

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 1 of 35

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler Use guide] #pragma Extension Guide

This document explains the extended #pragma directives available in SuperH RISC engine
C/C++ Compiler version 9. Some of these directives can reduce the program size or
improve execution speed while others provide useful functions.

Table of contents

1. Extended #pragma Directives for Reducing Program Size and Improving Execution Speed 2
1.1 Specifies address range.. 2
1.2 Performs inline expansion of functions ... 5
1.3 Expands an assembly-language description function... 7
1.4 Generates or does not generate save and restore code at the start and end of functions................. 13
1.5 Allocating global variables to registers.. 19
1.6 Specifying GBR base variables... 22

2. Other Useful Extended #pragma Directives.. 26
2.1 Specifying section name replacement .. 26
2.2 Specifying the order of bit fields .. 29
2.3 Specification of alignment for structures, unions, and classes ... 32

Website and Support <website and support,ws> .. 34

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 2 of 35

1. Extended #pragma Directives for Reducing Program Size and Improving Execution
Speed

This chapter explains extended #pragma directives that can be effective in reducing program size and improving
execution speed. Table 1-1 lists the extended #pragma directives explained in this chapter.

Table 1-1 Extended #pragma directives for improving performance

No. #pragma Explanation Effectiveness
on size

Effectiveness
on speed

See
section

1 #pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32

Specifies address range

A+ B 1.1

2 #pragma inline Performs inline expansion of
functions C A+ 1.2

3 #pragma
inline_asm

Expands an assembly-language
description function C A 1.3

4 #pragma regsave
#pragma noregsave
#pragma noregalloc

Generates or does not generate
save and restore code at the
start and end of functions

A A 1.4

5 #pragma
global_register

Allocates global variables to
registers B B 1.5

6 #pragma gbr_base
#pragma gbr_base1

Specifies GBR base variables A+ A 1.6

A+: Very effective.
A: Effective.
B: Effective, but must be used with caution.
C: Lowers performance.

Note that the expanded assembly code examples in this document were obtained by specifying code=asmcode and
cpu=sh2. This code might vary depending on the specification of the cpu option. It is also subject to change if the
compiler is improved in the future. Accordingly, you should use these code examples for reference only.

1.1 Specifies address range
The #pragma absn (n: 16, 20, 28, or 32) directive is a declaration that tells the compiler that the variable or function
is in the n-bit address area. The default is the 32-bit address area.

For example, #pragma abs16 specified for a variable or function means that the variable or function is placed in an
address area that can be represented by 16 bits. Compared with the default 32-bit addressing, which uses four bytes for an
address value, 16-bit addressing uses only two bytes, and therefore reduces program size. Address area specification for
variables and functions that are referenced from many locations effectively reduces program size. Note that if a
#pragma absn directive is specified for a variable or function, the same #pragma absn directive must be specified
for all occurrences of the variable or function throughout the source code. For example, you must not specify #pragma
abs16 and #pragma abs32 for separate occurrences of the same variable or function. Renesas recommends that you
specify the #pragma absn directive in a common header file.

You can specify #pragma abs20 and #pragma abs28 for only the SH-2A and SH2A-FPU microcomputers. For
details, see 2.1 20-bit Long Immediate Load in the manual SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] SH-2A / SH2A-FPU.

You can also use an advanced option to specify the address area. If you specify both the advanced option and the
#pragma directive that specify the address area, the #pragma directive takes precedence. As an example of use, when
the 16-bit address area is specified for a variable or function, you can use the #pragma abs32 directive to change the
address area to the 32-bit address area, which is the default.

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 3 of 35

Format:

#pragma abs16 (identifier [,identifier...])
#pragma abs20 (identifier [,identifier...])
#pragma abs28 (identifier [,identifier...])
#pragma abs32 (identifier [,identifier...])
identifier: variable name | function name

Example:

When abs16 is specified for a variable or function, the address storage area of the variable or function changes
from a .DATA.L (4 bytes) to a .DATA.W (2 bytes).

Source code with #pragma abs16 not specified:

extern int x(void);
int y;
long z;
void f(void)
{
z = x() + y;
}

Expanded assembly code:

_f:
 STS.L PR,@-R15
 MOV.L L11+2,R2 ; _x
 JSR @R2
 NOP
 MOV.L L11+6,R5 ; _y
 MOV.L L11+10,R4 ; _z
 MOV.L @R5,R1 ; y
 ADD R1,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R4 ; z
L11:
 .RES.W 1
 .DATA.L _x
 .DATA.L _y
 .DATA.L _z

Source code with #pragma abs16 specified:

#pragma abs16 (x,y,z)
extern int x(void);
int y;
long z;
void f(void)
{
z = x() + y;
}

Expanded assembly code:

_f:
 STS.L _PR,@-R15
 MOV.W L11,R2 ; _x
 JSR @R2
 NOP
 MOV.W L11+2,R5 ; _y
 MOV.W L11+4,R4 ; _z
 MOV.L @R5,R1 ; y
 ADD R1,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R4 ; z
L11:
 .DATA.W _x
 .DATA.W _y
 .DATA.W _z

Note:

• If you specify abs16, abs20, abs28, or abs32 for a variable or function, use the #pragma section
directive to switch the section so that the section is placed in an address area that can be represented by the
specified bit addressing during linkage.

• The following table shows the #pragma absn directives and the address ranges in which a section can be
placed.

Table 1-2 Address ranges in which the section can be placed

Address range #pragma
Beginning End

0x00000000 0x00007FFF #pragma abs16
0xFFFF8000 0xFFFFFFFF
0x00000000 0x0007FFFF #pragma abs20
0xFFF80000 0xFFFFFFFF
0x00000000 0x07FFFF7F * #pragma abs28
0xF8000000 0xFFFFFFFF

#pragma abs32 0x00000000 0xFFFFFFFF

* Note that the address is 0x07FFFF7F.

APPLICATION NOTE

• If you specify abs16, place the section in either of the areas shown in the following figure.

Area accessed in 16 bits

0x00000000 - 0x00007FFF

0xFFFF8000 - 0xFFFFFFFF

Figure 1-1

• If generation of position-independent code is specified (pic=1 option) at compile time, function addresses are
not generated for the specified bit value because addresses are referenced by relative access.

Source code:

#pragma abs16 (x,y,z)
extern int x(void);
int y;
long z;
void f(void)
{
 z = x() + y;
}

Expanded assembly code (pic=0 specified):

_f:
 STS.L PR,@-R15
 MOV.W L11,R2 ; _x
 JSR @R2
 NOP
 MOV.W L11+2,R5 ; _y
 MOV.W L11+4,R4 ; _z
 MOV.L @R5,R1 ; y
 ADD R1,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R4 ; z
L11:
 .DATA.W _x
 .DATA.W _y
 .DATA.W _z

Expanded assembly code (pic=1 specified):

_f:
 STS.L PR,@-R15
 MOV.L L12+6,R3 ; H'FFFFFFFC+_x-L11
L11
 BSRF R3
 NOP
 MOV.W L12,R5 ; _y
 MOV.W L12+2,R2 ; _z
 MOV.L @R5,R1 ; y
 ADD R1,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R2 ; z
L12:
 .DATA.W _y
 .DATA.W _z
 .RES.W 1
 .DATA.L H'FFFFFFFC+_x-L11

REJ06J0027-0100 /Rev.1.00 September 2007 Page 4 of 35

APPLICATION NOTE

1.2 Performs inline expansion of functions
Inline expansion is a type of optimization that inserts the body of a function at the point at which the function is called.
You can use inline expansion when you expect that it will reduce function call overhead, making the program smaller and
allowing it to run faster. In particular, inline expansion can be very effective for functions that are called repeatedly in a
loop. Since the compiler performs inline expansion before optimizing the source code, note that inline expansion for large
functions increases program size, and might reduce the efficiency of compiler optimization. Inline expansion is more
effective when it is performed for small functions that are called frequently.

Format:

#pragma inline [(]function-name[,...][)]

When you specify functions in a #pragma inline directive, make sure that the body of each function is defined
after the directive.
The compiler also generates external definitions for the functions specified in a #pragma inline directive. If
these external definitions are not necessary, specify static for the function declarations. Since the compiler
does not generate the body of a static function when performing inline expansion, specifying static might
reduce program size.
Whereas automatic inline expansion of the inline option specified for a function stops before the specified limit
on increase in function size (expressed as a percentage) is reached, automatic inline expansion of the #pragma
inline directive does not.
Note that, when #pragma inline is specified, inline expansion for a function does not occur if the function
satisfies any of the following conditions:
– The function is defined before the #pragma inline directive.
– The function has variable parameters.
– The function is called via its address.

#pragma inline(func)
static int func (int a, int b)
{
 return (a+b)/2;
}
int x;
void main(void)
{
 int (*func_p)(int,int);

 func_p = func;

 x=func_p(10,20);
}

When the address of a function
is assigned to a function-type
pointer and the pointer is used
to call the function, inline
expansion does not occur.

REJ06J0027-0100 /Rev.1.00 September 2007 Page 5 of 35

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 6 of 35

Example: Source before and after inline expansion
Source code:

#pragma inline(func)
static int func (int a, int b)
{
 return (a+b)/2;
}
int x;
void main(void)
{
 x=func(10,20);
}

Source after expansion:

int x;
void main(void)
{
 int func_result;
 {
 int a_1=10, b_1=20;
 func_result=(a_1+b_1)/2;
 }
 x=func_result;
}

APPLICATION NOTE

1.3 Expands an assembly-language description function
Inline expansion for assembly functions is effective when you want to use CPU instructions that C does not support or
when you want to improve performance by coding the functions in assembly language rather than in C. In a C source file,
you can code functions in assembly language by using the #pragma inline_asm directive to declare that the
functions are written in assembly language. Such assembly functions are called inline assembly functions. In the
#pragma inline_asm directive, you can also specify a size=numeric-value option to specify the size of an
assembly function. Specifying this option might improve the efficiency of optimization.

Note that when you specify the size of a function in the #pragma inline_asm directive, you must make sure that the
size is the same as or larger than the actual object size. If you specify a size smaller than the actual object size, operation
of the compiler is not guaranteed.

Format:

#pragma inline_asm [(]function-name[(size=numeric-value)] [,...][)]

Note the following when you code inline assembly functions:
• Make sure that each label is a local label (begins with a question mark (?) and consists of 16 or fewer

characters).
• Do not code an instruction that automatically generates a literal pool. For details, see Example 2.
• Do not code an RTS (return) instruction at the end of a definition.
• Save and restore the contents of guaranteed registers.

Save/restore operations must also be performed even for the registers specified in the #pragma
global_register directive. Also note that the save/restore operations of the procedure register (PR) must
be coded because the contents of the register are overwritten every time a function is called.

extern void sub(void);

#pragma inline_asm (func(size=0x14))
static void func(void)
{
 .IMPORT _sub
 STS.L PR,@-R15

REJ06J0027-0100 /Rev.1.00 September 2007 Page 7 of 35

 MOV.L ?LOCAL1,R0
 JSR @R0
 NOP
 LDS.L @R15+,PR
 BRA ?LOCAL2
 NOP
 .ALIGN 4
?LOCAL1:
 .DATA.L _sub
?LOCAL2:
}

void g(void)
{
 func(void);
}

A C source file that includes assembly functions must be output in an assembly file format (code=asmcode).

Save/restore operations must be coded
when a function is called.

APPLICATION NOTE

Option settings in High-Performance Embedded Workshop (Renesas IDE hereafter):

REJ06J0027-0100 /Rev.1.00 September 2007 Page 8 of 35

Figure 1-2

If a function specified in the #pragma inline_asm directive causes a compilation error when the output of compiler
debug information is enabled, the C source program line information is output in Renesas IDE. You cannot use the line
information to jump to the assembly program location that caused the error. If you disable output of the compiler debug
information, the assembly program line information is displayed in Renesas IDE. Renesas recommends that you disable
output of the compiler debug information when you debug a function specified in the #pragma inline_asm directive.

Select only a file that references a function for
which "#pragma inline_asm" is specified, and
specify "code=asmcode".

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 9 of 35

Note that the interface between functions must comply with the generation rules for the C or C++ compiler (see Table 1-3
and Table 1-4).

Table 1-3 General rules for assigning arguments in C

Assignment rules
Arguments passed via registers

Registers for storing
arguments Supported data types

Arguments passed via stacks

R4 - R7 char, unsigned char, bool, short,
unsigned short, int, unsigned int,
long, unsigned long, float (when
the CPU is other than SH-2E,
SH2A-FPU, SH-4, or SH-4A), pointer,
pointer to a data member, and
references

FR4 - FR11 #1 When the CPU is SH-2E:
• float
• double (with the double=float

option specified)
When the CPU is SH2A-FPU, SH-4, or
SH-4A:
• float (with the fpu=double option

specified)
• double (with the fpu=single

option specified)
DR4 - DR10 #2 When the CPU is SH2A-FPU, SH-4,

SH-4A:
• double (without the fpu=single

option specified)
• float (with the fpu=double option

specified)

• Arguments other than those passed via
registers

• Arguments that cannot be stored in
registers R4 to R7 because other
arguments have already been stored in
these registers

• Arguments that cannot be stored in
registers FR4 (DR4) to FR11 (DR10)
because other arguments have already
been stored in these registers

• Arguments of types long long and
unsigned long long

• Arguments of types __fixed, long
__fixed, __accum, and long
__accum

Notes: #1: SH-2E, SH2A-FPU, SH-4, and SH-4A registers used for single-precision floating-point
numbers

#2: SH2A-FPU, SH-4, and SH-4A registers used for double-precision floating-point numbers

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 10 of 35

Table 1-4 Return value types and setting location in C programs

Return value types Setting location
(singed) char, unsigned char,
(singed) short, unsigned short,
(singed) int, unsigned int, long,
unsigned long, pointers, bool,
references, pointers to data members

R0: 32 bits
The contents of the upper three bytes of (signed) char, or
unsigned char and the contents of the upper two bytes of
(signed) short or unsigned short are not guaranteed.
However, when the rtnext option is specified, sign extension is
performed for (signed) char or (signed) short type, and zero
extension is performed for unsigned char or unsigned short
type.

float FR0: 32 bits
(1) For CPU is SH-2E

• Return value is float type.
• Return value is double type and double=float is specified.

(2) For SH2A-FPU,SH-4, or SH-4A
• Return value is float type and fpu=double is not specified.
• Return value is floating-point type and fpu=single is

specified.
double and long double Return value setting area (memory)

For SH2A-FPU, SH-4, or SH-4A
• Return value is double type and fpu=single is not specified.
• Return value is floating-point type and fpu=double is specified.

Structure, union, and class types, and
pointers to function members

Return value setting area (memory).

(signed) long long and unsigned
long long

Return value setting area (memory).

__fixed, long __fixed, __accum,
and long __accum

Return value setting area (memory).

Example 1: Specifying an inline assembly function
Source code:

/* Inline function definition */
/* FILE: inlasm.h */
#pragma inline_asm(rev4b(size=0x04))
static unsigned long rev4b(unsigned long p)
/* Function is declared as static */
{
 ; In a definition, comment lines begin with a semicolon, as in assembly language.
 SWAP.W R4,R0
 SWAP.B R0,R0
 ; Do not specify an RTS instruction at the end of the definition.
}
#pragma inline_asm(ovf)
static unsigned long ovf(void)
{
?LABEL001 ; In an inline assembly function, use local labels.
 ; Local label: String beginning with ? and consisting of 16 or fewer characters
 MOV R4,R0
 :
 CMP/EQ #1,R0
 BT ?LBABEL001
}

Example 2: Notes on automatic generation of a literal pool
Incorrect source code:

#pragma inline_asm(f)
/* Incorrect inline assembly function */

Correct source code 1:

#pragma inline_asm(f(size=0x0c))
/* Correct inline assembly function */

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 11 of 35

static unsigned long f(void)
{
 MOV.L ?LOCAL1,R0 ; Data is referenced from
 ; the local label.
 BRA ?LOCAL2 ; Jumps over data definitions.
 NOP
 .ALIGN 4
?LOCAL1:
 .DATA.L H'F0000000
?LOCAL2:
}

static unsigned long f(void)
{
 MOV.L #H'f0000000,R0

 ; This code causes the assembler to
 ; automatically generate a literal pool.
 ; As a result, the compiler-generated code
 ; might not be aligned correctly.
}

Correct source code 2:

#pragma inline_asm(f(size=0x06))
/* Correct inline assembly function */
static unsigned long f(void)
{
 MOV #-16,R0 ; H'FFFFFFF0
 SHLL8 R0
 SHLL16 R0
; No data is referenced from labels.
}

Example 3: Optimization with the "size" option specified

Evaluation at branches is further optimized by specifying the size.
Source code ("size" not specified)
#include <machine.h>
extern int a;

#pragma inline_asm (func)
static int func(void)
{
 NOP
}

void g(void)
{
 if (a) {
 func();
 }
 if (a) {
 nop();
 }
}

Expanded assembly code:
_g:
 MOV.L L16+2,R6 ; _a
 MOV.L @R6,R2 ; a
 TST R2,R2
 BF L20
 MOV.L L16+6,R3 ; L13
 JMP @R3
 NOP
L20:
 BRA L15
 NOP
L16:
 .RES.W 1
 .DATA.L _a
 .DATA.L L13
L15:
 NOP
 .ALIGN 4
 MOV.L L18+2,R6 ; _a
 BRA L17
 MOV.L @R6,R2 ; a
L18:
 .RES.W 1
 .DATA.L _a
L17:
 TST R2,R2
 BT L13

Source code ("size=0x20" specified)
#include <machine.h>
extern int a;

#pragma inline_asm (func(size=0x20))
static int func(void)
{
 NOP
}

void g(void)
{
 if (a) {
 func();
 }
 if (a) {
 nop();
 }
}

Expanded assembly code:
_g:
 MOV.L L15+2,R6 ; _a
 MOV.L @R6,R2 ; a
 TST R2,R2
 BT L13
 NOP
 .ALIGN 4
 MOV.L L15+2,R6 ; _a
 MOV.L @R6,R2 ; a
 TST R2,R2
 BT L13
 NOP
L13:
 RTS
 NOP
L15:
 .RES.W 1
 .DATA.L _a

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 12 of 35

 NOP
L13:
 RTS
 NOP

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 13 of 35

1.4 Generates or does not generate save and restore code at the start and end of
functions

Program execution speed and efficiency of ROM usage can be improved by deleting the register save operation at
function entry points and the register restore operation at function exit points. You can use the #pragma noregsave,
#pragma noregalloc, and #pragma regsave directives for fine-grained control of the saving and restoring of the
guaranteed registers listed in Table 1-5.

Table 1-5 Guaranteed registers that can be controlled by using "#pragma noregsave",

"#pragma noregalloc", and "#pragma regsave"

Register Explanation
R8 - R14 --
FR12 - FR15 SH-2E, SH2A-FPU, SH-4, and SH-4A registers used for single-precision floating-point

numbers
DR12 and DR14 SH2A-FPU, SH-4, and SH-4A registers used for double-precision floating-point

numbers

Specifying #pragma noregsave for frequently executed functions can reduce program size and improve execution
speed.

(1) The #pragma noregsave directive specifies that guaranteed registers are not saved and restored at the entry and
exit points of functions.

(2) The #pragma noregalloc directive is used to create an object that does not save/restore guaranteed registers at
function entry/exit points, and does not allocate guaranteed registers across function calls.

(3) The #pragma regsave directive is used to create an object which saves and restores guaranteed-registers at
function entry/exit points, and does not allocate guaranteed registers.

(4) #pragma regsave and #pragma noregalloc can be specified simultaneously for the same function. Such
overlapping specifications causes an object to be created in which all guaranteed-registers are saved and restored at
the function entry/exit points, and no guaranteed registers are allocated across function calls.

Table 1-6 Operation of "#pragma regsave", "#pragma noregsave", and "#pragma noregalloc"

#pragma Register save/restore operations Register use
#pragma noregsave Guaranteed registers are not saved

and restored.
Guaranteed registers are used.

#pragma noregalloc Guaranteed registers are not saved
and restored.

Guaranteed registers are not used across
multiple function calls.

#pragma regsave Guaranteed registers are saved and
restored.

Guaranteed registers are not used across
multiple function calls.
The frequency of using guaranteed registers
within one function is low.

#pragma regsave +
#pragma noregalloc

Guaranteed registers are saved and
restored.

Guaranteed registers are not used across
multiple function calls.
The frequency of using guaranteed registers
within one function is high.

A function for which #pragma noregsave is specified might not operate correctly if it is called from ordinary
functions. Make sure that a function for which #pragma is specified is called from one of the following types of
functions:

• Function for which #pragma regsave is specified
• Function for which #pragma noregalloc is specified and that is called from a function for which #pragma

regsave is specified

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 14 of 35

Before allowing a function for which the #pragma noregsave, #pragma noregalloc, or #pragma regsave
directive is specified to be called, make sure that the directive is specified for all instances of the function throughout the
project. Renesas recommends that you specify the directive in a common header file.

APPLICATION NOTE

Example 1:

For a function that does not return to the caller, the contents of registers do not need to be saved and restored. You
can therefore reduce object size and improve execution speed by specifying #pragma noregsave for such a
function.

/* main() does not return to caller */
void main(void)
{
 for(;;) {
 /* Processing */
 }
}

/* main() does not return to caller */
#pragma noregsave (main)
void main(void)
{
 for(;;) {
 /* Processing */
 }
}

Since control does not
exit from main(), it is
not necessary to save
and restore registers.

main()

Loop

: The contents of guaranteed registers might be different from the values stored at the entry point of main().

: The contents of guaranteed registers are the same as the values stored at the entry point of main().

main()

Loop
ループ

Save

Restore

Figure 1-3

Example 2:

If functions b1() and b2() use guaranteed registers, the contents of these registers are saved at the entry points
of the functions and restored at the exit points of the functions. For example, if function a() frequently calls
functions b1() and b2(), the guaranteed registers are also saved and restored frequently, lowering efficiency.
If function a() does not use guaranteed registers, functions b1() and b2(), the guaranteed registers need not be
saved and restored. If #pragma regsave is specified for function a(), the contents of guaranteed registers are
saved at the entry point and restored at the exit point of the function, but the guaranteed registers are not used
across multiple function calls. In addition, if #pragma noregsave is specified for functions b1() and b2(),
the guaranteed registers are never saved and restored for these functions. When #pragma directives are specified
in this way, guaranteed registers are saved and restored only for function a().
You can optimize the location of register save and restore operations as described above to decrease their
frequency.
Specifying #pragma noregsave together with #pragma regsave results in effective optimization because
the frequency of using guaranteed registers within a function increases. If you specify #pragma regsave, you
should also specify #pragma noregsave.

REJ06J0027-0100 /Rev.1.00 September 2007 Page 15 of 35

APPLICATION NOTE

Figure 1-4

a

b1 b2

regsave
+ noregalloc

noregsave

Controlling section (registers are
not used frequently)

Computing section (registers are
used frequently)

/* a() uses R8-R14 infrequently */
void a(void)
{
 b1() ;/* uses R8-R14 frequently */
 b2() ;/* uses R8-R14 frequently */
/* Processing is coded below */
 ...
}

#pragma regsave (a)
#pragma noregalloc (a)
#pragma noregsave (b1,b2)
/* a() uses R8-R14 infrequently */
void a(void)
{
 b1();/* uses R8-R14 frequently */
 b2();/* uses R8-R14 frequently */
/* Processing is coded below */
 ...
}

The values stored in
registers R8 to R14
at the entry point of
function a() are
restored unaltered at
the exit point of the
function.

a()

: The contents of registers R8 to R14 might differ from the values stored at the entry point of function a().

b1() b2() a() b1() b2()

Since registers R8 to
R14 are not used across
multiple function calls,
saving and restoring
these registers can be
omitted from functions
b1() and b2() without
affecting the processing
of function a().

Save

Save

Restore

Save

Restore

Restore

Save

Restore

: The contents of registers R8 to R14 are the same as the values stored at the entry point of function a().

REJ06J0027-0100 /Rev.1.00 September 2007 Page 16 of 35

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 17 of 35

Example 3:

When functions b1() and b2() use guaranteed registers, the contents of these registers are saved at the entry
points of the functions and restored at the exit points of the functions. For example, when functions b1() and
b2() are also frequently called from function c2(), which is called from function a(), the guaranteed registers
are also saved and restored frequently, lowering the efficiency of program execution.
If functions a() and c2() do not use the same guaranteed registers, functions b() and b2() do not require that
these registers be saved and restored. If you specify function a() in #pragma regsave and #pragma
noregalloc directives, the contents of the guaranteed registers are saved at the entry point and restored at the
exit point of function a(), and the guaranteed registers used by function a() are not used by other functions. If
you specify function c2() in the #pragma noregalloc directive, the guaranteed registers used by function c2()
are not used by other functions. If you specify functions b1() and b2() in the #pragma regsave directive,
you can suppress saving and restoring of the guaranteed registers used by these functions.
When the directive settings are specified as described above, guaranteed registers are saved and restored for
function a(), but are not saved and restored for functions b1() and b2(). Accordingly, you can reduce the
frequency of register save and restore operations by changing the register save and restore locations.

APPLICATION NOTE

/* c2() uses R8-R14 infrequently */
void c2(void)
{
 b2();/* uses R8-R14 frequently */
 /* Processing is coded below */
 ...
}

/* a() uses R8-R14 infrequently */
void a(void)
{
 b1();/* uses R8-R14 frequently */
 c2();/* uses R8-R14 infrequently */
}

#pragma regsave (a)
#pragma noregsave (b1,b2)
#pragma noregalloc (a,c2)
/* c2() uses R8-R14 infrequently */
void c2(void)
{
 b2();/* uses R8-R14 frequently */
 /* Processing is coded below */
 ...
}
/* a() uses R8-R14 infrequently */
void a(void)
{
 b1();/* uses R8-R14 frequently */
 c2();/* uses R8-R14 infrequently */
}

The values stored in
registers R8 to R14
at the entry point of
function a() are
restored unaltered
at the exit point of
the function.

a()

: The contents of registers R8 to R14 might differ from the values stored at the entry point of function a().

: The contents of registers R8 to R14 are the same as the values stored at the entry point of function a().

b1() c2() b2()

Since registers R8 to R14 are
not used across multiple function
calls, saving and restoring these
registers can be omitted from
function c2() without affecting
the processing of function b2().

Save

Restore

Save

Save

Restore

Restore

b1
1

b2
1

c2
1

a

Save

Restore

Controlling section (registers are
not used frequently)

Computing section (registers are
used frequently)

regsave
+ noregalloc

noregalloc

noregsave

Save

Restore

b1() c2() b2()a()

Figure 1-5

REJ06J0027-0100 /Rev.1.00 September 2007 Page 18 of 35

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 19 of 35

1.5 Allocates global variables to registers
You can use the #pragma global_register directive to allocate global variables to registers. By allocating global
variables to registers, you can reduce the number of load and store instructions.

You must specify the #pragma global_register directive in all files. Use the preinclude option to specify a
header file that contains the #pragma global_register declaration. This option specifies the directive in all files.
For details about how to specify the option settings in Renesas IDE, see Figure 1-6.

For the standard library as well, you must specify the #pragma global_register directive. Use the preinclude
option to specify a header file that contains the #pragma global_register declaration. For details about how to
specify the option settings in Renesas IDE, see Figure 1-7.

Format:

#pragma global_register [(]variable-name=register-name[,...][)]

• For variable-name, you can specify a global variable of the integer, float, or pointer type. If the CPU is not
SH2A-FPU, SH-4, or SH-4A, you can specify a global variable of type double when the double=float
option is specified.

• For register-name, you can specify R8 to R14, FR12 to FR15 (when the CPU is SH-2E, SH2A-FPU, SH-4, or
SH-4A), DR12, or DR14 (when the CPU is SH2A-FPU, SH-4, or SH-4A).
 Types of variables that can be allocated to registers FR12 to FR15

(i) SH-2E
- float type
- double type (when the double=float option is specified)

(ii) SH2A-FPU, SH-4, and SH-4A
- float type (when the fpu=double option is not specified)
- double type (when the fpu=single option is not specified)

 Types of variables that can be allocated to registers DR12 to DR14
(i) SH2A-FPU, SH-4, and SH-4A

- float type (when the fpu=double option is specified)
- double type (when the fpu=single option is not specified)

• You can neither set initial values for the variables nor use the variables for address reference.
• If the #pragma global_register directive settings are the same for all files and the library, correct

operation cannot be guaranteed.
• You can specify only static data members. You cannot specify non-static data members.

APPLICATION NOTE

Option settings in Renesas IDE:

REJ06J0027-0100 /Rev.1.00 September 2007 Page 20 of 35

Figure 1-6

Figure 1-7

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 21 of 35

Example:
Source code:
#pragma global_register(x=R13,y=R14)

int x;
char *y;

void func1(void)
{
 x++;
}

void func2(void)
{
 *y=0;
}

void func(int a)
{
 x = a;
 func1();
 func2();
}
Expanded assembly code:

_func1:
 RTS
 ADD #1,R13
_func2:
 MOV #0,R2 ; H'00000000
 RTS
 MOV.B R2,@R14 ; *(y)
_func:
 STS.L PR,@-R15
 BSR _func1
 MOV R4,R13
 BRA _func2
 LDS.L @R15+,PR

APPLICATION NOTE

1.6 Specifies GBR base variables
A GBR base variable is a variable for which a GBR base is specified and which can be accessed GBR relative access code.
The use of a relative address means that the variable address does not have to be loaded, resulting in a smaller object.

Note, however, that the number and size of variables that can be used as GBR base variables are limited. Specify as GBR
base variables only those variables that will be used frequently.

Format:

#pragma gbr_base (variable-name [,variable-name...])
#pragma gbr_base1 (variable-name [,variable-name...])

The #pragma gbr_base directive allocates the specified variables in the $G0 section, which occupies relative byte
positions 0 to 127 from the address indicated by GBR.

The #pragma gbr_base1 directive allocates the specified variables in the $G1 section, which occupies relative byte
positions 128 to 1020 from the address indicated by GBR. However, in this section, the maximum byte position at which
a variable can be allocated depends on the data type. For a variable of type char or unsigned char, the maximum
byte position is 255. For a variable of type unsigned short, the maximum byte position is 510. For a variable of type
int, unsigned int, long, unsigned long, float, or double, the maximum byte position is 1020.

$G0 section

$G1 section

MOV.B instruction
can be used MOV.W

instruction can
be used

127
128

255

510

1020

MOV.B@(disp,GBR),R0

MOV.W@(disp,GBR),R0

MOV.L instruction
can be used

MOV.L@(disp,GBR),R0

0

Figure 1-8

Variables that are frequently accessed or used for bitwise operations should be allocated in the $G0 section if at all
possible. An object that accesses data in the $G0 section is faster and smaller than an object that accesses data in the $G1
section (see Example 2 below).

The #pragma gbr_base and #pragma gbr_base1 directives allocate the specified variables in the appropriate
sections in the order in which the variables are declared. Since alternately declaring variables of different sizes wastes
space, as much as possible, try to declare variables of the same size together.

If GBR base variables overflow the appropriate area, the following error occurs during linkage:

 L2330 (E)Relocation size overflow

If this error occurs, delete specification of the relevant variables from the #pragma gbr_base or #pragma
gbr_base1 directive.

To use the #pragma gbr_base directive, use a linkage editor to set the $G0 section. To use the #pragma
gbr_base1 directive, use a linkage editor to set the $G0 and $G1 sections. When you set the $G1 section, make sure
that the address of the section is the start address of the $G0 section + 0x80.

Note that the same specification of the #pragma gbr_base and #pragma gbr_base1 directives should be used
throughout the project. The preinclude option is useful for ensuring the same specification throughout the project.

The variables specified in the #pragma gbr_base or #pragma gbr_base1 directive are allocated in either the $G0
or $G1 section whether or not an initial value is specified. When the compiler generates an object, the compiler treats the
$G0 and $G1 sections as initialized data. The initialized data (variables) has initial values. Although the initial values

REJ06J0027-0100 /Rev.1.00 September 2007 Page 22 of 35

APPLICATION NOTE

must be prepared in the ROM area, the data must be stored in the RAM area because the data might change during
program execution.

Therefore, after an initial value is set in the ROM area, the initial value must be copied from the ROM area to the RAM

ea for the $G0 section +

 you can use GBR base variables, you must set the start address of the RAM area for copying the $G0 section in the

e $G1 section in the RAM area.

area. To set an initial value in the ROM area and to access data with an address in the RAM area, you must use a linkage
editor to specify the appropriate ROM support option. For the $G0 and $G1 sections, you must also add processing that
copies the initial data from the ROM area to the RAM area, and use a linkage editor to specify the appropriate ROM
support option. For details, see 4.Memory Initialization in the manual SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Introduction guide] Sample file Guide for SH-1, SH-2, and SH-2A.

Make sure that the address of the RAM area for the $G1 section is the address of the RAM ar
0x80.

Before
GBR register. You can use intrinsic function set_gbr() to perform this operation.

The following is an example of code that copies the $G0 section in the ROM area to th
Initialization program:

include <machine.h> #

* Functions executed / before main */

top("$RG0")); /* Sets the start address of $RG0 section in the GBR register */

void PowerON_Reset(void)
{

 ...
set_gbr(__sec
 ...
}

he following explains the tasks required before you can use the GBR base. T

Select flags and variables

Create a #pragma file

Perform compilation and linkage

Specify #pragma gbr_base/gbr_base1

Estimate the total size of the specified
variables

Create the GBR initialization code

 that will be accessed frequently as the
candidates for specification in #pragma gbr_base.

Confirm that the specified variables are appropriately located in the
$G0 and $G1 sections (in $G1, this means that the appropriate
MOV instruction can be used).

Perform initialization before the first gbr_base access.

Use a linkage editor to set the address of the $G1 section to the
start address of the $G0 section + 0x80.

Figure 1-9

If you specify the #pragma gbr_base or #pragma directive, specify the gbr=user option (Figure

 gbr_base1
1-10). If you do not specify the option, a warning is output for the directive and specification of the directive is ignored.

REJ06J0027-0100 /Rev.1.00 September 2007 Page 23 of 35

APPLICATION NOTE

Note that if you select User(gnenrate logic operation) from the GBR relative operation drop-down list, the
gbr=user and logic_gbr options are specified. If these options are specified, GBR relative logical operation
instructions might be used for operations that do not use GBR base variables.

Figure 1-10

Example 1:

The following is an example of code generated when the gbr=user compiler option is specified.
Source code with #pragma gbr_base not
specified:

struct BitField {
 unsigned char a:1;
 unsigned char b:1;
 unsigned char c:1;
 unsigned char d:1;
 unsigned char e:1;
 unsigned char f:1;
 unsigned char g:1;
 unsigned char h:1;
} bitf;

struct {
 char c;
 short s;
 long l;
} x, y;

void f (void)
{
 bitf.a = 1;
 bitf.b = 0;

 if (bitf.c) {
 bitf.d = 1;
 } else {
 bitf.e = 1;
 }

 x.c = y.c;
 x.s = y.s;
 x.l = y.l;
}

Source code with #pragma gbr_base specified:
#pragma gbr_base (bitf)
#pragma gbr_base1 (x,y)

struct BitField {
 unsigned char a:1;
 unsigned char b:1;
 unsigned char c:1;
 unsigned char d:1;
 unsigned char e:1;
 unsigned char f:1;
 unsigned char g:1;
 unsigned char h:1;
} bitf;

struct {
 char c;
 short s;
 long l;
} x, y;

void f (void)
{
 bitf.a = 1;
 bitf.b = 0;

 if (bitf.c) {
 bitf.d = 1;
 } else {
 bitf.e = 1;
 }

 x.c = y.c;
 x.s = y.s;
 x.l = y.l;
}

REJ06J0027-0100 /Rev.1.00 September 2007 Page 24 of 35

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 25 of 35

Expanded assembly code:
_f:
 MOV.L L14,R5 ; _bitf
 MOV.B @R5,R0 ; (part of)bitf
 AND #191,R0
 OR #128,R0
 TST #32,R0
 BT/S L12
 MOV.B R0,@R5 ; (part of)bitf
 BRA L13
 OR #16,R0
L12:
 OR #8,R0
L13:
 MOV.L L14+4,R7 ; _y
 MOV.B R0,@R5 ; (part of)bitf
 MOV.L L14+8,R6 ; _x
 MOV.B @R7,R1 ; y.c
 MOV.W @(2,R7),R0 ; y.s
 MOV.L @(4,R7),R4 ; y.l
 MOV.B R1,@R6 ; x.c
 MOV.W R0,@(2,R6) ; x.s
 RTS
 MOV.L R4,@(4,R6) ; x.l
L14:
 .DATA.L _bitf
 .DATA.L _y
 .DATA.L _x
 .SECTION B,DATA,ALIGN=4
_bitf: ; static: bitf
 .RES.B 1
 .RES.B 1
 .RES.W 1
_x: ; static: x
 .RES.L 2
_y: ; static: y
 .RES.L 2

Expanded assembly code:
_f:
 MOV #_bitf-(STARTOF $G0),R0
 AND.B #191,@(R0,GBR); (part of)bitf
 OR.B #128,@(R0,GBR); (part of)bitf
 MOV.B @(_bitf-(STARTOF $G0),GBR),R0
 ; (part of)bitf
 TST #32,R0
 BT L12
 BRA L13
 OR #16,R0
L12:
 OR #8,R0
L13:
 MOV.B R0,@(_bitf-(STARTOF $G0),GBR)
 ; (part of)bitf
 MOV.B @(_y-(STARTOF $G0),GBR),R0; y.c
 MOV.B R0,@(_x-(STARTOF $G0),GBR); x.c
 MOV.W @(_y-(STARTOF $G0)+2,GBR),R0; y.s
 MOV.W R0,@(_x-(STARTOF $G0)+2,GBR); x.s
 MOV.L @(_y-(STARTOF $G0)+4,GBR),R0; y.l
 RTS
 MOV.L R0,@(_x-(STARTOF $G0)+4,GBR); x.l
 .SECTION $G0,DATA,ALIGN=4
_bitf: ; static: bitf
 .DATAB.B 1,0
 .SECTION $G1,DATA,ALIGN=4
_x: ; static: x
 .DATAB.L 2,0
_y: ; static: y
 .DATAB.L 2,0

Example 2 (comparison of gbr_base and gbr_base1):

The following is an example of code generated when the gbr=user compiler option is specified. If #pragma
gbr_base is specified to allocate variables in the $G0 section, literal access does not occur.
Source code with #pragma gbr_base1 specified:
#pragma gbr_base1 (bitf)

struct BitField {
 unsigned char a:1;
 unsigned char b:1;
 unsigned char c:1;
 unsigned char d:1;
 unsigned char e:1;
 unsigned char f:1;
 unsigned char g:1;
 unsigned char h:1;
} bitf;

void f (void)
{
 bitf.a = 1;
 bitf.b = 0;
}
Expanded assembly code:

_f:
 MOV.W L11,R0 ; _bitf-(STARTOF $G0)
 AND.B #191,@(R0,GBR);(part of)bitf
 RTS
 OR.B #128,@(R0,GBR);(part of)bitf
L11:
 .DATA.W _bitf-(STARTOF $G0)
 .SECTION $G1,DATA,ALIGN=4
_bitf: ; static: bitf
 .DATAB.B 1,0

Source code with #pragma gbr_base specified:
#pragma gbr_base (bitf)

struct BitField {
 unsigned char a:1;
 unsigned char b:1;
 unsigned char c:1;
 unsigned char d:1;
 unsigned char e:1;
 unsigned char f:1;
 unsigned char g:1;
 unsigned char h:1;
} bitf;

void f (void)
{
 bitf.a = 1;
 bitf.b = 0;
}
Expanded assembly code:

_f:
 MOV #_bitf-(STARTOF $G0),R0
 AND.B #191,@(R0,GBR); (part of)bitf
 RTS
 OR.B #128,@(R0,GBR); (part of)bitf
 .SECTION $G0,DATA,ALIGN=4
_bitf: ; static: bitf
 .DATAB.B 1,0

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 26 of 35

2. Other Useful Extended #pragma Directives
This chapter explains extended #pragma directives that provide benefits other than an improvement in performance.
Table 2-1 lists the extended #pragma directives explained in this chapter.

Table 2-1 Other useful #pragma directives

No. #pragma Explanation See section
1 #pragma section Switches sections 2.1
2 #pragma bit_order Switches the order of bit fields 2.2
3 #pragma pack

#pragma unpack
Specifies the boundary alignment value for
structures, unions, and classes

2.3

2.1 Switches sections
You can use the #pragma section directive to replace section names output by the compiler.

For example, you might want to allocate modules in separate sections, such as internal and external RAM. In this case,
assign names to these sections, and use a linkage editor to specify the addresses in the sections at which you want to
allocate the modules.

If you specify the #pragma section directive without specifying a section name, the default section name is used.

Format:

#pragma section [{name|numeric-value}]

Table 2-2 lists the default section names and the format of the new names created by the #pragma section directive.

Table 2-2 Default section names and format of replacement names

 Section Specification Default name New name
1 Program section P PXX
2 Const section C CXX
3 Data section D DXX
4 Uninitialized data section

#pragma section XX

B BXX

Instead of the #pragma section directive, you can also use the section option to change the default section names.

Format of the section option:

SEction = <sub>[,...]
 <sub>: { Program = section-name |
 Const = section-name |
 Data = section-name |
 Bss = section-name }

APPLICATION NOTE

Option settings in Renesas IDE:

REJ06J0027-0100 /Rev.1.00 September 2007 Page 27 of 35

Figure 2-1

Select one of the following:
- Program section (P)
- Const section (C)
- Data section (D)
- Uninitialized data section (B)

Specify the new section name.

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 28 of 35

Example 1:
Source code:

#pragma section abc

int a; /* a is allocated in section Babc */
const int c=1; /* c is allocated in section Cabc */
void f(void) /* f is allocated in section Pabc */
{
 a=c;
}

#pragma section

int b; /* b is allocated in section B */
void g(void) /* g is allocated in section P */
{
 b=c;
}

Example 2:

When section=program=PX,const=CX,bss=BX is specified:
Source code:

#pragma section abc

int a; /* a is allocated in section BXabc */
const int c=1; /* c is allocated in section CXabc */
void f(void) /* f is allocated in section PXabc */
{
 a=c;
}

#pragma section

int b; /* b is allocated in section BX */
void g(void) /* g is allocated in section PX */
{
 b=c;
}

APPLICATION NOTE

2.2 Switches the order of bit fields
You can use the #pragma bit_order directive to change the order of bit fields. Since the bit field allocation rule
might differ depending on the microcomputer, you can use this functionality to improve portability of programs between
different microcomputers.

Instead of using the #pragma bit_order directive, you can use an option to change the order of bit fields. If you
specify both the #pragma bit_order directive and its equivalent option, the directive takes precedence.

Format:

#pragma bit_order [{left|right}]

When left is specified, bit field members are assigned from the upper-bit side. When right is specified, members are
assigned from the lower-bit side. The default is left. However, if neither left nor right is specified in the directive
when the option is specified, the option takes effect in the subsequent lines.

Example 1:

This example illustrates how the #pragma bit_order left and #pragma bit_order right directives
allocate members.

Figure 2-2

Example 2:

If type specifiers of the same size are specified in succession, members are allocated in the same area to the extent
possible.

#pragma bit_order left
struct {
 char a:2;
 unsigned char b:3;
} x;

#pragma bit_order right
struct {
 char a:2;
 unsigned char b:3;
} x;

Left-to-right member allocation: Right-to-left member allocation:

 x.a x.b
7 6 5 4 3 2 1 0

Empty x.a x.b
7 6 5 4 3 2 1 0
Empty

Resulting data order: Resulting data order:

#pragma bit_order left
struct {
 unsigned char a:2;
 unsigned char b:3;
} x;

#pragma bit_order right
struct {
 unsigned char a:2;
 unsigned char b:3;
} x;

Left-to-right member allocation: Right-to-left member allocation:

 x.a x.b
7 6 5 4 3 2 1 0

 x.a x.b
7 6 5 4 3 2 1 0
Empty

Resulting data order: Resulting data order:

Empty

Figure 2-3

REJ06J0027-0100 /Rev.1.00 September 2007 Page 29 of 35

APPLICATION NOTE

Example 3:

If type specifiers of different sizes are specified in succession, members are allocated in different areas.

#pragma bit_order left
struct {
 int a:5;
 char b:4;
} x;

#pragma bit_order right
struct {
 int a:5;
 char b:4;
} x;

Left-to-right member allocation: Right-to-left member allocation:

31 0

Resulting data order: Resulting data order:

x.a

x.b

0 7

Empty
31 0

x.a

x.b

07

Empty

Empty Empty

Figure 2-4

Example 4:

Even when type specifiers of the same size are specified in succession, if the remaining area becomes smaller than
the next bit field member, the remaining area is not used and the member is allocated in the next area.

Figure 2-5

#pragma bit_order left
struct {

char a:5;
char b:4;

} x;

#pragma bit_order right
struct {
 char a:5;
 char b:4;
} x;

Left-to-right member allocation: Right-to-left member allocation:

Resulting data order: Resulting data order:

x.a

x.b

7 6 5 4 3 2 1 0
Empty

7 6 5 4 3 2 1 0
Empty

Empty

Empty x.b

x.a
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

REJ06J0027-0100 /Rev.1.00 September 2007 Page 30 of 35

APPLICATION NOTE

Example 5:

If a bit field member with a bit width of 0 appears, the subsequent members are forcibly allocated in the next area.

#pragma bit_order left
struct {

char a:5;
char :0;
char b:3;

} x;

#pragma bit_order right
struct {
 char a:5;
 char :0;
 char b:3;
} x;

Left-to-right member allocation: Right-to-left member allocation:

Resulting data order: Resulting data order:

x.a
7 6 5 4 3 2 1 0
Empty

x.b Empty
7 6 5 4 3 2 1 0

Empty x.a
7 6 5 4 3 2 1 0

Empty x.b
7 6 5 4 3 2 1 0

Figure 2-6

Example 6:

The default byte order is big endian. Some CPUs provide an option for changing the endian byte order. If little
endian is specified (endian=little), bit field members in each area are allocated in reverse order of the
big-endian order.

#pragma bit_order left
struct {

int a:5;
int b:4;

} x;

#pragma bit_order right
struct {
 int a:5;
 int b:4;
} x;

Left-to-right member allocation: Right-to-left member allocation:

Resulting data order: Resulting data order:

Big endian

Little endian

31 0
x.a x.b Empty

31 0
x.ax.b Empty

x.aEmpty

x.b

x.a Empty

x.b

Empty Empty

Byte order reversed 2 1 3 4

3 4 2 1

21 3 4

34 2 1

Figure 2-7

Note:

Care is required for the structure for I/O registers in the iodefine.h file created in Renesas IDE. If you use the
#pragma bit_order directive or its equivalent option to specify that allocation of bit field members is to start with
the lowest-order bit, the structure members will not indicate correct addresses.

Specify #pragma bit_order left at the beginning of the iodefine.h file and #pragma bit_order at the end
of the file.

/* iodefine.h */
#pragma bit_order left

 ...

#pragma bit_order

REJ06J0027-0100 /Rev.1.00 September 2007 Page 31 of 35

APPLICATION NOTE

2.3 Specifies the boundary alignment value for structures, unions, and classes
For SH microcomputers, when one instruction is used to access a 4-byte data item, the data item must be allocated at an
address that is a multiple of four. Similarly, when one instruction is used to access a 2-byte data item, the data item must
be allocated at an address that is a multiple of two. Data items allocated in this manner are aligned on the applicable byte
boundary.

For example, when data items are allocated at addresses that are a multiple of four, the data items are aligned on a 4-byte
boundary. For details about the byte boundary for each data type, see 10.1.2 Internal Data Representation in the manual
Compiler User Manual.

If 1-byte, 2-byte, and 4-byte members all exist in a structure, union, or class, each member uses its respective byte
boundary, in which case padding areas might arise between members.

Soruce code:
#pragma pack 4
struct {
 char a;
 int b;

REJ06J0027-0100 /Rev.1.00 September 2007 Page 32 of 35

} obj;

obj.a
obj.b
Empty area

A padding area
occurs to fit the data
size to the boundary.
As a result, the
structure becomes 8
bytes.

Figure 2-8

In some types of programs, such as communication programs, you might not want structures to have padding areas. In
these cases, you can specify the #pragma pack 1 directive to align structure members on a 1-byte boundary. No
padding areas are created in a structure when members are aligned on a 1-byte boundary. Note, however, that because all
members in the structure are accessed on a byte basis (byte access), program size might increase. Also note that a member
in the structure cannot be accessed by using a pointer. If you attempt to do so, a warning is output.

Instead of using the #pragma pack directive, you can also use the pack option, which allows you to specify the byte
boundary for the structures in each file. If you specify both the #pragma pack directive and the pack option, the
directive takes precedence.

Format:

#pragma pack {1|4}
#pragma unpack

The following table explains how these directives specify the byte boundary.

Table 2-3 Byte boundary for the members of a structure, union, or class

Extention and Member Type #pragma pack
1

#pragma pack
4

#pragma unpack
(or not specified)

[unsigned]char 1 1 1
[unsigned]short or __fixed 1 2 Same as the pack

option
[unsigned]int, [unsigned]long,
[unsigned]long long, long __fixed,
__accum, long, __accum, floating-point type, or
pointer type

1 4 Same as the pack
option

Structure, union, or class whose byte boundary is 1 1 1 1
Structure, union, or class whose byte boundary is 2 1 2 Same as the pack

option
Structure, union, or class whose byte boundary is 4 1 4 Same as the pack

option

APPLICATION NOTE

Example:

This example shows how structure members are allocated.
Source code with "#pragma pack 4" specified:
#pragma pack 4
struct {
 char a;
 int b;
} obj;

int func(void)
{
 return obj.b;
}

Expanded assembly code:

_func:
 MOV.L L11+2,R6 ; _obj
 RTS
 MOV.L @(4,R6),R0 ; obj.b

REJ06J0027-0100 /Rev.1.00 September 2007 Page 33 of 35

L11:
 .RES.W 1
 .DATA.L _obj
 .SECTION B,DATA,ALIGN=4
_obj: ; static: obj
 .RES.L 2

Source code with "#pragma pack 1" specified:
#pragma pack 1
struct {
 char a;
 int b;
} obj;

int func(void)
{
 return obj.b;
}

Expanded assembly code:

_func:
 MOV.L L11+2,R3 ; H'00000001+_obj
 MOV.B @R3+,R2 ; (part of)obj.b
 MOV.B @R3+,R7 ; (part of)obj.b
 SHLL8 R2
 MOV.B @R3+,R5 ; (part of)obj.b
 EXTU.B R7,R7
 OR R2,R7
 SHLL8 R7
 EXTU.B R5,R4
 MOV.B @R3,R3 ; (part of)obj.b
 OR R7,R4
 SHLL8 R4
 EXTU.B R3,R0
 RTS
 OR R4,R0
L11:
 .RES.W 1
 .DATA.L H'00000001+_obj
 .SECTION B,DATA,ALIGN=4
_obj: ; static: obj
 .RES.B 5

Members are
accessed by byte
access.

A padding area
occurs to fit the data
size to the boundary.
As a result, the
structure becomes 8
bytes.

obj.a
obj.b
Empty area obj.a obj.b

No padding areas
occur because a
one-byte boundary is
used. The structure
becomes 5 bytes.

Note:

Care is required for the structure for I/O registers in the iodefine.h file created in Renesas IDE. If you use the
#pragma pack directive or its equivalent option to specify a 1-byte boundary, the structure members will not indicate
correct addresses. Specify #pragma pack 4 at the beginning of the iodefine.h file and #pragma unpack at the
end of the file.

/* iodefine.h */
#pragma pack 4

 ...

#pragma unpack

APPLICATION NOTE

REJ06J0027-0100 /Rev.1.00 September 2007 Page 34 of 35

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Sep.01.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

REJ06J0027-0100 /Rev.1.00 September 2007 Page 35 of 35

	1. Extended #pragma Directives for Reducing Program Size and Improving Execution Speed
	1.1 Specifies address range
	1.2 Performs inline expansion of functions
	1.3 Expands an assembly-language description function
	1.4 Generates or does not generate save and restore code at the start and end of functions
	1.5 Allocates global variables to registers
	1.6 Specifies GBR base variables

	2. Other Useful Extended #pragma Directives
	2.1 Switches sections
	2.2 Switches the order of bit fields
	2.3 Specifies the boundary alignment value for structures, unions, and classes

	 Website and Support <website and support,ws>

