

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 1 of 29

SuperH RISC engine C/C++ Compiler Package
Application notes: [Introduction guide]Sample file Guide

for SH-1, SH-2, and SH-2A
This document explains precautions for generating files and performing initial
coding in High-performance Embedded Workshop (herein as HEW), for SuperH
RISC engine C/C++ compiler V.9.

Table of contents

1. Generating a Sample Program ... 2
1.1 Project Generator Settings.. 2
(1) Create a new workspace... 2
(2) Select the CPU.. 3
(3) Optional settings ... 4
(4) Set the generation file ... 5
(5) Set the standard library ... 6
(6) Set the stack area ... 7
(7) Set the vector .. 8
(8) Set the debugger target .. 9
(9) Change the name of the generation file.. 9
1.2 List of Generation Files ... 10

2. Reset Processing .. 12
2.1 Reset Vector Table (vecttbl.c)... 12
2.2 Setting Stack Size (stacksct.h).. 14
2.3 Reset Function (resetprg.c)... 15

3. Non-reset Exception Processing... 17
3.1 Non-reset Exception Processing Vector Table (vecttbl.c)... 17
3.2 Vector Base Register (VBR) Settings (set_vbr function) .. 18
3.3 Exception Processing Function (intprg.c, vect.h).. 19

4. Memory Initialization.. 20
4.1 Memory Initialization Function _INTSCT (dbsct.c).. 20
4.2 If Initialized Data Areas Other Than the D Section Exist .. 21
4.3 If Unitialized Data Areas Other Than the B Section Exist ... 21
4.4 ROM Support Functionality ... 22

5. Low-level Interface Routine Settings... 23
5.1 Memory Management (sbrk.c, sbrk.h) .. 23
5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h) ... 24

6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function) 25

7. Frequently Asked Questions ... 27
7.1 End Processing ... 27
7.2 C++ Functions and Reciprocal C Function Calls .. 27
Website and Support <website and support,ws>... 28

APPLICATION NOTE

1. Generating a Sample Program

1.1 Project Generator Settings
This document explains the sample program generated when the following operations are performed in the project
generator (started in HEW by choosing New workspace from the File menu). Note that SH7046 selected for CPU
types is selected for illustration purpose only.

(1) Create a new workspace
For the project type, choose Application.

Figure 1-1

REJ06J0010-0100/Rev.1.00 June 2007 Page 2 of 29

APPLICATION NOTE

(2) Select the CPU
For CPU Series, select SH-2.

For CPU Type, select SH7046.

Figure 1-2

Notes:
• The CPU Series setting is reflected in the CPU page of the SuperH RISC engine Standard Toolchain dialog box

(herein as Toolchain dialog box).
• The CPU Type setting is reflected in the contents of intprg.c, vecttbl.c, iodefine.h, and vect.h,

and the memory placement setting for the optimization linkage editor. If the CPU to be selected does not exist,
use DeviceUpdater to add the CPU type. DeviceUpdater can be downloaded from the Renesas web site.

REJ06J0010-0100/Rev.1.00 June 2007 Page 3 of 29

APPLICATION NOTE

(3) Optional settings
Proceed with the default settings.

Figure 1-3

Note:
• The settings in this dialog box specify the options set for all projects. The setting items are reflected in the CPU

page of the Toolchain dialog box. The items that can be selected differ depending on the selection from (2)
Select the CPU.

REJ06J0010-0100/Rev.1.00 June 2007 Page 4 of 29

APPLICATION NOTE

(4) Set the generation file
Select Use I/O library.

Specify 20 for Number of I/O Streams.

Figure 1-4

Notes:
• When Use I/O library is selected, the low-level I/O-related interface routines (open, close, write, read,

and lseek) and sample programs (lowlvl.src, lowsrc.c, and lowsrc.h) for the standard library
initialization programs (_INIT_IOLIB and _CLOSEALL) are generated.

• The value set for Number of I/O Streams is reflected in lowsrc.h.
• When Use Heap Memory is selected, sample programs (sbrk.h and sbrk.c) for the low-level

memory-management interface routine (sbrk) are generated.
• The value set for Heap Size is reflected in sbrk.h.
• The Generate main() Function setting is used to generate the main function (C source file or C++ source file)

and abort function template.
• When I/O Register Definition File is selected, iodefine.h is generated.
• The Generate Hardware Setup Function setting is used to generate hwsetup.c, hwsetup.cpp, and

hwsetup.src.
In the hardware setup function, perform the necessary hardware initialization processing for the target system,
including bus state controller (BSC) initialization and serial initialization. Note that if the C/C++ languages are
used for programming, neither the languages nor the compile option can control when a stack is used. As such,
when a stack area is reserved in SDRAM or other memory that requires initialization, the memory may end up
being accessed before initialization. In this case, use assembly language to perform memory initialization before
program execution in C.

REJ06J0010-0100/Rev.1.00 June 2007 Page 5 of 29

APPLICATION NOTE

(5) Set the standard library
Proceed with the default settings.

Figure 1-5

Notes:
• This dialog box is used to select the library to be configured by the standard library configuration tool.
• The settings in this dialog box are reflected in the Standard Library page of the Toolchain dialog box.

REJ06J0010-0100/Rev.1.00 June 2007 Page 6 of 29

APPLICATION NOTE

(6) Set the stack area
Proceed with the default settings.

Figure 1-6

Notes:
• The Stack Pointer Address setting is reflected in the S section settings in the optimization linkage editor.
• The Stack Size setting is reflected in stacksct.h.

Note that when Vector Definition Files is selected in (7) Set the vector, stacksct.h is not generated.

REJ06J0010-0100/Rev.1.00 June 2007 Page 7 of 29

APPLICATION NOTE

(7) Set the vector
Proceed with the default settings.

Figure 1-7

Note:
• When Vector Definition Files is selected, intprg.c, resetprg.c, stacksct.h, vect.c, and vect.h

are generated.

REJ06J0010-0100/Rev.1.00 June 2007 Page 8 of 29

APPLICATION NOTE

(8) Set the debugger target
Proceed with the default settings.

Figure 1-8

(9) Change the name of the generation file
Select Finish.

Figure 1-9

REJ06J0010-0100/Rev.1.00 June 2007 Page 9 of 29

APPLICATION NOTE

1.2 List of Generation Files
The sample files automatically generated in the project generator are as follows.

Table 1-1 List of auto-generated sample files (1)

lowlvl.src I/O low-level interface routine
Called from low-level interface routines (write and read), in which _charput and _charget are defined. •

• This program only runs on the simulator.
• Generated according to the (4) Use I/O library specification.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

dbsct.c Specification of memory initialization target
• Targets for RAM initialization and transfer processing from ROM to RAM areas is defined.

For details, see 4.1 Memory Initialization Function _INTSCT (dbsct.c).

intprg.c Interrupt function
• Defines the interrupt function (dummy).
• Generated according to the (7) Vector Definition Files specification.

For details, see 3.3 Exception Processing Function (intprg.c, vect.h).

lowsrc.c I/O low-level interface routine
Defines the low-level interface routines (write, read, open, close, and lseek). •

• This program is for simulators that only support standard I/O functions.
• Generated according to the (4) Use I/O library specification.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

resetprg.c Reset function
Defines the reset function (PowerON_Reset_PC). •

• Generated according to the (7) Vector Definition Files specification.

For details, see 2.3 Reset Function (resetprg.c).

sbrk.c Low-level interface routine for memory management
Defines the low-level interface routine for memory management (sbrk). •

• Generated according to the (4) Use Heap Memory usage specification.

For details, see 5.1 Memory Management (sbrk.c, sbrk.h).

test.c

(test.cpp)
Main routine
• Defines the main function. Also defines the abort function when C++ is used.
• The file name is that specified in (1) Project Name.

vecttbl.c Vector table
• Defines the exception processing vector table.
• Generated according to the (7) Vector Definition Files.

For details, see 2.1 Reset Vector Table (vecttbl.c).

lowsrc.h I/O low-level function header
Defines the IOSTREAM macro that specifies the file handler count (number of files that can be used concurrently). •

• Generated according to the (4) Use I/O library specification.
• Reflected in the value set for (4) Number of I/O Streams.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

REJ06J0010-0100/Rev.1.00 June 2007 Page 10 of 29

APPLICATION NOTE

Table 1-2 List of auto-generated sample files (2)
sbrk.h Low-level used header for memory management

• Defines the HEAPSIZE macro that specifies the overall size of the heap area.
• Generated according to the (4) Use Heap Memory specification.
• Reflected in the value set for (4) Heap Size.

For details, see 5.1 Memory Management (sbrk.c, sbrk.h).

stacksct.h Stack section size header
• Defines the size of the stack section.
• Generated according to the (7) Vector Definition Files specification.
• Reflected in the value set for (6) Stack Size.

For details, see 2.2 Setting Stack Size (stacksct.h).

typedefine.h Type alias declaration header
• Defines the type alias declaration.

vect.h Vector table header
• Defines the prototype declaraction for the reset function and interrupt function.
• Specifies #pragma interrupt for the interrupt function.
• Generated according to the (7) Vector Definition Files specification.

For details, see 3.3 Exception Processing Function (intprg.c, vect.h).

REJ06J0010-0100/Rev.1.00 June 2007 Page 11 of 29

APPLICATION NOTE

2. Reset Processing
The following explains the operations once power-on reset is performed for the sample program generated by HEW.

2.1 Reset Vector Table (vecttbl.c)
When power-on reset is performed, the following is performed on the CPU.

1. The initial value (execution start address) of the program counter (PC) is taken from the exception processing vector
table.

2. The initial value of the stack pointer (SP) is taken from the exception processing vector table.
3. The vector base register (VBR) is cleared to H'00000000, and the interrupt mask bit (I3 to I0) of the status

register (SR) is set to H'F (B'1111).
4. The values taken from each exception processing vector table are set with each PC and SP, and program execution

starts.

The exception processing vector table is a data table from which the CPU obtains address information for the jump
destination for a given exception cause, when exception processing occurs. During reset exception processing, the
initial values of the program counter (PC) and stack pointer (SP) are obtained from the addresses in Table 2-1. As such,
these setting values need to be set before reset.

Table 2-1 Exception processing vector table (reset cause)
Exception cause Vector number Vector table address

PC 0 H'00000000 ~ H'00000003 Power-on reset
SP 1 H'00000004 ~ H'00000007

PC 2 H'00000008 ~ H'0000000B Manual reset
SP 3 H'0000000C ~ H'0000000F

In the sample program, the exception processing vector table for reset causes is separate from the exception processing
vector table for other exception processing. The exception processing vector table for reset causes is defined in
vecttbl.c as RESET_Vectors (List 2-1).

#pragma section VECTTBL ...(a)

void *RESET_Vectors[] = {
//;<<VECTOR DATA START (POWER ON RESET)>>
//;0 Power On Reset PC
PowerON_Reset_PC, ...(b)
//;<<VECTOR DATA END (POWER ON RESET)>>
// 1 Power On Reset SP
 __secend("S"), ...(c)
//;<<VECTOR DATA START (MANUAL RESET)>>
//;2 Manual Reset PC
Manual_Reset_PC ...(d)
//;<<VECTOR DATA END (MANUAL RESET)>>
// 3 Manual Reset SP
 __secend("S") ...(e)
};

List 2-1

REJ06J0010-0100/Rev.1.00 June 2007 Page 12 of 29

APPLICATION NOTE

Explanation of List 2-1
The #pragma section VECTTBL specification places the RESET_Vectors array in the DVECTTBL section.
(a)
The address of the power-on reset function (PowerON_Reset_PC) is set in the first element of the array. (b)
The end address of the S section is set in the second element of the array. (c)
The address of the manual reset function (Manual_Reset_PC) is set in the third element of the array. (d)
The end address of the S section is set in the fourth element of the array. (e)
__secend is a section address operator (not a function), which obtains the end address + 1 for the section enclosed
in double quotation marks (").

The RESET_Vectors array can be placed in the 0 position to become the exception processing vector table for reset
causes.

In order to place this array in the 0 position, it needs to be placed in the 0 position for the DVECTTBL section in the
linker section setting. In the sample project, this is set as in Figure 2-1.

DVECTTBL is placed at position 0.

stack-pointer-address - stack-size
(0xFFFFFFF0 – 0x400 = 0xFFFFFBF0)

Figure 2-1

REJ06J0010-0100/Rev.1.00 June 2007 Page 13 of 29

APPLICATION NOTE

Precautions regarding linker optimization
When using optimization to delete unreferenced symbols for the linker, the vector tables (RESET_Vectors and
INT_Vectors) may also end up being deleted by the optimization. To avoid vector table deletion, the vector table
symbols need to be specified for Elimination of dead code in the Link/Library, as shown in Figure 2-2.
Note that when a symbol is specified, an underscore (_) needs to be appended to the beginning of the name defined
in the program, for the C/C++ variable name or C function name. Likewise, for C++ functions, names defined in
programs including argument arrays need to be enclosed in double quotation marks ("), except when the argument
is void, in which case function-name() is to be specified.

Figure 2-2

2.2 Setting Stack Size (stacksct.h)
#pragma stacksize can be specified in stacksct.h (List 2-2) to reserve a 0x400-byte stack area (S section) in
the compiler.

When a stack is used from higher addresses down to lower addresses, the start address of the S section needs to be
(stack-pointer-address - stack-size). In the sample project, since 0xFFFFFFF0 is set for the stack pointer address
(Figure 1-6), the start address of the S section during section placement for the optimization linkage editor is
0xFFFFFBF0 (0xFFFFFFF0 - 0x400) (Figure 2-1).

#pragma stacksize 0x400

List 2-2

REJ06J0010-0100/Rev.1.00 June 2007 Page 14 of 29

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 15 of 29

2.3 Reset Function (resetprg.c)
The following shows the processing contents for the PowerON_Reset_PC reset function, when power-on reset is
performed.

C source Description
#include <machine.h> When an embedded function such as set_cr, set_vbr, or sleep is

used, include is performed for machine.h.
#include <_h_c_lib.h> When the _INITSCT function is used, include is performed for

_h_c_lib.h.
//#include <stddef.h> When errno is used, include is performed for stddef.h.
//#include <stdlib.h> When the rand function is used, include is performed for stdlib.h.
#include "typedefine.h" Type alias declaration is performed in typedefine.h.
#include "stacksct.h" #pragma stacksize is specified.

#define SR_Init 0x000000F0 The value set for the status register (SR) is defined as a macro.

The 4th to 7th bits of the SR are the interrupt mask bits (I3 to I0), and H'F
(B'1111) is set as interrupt mask level 15 (no interrupt).

#define INT_OFFSET 0x10 The size of the reset vector table is defined as a macro. This is used as an
offset value during processing to set the vector base register (VBR).

extern _UINT INT_Vectors; INT_Vectors is referenced.

#ifdef __cplusplus When C++ is used, an extern "C" declaration is performed.
extern "C" {
#endif
void PowerON_Reset_PC(void); A PowerON_Reset_PC prototype declaration is performed.
void Manual_Reset_PC(void); A Manual_Reset_PC prototype declaration is performed.
void main(void); A main prototype declaration is performed.
#ifdef __cplusplus
}
#endif

#ifdef __cplusplus
extern "C" {
#endif
extern void INIT IOLIB(void); A prototype declaration is performed for I/O-related standard library

initialization processing.
extern void CLOSEALL(void); A prototype declaration is performed for the I/O-related standard library

end function.
#ifdef __cplusplus
}
#endif

//extern void srand(_UINT); When the rand function is used, an srand prototype declaration is

performed.
//extern _SBYTE *_s1ptr; When the strtok function is used, a declaration for the _s1ptr

variable is enabled.

//#ifdef __cplusplus
//extern "C" {
//#endif
//extern void HardwareSetup(void); When HardwareSetup is called, a prototype declaration is performed.
//#ifdef __cplusplus
//}
//#endif

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 16 of 29

C source Description
//#ifdef __cplusplus
//extern "C" {
//#endif
//extern void _CALL_INIT(void); A prototype declaration for constructor call processing. This is enabled

when global classes are used.
//extern void _CALL_END(void); A prototype declaration for destructor call processing. This is enabled

when global classes are used.
//#ifdef __cplusplus
//}
//#endif

#pragma section ResetPRG The reset function is placed in the PResetPRG section.

#pragma entry PowerON_Reset_PC

The entry function for the reset function is specified. When specification
is performed in the entry function, save and restore codes for registers
can be suppressed.

void PowerON_Reset_PC(void)
{
 set_vbr((void *)((_UBYTE *)&
INT_Vectors - INT_OFFSET));

Setting processing is performed for the vector base register (VBR).
This register can be used to set a non-reset exception processing vector
table in any address.
For details, see 3.2. Vector Base Register (VBR) Settings (set_vbr
function).

 INITSCT();

A function to process memory is called.
For details, see 4. Memory Initialization.

// CALL_INIT();

Constructor call processing is performed for global class objects.
For details, see 6. Precautions Regarding C++ Usage (_CALL_INIT
Function and CALL_END Function).

 _INIT_IOLIB();

The I/O-related standard library is initialized.
For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

// errno=0; This is for errno initialization processing. This is enabled when errno
is used.

// srand((_UINT)1); When the rand function is used, srand needs to be called to initialize
the random number table.

// _s1ptr=NULL;

When the strtok function is used, the _s1ptr variable needs to be
initialized.

// HardwareSetup(); A dummy function for hardware setting processing is called.
 set_cr(SR_Init); Setting processing is performed for the status register (SR).
 main(); The main function is called.
 _CLOSEALL();

End processing is performed for the I/O-related standard library.

// _CALL_END();

Destructor call processing is performed. This needs to be called when
global classes are used.

 sleep();

}
The sleep instruction is executed and the status changes to sleep so
that PowerON_Reset_PC cannot be avoided.

//#pragma entry Manual_Reset_PC
void Manual_Reset_PC(void) This is the manual reset function (dummy).
{
}

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 17 of 29

3. Non-reset Exception Processing
Non-reset exception causes include exceptions due to address errors, interrupts, and instructions. When an exception
occurs, the start address for exception processing is taken from the (VBR + vector-table-address-offset) address, and
exception processing is performed.

3.1 Non-reset Exception Processing Vector Table (vecttbl.c)
The start address for exception processing needs to be set in the exception processing vector table. Each different vector
number and vector table address offset (offset value from VBR) is allocated to each exception cause. Table 3-1 lists the
vector numbers and vector table address offsets.

Table 3-1 Exception processing vector table
Exception cause Vector number Vector table address offset

PC 0 H'00000000 ~ H'00000003 Power-on reset
SP 1 H'00000004 ~ H'00000007

PC 2 H'00000008 ~ H'0000000B Manual reset
SP 3 H'0000000C ~ H'0000000F

General invalid instruction 4 H'00000010 ~ H'00000013

(reserved by the system) 5 H'00000014 ~ H'00000017

Slot invalid instruction 6 H'00000018 ~ H'0000001B

7 H'0000001C ~ H'0000001F (reserved by the system)
8 H'00000020 ~ H'00000023

CPU address error 9 H'00000024 ~ H'00000027

DTC address error 10 H'00000028 ~ H'0000002B

Interrupt NMI 11 H'0000002C ~ H'0000002F

 User break 12 H'00000030 ~ H'00000033

13 H'00000034 ~ H'00000037

14 H'00000038 ~ H'0000003B

15 H'0000003C ~ H'0000003F

...

...

(Reserved by the system)

31 H'0000007C ~ H'0000007F

32 H'00000080 ~ H'00000083

...

...

Trap instruction (user vector)

63 H'000000FC ~ H'000000FF

RQ0 64 H'00000100 ~ H'00000103

IRQ1 65 H'00000104 ~ H'00000107

IRQ2 66 H'00000108 ~ H'0000010B

IRQ3 67 H'0000010C ~ H'0000010F

Reserved by the
system

68 H'00000110 ~ H'00000113

Reserved by the
system

69 H'00000114 ~ H'00000117

Reserved by the
system

70 H'00000118 ~ H'0000011B

Interrupt

Reserved by the
system

71 H'0000011C ~ H'0000011F

72 H'00000120 ~ H'00000123

...

...

Built-in peripheral modules

255 H'000003FC ~ H'000003FF

APPLICATION NOTE

In the sample program, since the exception processing vector table for non-reset exception cause is allocated to an
arbitrary address, the exception processing vector table for reset causes and the exception processing vector table for
other exception processing are defined separately. The exception processing vector table for other exception processing
is defined in vecttbl.c as INT_Vectors (Figure 3-1).

Figure 3-1

3.2 Vector Base Register (VBR) Settings (set_vbr function)
By setting an arbitrary address in the VBR, the non-reset exception processing vector table can be placed in any address.
The VBR can be set by using the embedded set_vbr function. In the sample program, the value set for the VBR is
calculated from the INT_Vectors placement address. Since INT_Vectors is specified by using #pragma
section in the DINTTBL section, DINTTBL can be placed in any section to place INT_Vectors in a given
address.

resetprg.c
 #define INT_OFFSET 0x10
 …
 set_vbr((void *)((_UBYTE *)&INT_Vectors - INT_OFFSET));

List 3-1

How the value set for the VBR is calculated
The non-reset vector table (INT_Vectors) starts from general invalid instructions.
As such, from the INT_Vectors address the offset value (INT_OFFSET (0x00000010)) of the general invalid
instruction can be taken from the value set for the general invalid instruction to get the value set for the VBR.

REJ06J0010-0100/Rev.1.00 June 2007 Page 18 of 29

APPLICATION NOTE

3.3 Exception Processing Function (intprg.c, vect.h)
Non-reset exception processing (such as the INT_Illegal_code function and INT_Illegal_slot function) is
defined as dummy functions in intprg.c (Figure 3-2).

Figure 3-2

These non-reset exception processing functions are specified in vect.h (Figure 3-3) using #pragma interrupt.
Code for functions in which #pragma interrupt is specified are automatically generated as interrupt functions by
the compiler. Return from interrupts by RTE instruction, required register save recovery, and other processing are
performed in an interrupt function.

Figure 3-3

REJ06J0010-0100/Rev.1.00 June 2007 Page 19 of 29

APPLICATION NOTE

4. Memory Initialization
In the sample program, call memory initialization is performed for the _INITSCT function in the standard library.

The _INITSCT function performs the following initialization processing.

• Initialization for initialized data areas
• Initialization for uninitialized data areas

4.1 Memory Initialization Function _INTSCT (dbsct.c)
When using the _INITSCT function, include <_h_c_lib.h> to link the standard library.

The _INITSCT function obtains the initialization target of the initialized data area from the C$DSEC section, and the
initialization target of the uninitialized data area from the C$BSEC section. In the sample program, the initialization
processing target for the initialized data area is defined in the dbsct.c (Figure 4-1) structure array DTBL, and the
initialization processing target for the uninitialized data area is defined in the structure array BTBL.

Figure 4-1

Initialization of initialized data areas
Initialized data is data (variables) with an initial value. The initial value needs to be held in a ROM area, but since
the data can be rewritten while the program is executing, it needs to be placed in a RAM area. During initialization
processing for the initialized data area of __INITSCT function, processing is performed to copy the initial value
data in the ROM area to a RAM area. Also, to place the initial value in the ROM area and use the RAM area
address to access data, the ROM support option needs to be specified in the linker. (For details, see 4.4 ROM.)
In the sample project, data is specified to be copied from the D section to the R section in the DTBL structure array
for dbsct.c, and the ROM support option is specified in the linker. (Figure 4-2)

Initialization of uninitialized data areas

In C/C++, static variables without initial values and external variables without initial values need to be 0.The
specified sections are cleared to 0 during initialization processing for uninitialized data areas in the __INITSCT
function.
In the sample program, the B section is specified to be cleared to 0 in the BTBL structure array for dbsct.c.

REJ06J0010-0100/Rev.1.00 June 2007 Page 20 of 29

APPLICATION NOTE

4.2 If Initialized Data Areas Other Than the D Section Exist
If initialized data areas exist outside of the D section, add them to the DTBL structure array.

For example, to copy the D1 section to the R1 section, add it as shown in List 4-1. Make sure that you also specify the
ROM support option.

#pragma section $DSEC
static const struct {
 _UBYTE *rom_s
 _UBYTE *rom_e
 _UBYTE *ram_s
} DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D1"),__secend("D1"),__sectop("R1")}
};

List 4-1

4.3 If Unitialized Data Areas Other Than the B Section Exist
If uninitialized data areas exist outside of the B section, add them to the BTBL structure array.

For example, to clear the B1 section to 0, add it as shown in List 4-2.

#pragma section $DSEC
static const struct {
 _UBYTE *b_s; /* First address for uninitialized data section */
 _UBYTE *b_e; /* Last address for uninitialized data section */
} BTBL[] = {
 { __sectop("B"), __secend("B") },
 { __sectop("B1"),__secend("B1")}
};

List 4-2

REJ06J0010-0100/Rev.1.00 June 2007 Page 21 of 29

APPLICATION NOTE

4.4 ROM Support Functionality
The following processing is performed when the ROM support functionality for the linkage editor is used.

• An area of the same size as the ROM initialized data area is reserved in RAM.
• Addresses are resolved automatically by having references for symbols declared in initialized data areas refer to

RAM area addresses.

Perform the following to display the dialog box and perform settings.

Toolchain dialog box
-> Select the Link/Library tab, and then in Category, select Output.
-> In Show entries for, select ROM to RAM mapped sections.

Figure 4-2

In the sample project, the D section is specified in ROM, and the R section is specified in RAM. This specification
means that an R section the same size as the D section is reserved in RAM during linkage, and that addresses are
resolved by having references for symbols declared in initialized data areas refer to R section RAM area addresses.

REJ06J0010-0100/Rev.1.00 June 2007 Page 22 of 29

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 23 of 29

5. Low-level Interface Routine Settings
When development is performed in C/C++, functions such as those in the standard I/O library (including fopen,
printf, and scanf) and the memory management library (including malloc, free, new, and delete) may be
used. Unfortunately, not all of these functions are provided by the compiler. For example, standard output may refer to
output to an LCD, hard disk, printer, or CD-R/RW drive, and standard input may refer to input from a DIP switch,
keyboard, mouse, mobile phone button, or touch panel. In addition, the operations for each of these devices may differ.
As such, the compiler cannot provide all processing for the standard I/O and memory management library. This is why
there is a group of functions from the standard I/O and memory management library, which are called low-level
interface routines. A low-level interface routine needs to be implemented by the user. Low-level interface routines
include open, close, read, write, lseek, sbrk, errno_addr, wait_sem, and signal_sem.

For details about the specifications for each routine, see (6) Low-level interface routines in 9.2.2 Execution environment
settings in the Compiler Users Manual.

5.1 Memory Management (sbrk.c, sbrk.h)
Table 5-1 is a sample list of low-level interface routines for memory management, as generated by HEW.

Table 5-1 Sample list of low-level interfaces (for memory management)
Source file name Low-level

interface
Function

sbrk.c sbrk() A function for reserving heap memory.
Memory of the size specified by the argument is reserved. If this is called multiple times,
memory is reserved sequentially from lower addresses.
Memory is obtained until the size defined by HEAPSIZE.

sbrk.h HEAPSIZE Defines the HEAPSIZE macro for specifying the overall size of the heap area.

Note:

Memory management library functions call the sbrk function to reserve memory. The reserved memory is
managed within the library function, and areas freed by the free or delete function are reused as heap memory.
The size requested for memory reservation by the sbrk function is that specified by _sbrk_size (default: 1024).
If reserved memory becomes insufficient, the sbrk function is called again. When heap memory is reserved and
released repeatedly, even though the total free area size remains sufficient, since the free area is divided among
several small areas, situations may occur in which large area requests may not be able to be reserved. As such, we
recommend setting _sbrk_size = HEAPSIZE, so that the heap memory area for one sbrk function call is
obtained in batch. When this method is used, heap memory fragmentation is reduced, and heap area management
processing is more efficient.
Example:

SBYTE *sbrk(size_t size);
const size_t _sbrk_size = HEAPSIZE; /* Specifies the minimum unit of */
/* Clears comments and sets the HEAPSIZE to the initial value. */

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 24 of 29

5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h)
Table 5-2 is a sample list of low-level interface routines for I/O, as generated by HEW.

Table 5-2 Sample list of low-level interfaces (for I/O)

Source file Low-level
interface

Functionality

lowsrc.c _INIT_IOLIB() A function that performs file handler initialization, and opens files for standard input (stdin),
standard output (stdout), and standard error output (stderr).
When standard input, standard output, and standard error output are not used, delete the
corresponding open processing.
Do not perform file handler operations anywhere other than in the _INIT_IOLIB function.
Use the setbuf or setvbuf function to set the _bufptr, _bufcnt, _bufbase, and
_buflen file handler member variables after file open is performed.

lowsrc.c _CLOSEALL() A function that closes all unclosed files.
lowsrc.c open() Performs whether a file open request is for standard input, standard output, or standard error

output, and checks the file mode.
In the sample program, no actual processing to open files is performed.

lowsrc.c close() Checks the file number range and clears the file mode.
If a range error occurs for a file number, -1 is returned as the error.

lowsrc.c read() A function that calls the charget function, which actually obtains characters, once for each
character that exists, once the file mode is checked. If an error occurs, -1 is returned.

lowsrc.c write() A function that calls the charput function, which actually outputs characters, once for each
character that exists, once the file mode is checked. If an error occurs, -1 is returned.

lowsrc.c lseek() A dummy function. No processing is performed in the lseek function generated by HEW.
lowsrc.h IOSTREAM A macro definition that specifies the file handler count (the number of files that can be used

concurrently).
Use the IOSTREAM macro to change the file handler count.
Note that in the lowsrc.c generated by HEW, the three file handlers for standard input
(stdin), standard output (stdout), and standard error output (stderr) are opened in the
_INIT_IOLIB function. As such, when such open processing is enabled, the number of file
handlers available to the user is (IOSTREAM - 3).

lowlvl.src charget() A character input function called from the read() function.
This receives character input from the I/O simulation window of the simulator debugger.
Note that the algorithm for this function only runs on the simulator debugger, and not on the
actual target.

lowlvl.src charput() A character output function called from the write() function.
This outputs characters to the I/O simulation window of the simulator debugger.
Note that the algorithm for this function only runs on the simulator debugger, and not on the
actual target.

APPLICATION NOTE

6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function)
When C++ is used, and either globally declared variables are dynamically initialized or globally declared class objects
(global class objects) exist, the _CALL_INIT function needs to be called ahead of time. In the following source
program, (a) and (b) are global class objects.

REJ06J0010-0100/Rev.1.00 June 2007 Page 25 of 29

List 6-1

If this class has a constructor, the constructor needs to be called before the class member is accessed. For example, in
the following C++ program, (c) is processed before (e) is executed, and the (a) member variable for (d) needs to be
initialized to 1. In other words, the (c) constructor needs to be called.

class A
{
...
};

A g_A; ...(a)
A * g_pA;
static A s_A; ...(b)

void main()
{
 A a;
 A * p_a;
 static A s_a;
 g_pA = new A; delete g_pA;
 l_pA = new A; delete l_pA;
}

class A
{
private:
 int a;
public:
 A(void) { a = 1; } ...(c)
 int Get(void) { return a; }
};

A g_a; ...(d)

void main()
{
 int a = g_a.Get(); ...(e)
}

List 6-2

APPLICATION NOTE

The _CALL_INIT function is provided as a standard library to use this constructor call. Likewise, the _CALL_END
function is also provided to call the global class object destructor. Since the _CALL_INIT function and _CALL_END
function are declared in <_h_c_lib.h>, include is performed for <_h_c_lib.h> in the source file used (f). Call
the _CALL_INIT function before application start (g), and call the _CALL_END function once the application has been
terminated (h).

#include <_h_c_lib.h> ...(f)

void PowerON_Reset_PC(void)
{
 _INITSCT();
 _CALL_INIT(); ...(g)

 main();

 _CALL_END(); ...(h)
 sleep();
}

List 6-3

Note that information to call the constructor and destructor is generated in the C$INIT section, which is automatically
generated by the compiler. Use the memory placement setting for the optimization linkage editor to place the C$INIT
section in the ROM area.

REJ06J0010-0100/Rev.1.00 June 2007 Page 26 of 29

APPLICATION NOTE

7. Frequently Asked Questions

7.1 End Processing
Q:

When can the abort() function in the main routine (project-name.c) be used?

A:

The abort function needs to be used when exception processing is performed in C++. If the function is not
defined, an error will occur during linkage.
Since the abort function is called when an exception occurs, use the sleep() and other commands to perform
end processing, to prevent system abuse.

7.2 C++ Functions and Reciprocal C Function Calls
Q:

I know that extern "C" { and } are used to enclose function declarations, but why do they need to be enclosed?

A:

When a C function is called from a C++ function, the extern "C" declaration needs to be specified for prototype
declarations of C functions within C++ source. When a C++ function is called from a C function, the extern "C"
declaration needs to be specified for prototype declarations of C++ functions within C++ source.
Since C++ allows functions to be defined multiple times, there may be multiple functions with the same function
name. This means that the compiler manages symbol names internally such as by appending the name of an
argument to the function name. Since C functions cannot be defined more than once, this kind of symbol name
management is not performed.
When the extern "C" declaration is performed in a C++ function, the way in which symbol names are managed
is the same as for C functions. This enables reciprocal calls between C functions and C++ functions.
Note that C++ functions declared using extern "C" cannot be defined multiple times.

• An extern "C" declaration can be used to reference a function in a C object program.

 (C++ program)

extern "C" void CFUNC();
void main(void)
{
 X XCLASS;
 XCLASS.SetValue(10);

 CFUNC();
}

(C program)

extern void CFUNC();
void CFUNC()
{
 while(1)
 {
 a++;
 }
}

• An extern "C" declaration can be used to reference a function in a C++ object program.

 (C program)

void CFUNC()
{
 CPPFUNC();
}

(C++ program)

extern "C" void CPPFUNC();
void CPPFUNC(void)
{
 while(1)
 {
 a++;
 }
}

REJ06J0010-0100/Rev.1.00 June 2007 Page 27 of 29

APPLICATION NOTE

REJ06J0010-0100/Rev.1.00 June 2007 Page 28 of 29

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Jun.01.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

(c) 2007. Renesas Technology Corp., All rights reserved.

REJ06J0010-0100/Rev.1.00 June 2007 Page 29 of 29

	1. Generating a Sample Program
	1.1 Project Generator Settings
	1.2 List of Generation Files

	2. Reset Processing
	2.1 Reset Vector Table (vecttbl.c)
	2.2 Setting Stack Size (stacksct.h)
	2.3 Reset Function (resetprg.c)

	3. Non-reset Exception Processing
	3.1 Non-reset Exception Processing Vector Table (vecttbl.c)
	3.2 Vector Base Register (VBR) Settings (set_vbr function)
	3.3 Exception Processing Function (intprg.c, vect.h)

	4. Memory Initialization
	4.1 Memory Initialization Function _INTSCT (dbsct.c)
	4.2 If Initialized Data Areas Other Than the D Section Exist
	4.3 If Unitialized Data Areas Other Than the B Section Exist
	4.4 ROM Support Functionality

	5. Low-level Interface Routine Settings
	5.1 Memory Management (sbrk.c, sbrk.h)
	5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h)

	6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function)
	7. Frequently Asked Questions
	7.1 End Processing
	7.2 C++ Functions and Reciprocal C Function Calls

	 Website and Support <website and support,ws>

