified by the CBWCB field of the CBW data is executed.

Rev. 1.0, 04/02, page 7 of 74
RENESAS

Data transport (bulk-in transport)
This section explains how data is transferred when bulk-in data transport is used.

This status is set if bit 7 of the bmCBWFlags field of the CBW data is 1, and the
dCBWDataTransferLength field of the CBW data is not 0.

Here, the anticipated length of the data indicated by the dCBWDataTransferLength field of the
CBW data is sent to the host PC. The data transferred at this point is the result produced when
SCSI command specified by the CBWCB field of the CBW data was executed.

2.3.4 Class Commands

Class commands are commands that are defined by the various USB classes. They use contrc
transfer.

When USB Mass Storage Class Bulk-Only Transport is used as the data transport protocol, the
are two types of commands that must be supported. The class commands are indicated in tabl

Table 2.4 Class Commands

bRequest Field Value Command Meaning of Command

255 (0xFF) Bulk-Only Mass Storage Reset Resets the interface

254 (OxFE) Get Max LUN Checks the number of LUNs
supported

When the Bulk-Only Mass Storage Reset command is received, the function resets all of the
interfaces used in USB Mass Storage Class Bulk-Only Transport.

When the Get Max LUN command is received, the function returns the largest logical unit numit
that can be used. In the sample system used here, there is one logic unit, so a value of 0 will b
returned to the host.

2.4 SCSI Transparent Command Set Sub-Class Code

The various commands must be processed in response to the sub-class commands in the CBV
to the function by the host PC.

In this sample program, the nine SCSI commands shown in table 2.5 are supported. If a comm
is not supported, the CSW will be used to inform the host PC that the command failed.

Rev. 1.0, 04/02, page 8 of 74
RENESAS

Table 2.5 Supported Commands

Operation Code

Command Name

Command Operation

12 INQUIRY Tells the host the drive information.
25 READ CAPACITY Tells the host the media sector information.
28 READ(10) Reads the specified sector volume data from a
specified sector.
2A WRITE(10) Writes the specified sector volume data to a specified
sector.
03 REQUEST SENSE If an error occurred for the previous command, this
tells the host what kind of error occurred.
1A MODE SENSE(10) Tells the host the drive status.
1E PREVENT ALLOW Inhibits/enables installing and removing media.
MEDIUM
REMOVAL
00 TEST UNIT READY Checks whether or not a medium can be used.
2F VERIFY(10) Confirms whether or not the data in a medium can be

accessed.

Rev. 1.0, 04/02, page 9 of 74

RENESAS

Rev. 1.0, 04/02, page 10 of 74
RENESAS

Section 3 Development Environment

This chapter looks at the development environment used to develop this system. The devices

(tools) listed below were used when developing the system.

» SH7727 Solution Engine (hereafter called the SH7727SE; type number: MS7727SE01)
manufactured by Hitachi ULSI Systems Co., Ltd.

e SH7727 E10A Emulator manufactured by Hitachi, Ltd.

* PC (Windows 95/98) equipped with a PCMCIA slot

e PC (Windows 2000/Windows Millennium Edition or Mac OS9) to serve as the USB host
« USB cable

» Hitachi Debugging Interface (hereafter called the HDI) manufactured by Hitachi, Ltd.

» Hitachi Embedded Workshop (hereafter called the HEW) manufactured by Hitachi, Ltd.

3.1 Hardware Environment

Figure 3.1 shows device connections.

USB cable

PC equipped with USB host
(Windows 2000)

This was used as the USB host, to
save and load data on the SD-RAM.

E10A cable

E10APC
(Windows95/98)

User firmware can be developed
using the HDI and HEW.HDI: Hitachi
Debugging Interface

HEW:Hitachi Embedded Workshop

Figure 3.1 Device Connections

Rev. 1.0, 04/02, page 11 of 74
RENESAS

1. SH7727SE
Some DIP switch settings on the SH7727SE board must be changed from those at shipmen
Before turning on the power, ensure that the switches are set as follows. There is no need t
change any other DIP switches.

Table 3.1 DIP Switch Settings

At Time of Shipment After Change DIP Switch Function
SW1-6 OFF SW1-6 ON Select the endian
SW1-8 OFF SW1-8 ON Select E10A emulator
SW4-1 OFF SW4-1 ON Set SCIF2 baud rate
SW4-2 OFF SW4-2 ON Set SCIF2 baud rate

2. USB host PC
A PC with Windows 2000/Windows Millennium Edition or Mac OS9 installed, and with a
USB port, is used as the USB host. This system uses USB Mass Storage Class (Bulk-Only
Transport) device drivers installed as a standard part of the Windows 2000 system, and so
there is no need to install new drivers.

3. E1I0APC
The E10A should be inserted into a PC card slot and connected to the SH7727SE via a
interface cable. After connection, start the HDI and perform emulation.

3.2 Software Environment

A sample program, as well as the compiler and linker used, are explained.

3.21 Sample Program

Files required for the sample program are all stored in the SH7727 folder. When this entire fold
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are indicated in figure 3.2 below.

Rev. 1.0, 04/02, page 12 of 74
RENESAS

| SH7727 |

/CatBOTTypedef.h CatProType.h CatSCSITypedef.h CatTypedef.h
SetBOTInfo.h SetMacro.h SetSCSlinfo.h SetSystemSwitch.h SetUsbinfo.h
SH7727.h SysMemMap.h

~

StartUp.c DoControl.c DoBulk.c Dolnterrupt.c DoRequest.c
DoRequestBOT_StorageClass.c UsbMain.c DoBOTMSClass.c
DoSCSICommand.c sct.src AsmFunction.src

debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf (folder)
BildOfHew.bat InkSetl.sub

7727E10A.hdc

\- J

Figure 3.2 Files Included in the Folder

3.2.2 Compiling and Linking
The sample program is compiled and linked using the following software.
Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew, the procedure for compiling and linking the program is as
follows.*

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling. (fig
3.3)

C:\
I— \Hew

\Tmp

Figure 3.3 Creating a Working Folder

Next, the folder in which the sample program is stored (SH7727) should be copied to any arbi
drive. In addition to the sample program, this folder contains a batch file named BildOfHew.ba
This batch file sets the path, specifies compile options, specifies a log file indicating the compi
and linking results, and performs other operations. When BildOfHew.bat is executed, compilin
and linking are performed. As a result, an executable file named debugger.ABS is created witl
the folder. At the same time, a map file named debugger.MAP and a log file named log.txt are
created. The map file indicates the program size and variable addresses. The compile results
(whether there are any errors etc.) are recorded in the log file. (figure 3.4)

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BildOfHew.bat, as well a

Rev. 1.0, 04/02, page 13 of 74
RENESAS

the library settings in InkSetl.sub, must be changed. Here the compiler path setting
should be changed to the path of shc.exe, and the setting for the environment variab
shc_lib used by the compiler should be set to the folder of shc.exe; the shc_inc settin
should be changed to the folder of machine.h, and the setting of shc_tmp should
specify the work folder for the compiler. The library setting should specify the path of

shcpic.lib.
/I SH7727 l \
Batch file Execution results
BildOfHew.bat —> debugger.ABS
Execution debugger.MOT
debugger.MAP
log.txt

Figure 3.4 Compile Results

Rev. 1.0, 04/02, page 14 of 74
RENESAS

3.3 Loading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

SH7727SE
AC00 0000
PResetException area 136byte
ACO00 0087
ACO00 0100
PGeneralExceptions area 64byte
ACO00 013F
ACO00 0400
PTLBMissException area 94byte
ACO00 045D
ACO00 0600
Pinterrupt area 76byte
ACO00 064B
ACO00 1000
PNonCash area 88byte
ACO00 1057
CCO00 1200
P, C, and D areas* 6162byte
CCO00 2A11
ACO00 3000
Control transfer data area 72byte
ACO00 3047
ACO00 4000
ADOO 4000 RAM disk area 16Mbyte
A500 7000
B and R areas 766byte
A500 72FD
A501 7000
Stack area approx. 8kbyte
A501 8FFC
Notes: The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.
* Placed in the P3 cache write-through space. Consequently the address bits
A31-29 are 110.

Figure 3.5 Memory Map

As shown in figure 3.5, this sample program allocates the PResetException, PGeneralExcepti
PTLBMissException, PInterrupt, PNonCash, P, C, and D areas in SDRAM, and the R and B a
in the internal memory. In order to use the E10A for break and other functions, the program m
be placed in RAM in this way. These memory allocations are specified by the InkSetl.sub file
the SH7727 folder. When incorporating the program in ROM by writing it to flash memory or
some other media, this file must be modified.

Rev. 1.0, 04/02, page 15 of 74
RENESAS

3.31 Loading the Program

In order to load the sample program into the SDRAM of the SH7727SE, the following procedur:
is used.

* Insert the E10A into the PC for use with the E10A, in which the HDI has been installed, and
connect the E10A to the SH7727SE via a user cable.

* Turn on the power to the E10A PC, to start up the machine.
e The HDI is started.
» Turn on the power to the SH7727SE.

« Adialog (figure 3.6) is displayed on the PC screen; turn the SH7727SE reset switch (SW1)
and after resetting the CPU, click the OK button, or press the Enter key.

» Select CommandLine in the View menu to open a window (figure 3.7), click the BatchFile
button on the upper left, and specify the 7727E10A.hdc file in the SH7727 folder. As a resul
the BSC is set, and accessing of the SDRAM is made possible.

» Select LoadProgram from the File menu; in the Load Program dialog box, specify
debugger.ABS in the SH7727 folder.

Through the above procedure, the sample program can be loaded into the SH7727SE SDRAM

HDI |]

& Please, reset the user system and press <Enter? key.

Figure 3.6 Reset Request Dialog

Rev. 1.0, 04/02, page 16 of 74
RENESAS

BB Gommand Linena batch filena loe il M=l B4

T —
=l

Batch file

Figure 3.7 Command Line Input

3.3.2 Executing the Program

In order to execute the program which was loaded in section 3.3.1, Loading the Program, abo
the program counter (PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clickin
the numerical area of the register (PC) in the window, a dialog box appears, and the register v
can be changed. Use this dialog box to set the PC to H'AC00 0000.

After making the above settings, select Go from the Run menu to execute the program.

3.4 Using the RAM Disk
The following describes an example in which Windows 2000 is used.

After the program has been run, the Series B connector of the USB cable is inserted into the
SH7727SE, and the Series A connector on the opposite side is connected to the USB host PC

After the emulation used for control transfer and bulk transport has ended, USB Large-Size
Storage Device is displayed under USB Controller in the Device Manager, and Hitachi EX RAl
Disk USB Device is displayed under Disk Drive. As a result, the host PC recognizes the
SH7727SE as the storage device, and the local disk is mounted in the microcomputer.

Next, the local disk needs to be formatted.

Select Local Disk and click with the right button of the mouse to display a floating menu. Selec
Format. A format selection window for the drive is displayed. Enter the necessary format settir
Check to make sure FAT has been selected for the file system, and click on the Start button.

Rev. 1.0, 04/02, page 17 of 74
RENESAS

A format confirmation window is displayed. Click on the OK button.

When the formatting has been completed, a message window is displayed. Click on the OK
button.

The screen returns to the drive format selection window. Click on the Close button to exit the
procedure.

The SH7727SE can now be used as the RAM disk for USB connection.

Rev. 1.0, 04/02, page 18 of 74
RENESAS

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the SH7727SE, which works as a RAM disk, and initiates USB transfers by
means of interrupts from the USB function module. Of the interrupts from modules in the
SH7727, there are two interrupts related to the USB function module: USBFIO and USBFI1, bt
this sample program, only USBFIO is used.

Features of this program are as follows.

e Control transfer can be performed.

« Bulk-out transfer can be used to receive data from the host controller.
« Bulk-in transfer can be used to send data to the host controller.

« It operates as a RAM disk that supports SCSI commands.

4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, :
shown in figure 4.1, there are transitions between four states.

Immediately after the power supply has been turned on,
Reset state the system is in reset state. Aft(_ar the initial settings habe been
_— completed, it returns to the stationary state.

Initial settings completed Interrupt generated
(USBFI0)

USB communication state

Stationary state

Y

USB communication
completed

Control transfer

Bulk transport

Figure 4.1 State Transition Diagram

* Reset State

Upon power-on reset and manual reset, this state is entered. In the reset state, the SH772
mainly performs initial settings.

« Stationary State
When initial settings are completed, a stationary state is entered in the main loop.

Rev. 1.0, 04/02, page 19 of 74
RENESAS

« USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered.
the USB communication state, data transfer is performed by a transfer method according to
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
register 0 (USBIFRO0), and there are eight interrupt types in all. When an interrupt factor
occurs, the corresponding bits in USBIFRO are set.

4.2 USB Communication State

The USB communication state can be further divided into three states according to the transfer
type (see figure 4.2). When an interrupt occurs, first there is a transition to the USB
communication state, and then there is further branching to a transfer state according to the
interrupt type. The branching method is explained in section 5, Sample Program Operation.

/ :USB communication statei \
Command
Setup stage transport (CBW)
Data stage Data stage Data out Datain
OUT direction IN direction
v v
Status stage Status transport (CSW)

Figure 4.2 USB Communication State

Rev. 1.0, 04/02, page 20 of 74
RENESAS

4.2.1 Control Transfer

Control transfer is used mainly for functions such as obtaining device information and specifyi
device operating states. For this reason, when the function is connected to the host PC, contr
transfer is the first transport to be carried out.

Transport processing for control transfer is carried out in a series of two or three stages. Thes
stages are a setup stage, a data stage, and a status stage.

4.2.2 Bulk Transport

Bulk transport has no time limitations, so it is used to send large volumes of data with no errot
The data transport speed is not guaranteed, but the data contents are guaranteed. With USB
Storage Class (Bulk-Only Transport), bulk transport is used to transfer storage data between t
host PC and the function.

Transport processing for USB Mass Storage Class (Bulk-Only Transport) is carried out in a se
of two or three stages. These stages are command transport (CBW), data transport, and statu
transport (CSW).

4.3 File Structure

This sample program consists of nine source files and eleven header files. The overall file
structure is shown in table 4.1. Each function is arranged in one file by transfer method or fun
type. Figure 4.3 shows the layered configuration of these files.

Rev. 1.0, 04/02, page 21 of 74
RENESAS

Table 4.1 File Structure

File Name Principle Role
StartUp.c Microcomputer default settings

. Judging the causes of interrupts
UsbMain.c

Sending and receiving packets

DoRequest.c

Processing setup commands issued by the host

DoRequestBOT_StorageClass.

Processing Mass Storage Class (Bulk-Only Transport) class

c commands

DoControl.c Executing control transfer

DoBulk.c Executing bulk transport

DoBOTMSClass.c Executing Mass Storage Class (Bulk-Only Transport)

DoSCSICommand.c

Analyzing and processing SCSI commands

AsmFunction.src

Making stack settings

SH7727.h

Defining SH7727 registers

SysMemMap.h

Defining SH7727SE memory map addresses

CatProType.h

Prototype declarations

CatTypedef.h Defining the basic structures used in USB firmware
CatBOTTypedef.h Defining structures used for Bulk-Only Transport
CatSCSITypedef.h Defining structures used for SCSI

SetUsbinfo.h

Default settings of variables needed to support USB

SetBOTInfo.h

Default settings of variables needed to support Bulk-Only
Transport

SetSCSlinfo.h

Default settings of variables needed to support SCSI commands

SetSystemSwitch.h

System operation settings

SetMacro.h

Defining macros

Rev. 1.0, 04/02, page 22 of 74

RENESAS

Target data file

Operation: Interprets SCSI commands and carries out
Application RAM disk operations
layer Relevant files: DoSCSICommand.c
CatSCSITypedef.h
SetSCSlInfo.h
Class file
Operation: Carries out Mass Storage Class (Bulk-Only
Class layer Transport) operations and supports class commands
Relevant files: DoBOTMSClass.c
CatBOTTypedef.h
SetBOTInfo.h
usB Standard d Bulk t t Bulk t t
device : a.n ard commands g _ .u ranspor _ .u ranspor
Operation: Carries out £ Operation: Carries out Operation: Carries out
layer responses to standard commands 1S responses to class commands bulk transport
Relevant file: DoRequest.c ? Relevant file: operations
2 DoRequestBOT_Storage Relevant file: DoBulk.c
S Class.c
Control transfer
Operation: Carries out control transfer operations
Relevant file: DoControl.c
USB common variables
Operation: Carries out reception of packet data, transmission of packet data, Endian comversion, various types of
settings, and other necessary operations regardless of transport method
Relevant file: UsbMain.c
CatTypedef.h
SetUsbinfo.h
USsB
bus USB hardware
interface

RENESAS

Figure 4.3 Layered Configuration of the Storage Class (BOT) Firmware

Rev. 1.0, 04/02, page 23 of 74

4.4 Purposes of Functions
Table 4.2 shows functions contained in each file and their purposes.

Table 4.2-1 StartUp.c

File in which

stored Function Name Purpose
CallReseException Performs the o_peratlon _for the reset exception and
calls the following function
CallGeneralException Calls the fgnctlon for the general exception except for
the TLB miss
CallTLBMissException Calls the function for the TLB miss
Callinterrupt Calls the function for the interrupt request
StartUp.c - a0l " 3 shi H -
SetPowerOnSection Initializes module and memory, and shifts to the main
loop
INITSCT Copies variables that have default settings to the
- RAM work area
InitMemory Clears the RAM area used in bulk communication
InitSystem Pull-up control of the USB bus

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c
is called. At this point, the SH7727 default settings are entered and the RAM area used for bulk
transport is cleared.

Rev. 1.0, 04/02, page 24 of 74
RENESAS

Table 4.2-2 UsbMain.c

File in Which .
Stored Function Name Purpose
BranchOfint Dlscrm_unates_ interrupt factors, and calls function
according to interrupt
GetPacket Writes data transferred from the host controller to RAM
Writes data transferred from the host controller to RAM in
GetPacket4
longwords
Writes data for transfer to the host controller to the USB
PutPacket
module
Writes data for transfer to the host controller to the USB
PutPacket4 .
UsbMain.c module in longwords
EI?;SControIOutCont Overwrites data with that sent from the host
SetUsbModule Makes USB module initial settings
ActBusReset Clears FIFO on receiving bus reset
ConvRealn Reads data of a specified byte length from a specified
address
ConvReflexn Reads data of a specified byte length from specified

addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functic
are called according to the interrupt type. Also, packets are sent and received between the ho
controller and function modules.

Table 4.2-3 DoRequest.c

File in Which .
Stored Function Name Purpose
DecStandardComm Decodes command issued by host controller, and
ands processes standard commands
DoRequest.c
DecVenderComma
nds Processes vendor commands

During control transfer, commands sent from the host controller are decoded and processed. |
sample program, a vendor ID of 045B (vendor: Hitachi) is used. When the customer develops
product, the customer should obtain a vendor ID at the USB Implementers' Forum. Because
vendor commands are not used, DecVenderCommands does not perform any action. In order
use a vendor command, the customer should develop a program.

Rev. 1.0, 04/02, page 25 of 74
RENESAS

Table 4.2-4 DoRequestBOT_StorageClass.c

File in Which .
Stored Function Name Purpose
DoRequestBOT
| DecBOTClass Processes USB Mass Storage Class (Bulk-Only Transport)
< Commands commands

StorageClass.c

This function carries out processing according to the Mass Storage Class (Bulk-Only Transport
commands (Bulk-Only Mass Storage Reset and Get Max LUN).

The Bulk-Only Mass Storage Reset command resets all of the interfaces used in Bulk-Only
Transport.

The Get Max LUN command returns the largest logical unit number used by peripheral devices
this sample program, there is one logical unit, so a value of 0 is returned to the host.

Table 4.2-5 DoControl.c

File in Which .
Stored Function Name Purpose
ActControl Controls the setup stage of control transfer
Controls the data stage and status stage of control IN
ActControlin transport (transport in which the data stage is in the IN
DoControl.c direction)
Controls the data stage and status stage of control OUT
ActControlOut transport (transport in which the data stage is in the OUT
direction)

When a control transfer interrupt (EPO0TS) is generated, ActControl obtains the command, anc
decoding is carried out by DecStandardCommands. Next, the data stage and status stage are
carried out using either ActControlin or ActControlOut, depending on the type of command.

Table 4.2-6 DoBulk.c

gitlsr(iendWhich Function Name Purpose
ActBulkOut Performs bulk-out transfer

DoBulk.c ActBulkin Performs bulk-in transfer
ActBulkinReady Performs preparations for bulk-in transfer

These functions carry out processing involving bulk transport. ActBulkinReady is not used in
Mass Storage Class (Bulk-Only Transport).

Rev. 1.0, 04/02, page 26 of 74
RENESAS

Table 4.2-7 DoBOTMSClass.c

File in Which .
Stored Function Name Purpose
ActBulkOnly Divides Bulk-Only Transport into separate stages
,:rtl:éBulkOnlyComm Controls CBW for Bulk-Only Transport
DoBOTMS c g " —
Class.c ActBulkOnlyln ontrols data transport and status transport (when the

data stage is in the IN direction)

Controls data transport and status transport (when the

ActBulkOnlyOut data stage is in the OUT direction)

With DoBOTMSClass.c, control of the two or three stages of the Mass Storage Class (Bulk-O
Transport) is carried out, and operation is carried out in accordance with the specifications.

Table 4.2-8 DoSCSICommand.c

File in Which

Stored Function Name Purpose

DoSCSI Processes SCSI commands sent from the host using
DecBotCmd

Command.c Bulk-Only Transport

The DoSCSICommand.c function is used to analyze SCSI commands sent from the host PC :
prepare for the next data transport or status transport.

Figure 4.4 shows the interrelationship between the functions explained in table 4.2. The uppel
functions can call the lower-side functions. Also, multiple functions can call the same function.
the stationary state, CallResetException calls other functions, and in the case of a transition tc
USB communication state which occurs on an interrupt, interrupt function Callinterrupt calls
BranchOfint, and BranchOfint calls other functions. Figure 4.4 shows the hierarchical relation
functions; there is no order for function calling. For information on the order in which functions
are called, please refer to the flow charts of section 5, Sample Program Operation.

Rev. 1.0, 04/02, page 27 of 74
RENESAS

CallResetException

SetPowerOnSection
|
I | |
Callinterrupt
_INITSCT InitMemory InitSystem
BranchOfint SetUsbModule
| |
ActControl ActControlOut ActControlin
I
DecStandardCommands GetPacket SetControlOutContents PutPacket
ConvReflexn | ADecBOTClassCommands DecVenderCommands
ActBulkOnly
I
ActBulkOnlyCommand ActBulkOnlyIn ActBulkOnlyOut
DecBotCmd ActBulkin
ConvRealn ConvReflexn PutPacket PutPacket4
ActBulkOut

——

GetPacket

GetPacket4

Figure 4.4 Interrelationship between Functions

Rev. 1.0, 04/02, page 28 of 74
RENESAS

4.5 RAM Disk

In the sample program provided here, the SD-RAM in the SH7727SE is selected as the disk

device, and the host PC is notified that the SH7727SE (function) is the disk.

As shown in figure 4.5, the disk device of the function has a master boot block and a partition
block. When the system is booted, an initialization routine is used to write the master boot blos

and the partition boot block to the RAM disk area on the SD-RAM.

AN
S

Master boot block

N

Sector 0

Sector 20

Figure 4.5 Disk Construction

SCSI commands are used to allow function access from the host PC (saving and loading data
order to work with SCSI commands, the user needs to understand the construction shown in f

4.5 and then write the operation.

RENESAS

Rev. 1.0, 04/02, page 29 of 74

4.6 Operation of SCSI Commands That Are Supported

Table 4.3 shows the SCSI commands that are supported by the sample program.

Table 4.3 SCSI Command Operations

Command Name Transport
Name

Operation Content

CBwW

This decodes a command and recognizes it as an INQUIRY
command. It then prepares to send the INQUIRY information
(96 bytes) stored in the ROM.

INQUIRY Data

This sends the INQUIRY information to the host PC using bulk-
in transport.

CcsSw

This sends the results of executing a command to the PC. If
the data being sent is 96 bytes or less, the transmission will
end successfully.

CBwW

READ

This decodes the command and recognizes it as a READ
CAPACITY command. It then reads the number of bytes per
sector, which is stored in the partition boot block on the disk
device open on the SD-RAM, and the value stored for the total
number of sectors on the disk, and prepares to send the READ
CAPACITY information (8 bytes).

CAPACITY Data

This sends the READ CAPACITY information to the host PC
using bulk-in transport.

CsSw

This sends the results of the command execution to the host
PC. The transmission is completed successfully as long as the
data consists of 8 bytes or less.

CBW

This decodes the command and recognizes it as the READ
(10) command. It then prepares to send the data for a
specified read sector volume from the Disk device open on the
SD-RAM.

READ(10) Data

This sends the data from the read sectors to the host PC using
bulk-in transport.

CsSw

This sends the results of executing the READ (10) command
to the host computer. The transmission is completed
successfully as long as the transmitted data is less than the
number of bytes read.

CBwW

This decodes the command and recognizes it as the WRITE
(10) command. It then prepares to receive the data of the
specified sector volume from the specified write sector in the
Disk device open on the SD-RAM.

WRITE(10) Sata

This receives the write sector data from the host PC using
bulk-out transport.

CcsSw

This notifies the host PC that the operation has been
completed successfully.

Rev. 1.0, 04/02, page 30 of 74

RENESAS

Command Name Transport Operation Content
Name

CBW This decodes the command and recognizes it as the
REQUEST SENSE command. It then prepares to send the
returned value (the results of executing the previous SCSI
command).

REQUEST

SENSE Data This sends the returned value to the host PC using bulk-in

transport.

CsSw This sends the results of the command execution to the host
PC. The transmission is completed successfully as long as the
data consists of 8 bytes or less.

CBW This decodes the command and recognizes it as the
PREVENT ALLOW MEDIUM REMOVAL command. It then
prepares to notify the host PC that the operation has been
successfully completed. The storage media used with the
PREVENT sample software is an SD-RAM that is permanently installed,
ALLOW MEDIUM and cannot be removed. For this reason, the returned value for
REMOVAL this command always indicates that the operation has been
successfully completed.

Data Data transport does not exist for this command.

CsSw This notifies the host PC that the operation has been
completed successfully.

CBW This decodes the command and recognizes it as the TEST
UNIT READY command. It then prepares to notify the host PC
that the operation has been successfully completed. The
storage medium used with this sample software is an SD-
RAM, and access is always enabled while the program is
TEST UNIT being executed. For this reason, the returned value for this
READY command always indicates that the operation has been
successfully completed.

Data Data transport does not exist for this command.

CSW This notifies the host PC that the operation has been
completed successfully.

CBW This decodes the command and recognizes it as the

VERIFY(10) command. It then prepares to notify the host PC
that the operation has been successfully completed. The
storage medium used with this sample software is an SD-
RAM, and access is always enabled while the program is

VERIFY(10) being executed. For this reason, the returned value for this
command always indicates that the operation has been
successfully completed.

Data Data transport does not exist for this command.

CsSw This notifies the host PC that the operation has been
completed successfully.

Rev. 1.0, 04/02, page 31 of 74
RENESAS

Command Name Transport Operation Content
Name

CBW This decodes the command and recognizes it as the MODE
SENSE (10) command. It then prepares to send the mode
parameters to the host PC.

The sample software provides values for only the mode
MODE parameter header.

SENSE(10) Data This sends the mode parameters to the host PC using bulk-in
transport.

CSW This sends the results of the command execution to the host
PC. The transmission is completed successfully as long as the
data consists of 8 bytes or less.

CBW This decodes the command and, if it is an unsupported
command, specifies INVALID FIELD IN CDB for the returned
value of the REQUEST SENSE command. It then prepares to
transport the data.

Data If the host PC has requested data using bulk-in transport, this
Commands that sends the same volume of data (0x00) as that requested by
are not supported the host PC.

If the host PC has sent data using bulk-out transport, the
number of bytes received are counted.

If there is no data transport, no operation is carried out.
CsSw This sends a command file to the host PC.

4.7 Processing If an Error Occurs

The errors that may occur during a Mass Storage Class (Bulk-Only Transport) transmission
between the host PC and function, and how the function operates when an error occurs are
described below.

The Bulk-Only Transport standard defines the following two types of errors:

* Invalid CBW

« Operation expected by the host PC and operation planned by the function (operation specifi
by the SCSI command) do not match (10 cases)

The Bulk-Only Transport standard does not cover any other states.

There are 13 states for data transfer between the host PC and a function as shown in tables 4.
4.5. Cases 1, 6 and 12 are normal transport states.

Rev. 1.0, 04/02, page 32 of 74
RENESAS

Table 4.4 Data Transport States between Host PC and Function.

What the Host PC Expects

No Data Data Reception Data Send to
Transport from Function Function
No data transport (1) Hn =Dn (4) Hi > Dn (9) Ho > Dn
(5) Hi > Di
What Data send to host PC (2) Hn < Di (6) Hi = Di (10) Ho < > Di
;Eﬁction (7)Hi<Di
plans (11) Ho > Do
Data reception from host (3) Hn < Do (8) Hi<>Do (12) Ho = Do
PC (13) Ho < Do

RENESAS

Rev. 1.0, 04/02, page 33 of 74

Table 4.5 Explanation of Data Transport States between Host PC and Function

Case No. Relation between Host PC and Function

1 The host PC expects no data transport and the function plans no data transport.

2 The host PC expects no data transport but the function plans to send data to the host
PC

3 The host PC expects no data transport but the function plans to receive data from the
host PC.

4 The host PC expects to receive data from the function but the function plans no data
transport to the host PC.

5 The amount of data the function sends to the host PC is less than the amount of data
the host PC expected to receive from the function.

6 The amount of data the function sends to the host PC is equal to the amount of data
the host PC expected to receive from the function.

7 The amount of data the function sends to the host PC is greater than the amount of
data the host PC expected to receive from the function.

8 The host PC expects to receive data from the function but the function plans to
receive data from the host PC.

9 The host PC expects to send data to the function but the function plans no data
transport to the host PC.

10 The host PC expects to send data to the function but the function plans to send data
to the host PC.

11 The amount of data the function receives from the host PC is less than the amount of
data the host PC expected to send to the function.

12 The amount of data the function receives from the host PC is equal to the amount of
data the host PC expected to the function.

13 The amount of data the function receives from the host PC is greater than the

amount of data the host PC expected to send to the function.

Rev. 1.0, 04/02, page 34 of 74

RENESAS

Table 4.6 shows sample error conditions that may be generated.

Table 4.6 Sample Error Conditions

Case No.

Relation between Host PC and Function

2

When a READ command is issued from the host PC, the amount of data to be
transported in the USB data transport is O while the amount of data specified by the
SCSI command is a value other than 0.

When a WRITE command is issued from the host PC, the amount of data to be
transported in the USB data transport is O while the amount of data specified by the
SCSI command is a value other than 0.

When a READ command is issued from the host PC, the amount of data to be
transported in the USB data transport is O while the amount of data specified by the
SCSI command is 0.

When a READ command is issued from the host PC, the amount of data specified by
the SCSI command is less than the amount of data to be transported in the USB data
transport.

When a READ command is issued from the host PC, the amount of data specified by
the SCSI command is greater than the amount of data to be transported in the USB
data transport.

Even though a WRITE command has been issued from the host PC, the host PC
requests for data in the USB data transport.

When a WRITE command is issued from the host PC, the amount of data to be
transported in the USB data transport is a value other than 0 while the amount of
data specified by the SCSI command is 0.

10

Even though a READ command has been issued from the host PC, the host PC
sends data in the USB data transport.

11

When a WRITE command is issued from the host PC, the amount of data specified
by the SCSI command is less than the amount of data to be transported in the USB
data transport.

13

When a WRITE command is issued from the host PC, the amount of data specified
by the SCSI command is greater than the amount of data to be transported in the
USB data transport.

Rev. 1.0, 04/02, page 35 of 74
RENESAS

Table 4.7 shows how a function operates when each error condition occurs.

Table 4.7 Function Operation for Each Error Condition

Case No. Relation between Host PC and Function
2,3 e Set 0x02 as the CSW status.
4,5 ¢ The function adds data to become equal to the data length set in
dCBWDataTransferLength and then sends data to the host PC.
¢ Set the amount of data added in the data transport in dCBWDataResidue of
CSW.
e Set 0x01 as the CSW status.
7 ¢ The function sends data to the host PC up to the data length set in
dCBWDataTransferLength.
e Set 0x02 as the CSW status.
8 ¢ Set 0x02 as the CSW status.
9,11 ¢ The function receives data from the host PC up to the data length set in
dCBWDataTransferLength.
« Set the difference between the amount of data received in the data transport and
the amount of data processed by the function in dCBWDataResidue of CSW.
¢ Set 0x01 as the CSW status.
10, 13 ¢ The function receives data from the host PC up to the data length set in

dCBWnDataTransferLength.
Set 0x02 as the CSW status.

Figures 4.6 to 4.8 show the processing when a data transport error occurs.

Rev. 1.0, 04/02, page 36 of 74

RENESAS

{ Start }
Y

CBW is received

Is CBW data valid?

Command
transport Yes A 4

Amount of data planned by | EP2 is stalled |

host=0 while Yes

Amount of data planned by

function i=0

No
A 4 Case2,3 ¢y
Data transport direction is Bulk-out 0x02 is set in
judged from CBWk bCSWStatus
Bulk-in
y y
Bulk-in operation in Bulk-out operation in
Data data transport data transport
transport
CSW is sent
Status
transport

A 4
End

Figure 4.6 Error Processing Flow in Data Transport (1)

RENESAS

Rev. 1.0, 04/02, page 37 of 74

Bulk-in operation
in data transport

y

Amount of data planned b host

Amount of data planned by function

No

Yes
y

Data us sent in
data transport

the host and then data is output

by the host h

A\ 4
Amount of data planned b host No
>
Amount of data planned by function
Yes
0 is added until data is equal to Data is sent until the
the data length required by amount of data planned

as been sent

Set the additional Set the amount of data
amount of data in not yet sent in
dCSWDataRecidue dCSWDataRecidue
y Case:6 Case: 4,5 Case: 7,8
Set 0x00 in Set 0x01 in Set 0x02 in
bCSWStatus bCSWStatus bCSWStatus

CStatus transport operatioD

Figure 4.7 Error Processing Flow in Data Transport (2)

Rev. 1.0, 04/02, page 38 of 74

RENESAS

Bulk-out operation
in data transport

()

\ 4

Does the command to be executetN No

by the function match the transpo
direction in data transport?

rt/

Yes
y
Amount of data planned by host No
Amount of data planned by function
Yes
y
Data is received in
data transport
A 4
Amount of data planned by host No
>
Amount of data planned by function
Yes
Data is received in Data is received until the Dummy read is performed
data transport amount of data planned by for the amount of data
the host has been received planned by the host
Set the overflowed y
amount of data in Set the amount of data
bCSwDataResidue not yet sent in
bCSWbDataResidue
yCase: 1, 12 Case: 9, 11 y Case: 13 y Case: 10
Set 0x00 in Set 0x01 in Set 0x02 in Set 0x02 in
bCSWStatus bCSWStatus bCSWStatus bCSWStatus

Status transport
operation

¢)

Figure 4.8 Error Processing Flow in Data Transport (3)

Rev. 1.0, 04/02, page 39 of 74

RENESAS

When a Mass Storage Class (Bulk-Only Transport) transmission is carried out, transport of the
CBW initiates a series of data transfers, and when the CSW is transported to the host PC, a se
of data transfers is processed. This status contains two items: dCSWStatus that indicates the
transport result, and dCSWDataResidue that indicates the number of error bytes.

In this sample program, the following two fields are used to create these two items.

« dCBWbDataTransferLength field of CBW packet
» dCSWbDataTransferResidue field of CSW packet

The dCBWDataTransferLength field of the CBW packet is used as the variable in which the
number of data bytes the host PC specifies to be handled in the data transport is entered.

The dCSWhDataTrasferResidue field of the CSW packet is used as the variable in which the
number of data bytes the function handles in the data transport is entered.

When the CBW transport has been completed, the number of data bytes planned to be handle
the data transport by the host PC and the function are stored in the dCBWDataTransferLength
dCSWhbDataTransferResidue fields, respectively.

Data is transferred in the data transport according to the flowcharts.

If data transport between the host PC and function has been processed without errors, the valt
the dCBWDataTransferLength and dCSWDataTransferResidue fields are both subtracted by tt
number of bytes that have been transferred for every data transfer in the data transport. For otf
cases, the difference between the number of data bytes the host PC requires to be handled in
data transport and the number of data bytes the function has handled in the data transport is st
in the dCSWDataTransferResidue field of the CSW packet, and operation then moves to the st
transport.

Rev. 1.0, 04/02, page 40 of 74
RENESAS

Command Data Status
transport transport transport
CBW | IN/OUT | | IN/OUT | | IN/OUT | Csw
dCBWDataTransferLength Amount of data planned by the host | Ois returned because it is
equal to the amount of
data planned by the host
P
dCSWDataResidue Amount of data planned by the device |

dCBWDataTransferLength

dCSWDataResidue

dCBWDataTransferLength

dCSWDataResidue

Amount of data planned by the host |

Amount of data planned by the device ||nsufficiem|‘

Amount of data planned by the host |

The amount of data
insufficient for that planned
by the host is returned

The amount of data
exceeding that planned
by the host is returned

Amount of data planned by the device

| Exceeding |

Figure 4.9 Each Stage in Bulk-Only Transport

Rev. 1.0, 04/02, page 41 of 74

RENESAS

Rev. 1.0, 04/02, page 42 of 74
RENESAS

Section 5 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of
USB function module.

5.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers c
internal peripheral modules are initialized. Next, reset interrupt function CallResetException is
called to process the reset exception and to call function SetPowerOnSection. Figure 5.1 is a

chart for the operation from the reset interrupt to the stationary state.

Microcomputer
CallResetException initial settings

SetPowerOnSection \ || RAM is cleared to 0 ||

After initial settings, the program | |Variab|es are initialized| |
enters the stationary state.

Stationary state
(infinite loop)

Figure 5.1 Main Loop

5.2 Types of Interrupts

As explained in section 4, the interrupts used in this sample program are indicated by the intel
flag register 0 (USBIFRO0); there are a total of eight types of interrupts. When an interrupt factc
occurs, the corresponding bits in the interrupt flag register are set to 1, and a USBFIO interrup
request is sent to the CPU. In the sample program, the interrupt flag registers are read as a re
this interrupt request, and the corresponding USB communication is performed. Figure 5.2 sh
the interrupt flag registers and their relation to USB communication.

Rev. 1.0, 04/02, page 43 of 74
RENESAS

USB interrupt flag register 0 (USBIFRO)

Bit: 7 6 5) 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

Bitname:) BRST [oy | 1R |empTY| TS s | TR TS

Cable connection Bulk-Only transfer Control transfer

USB interrupt flag register 1 (USBIFR1)

Bit: 7 6 5 4 8 2 1 0
: EP3 EP3
1 - — — — [vBUSMN
Bit name: R TS VBUSF
Not used Not used* Not used

Note: Because this sample program does not support interrupt transfers, the interrupt
associated with EP3 is not used.

Figure 5.2 Types of Interrupt Flags

5.2.1 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the USB
module. Branching to the different transfer methods is executed by BranchOfInt in UsbMain.c.
Table 5.1 shows the relations between the types of interrupts and the functions called by

BranchOfint.

Rev. 1.0, 04/02, page 44 of 74
RENESAS

Table 5.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called

0 EPOI TS ActControlln ActControlOut

1 EPOi TR ActControlOut

2 EPOO TS ActControlin ActControlOut
USBIFRO 3 SETUP TS ActControl

4 EP2 EMPTY ActBulkOnly

5 EP2 TR ActBulkOnly

6 EP1 FULL ActBulkOnly

7 BRST ActBusReset

The EPOITS and EPOOTS interrupts are used both for control-in and control-out transfer. Henc
order to manage the direction and stage of control transfer, the sample program has three sta
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 5.4, Control Transfers.

In the SH7727 hardware manual, operation of the USB function module when an interrupt occ
and a summary of operation on the application side, are described. From the next section, def
of application-side firmware are explained for each USB transfer method.

Rev. 1.0, 04/02, page 45 of 74
RENESAS

5.3

Interrupt on Cable Connection (VBUS, BRST)

This interrupt occurs when the cable of the USB function module is connected to the host

controller. On the application side, after completion of initial microcomputer settings, a general-
use output port is employed to pull-up the USB data bus D+. By means of this pull-up, the host

controller recognizes that the device has been connected. (figure 5.3)

USB function module

Cable disconnected
VBUS=0
UDC core reset

| USB cable connectedl

SB1_pwr_en pin
D+ pull-up enabled?

UDC core reset
canseled

v

Cable connected

USBFIO interrupt

Sample program

—| | SetPowerOnSection

Microcomputer
initial settings

v

0 written to the pull-up
enable bit in the USBDMA
setting register and

the USB1_pwr_en pin

is driven low

Main loop

The output level of the
USB1_pwr_en_pin set to high
ith the USBDMA setting register,

v

The port D6 function set to the
USB clock input pin

v

The port E2 function set to the
USB1_pwr_en pin

v

[rcmusreset]|

The USBF clock stopped with
standby control register 3

v

The USB interrupt level
selected with interrupt
priority register G

v

48-MHz clock selected
for the USB clock with
EXCPG control register

v

USB transceiver 1 enabled by

Bus reset signal received generated))
USBIFRO/BRST=1 : P! Al FIFOs cleared extra pin function controler
Bus reset interrupt ! regt er

¢ E USBF set to operate with

Wait gfor setup command E standby control register 3

receive complete interrupt ! *
| Necessary interrupt requests
' enabled with the USB interrupt
enable registers

The vector numbers for interrput
requests selected with the USB

interrupt select registers

Figure 5.3 Interrupt on Cable Connection

Rev. 1.0, 04/02, page 46 of 74

RENESAS

5.4 Control Transfers

In control transfers, bits 0 to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage. (figure 5.4) In the de
stage, data transfers from the host controller to the USB function module are control-out trans
and transfers in the opposite direction are control-in transfers.

Control-out transfers

Host controller USB function module

il

Data | (Data stage)

Control-in transfers

ﬂ

Host controller USB function module

i

Data | (pata stage)

Figure 5.4 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure &
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. |
the same interrupt flag is used to call a function to perform control-in or control-out transfers («
Table 5.1). For this reason, the firmware must use states to manage the type of control transfe
currently being performed, whether control-in or control-out, (figure 5.5) and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined
commands received in the setup stage.

Rev. 1.0, 04/02, page 47 of 74
RENESAS

E Setup stage : Data stage : Satus stage
i i i

Control-in | SETUP (0) | Nw | [wNo | | N || ouT (1) |
DATAO DATA1 DATAO DATAO/L 1 DATAL
Firmware state il WAIT |§| TRANS_IN E:.-VEI’;E-E.-E
Control-out | SETUP (0) || oot || our@ | [outom | wew |
DATAO DATAL DATAO DATAO0/1 DATAL
Firmware state il WAIT |§| TRANS_OUT E- -V;/';\;":-E

No data SETUP (0) | : IN (1)
'\ DATA0 ! ! DATAL

Firmware state | WAIT [:| TRANS_ouT 'WAIT |

Figure 5.5 Status in Control Transfers

541 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in an
control-out transfer, the firmware goes into the WAIT state. Depending on the type of commanc
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

» Commands for control-in transfers: GetDescriptor (Standard command)
Get Max LUN (Class command)

» Commands for control-out transfers: Bulk-Only Mass Storage Reset (Class command)

Figure 5.6 shows operation of the sample program in the setup stage. The figure on the left shc
operation of the USB function module.

Rev. 1.0, 04/02, page 48 of 74
RENESAS

USB function module

Setup token received

y

8-byte command data
received at EPOs

- X Autmatic
Application processin :
PP colmm';nd’) g processing by
) USB module

Setup command receive

complete flag set USBFIO0 interrupt genarated

(USBIFR/SETUP TS=1)

To data stage

Sample program

[ermeron |
v

SETUP TS flag cleared
EPOo FIFO cleared
EPOI FIFO cleared

’

Firmware state changed to
WAIT

'

Read pointer and write pointer to the
command buffer initialized

[ceraaer ||

I DecStandardCommandsI I—

YES

Storage class command?

I IDecBOTCIassCommandsI I

Data direction determined

Control-out transfer
from host to device

the command type,

Control-in transfer
from device to host

Firmware state changed to
TANS_IN

EPOIi TR interrupt disabled

Data written to FIFO

PutPacket

A

Firmware state changed to
TANS_OUT

'

EPO transfer request interrupt
enabled (USBIFRO/EPO TR=1)

!

EPOs read complete flag set to 1
(USBTRG/EPOs RDFN=1)

EPOs read complete flag set to 1
(USBTRG/EPOs RDFN=1)

v

I To contro-in data stage

To contro-out data stage

Figure 5.6 Setup Stage

Rev. 1.0, 04/02, page 49 of 74

RENESAS

5.4.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS _IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.7 and 5.8 show the operation
the sample program in the data stage of control transfer

USB function module

In-token received

Sample program

BranchOfint

When firmware state is TRANS_IN

ActControl In I
v

When data direction changes,
data stage is completed and
status stage is entered.

YES

A
| Status stage I

USBTRG/EPOs RDFN
setto 1?

Receive complete interrupt?
(USBIFRO/EPO0 TS

Valid data in
EPOi FIFO?

USBIFRO/EPOI TS
interrupt flag cleared

PutPacket I

v

Data written to USBEPOI
data register

v

EPOi packet cnable bit set to 1
(USBTRG/EPOi PKTE=1)

USBFIO0 interrupt generated

EPOi transmit flag set
(USBIFRO/EPOITS=1)

Figure 5.7 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 50 of 74
RENESAS

USB function module

Out-token received

Sample program

BranchOfint

When firmware state is TRANS_OUT

ActControlOut I

When data direction changes,
data stage is completed and
status stage is entered.

Any space in EP1 FIFO?

Receive complete’
interrupt?
USBIFRO/EPO0 TS

pYES

v

|Data received from hostl
>
USBFIO

[EPOO receive complete flag set| _interrupt genarated
(USBIFRO/EPO0 TS=1)

Status stage

EPOo receive complete
flag cleared
(USBIFRO/EP0O0 TS=0)

oo ||

v

Data read from USBEPOo receive
data size register (USBEPSZ00)

v

Data read from USBEPOo
data register (USBEPDRO0O)

v

EPOo read complete bit set to 1
(USBTRG/EP0O0 RDFN=1)

Out-token received

USBTRG/EPOs RDFN
setto 1?7

Figure 5.8 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 51 of 74
RENESAS

5.4.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module Sample program

| Out-token received |

A
IO byte received from hostl

<>

EPOo receive complete flag set] USBFIO interrupt generated |
(USBIFRO/EPOo0 TS=1) 'i | BranchOfint | |

When firmware state is TRANS_IN

3 I ActControl IN | I—

v
Control transfer end

Receive complete interrupt?
USBIFRO/EPO0 TS)

YES

y
EPOo-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

v

EPOo receive complete flag set to 1
(USBTRG/EP0O0 RDFN=1)

v

| Control-in transfer end

Data stage

Figure 5.9 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 52 of 74
RENESAS

USB function module

In-token received

Valid data in

USBFIO interrupt generated

Sample program

EPOi FIFO? S

EPOi transmit complete flag
set (USBIFRO/EPO0 TS=1)

JUSBFIO interrupt generated

Control transfer end

T L

” BranchOfint ”

When firmware state is TRANS_OUT

Receive complete interrupt?
USBIFRO/EPO0 TS

Data stage

Receive complete interrupt?
USBIFRO/EPO0 TS

YES

EPOo transmit complete flag
cleared (USBIFRO/EPQi TS=0)

EPOi transfer request flag cleared

l

(USBIFRO/EPOi TR=0)

Firmware state
changed to WAIT

I SetControlOutContents I

EPOi packet enable bit set to 1
(USBTRG/EPOi PKTE=1)

Figure 5.10

Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 53 of 74

RENESAS

55 Bulk Transfers

In bulk transfers, bits 4 to 6 of the interrupt flag register are used. Bulk transfers can also be
divided into two types according to the direction of data transmission. (figure 5.11)

When data is transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when data is transferred in the opposite direction, it is a bulk-in trans

Bulk-out transfers

Host controller USB function module

>
| Data I

Bulk-in transfers

Host controller <::| USB function module

| Data I

Figure 5.11 Bulk Transfers

The Bulk-Only Transport used in the USB Mass Storage Class consists of bulk-in and bulk-out
transfers.

Bulk-Only Transfer comprises two or three stages (see figure 5.12): command transport (CBW)
data transport (this is sometimes not included), and status transport (CSW). In addition, data
transfer is made up of multiple bus transactions.

With Bulk-Only transport, the command transport (CBW) is done using bulk-out transfer, while
the status transport (CSW) is sent using bulk-in transfer. Either bulk-in transfer or bulk-out
transfer may be used for data transport, depending on the direction in which the data is being s

Whether bulk-in or bulk-out transfer is used for data transport is determined by the CBW data
received using command transport. In the firmware, whether bulk-in or bulk-out is used for data
transport is controlled by states (TRANS_IN and TRANS_OUT) (see figure 5.12). The
appropriate variables must be loaded by the firmware.

Additionally, the transition in stages from data transport to status transport is handled by data o
planned length being sent or received using data transport requested by the host PC. Consequ
the firmware manages the data length sent or received using data transport, and after the trans
between stages, status transport must be used to send the data to the host PC.

If the CBW data received using command transport cannot be acknowledged as valid, the end
is stalled, and no bulk transfer is carried out.

Rev. 1.0, 04/02, page 54 of 74
RENESAS

Command Data Status
transport transport transport
sukm ([cew | 0w~ [0w~ | | W || csw |
Firmware state | WAIT | | TRANS_IN ” WAIT |
sukou | [oow I oor 1 oor 1 [oo][oow]
Firmware state | WAIT | | TRANS_OUT ” WAIT |
No data CBW CSW
Firmware state | WAIT | | TRANS_OUT ” WAIT |

Figure 5.12 Various Stages in Bulk-Only Transport

5.5.1 Command Transport
With command transport, the CBW data is transferred from the host to the function.

At this point, the firmware is in the WAIT state. At the stage following reception of the CBW
data, the five types of processing listed below are carried out.

The CBW data is stored from the EP1 data register to the work area.

A judgment is made as to whether the CBW data is valid.

The CSW data is prepared.

The contents of the CBW data are decoded, and if there is any data to be sent using data
transport, the data is prepared. (Processing is carried out in the DecBotCmd function.)

5. A distinction is made as to whether the data transport is bulk-in or bulk-out, and the firmwa
state (TRANS_IN or TRANS_OUT) is determined.

A wbdpE

Figure 5.13 shows the operation carried out by the sample program when command transport
used. The operation of the USB function module is shown at the left of the illustration.

Rev. 1.0, 04/02, page 55 of 74
RENESAS

USB function module

Out-token received |

A

31-byte CBW data
received at EP1

Sample program

BranchOfInt

| ActBulkOnly I

YES
TRANS_OUT state?

To data transport

(figure 5.15)

EP1 FIFO full status set
(USBIFRO/EP10 FULL=1)

YES
TRANS_IN state?

To data transport

(figure 5.14)

State is WAIT and receive

USBFIO interrupt generated

data is in bulk-out FIFO

UIFR1/EP2i TR
interrupt flag egister

Valid CBW data?

YES
|
A . |ActBUIkOnIyC0mmand
CBW data stored |GetPacket
in work area

YES |

EP2 stalled

CSW data prepared

Bulk-out

Data direction determined

State set to TRANS_IN

State set to TRANS_OUT

v

SCSI command analyzed
bnd data transfer prepared

v

dCBWDataTransferLength=0
and dCSWDataResidue!=0?

NO

DecBotCmd

YES

dCSWStatus set
to 0x02

v

(Data transport }

Rev. 1.0, 04/02, page 56 of 74

Figure 5.13 Command Transport

RENESAS

55.2 Data Transport
With data transport, data is sent and received between the host and the function.
At this point, the firmware is in either the TRANS_IN or TRANS_OUT state.

If the firmware state is TRANS_IN (bulk-in transport), the following three types of processing &
carried out.

1. Data is sent from the function to the host.

2. If the length of the data sent by the function is shorter than the length planned by the host,
added.

3. The information to be sent by the CSW is created.

Figure 5.14 shows the operations that take place when data transport (bulk-in transport) is ca
out in the sample program. The operation of the USB function module is shown at the left side
the illustration.

In this sample software, if the length of the data sent by the function is shorter than the length
the data requested by the host, 0 is added after the data sent by the function, as noted in the |
Only Transport of the USB Mass Storage Class, and after data of the length requested by the
has been sent, the number of 0 bytes added is reported, using status transport.

In order to carry out this operation, the following is used as global variables: the
dCBWDataTransferLength of the CBW data, the dCSWDataResidue of the CSW data, and th
bCSWStatus of the CSW data.

Rev. 1.0, 04/02, page 57 of 74
RENESAS

USB function module

Any space in EP2 FIFO?,

EP2 empty status cleared
(USBIFRO/EP2 EMPTY=0)

—

EP2 FIFO status set
(USBIFRO/EP2 EMPTY=1)

Sample program

USBFIO interrupt generated !

» BranchOfin

YES

NO

State is WAIT and receive

| ActBulkOnly I

TRANS_OUT state?

TRANS_IN state?

data is in bulk-out FIFO

YES

Data length requested by hos
(dCBWData TransferLength)
transferred?

ActBulkOnlyIn

NO

A
Planned transmit
data output prepared

Data written to
transmit register
and sent

Remaining length of data
requested b host
(dCBWDataTransferLength)
is subtracted

v

Data length of additional
Os (dCSWDataResidue)

is added

v

bCSWstatus set
to Ox01

v

Work area cleared

ActBulkin

bCSWStatus=0x00 and
planned transmit data length
{s larger than Max PacketSize%

NO
bCSWStatus!=0x00?

YES

v
0 added Data
output prepared

Data written to

and sent

NO (error path)

transmit register | ActBulkin

To status transport
(figure 5.16)

YES (normal path)

A
Data written to
transmit register
and sent

ActBulkin

Remaining length of data
requested by host
dCBWDataTransferLength)
is subtracted

Planned transmit data length
(dCBWDataRecidue)
is subtracted

Remaining length of
data requested by host
(dCBWDataTransferLength)
is subtracted

Data length of additional
Os (dCSWDataResidue)
is added

Figure 5.14 Data Trans port (Bulk-In Transport)

Rev. 1.0, 04/02, page 58 of 74

RENESAS

Figure 5.15 shows the operations that take place when data transport (bulk-out transport) is ¢
out in the sample program. The operation of the USB function module is shown at the left side
the illustration.

If the firmware state is TRANS_OUT (bulk-out transport), the following three types of processi
are carried out.

1. Data from the host is received in the function.
2. Data length is calculated.
3. The information to be sent by the CSW is created.

In this sample software, if the length of the data received by the function is shorter than the lel
of the data that the host planned to send, the missing length of data received by the function t
data transport is reported using status transport, as noted in the Bulk-Only Transport of the U
Mass Storage Class.

In order to carry out this operation, the following is used as global variables: the
dCBWDataTransferLength of the CBW data and the dCSWDataResidue of the CSW data.

Rev. 1.0, 04/02, page 59 of 74
RENESAS

USB function module

Out-token received

Sample program

oo

USBFIO0 interrupt generated

| ActBulkOnly I
YES

TRANS_OUT state?

Any space in EP1 FIFO2

YES
TRANS_IN state?

Data received from host

EP1 FIFO full status set
(USBIFRO/EP1 FULL=1)

State is WAIT and receive'
data is in bulk-out FIFO

YES

| ActBulkOnlyOut I
) 4

EP1FIFO full interrupt?
(USBIFRO/EP1 FULL)

A

To status transport
(figure 5.17)

No/

\ Data is to be stored?

¢ YES
Data read from data
receive register ActBulkOut

dCBWDataTransferLength and
dCSWDataResidue subtracted

v

YES Sent data longer than
data stored in function?

A A

NO

dCBWnDataTransferLength
subtracted

Data read from data dCSWDataResidue
- ; __ActBulkOut
receive register caluculated

dCBWDataTransferLength dCSWstatus set
subtracted to Ox01

v] v
dCSWDataResidue | Wait for next interrupt |

added

Dummy read prepared

Figure 5.15 Data Transport (Bulk-Out Transport)

Rev. 1.0, 04/02, page 60 of 74
RENESAS

5.5.3 Status Transport
With status transport, data is sent from the function to the host.
At this point, the firmware is in either the TRANS_IN or TRANS_OUT state.

If the firmware state is TRANS_IN (bulk-in transport), the following four types of processing ar
carried out.

1. EP2 empty status interrupts are inhibited.

2. The system prepares to send the CSW data.
3. The CSW data is issued.

4. The firmware state is set to WAIT.

Figure 5.16 shows the operations that take place when status transport (data transport bulk-in
transport) is carried out in the sample program. The operation of the USB function module is
shown at the left side of the illustration.

Rev. 1.0, 04/02, page 61 of 74
RENESAS

USB function module

Any space in EP2 FIFO?

EP2 empty status cleared
(USBIFRO/EP2 EMPTY=0)

EP2 empty status set
(USBIFRO/EP2 EMPTY=1)

Sample program

USBFIO interrupt generated
Ptg ?“ BranchOfint ||

Y | ActBulkOnly I
YES

RANS_OUT state?

YES
TRANS_IN state?

NO State is WAIT and receive

data is in bulk-out FIFO

YES
v
ActBquOnIyIn
ata length requested by hos
(dCBWData TransferLength)
transferred?
¢ YES
To data transport

EP2 empty status
interrupt disabled

v

ICSW data output prepared|

bCSWStatus=0x00 and
dCSWDataResidue!=0?

NO bCSWStatus set
to 0x02

v

Data written to transmit ActBUKIn
register and sent

State set to WAIT

Figure 5.16 Status Transport (Data Transport Bulk-In Transport)

Rev. 1.0, 04/02, page 62 of 74

RENESAS

Figure 5.17 shows the operations that take place when status transport (data transport bulk-o
transport) is carried out in the sample program. The operation of the USB function module is
shown at the left side of the illustration.

If the firmware state is TRANS_OUT (bulk-out transport), the following four types of processin
are carried out.

Preparation is made to send the CSW data.

The data is checked to see if any data is missing from the reception.
The CSW data is issued.

The firmware state is set to WAIT.

A owbd PR

In this sample software, if the length of the data received by the function is shorter than the le
of the data that the host planned to send, the missing length of data received by the function L
data transport is reported using status transport, as noted in the Bulk-Only Transport of the U:
Mass Storage Class. In order to do this, a check is made to see if there is any data missing tt
should have been received by the function, and if there is, the value of the bCSWStatus of the
CSW data is set to 0x01 (Command Failed).

Rev. 1.0, 04/02, page 63 of 74
RENESAS

USB function module

| g In token received <

Valid data in
EP2 FIFO?

Data sent to host

L GO
[

EP2 transfer request set
(USBIFRO/EP2 TR=1)

Sample program

USBFIO interrupt

enerated
BranchOfInt

) 4

NO

NO

YES

<IRANS_OUT state2

TRANS_IN state?

State is WAIT and
receive data is in
bulk-out FIFO

| ActBulkOnly |

YES

YES

A

v ActBulkOnlyOut

EP1 FIFO full interrupt?
(USBIFRO/EP1 FULL)

To data transport

CSW data
output prepared

YES

A

bCSWStatus set to 0x02

dCSWbDataResidue!=and
dCBWData TransferLength=0%

NO

Data written to data

transmit register and sentl ActBulkin

v

State set to WAIT

v

USBUFRO/EP2 TR
interrupt flag cleared

Figure 5.17 Status Transport (Data Transport Bulk-Out Transport)

Rev. 1.0, 04/02, page 64 of 74

RENESAS

Section 6 Analyzer Data

In this chapter, we look at how measurement is carried out with the USB Inspector, a USB
protocol analyzer made by CATC (http://www.catc.com), using the USB function module in the
SH7727, and at what happens to the data as it actually flows along the bus. For more detailec
information on the packets, please see section 2.3.

Note: The Packet # found in front of each packet is the packet number used when measuring.

¢ INQUIRY command

[FPacket #]F [Svne | SOF |HEGrhd =G ==
[=49 [E][oooooooi] oxas 280 0x02 | 2.00
[Facket #]F@ [Swns | ouT ENDP
[350 |5|[0oocoodd | owxa7 z 1 0x158 | =.00
[Packet # |3 [Sene] OATAD ¢ 5 cBwW
=51 [El||ooooo0aq] axc3 | 0000: 55 53 42 43 28 45 CB 84 24 00 00 00 80 00 06 12 |0x9816] 3.00 |(command
[[00ls: 00 00 00 24 00 00 00 00 00 00 00 00 00 00 00 | él transport)
[Packet = el ~c+ INQUIRY
EEE =||__ooooa1] ox4B | =.00 command
[Facket]G [Svne | SOF |HEnhdl == ==
| =52 [5|[ocoocooot| oxas 381 01D | 3.00
[Facket %[5 [Svne ADDR CRCS5 ECF
EE = |CEEEEEE D z z 0x01 | =200 T
[Facket #]F [Svne [oaTAQ
[255 [E][oooooooq] oxc= | 0000: 00 80 02 02 5B 00 00 00 458 49 54 41 43 458 49 20 [Ooxs02C[2.00| pATA
0016: 45 58 20 52 41 4D 20 44 69 73 6B 20 20 20 20 20 | (data
0032: 31 2E 31 31 |
INQUIRY transport)
[Packet #]F] [Sune | AckK inf i
EECE = |DDDDDDD1I 048 | =.00 information
|F’acket# | Swync arme CTRCS]
257 auuuu1| O35 agz ox1F [2.00
|F'acket# F | Swno
[=58 [&)|[0ooo0ooot 4
|F'acket# F | Sy csw
[=58 |5|[cooooaat (status
transport
[Facket #]F@ [Swne | ACK INQUIRY command port)
[=&a =|[0oooooa1| ox4B | =.00 execution result *

Rev. 1.0, 04/02, page 65 of 74
RENESAS

* READ FORMAT CAPACITIES command

[Facket %G| [Swne SOF
EEE (00000001 | oxas 0x11 | 3.00
[Packet#|F [Syne | ouT ENDP
ECE [ooooooot | axs7 0x12 | 3.00
[Facket %G| [Swne CBW
S [oooooao 0000: 55 53 42 43 28 45 CE 84 FC 00 00 00 &0 00 04 23 [ox02sE]=.00 (command
[0016: 00 00 0O 00 00 DO 00 FC 00 00 00 00 00 00 00 | transport)
[Pecket# [l Sme] Ack READ FORMAT CAPACITIES v
[=&s |aaaaaaa1| 048
command
|F'acket# Sync | SOF
EEE | __000001 | OxAS
|F'acket# F | Swno A
ECE [ooooooo
[Facket 2@ [Syne [CaTan
ECE [goooocoq | owxcs | oood: 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 oo o0 JoxFooe|=.00
00la: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 é|
[Facket # IHl INSVRERN] ~c< READ FORMAT CAPACITIES
EEE [ooooooot] ox48 | 3.00))
information
|F'acket# F | Sync
[=70 [Goooooot
|F'acket# F | Svno
[=71 [00000a01| axD2 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 JoxFDOB| 3.00
0016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[Packet #|F [Syne | Ack
[372 [ooooooot| ox4B | 3.00
|F'acket# | Sync E =)= DATA
[=7= [cooooooi| axes 2 z 0xa1 | 3.00 (data
transport)
[Facket 2@ [Swne JCaTAn
[=74 [ooooooo | Gwcs | oodo: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oo |oxFooe]|=.0a
0016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[Packet # Sync A
[=78 [ooooooa+ | ax4e | 3.00
|F'acket# F | Swno
EEE [cooaooa1] oxs6 z z =01 | 3.00
|F'acket# F | Swno
=77 [ooooooaq| oxD2 | 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ox0024]3.00
0016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 | v
[Packet #]F Sync ACK
[=7= [ooooooa+ | ax4e | 3.00
[Facket]G] [Swne SOF
[379 [cooaooa1] axas EEC] 0x0C | 3.00
|F'acket# F | Swno
[==0 [ooooooad
csw
[Packet #|F| [Syne JoaTAQ (status
[== [ooooooo]| Gwcs |55 53 42 53 28 45 CB 84 FB 00 00 00 01 |oxc4o4]|=.00
transport)

[Facket 2]ig

[Syns | ~ck

EEE

[ooooooa1 | ox4B

2.00

READ FORMAT CAPACITIES command
execution result

v

Rev. 1.0, 04/02, page 66 of 74

RENESAS

« READ CAPACITY command

[Facket #]i@] [Swne | SCF

EED [ooooooot | oxes
[Packet2]F| [Sene | ouT IESIRLNENDE [Ellmal ol o
[489 [oooooooq | oxe7
|F'ac:ket# = | Swnc - CBW
| 470 |DDDDDDD1 0000; 55 53 42 43 28 45 CE 84 05 00 00 00 80 00 04 25 |Ow=AFSE| 200 (command
[0oi16: 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 | transport)
[Packet 2G| [Svme [~Ack
[a7 [_nooonot1| oxas | .00 READ CAPACITY command
[Packet2[iF| [Svne [SoF
[472 [oooodood | dxas 410 0x05 | 3.00
|F'ac:ket# F | Sy 3 A
EXE [ooooooot| oxss z 2 0x01 | 3.00 +
DATA
|F'acket# = | Sync AT A
| |uuuuuau1 0:xD2 |00 00 7F E0 00 0D 02 00 |m:2CB1] 3.00 (data
é| transport)
|F'ac:ket# Svnc ACK
| 000001 | 048 | 3.00 READ CAPACITY information
|F'acket# F[Swns [SOF
[478 (0000000t | oxas 411 ox1a | 3.00
|F'acket# = | Sync
[477 |EEEEEEER 4

[Packet #]iF] [Svne [CaTAQ csw
[478 (00000001 | 0xS3 |55 53 42 53 25 45 CB 54 00 00 00 00 00 |oxE0=2c|3.00 (status
[Facket # | B0 ~ck READ CAPACITY command transport)
EXE [ooooooot | 0=4B | =.00 execution result 4

« REQUEST SENSE command

[Packet 2|5

[Swne [scF

[=s3 |coooooot] axas
[Packetz |G [Syne [ouT
EES |coocooad | axs7
[Facket # | [Bvme [CATAD 2 & - CBW
=25 |&)|[ooooooot| oxc= | o000: 55 53 42 43 28 45 CB 84 12 00 00 00 80 00 0OC 03 oxE1e2]=.00 (command
[(0ol6: 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 | transport)
[Packetz]G [[Syne [~ck
D [Coooooot | owae : REQUEST SENSE command ¢
[Packet 2G| [Syne | SSF
[=87 |0oooooat] axas
|F'acket# = | Swnc *
EED |0oooaoo
DATA
|F'acket# | Swnc . i]
IEED |0ooooooq] oxC2 |70 00 05 00 00 00 00 OC 00 DD 00 00 24 00 00 00 00 00 Jowx7eE4]=.00 (data
transport)
[Packet 2G| [Sune [~Ck))
[==0 |ooooodoat | ox4B REQUEST SENSE information *
|F'ac:ket# | Sync_ | SOF
381 __0o00a1 | axas
|F'ac:ket# = | Swnc *
[=82 |ooooooot
csw
[Packetz]@ [Syne JCoATAQ . at
IEEE [22000001]| axc= |55 53 42 53 28 45 CB 84 00 00 00 00 0D (status
transport
[FPacket =3 [Evne] ~ck REQU!EST SENSE command 3)
=D |ocoocoooat] ox4e | 3.00 execution result

Rev. 1.0, 04/02, page 67 of 74
RENESAS

« READ(10) command

[Packer = B[Ssne | soF

| 412 |Dx04|3.00

[27= [&|[coooooor| oxas L
[Packe: = @ [Sene | ouT EMDFP
[a7= S| [ooooooor | oxsv = 1 oxl® |3.00
e T S o - S~ T 0
[_aso0 [S|ooccccoi] o.c3 | ODOD: 55 53 42 43 LA C5 OF AL O0 02 00 00 A0 00 O& 26 [ox123F =00l command
[O0lE: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 g‘ transport)

[Packet = @] [Spne | sck
[=1 S| —ooooo1 | oxae [z.00 READ (10) ¢
[Packer = @[=sne | soF
[=== S| [coooooo1] oxas 41z |oxie|z.00
[Packet = i3] [Swne ADDR CRCS A
E=E S| [ooooooor | oxss = z |oxor|s.00
[Packe: = |3 [Erne
= S |CEEEEEEN R 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |osFooe) = 00

O0LE: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

O0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OO0us: D00 OO0 OO0 00 OO0 OD OO0 OO0 00 OO0 OO0 00 00 00O OO OO
[Packer = @[Ssne | ack
= S| —ooooo1 | owae [z00 READ(10)

information

[Packet = i3] [Swne ADDR CACS EOF
= S| [ooooooor | oxss = z |oxor|s.00
[Packet » i3] [S¢ne | oaTao
| <=7 [&[ooooccor]| oxcx | OOOD: OO0 DO OO0 OO OO0 OO OO0 OO OO0 OO OO0 00 00 00 00 00 |oxFoos|s.0o0

O0LE: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

O032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OO0us: D00 OO0 OO0 00 OO0 OD OO0 OO0 00 OO0 OO0 00 00 00O OO OO DATA
[Packer = @[Ssne | ack (data
[2== S| [ooooooor | owae [z.00 transport)

Rev. 1.0, 04/02, page 68 of 74

RENESAS

*Continued on next page

[Packet = 7] [Swne ADDR CRCS EOF
[2zs [E]|[ocooooooi]| oxss = z |owoi]zo0
[Facke:r = i@ [Swne
430 S| [ooooooo1 | ooz Ono0: 00 00 00 00 00 00 00 O0 00 00 00 00 00 00 00 00 JoxFooE|s.oo
O01E: 00 00 OO0 OO0 00 OO0 00 OD OO0 OO0 00 00 00 00 00 o0
0032: 00 00 OO0 00 OO0 OO0 00 OD OO0 OO0 00 00 00 00 00 OO0
Oo4s: OO0 00 OO0 OO0 OO0 00 00 00 00 00 00 00 00 00 00 0o
[Packet = JR| [Swne | ack
[2491 |E|[ooooooor] oxae [z.00
[Facke:r = i@ [Swne ADDR CRCS
azz |5 [ooooooo1| oxss z z |oxoir]z00
[Packer = @] [Spne | caTao
EEE 3| [ooooooo1 | oxcs Ooo0: 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 Joxwrooe(3.oo
O01E: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Oo4d: 00 00 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 OO0
[Packer = @] [Spne | sck
Ama S| [ooooooo1| oxae |z00
[Packet = | [Swne ADDR CRCS
[2= [E][oooooooi| oxss z z |owor]zo0
[Packer = i@ [Swne
455 ol [cooooooi]| osDz Ooo0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 JosFecE|z.00
O01k: 00 00 OO0 00 OO0 00 00 00 00 00 OO0 00 00 00 00 OO0
0032: 00 00 OO0 0O OO0 OO0 00 OD OO0 OO0 00 00 00 00 00 OO0
OO44: 00 OO0 OO OO OO OO 00 OD OO OO0 OO0 00 00 00 00 OO0
[Packet # [[Swne | Ack
[as7 S| [coooooor| oxae [z00
[Packer = i3] [S¥ne aDDR CRos EOF DATA
458 S| [ooooooo1L]| oxze z = |oxo1l]300 (data
transport)

RENESAS

*Continued on next page

Rev. 1.0, 04/02, page 69 of 74

[Facket = [[Spne | oaTan
459 5 |DDDDDDC‘1—| OxC3 0000: 00 00 00 00 00 OO OO 00 OO0 00 00 00 00 00 00 00 JoxFDOE|3.00
001k: 00 00 00 00 00 00 OO0 00 OO0 00 00 00 00 00 00 00

0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 DATA
O044: 00 00 OO0 OO0 OO0 DO OO0 OO0 00 00 OO0 OO0 00 OO0 o0 o0 (data
[Packer = JR| [&sme | ack transport)
soo |5 [oooooooL| oxde [3.00
[Packer = 3| [Spne ADDR CRCS
[so S| [oooooooL | oxes z z Joxoi]zo00

[Packet = i3] [Srne

| S0z |_DDDDDDL axDE 0000: 0D 00 00 OO0 00 00 00 OO0 00 OO0 OO0 OO0 OO0 OO0 00 00 Jox7Eo=®|3.00
001k: 00 00 00 00 00 00 OO0 00 OO0 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O04é4: OD0 00 OO0 OO0 OO0 DO OO0 OO0 00 OO0 OO0 OO0 00 OO0 A0 OO0

[Packer = [Ssme | ack
[=o= [oooocooL| oxde |3.00
[Packet » [syne ADDR CcRCS
[soa [oooooooL | oxss z 2 Joxo1]z00
[Packet = [srme [oaTen
505 |—DDDDDDLI O=xC3 0000: 0D 00 04 OO0 00 OO0 20 OO0 00 OO0 E0 ?F OO0 OO0 00 00 JoxEDXx3|3.00
00L5: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O04é4: OD0 00 OO0 OO0 OO0 DO OO0 OO0 00 OO0 OO0 OO0 00 OO0 55 &a
[Packet = [Epme [sck
S0E [oooocooL| oxde |3.00 \ 4
[Packet » [syne [soOF
[so¥ [oooooooL | owas 414 |owie|z00
[Packet = i3] [Srne =
soz |5l [oooooooL| oxse z z |oxoi]zco
CSW
[Packe: = 7] [Swne 3 at
[=05 [Bl[ccooonor| oxoe |&5 53 43 53 kA C5 O &L 00 DO 00 00 00 |ox1=73]3.00 (status
[P = | S = READ(10) command transport)
acke o .
BT S| [oooooooL | oxae [300 execution result

Rev. 1.0, 04/02, page 70 of 74
RENESAS

+ TEST UNIT READY command
[Svne | SoF |Eooml
|DD§;DDD1| gf;z | 953%

[Pacret]| [Swne | ouT ENDF
[7022 [0oooooaq [axs7 0x18]| 3.00 f

[Packet 2G| [Syne [DATAD AT A

[7oz3 |oooooooq | 0xc3 | 0000: 55 53 42 43 08 EO DD 510D 00 00 00 0O 0D D6 00 |axF7AE|3.00| CBW
[90ls: 00 00 00 00 00 @0 00 00 00 00 00 00 00 00 0d |é| (command

[Packet # | [Evma] ~c< transport)

[7o=z4 |ooooooot | ax4s | 3.00 TEST UNIT READY

[Pacret 2] [Swne | SOF command

[7025 [0oooooaq | axas

|F'acket# = | Swmc

[7028 |ooooaoad

|F'acket# | Swno

7027 00000001 | oxsa | 3.00

|F'acket# = Sync

[7ozs |uuuuuua1 0x26 2 2 0x01 | 3.00 cswW

|F'acket# F | Sync (status

[7ozs8 |ooooooot | oxsa | 3.00 transport)

|F’acket# F | Swnc

[7oz0 |Doooaoat

|F'acket# F | Swno

|DDDDDDD1 0xD2 |55 53 42 53 05 EO0 OD 51 00 00 00 00 00 |O=4FC7| 3.00

[7aoz1
[Facket#|Fl [TSyne] Ack TEST UNIT READY command
[7oz2 |E][oooooooq| ox4e | 3.00

execution result

* VERIFY(10) command

[Packet]G] [Svne | SoF
[=487 [oooo0ao | axas
[Facket =[] [Evre] oUT WEEIERERITETEiail gl o Y
| sass [00000ao1 | oxs7

[Swre JoaTen CBW

[Facket #]F SNE :
[ooooooo] oxca | oooo: 55 53 42 43 65 19 22 B0 00 00 00 00 00 00 04 2F [0x82D1[300] (command

EEEE

| 0016: 00 00 00 08 20 00 02 00 00 00 00 00 00 00 o0 | transport)
[Packet 2] G| [Svme [~Ack
[=430 (00000001 | ox4B VERIFY(10) command *
[Packet]G] [Svne | SoF
EEEY [ooooooo4 | axes
|F'acket# = | Swnc
[=43z [00000a001] oxa6 2 2 ox01 | 3.00
|F'ac:ket# = | Sync A
BEEEE [ooooooo+] ox5a | 3.00
|F'acket# = | Swnc
[=434 [20000ao01
|F'ac:ket# = | Sync CSwW
EEEE [ooooooo+] ox5a | 3.00

(status

[Packet 2]F| [Svnc transport)
| =436 (00000001] 0xa6 2 0x01 | 3.00
|F'ac:ket# = | Sync 3
[=497 [ooooooo+] oxDz2 |55 53 42 53 68 19 22 80 00 00 00 00 00 |oxsz2ze|3.00 él
[Facket # |5 [Bvme] ~cK VERIFY(10)
[IEEEE [ooooooot | ox4e | =2.00 execution result

Rev. 1.0, 04/02, page 71 of 74
RENESAS

« WRITE(10) command

[Packet 2G| [Swne | SOF
| z&=s8 [ooooooa1] axas 417 0x1F | 3.00
[Packet 2G| [Swne | ouUT A
[26287 [0oooodoat | axe7 ?
[Packet 25| [Swne JOATAD CBW
EEEEER (00000001 | oxc3 | oo00: 55 53 42 43 ©8 CC OB 81 00 02 00 00 00 00 04 24 |oxF42c]|3.00 command
[ODlg: 00 00 00 00 O0 00 O0 01 00 00 00 00 00 00 00 | (
é| transport)
[Packet 2G| [Swne | ACK
[2688 |5 [coooooat | axae WRITE(10) command
[Packet 2G| [Swns | SOF
| 2&=20 [ooooooat] axas
[Packet # Sync oUT A
[2&=91 [ooooooat] axs7
|F'acket# = | Swnc
[IEEEEE [ooooooat| oxDz2 | 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |oxFDoB|=.00
00l6: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 é|
[Facket # Syns | Ack WRITE(10)
IEEEEE _no000a1 | ox4e information
[Facket 2G| [Swns | cuT
| z&=24 [ooooooa] axs7
[Facket 25| [Syns JoaTA0
| z&=95 [ooooooo1] oxcs | ooo00: 00 00 DO 0D 0O 00 00 00 00 00 00 00 oo 0o o0 o0 JoxFooe]=.0o
00l6: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EEE =S
[ooooooo1] ox4e | 3.00 DATA
[Packet #|FH] [SFre] ouT (data
[28297 __noooa1 | axs7 transport)
[Packet 2@ [Swne | ouT
[26303 [oooooooq | oxe7
|F'acket# = | Sync
IEEEEE [oooaoaoq | axDz2 | dodo: a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ox7Eas|=.a00
0016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032Z: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 &0 00
[Packet 2G| [Svme [~ck
[28311 (0000000t | oxaB
[Packet 2@ [Swne | ouT
[26212 [oooooood | axs87
[Facket #]iF] [Svne [CaTAQ
EEEERE [ooooooot| oxcz | oooo: 00 00 04 00 00 00 20 00 00 00 E0 7F 00 00 00 00 |oxEcasz]s.oo
0016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 Ad
[Packet2]@| [Svne [~ck
[28914 [ooooono1 | ox48 | 3.00 \ 4

*Continued on next page

Rev. 1.0, 04/02, page 72 of 74

RENESAS

Facket 2|5 Frarme # [&

26915 = |Q000anaq [410 O=02 | 2.00

Packet # I3

26816

Facket # I3

26917 =) |Qoooaoad Ox54 | 3.00

a0oo0ao Ox86 Ox01 | 2.00

Q03000001

a0oo0aoq 054 | 2.00

a0oo0ao 086 2 2 001

a0oooa0q | Oxc3

CsSwW
(status
transport)

0000000 | 0x48 S.00

0xB3C5 a é|

WRITE(10) command
execution result

RENESAS

Rev. 1.0, 04/02, page 73 of 74

Rev. 1.0, 04/02, page 74 of 74
RENESAS

SH7727 USB Function Module M assStor age Class
(Bulk-Only Transport) Application Note

Publication Date: 1st Edition, March 2002
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB Mass Storage Class�	(Bulk-Only Transport)
	2.1	USB Mass Storage Class
	2.2	Sub-Class Code
	2.3	Bulk-Only Transport
	2.3.1	Command Transport
	2.3.2 Status Transport
	2.3.3 Data Transport
	2.3.4 Class Commands

	2.4 SCSI Transparent Command Set Sub-Class Code

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4 Using the RAM Disk

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.2.1	Control Transfer
	4.2.2 Bulk Transport

	4.3 File Structure
	4.4	Purposes of Functions
	4.5	RAM Disk
	4.6	Operation of SCSI Commands That Are Supported
	4.7 Processing If an Error Occurs

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	Interrupt on Cable Connection (VBUS, BRST)
	5.4	Control Transfers
	5.4.1	Setup Stage
	5.4.2	Data Stage
	5.4.3	Status Stage

	5.5	Bulk Transfers
	5.5.1	Command Transport
	5.5.2	Data Transport
	5.5.3 Status Transport

	Section 6 Analyzer Data
	Colophon

