
Application Note

R11AN0760EJ0200 Rev.2.00 Page 1 of 43
May 24.24

RZ/T2L Group
HIPERFACE DSL Safety sample program
Introduction
This application note explains a sample program for acquiring and indicating information including safety
data from an encoder in conformance with the HIPERFACE DSL® communications protocol specification by
using the encoder Interface of the RZ/T2L.

The features of the program:
• Acquiring angle information, etc. from an encoder (EDM35-2KF0A020A) compliant with the HIPERFACE
DSL® communications protocol specification

Target Device
RZ/T2L

HIPERFACE DSL is a registered trademark of SICK AG.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 2 of 43
May 24.24

Table of Contents

1. Specifications .. 4

2. Operating Environment .. 5

3. Peripheral Functions .. 6
3.1 Pins .. 6

4. Software .. 7
4.1 HFDSL Driver Function ... 7
4.2 File Structure ... 7
4.3 Functions ... 7
4.4 Specifications of API Functions ... 8
4.4.1 R_HFDSL_Open ... 8
4.4.2 R_HFDSL_Close ... 8
4.4.3 R_HFDSL_GetVersion .. 8
4.4.4 R_HFDSL_Control .. 9
4.5 Specification of User-defined Functions .. 14
4.5.1 hfdsl_int_nml_callback .. 14
4.5.2 hfdsl_int_err_callback .. 14
4.5.3 hfdsl_int_safety_callback .. 15
4.5.4 hfdsl_int_mrcv_callback .. 15
4.6 Interrupt Handler .. 16
4.6.1 hfdsl_int_isr_ch0.. 16
4.6.2 hfdsl_int_isr_ch1.. 16
4.6.3 hfdsl_fpr_isr_ch0 ... 16
4.6.4 hfdsl_fpr_isr_ch1 ... 16
4.6.5 hfdsl_sp_isr_ch0.. 17
4.6.6 hfdsl_sp_isr_ch1.. 17
4.6.7 hfdsl_err_isr ... 17
4.7 Interrupts ... 18
4.8 Constants and Error Codes ... 19
4.9 Fixed-Width Integers ... 20
4.10 Structures, Unions, and Enumerations.. 21
4.10.1 Structures .. 21
4.10.2 Unions ... 22
4.10.3 Enumerations .. 22
4.11 Description of the Sample Program .. 23
4.11.1 Outline of Operations .. 23
4.11.2 Variables for the Sample Program .. 25
4.11.3 Constants for the Sample Program ... 26
4.11.4 Flowchart of Main Processing ... 27

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 3 of 43
May 24.24

4.11.5 Operation Sequence ... 35
4.11.6 Console Commands .. 40

5. Sample Code ... 42

Revision History .. 43

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 4 of 43
May 24.24

1. Specifications
Table 1.1 lists the peripheral functions to be used and their applications and Figure 1.1 shows the
operating environment when the sample code is being executed.

Table 1.1 Peripheral Functions and Applications

Peripheral Module Application
HIPERFACE DSL controller (HDSL) Handling transfer to and from an absolute encoder

incorporating a facility for handling the HIPERFACE DSL®
communications protocol

Interrupt controller (ICU) Controlling interrupts from the HDSL controller
General PWM timer (GPT) channel 0 Generating event cycles for input to the ELC

Event link controller (ELC) Makes the link between events output from channel 0 of the
GPT and the HDSL module.

Serial Communication Interface (SCI)
UART

Asynchronous communications of the SCI are used for
COM port communications by using USB interface.

Figure 1.1 Operating Environment
Note 1. Contact the manufacturer of the encoder you are using regarding the length of the cable that can

handle transfer.
 2. Refer to the HIPERFACE DSL® Implementation Manual for details of the interface circuit. The

specification can be obtained by contacting SICK AG.

IAR Embedded Workbench is a registered trademark of IAR Systems.

Interface
circuit *2

ICE

Integrated development environment
E.g.) IAR Embedded Workbench®

E.g.) I-jet

HIPERFACE DSL® *1

Encoder
E.g.) EDM35-2KF0A020A

from SICK AG

Serial cable

CN16: USB serial port connector
 (Mini-B receptacle of the USB series)

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 5 of 43
May 24.24

2. Operating Environment
The sample code covered in this application note is for the environment below.

Table 2.1 Operating Environment

Item Description

Microcomputer RZ/T2L group

Operating frequency CPUCLK = 800MHz

Operating voltage 1.1V(Core) / 1.8V(PLL, etc.) / 3.3V(I/O)

Integrated development environment *1 IAR Systems Embedded Workbench® for ARM
RENESAS e2 studio

Board RSK+RZT2L (RTK9RZT2L0C00000BJ)

Devices None
Note 1. Refer to the release note for the RZ/T2L Group Encoder I/F HIPERFACE DSL Safety sample

program to check the version number of the integrated development environment.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 6 of 43
May 24.24

3. Peripheral Functions
The basics of the peripheral modules, operating modes, and registers are described in the “RZ/T2L Group
User’s Manual: Hardware”.

3.1 Pins
The pins used and their functions are listed in the table below.

Table 3.1 Pins Used and Their Functions

Channel Pin Name I/O I/O Port Description
HFDSL0 ENCIFDI0 (dsl_in0) Input P02_2 Data input pin

ENCIFDO0 (dsl_out0) Output P02_3 Data output pin
ENCIFOE0 (dsl_en0) Output P01_7 Drive/receive control pin

HFDSL1 ENCIFDI1 (dsl_in1) Input P10_1 Data input pin
ENCIFDO1 (dsl_out1) Output P10_0 Data output pin
ENCIFOE1 (dsl_en1) Output P09_7 Drive/receive control pin

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 7 of 43
May 24.24

4. Software
4.1 HFDSL Driver Function
The functions of the HFDSL driver are listed below.

1. Initial settings
2. Acquiring positional data
3. Transmitting and receiving messages

4.2 File Structure
For the file structure, refer to the release note for the RZ/T2L Group Encoder I/F HIPERFACE DSL Safety
sample program.

4.3 Functions
The functions to be used are listed in the table below.

Table 4.1 Functions

Category Function Name Page Number
HFDSL driver API functions R_HFDSL_Open 8

R_HFDSL_Close 8
R_HFDSL_GetVersion 8
R_HFDSL_Control 9

User-defined functions hfdsl_int_nml_callback 14
hfdsl_int_err_callback 14
hfdsl_int_safety_callback 15
hfdsl_int_mrcv_callback 15

Interrupt handlers hfdsl_int_isr_ch0 16
hfdsl_int_isr_ch1 16
hfdsl_fpr_isr_ch0 16
hfdsl_fpr_isr_ch1 16
hfdsl_sp_isr_ch0 17
hfdsl_sp_isr_ch1 17
hfdsl_err_isr 17

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 8 of 43
May 24.24

4.4 Specifications of API Functions
4.4.1 R_HFDSL_Open
R_HFDSL_Open
Synopsis Starts controlling operation of the encoder.
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Open(const int32_t id, r_hfdsl_info_t* pinfo);
Description Call this function before using the HFDSL driver. It initializes the driver.

・Setting the interrupts
・Setting the callback functions

Argument id Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than those above : Setting is not allowed

 pinfo Holder for the initial settings of the driver
Set the pointer to the r_hfdsl_info_t structure which holds the information
on the initial settings of the driver.

Returned value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for a member
variable of the r_hfdsl_info_t structure for a value for id or pinfo has not been
specified)
R_HFDSL_ERR_ACCESS: Abnormal termination

Note Calling this API function from within a callback function is prohibited.

4.4.2 R_HFDSL_Close
R_HFDSL_Close
Synopsis Ending control of the encoder
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Close(const int32_t id);
Description This function stops controlling operation of the encoder on the designated channel.
Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies Channel 0

R_HFDSL1_ID : Specifies Channel 1
Other than above : Setting is not allowed

Return Value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (the value of id was not the
value specified for the encoder)

Note Before calling this function, be sure to call R_HFDSL_Open.
Calling this API function from within a callback function is prohibited

4.4.3 R_HFDSL_GetVersion
R_HFDSL_GetVersion
Synopsis Acquire the version number of the encoder interface driver.
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration uint32_t R_HFDSL_GetVersion(void);
Description This function acquires the version number of the HFDSL driver.
Argument None
Return value The major part of the version number is stored in the sixteen higher-order bits and

the minor part of the version number is stored in the sixteen lower-order bits.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 9 of 43
May 24.24

4.4.4 R_HFDSL_Control

R_HFDSL_Control
Synopsis Controlling operation of the encoder.
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control(const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function controls operations of the encoder by using the cmd argument.

See Section 4.4.4(1), Protocol Initialization Commands and Section 4.4.4(2), Control
Commands for the operation of the control com

Argument id : Designates the ID code to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : Command
For details, see Section 4.4.4(1), Protocol Initialization Commands and
Section 4.4.4(2), Control Commands.

 pbuf : Arguments corresponding to each cmd.
Return value R_HFDSL_SUCCESS: Normal termination

R_HFDSL_ERR_INVALID_ARG: Abnormal termination (the id or cmd is not a
stipulated value.)
See Section 4.4.4(1), Protocol Initialization Commands and Section 4.4.4(2), Control
Commands for other returned values.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 10 of 43
May 24.24

(1) Protocol Initialization Commands
(a) R_HFDSL_CMD_INIT

R_HFDSL_CMD_INIT
Synopsis Protcol initialization
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description Call this function after executing function R_HFDSL_Open or after a protocol reset.

For how to detect a protocol reset, see Section 4.5.2 hfdsl_int_err_callback.
Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
 : Setting is not allowed

 cmd : Specifies R_HFDSL_CMD_INIT
 pbuf : Specify NULL
Return value R_HFDSL_SUCCESS: Normal termination

R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id or pbuf is
invalid)
R_HFDSL_ERR_ACCESS: Abnormal termination (R_HFDSL_Open has not been
executed.)
R_HFDSL_ERR_INIT: Abnormal termination (Link check timed out.)

Note Calling this API function from within a callback function is prohibited.

(b) R_HFDSL_CMD_ENCID

R_HFDSL_CMD_ENCID
Synopsis Check encoder ID
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description Call this function after the R_HFDSL_CMD_INIT protocol initialization command.

If the value returned is R_HFDSL_ERR_INIT and the protocol is to be initialized
again, start over again from the protocol initialization command
R_HFDSL_CMD_INIT after executing the control command R_HFDSL_CMD_RST.

Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Those than above : Setting is not allowed

 cmd : Specifies R_HFDSL_CMD_ENCID
 pbuf : Encoder ID

Specify the unit32_t pointer which holds the encoder ID.
Returned value R_HFDSL_SUCCESS: Normal termination

R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id is invalid or
pbuf is null)
R_HFDSL_ERR_ACCESS: Abnormal termination (R_HFDSL_CMD_INIT has not
been executed)
R_HFDSL_ERR_INIT: Abnormal termination (the ID of the connected encoder does
not match the specified ID value)

Note Calling this API function form within a callback function is prohibited.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 11 of 43
May 24.24

(2) Control Commands
(a) R_HFDSL_CMD_POS

R_HFDSL_CMD_POS
Synopsis Acquiring the fast position
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control(const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function acquires the fast position by reading the fast position registers

(POS4~POS0).
Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : Specifies.R_HFDSL_CMD_POS
 pbuf : Fast position

Specifies the pointer to the r_hfdsl_pos_t structure which holds the
fast position value. For details, see Section 4.10.1(2) r_hfdsl_pos_t.

Return value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id is invalid or
pbuf is null)

(b) R_HFDSL_CMD_VPOS

R_HFDSL_CMD_VPOS
Synopsis Acquiring the safe position
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function acquires the safe position by reading the safe position registers

(VPOS4~VPOS0), and safe position CRC registers (VPOSCRC_H, VPOSCRC_L).
If the safe channel 1 interface register access is disabled, this function returns
access error.

Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : Specifies R_HFDSL_CMD_VPOS
 pbuf : Safe position

Specifies the pointer to the r_hfdsl_vpos_t structure which holds the
safe position value. For details, see Section 4.10.1(3) r_hfdsl_vpos_t.

Return value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id is invalid or
pbuf is null)
R_HFDSL_ERR_ACCESS: Abnormal termination (access to the safe channel 1
interface registers is disabled)

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 12 of 43
May 24.24

(c) R_HFDSL_CMD_VEL

R_HFDSL_CMD_VEL
Synopsis Acquiring the rotational velocity of the motor.
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function acquires the rotational velocity of the motor by reading the velocity

registers (VEL2~VEL0).
Argument id : Specifies the ID used
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : Specifies R_HFDSL_CMD_VEL
 pbuf : Rotational velocity of the motor

Specifies the pointer to uint32_t which holds the rotational velocity of
the motor

Return value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id is invalid or
pbuf is null)

(d) R_HFDSL_CMD_MSG

R_HFDSL_CMD_MSG
Synopsis Transmitting messages
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function transmits messages. The data received is indicated by function

hfdsl_int_mrcv_callback. For details of the function, see Section 4.5.4
hfdsl_int_mrcv_callback.

Argument id : Specifies the ID to be used.
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : Specifies R_HFDSL_CMD_MSG
 pbuf : Message data for transmission

Specifies the pointer to the r_hfdsl_send_msg_t structure which holds
message data for transmission. For details, see Section 4.10.1(4)
r_hfdsl_send_msg_t

Return value R_HFDSL_SUCCESS: Normal termination
R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id is invalid or
pbuf is null)
R_HFDSL_ERR_ACCESS: Abnormal termination (the protocol initialization function
described in Section 4.4.4(1) Protocol Initialization Functions, has not been
executed)

Note Calling this API function from within a callback function is prohibited.
To proceed with a next transmission, execute this function following a call of the
hfdsl_init_mrcv_callback function.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 13 of 43
May 24.24

(e) R_HFDSL_CMD_RST

R_HFDSL_CMD_RST
Synopsis Protocol reset
Header r_hfdsl_rzt2_if.h r_hfdsl_rzt2_dat.h
Declaration int32_t R_HFDSL_Control (const int32_t id, const r_hfdsl_cmd_t cmd, void *const

pbuf);
Description This function resets the protocol.

After this function is called. An HDSLn_INT interrupt is generated in response to the
PRST bit in the EVENT_H being set to 1.
To resume communications, call the functions described in Section 4.4.4(1), Protocol
Initialization Commands.

Argument id : Specifies the ID to be used
 R_HFDSL0_ID : Specifies channel 0

R_HFDSL1_ID : Specifies channel 1
Other than above : Setting is not allowed

 cmd : R_HFDSL_CMD_RST
 pbuf : Specify NULL
Return value R_HFDSL_SUCCESS: Normal termination

R_HFDSL_ERR_INVALID_ARG: Abnormal termination (a value for id or pbuf is
invalid)

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 14 of 43
May 24.24

4.5 Specification of User-defined Functions
4.5.1 hfdsl_int_nml_callback
hfdsl_int_nml_callback
Synopsis Indicating the generation of HDSLn_FPR interrupt
Header r_hfdsl_rzt2_if.h
Declaration void hfdsl_int_nml_callback(uint8_t event);
Description This callback function is registered with the member variable pcb_nml of the

argument r_hfdsl_info_t structure of the R_HFDSL_Open function. It is called when
an HDSLn_FPR interrupt is generated. This interrupt shows that the fast position
registers (POS4~POS0) have been updated. The fast position can be acquired by
executing the function R_HFDSL_Control (R_HFDSL_CMD_POS) from within this
function.
This function is in the context of an interrupt handler. To secure responsiveness to
interrupts, make sure that this function is returned immediately. The function name
given above is only an example and can be freely set.

Argument event : Source of the interrupt
Holds the value POS_RDY_BIT.
The value of this argument is only valid within this function.

Return value None

4.5.2 hfdsl_int_err_callback
hfdsl_int_err_callback
Synopsis Indicating the generation of HDSLn_INT interrupt
Header r_hfdsl_rzt2_if.h
Declaration void hfdsl_int_err_callback(uint32_t event_err);
Description This callback function is registered with the member variable pcb_err of the argument

r_hfdsl_info_t structure of the R_HFDSL_Open function. It is called when an
HDSLn_INT interrupt is generated in response to the SUM, POS, DTE or PRST bits
in the EVENT_H register, or the MIN, ANS or QMLW bits in the EVENT_L register
being set to 1.
This function is in the context of an interrupt handler. To secure responsiveness to
interrupts, make sure that this function is returned immediately. The function name
given above is only an example and can be freely set.

Argument event_err : Source of the HDSLn_INT interrupt
Holds the value of the EVENT_H, EVENT_L registers.
The value of this argument is only valid within this function.

Return value None
Note This function is not called when an HDSLn_INT is generated in response to the

FREL bit in the EVENT_L register being set to 1.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 15 of 43
May 24.24

4.5.3 hfdsl_int_safety_callback
hfdsl_int_safety_callback
Synopsis Indicating the generation of HDSLn_SP interrupt
Header r_hfdsl_rzt2_if.h
Declaration void hfdsl_int_safety_callback(uint8_t *psafety1);
Description This callback function is registered with the member variable pcb_safety of the

argument r_hfdsl_info_t structure of the R_HFDSL_Open function. It is called when
an HDSLn_SP interrupt is generated. This interrupt shows that the safety position
registers have been updated.
This function is in the context of an interrupt handler. To secure responsiveness to
interrupts, make sure that this function is returned immediately. The function name
given above is only an example and can be freely set.

Argument psafety1[] : Safety status, safe position, and CRC
If the safe channel 1 interface register access is enabled. the array
pointed by psafety1 holds vertical channel data. vertical channel
data contains safety status (SAFE_SUM) register data, safe position
(VPOS4~VPOS0) register data, and safe position CRC
(VPOSCRC_H, VPOSCRC_L) register data.
If the safe channel 1 interface register access is disabled, psafety1
holds NULL pointer.
The value of this argument is only valid within this function.

Return value None

4.5.4 hfdsl_int_mrcv_callback
hfdsl_int_mrcv_callback
Synopsis Indicating that the HDSLn_INT interrupt by the FREL bit in the EVENT_L register has

occurred.
Header r_hfdsl_rzt2_if.h
Declaration void hfdsl_int_mrcv_callback(uint8_t* msg_data);
Description This callback function is registered with the R_HFDSL_Control

(R_HFDSL_CMD_MSG) function. It is called when the HDSLn_INT interrupt by the
FREL bit in the EVENT_L register occurs and data storage of the received message
is completed.
This function is in the context of an interrupt handler. To secure responsiveness to
interrupts, make sure that this function is returned immediately. The function name
given above is only an example and can be freely set.

Argument msg_data[] : Message address and PC_BUFF register values (long messages)
Two bytes of the message address (PC_ADD_H, PC_ADD_L) and
the values of the PC_BUF0~PC_BUF7 registers (long messages)
are stored.
The fifth bit LOFF of the message address PC_ADD_H holds the
message reception error flag.
The value of this argument remains valid until the next HDSLn_INT
interrupt caused by the FREL bit is generated.

Return value None

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 16 of 43
May 24.24

4.6 Interrupt Handler
4.6.1 hfdsl_int_isr_ch0
hfdsl_int_isr_ch0
Synopsis Interrupt handler for the HDSL0_INT
Header -
Declaration static void hfdsl_int_isr_ch0(void);
Description An interrupt handler for the HDSL0_INT interrupt.

If the source of an interrupt is the FREL bit of the EVENT_L register, function
hfdsl_int_mrcv_callback is called as a callback function.
If the source of an interrupt is other bits of the EVENT_H register and the EVENT_L
register, function hfdsl_int_err_callback is called as a callback function.

Argument None
Return value None

4.6.2 hfdsl_int_isr_ch1
hfdsl_int_isr_ch1
Synopsis Interrrupt handler for the HDSL1_INT
Header -
Declaration static void hfdsl_int_isr_ch1(void);
Description An interrupt handler for the HDSL1_INT interrupt.

If the source of an interrupt is the FREL bit of the EVENT_L register, function
hfdsl_int_mrcv_callback is called as a callback function.
If the source of an interrupt is other bits of the EVENT_H register and the EVENT_L
register, function hfdsl_int_err_callback is called as a callback function.

Argument None
Return value None

4.6.3 hfdsl_fpr_isr_ch0
hfdsl_fpr_isr_ch0
Synopsis Interrupt handler for the HDSL0_FPR
Header -
Declaration static void hfdsl_fpr_isr_ch0(void);
Description An interrupt handler for the HDSL0_FPR interrupt.

If the interrupt is generated, function hfdsl_int_nml_callback is called as a callback
function.

Argument None
Return value None

4.6.4 hfdsl_fpr_isr_ch1
hfdsl_fpr_isr_ch1
Synopsis Interrupt handler for the HDSL1_FPR
Header -
Declaration static void hfdsl_fpr_isr_ch1(void);
Description An interrupt handler for the HDSL1_FPR interrupt.

If the interrupt is generated, function hfdsl_int_nml_callback is called as a callback
function.

Argument None
Return value None

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 17 of 43
May 24.24

4.6.5 hfdsl_sp_isr_ch0
hfdsl_sp_isr_ch0
Synopsis Interrupt handler for the HDSL0_FPR
Header -
Declaration static void hfdsl_sp_isr_ch0(void);
Description An interrupt handler for the HDSL0_SP interrupt.

If the interrupt is generated, function hfdsl_int_safety_callback is called as a callback
function.

Argument None
Return value None

4.6.6 hfdsl_sp_isr_ch1
hfdsl_sp_isr_ch1
Synopsis Interrupt handler for the HDSL1_FPR
Header -
Declaration static void hfdsl_sp_isr_ch1(void);
Description An interrupt handler for the HDSL1_SP interrupt.

If the interrupt is generated, function hfdsl_int_safety_callback is called as a callback
function.

Argument None
Return value None

4.6.7 hfdsl_err_isr
hfdsl_err_isr
Synopsis Interrupt handler for the PERI_ERR0
Header -
Declaration static void hfdsl_err_isr(void);
Description An interrupt handler for the PERI_ERR0 interrupt.

If the interrupt is generated, this function reads error events from PERIERR_STAT3
register and clear interrupt.

Argument None
Return value None

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 18 of 43
May 24.24

4.7 Interrupts
Table 4.2 lists the interrupts for the HFDSL driver.

Table 4.2 Interrupts for the HFDSL Driver

Interrupts ID Outline
HDSL0_INT 263 This interrupt is generated when the value of any bit in the ch0

EVENT_L, EVENT_H registers is updated to 1.
HDSL1_INT 265 This interrupt is generated when the value of any bit in the ch1

EVENT_L, EVENT_H registers is updated to 1.
HDSL0_FPR 273 This interrupt is generated when the fast position value of the

ch0 is ready to read.
HDSL1_FPR 274 This interrupt is generated when the fast position value of the

ch1 is ready to read.
HDSL0_SP 275 This interrupt is generated when the safety position value of the

ch0 is ready to read.
HDSL1_SP 276 This interrupt is generated when the safety position value of the

ch1 is ready to read.
PERI_ERR0 388 This interrupt is generated when the value of any bit indicating

HDLS ch0 or ch1 error in the PERIERR_STAT3 register is
updated to 1.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 19 of 43
May 24.24

4.8 Constants and Error Codes
The tables below list the constants and error codes. For the definitions, see the respective tables.

Table 4.3 User-Defined Constants for the HFDSL Driver (r_hfdsl_rzt2_config.h)

Constant Name Setting Description
R_HFDSL_SYNC_CTRL 3 Setting of the SYNC_CTRL register
R_HFDSL_ACC_ERR 31 Setting of the ACC_ERR register
R_HFDSL_MASK_H 4Bh Setting of the MASK_H register *1
R_HFDSL_MASK_L 36h Setting of the MASK_L register *1

Note 1. To change R_HFDSL_MASK_H and R_HFDSL_MASK_L, change processing of the
hfdsl_int_isr_ch0 function, hfdsl_int_isr_ch1 function in accord with the settings in
R_HFDSL_MASK_H and R_HFDSL_MASK_L.

Table 4.4 Error Codes

Constant Name Setting Description
R_HFDSL_SUCCESS 0 Normal termination
R_HFDSL_ERR_INVALID_ARG -1 Argument error
R_HFDSL_ERR_ACCESS -2 API execution order error
R_HFDSL_ERR_INIT -3 Failure in initialization of the HFDSL controller and

encoder

Table 4.5 Interface Mode Codes for the Safe Interface

Constant Name Setting Description
R_HFDSL_INTERNAL_BUS_MODE 0 Internal bus mode
R_HFDSL_SPI_MODE 1 SPI mode

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 20 of 43
May 24.24

4.9 Fixed-Width Integers
Table 4.6 lists the fixed-width integers for the sample code. The fixed-width integers used in the sample code

are defined in the standard library.

Table 4.6 Fixed-Width Integers for the Sample Code

Symbols Description
int8_t 8-bit signed integer
int16_t 16-bit signed integer
int32_t 32-bit signed integer
int64_t 64-bit signed integer
uint8_t 8-bit unsigned integer
uint16_t 16-bit unsigned integer
uint32_t 32-bit unsigned integer
uint64_t 64-bit unsigned integer

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 21 of 43
May 24.24

4.10 Structures, Unions, and Enumerations
The main structures, unions, and enumerations are listed below.

4.10.1 Structures
(1) r_hfdsl_info_t
Information on initialization of the HFDSL driver

typedef struct
{
 uint8_t safe1_if_mode; Select the interface mode for safe channel 1 interface.

(0: Internal bus mode, 1: SPI mode) *1
 uint8_t safe2_if_mode; Select the interface mode for safe channel 2 interface.

*2
 r_hfdsl_int_nml_cb_t pcb_nml; Pointer to the callback function to be called when an

HDSLn_FPR interrupt is generated.
For details, see Section 4.5.1, hfdsl_int_nml_callback.
*3, *4

 r_hfdsl_int_err_cb_t pcb_err; Pointer to the callback function to be called when an
HDSLn_INT interrupt is generated.
For details, see Section 4.5.2, hfdsl_int_err_callback. *3

 r_hfdsl_int_safety_cb_t pcb_safety; Pointer to the callback function to be called when an
HDSLn_SP interrupt is generated.
For details, see Section 4.5.3 hfdsl_int_safety_callback.
*3

} r_hfdsl_info_t
Note 1. If the SPI mode is selected for safe channel 1 interface, access to the safe channel 1 interface

registers from sample program is disabled. SPI mode is used to access to the safe channel 1
registers by external CPU via SPI interface.

 2. Safe channel 2 interface is always SPI mode for the RZ/T2L. Setting value of this parameter is not
used by the RZ/T2L.

 3. This function is not called if NULL is specified.
 4. This function is not called when an HDSLn_INT interrupt is generated in response to the FREL bit

in the EVENT_L register being set to 1.

(2) r_hfdsl_pos_t
For storing fast position

typedef struct
{
 bool all; Enables the member variable posh.

(true: The member variable posh is enabled,
 false: The member variable is disabled)

 uint8_t posh; Holds bits [39:32] of the fast position.
The value is updated when the member variable all is
true.

 uint32_t pos; Holds bits [31:0] of the fast position.
} r_hfdsl_pos_t

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 22 of 43
May 24.24

(3) r_hfdsl_vpos_t
For storing the safe position

typedef struct
{
 uint8_t vposh; Holds bits [39:32] of the safe position.
 uint32_t vpos; Holds bits [31:0] of the safe position.
 uint16_t crc; Holds the CRC of the vertical channel
} r_hfdsl_vpos_t

(4) r_hfdsl_send_msg_t
For storing message data for transmission.

typedef struct
{
 uint8_t *pdata; Pointer to the array which holds message data for

transmission.
Set the pointer to the array which holds message data
for transmission.

 r_hfdsl_msg_cb_t pcb_msg; Pointer to the callback function to be called when a
message is received.
For details, see Section 4.5.4, hfdsl_int_mrcv_callback.
Be sure to set the address of hfdsl_int_mrcv_callback.

} r_hfdsl_send_msg_t

4.10.2 Unions
Not used

4.10.3 Enumerations
Not used

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 23 of 43
May 24.24

4.11 Description of the Sample Program
4.11.1 Outline of Operations
This sample program supports the encoder (EDM35-2KF0A020A from SICK AG) compliant with the
HIPERFACE DSL® communications protocols specification. It handles the following processing.

1) Indicates the following information by using a command input from the console.
A) Fast and safe positions
B) Rotational velocity of the motor
C) Results of transmission and reception of long messages (the type of the encoder among the

resources)
D) Vertical channel data

2) Runs in SYNC mode.
3) This sample program ends by a protocol reset.

(1) System Block Diagram
Figure 4.1 shows a block diagram of the system.

Figure 4.1 System Block Diagram

Interface circuit

RZ/T2L
HFDSL

CPU(Cortex-R52)

INT

dsl en dsl out dsl in

Encoder (EDM35-2KF0A020A from SICK AG)

 HIPERFACE DSL®

GPT ELC
Trigger for the
input of event
signals from

the ELC Event

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 24 of 43
May 24.24

(2) Software Configuration
Figure 4.2 is a block diagram of the software.

The HFDSL driver has six sections: the opening processing part configured of function R_HFDSL_Open, the
closing processing part configured of function R_HFDSL_Close, the protocol initialization, positional value
acquisition, and message transmission parts configured of function R_HFDSL_Control, and the data
reception part (interrupt handler) configured of the callback function.

The HFDSL driver control section of the sample program controls the HFDSL driver, acquires the positional
value, and sends messages and the results indication section (callback) indicates the result of data reception.

Figure 4.2 Software Configuration

HFDSL driver

Sample program

HFDSL driver control
(Acquiring the positional value

and sending messages)
Results indication

 (callback)

Message transfer Opening
process

Closing
process

Acquiring
 the positional value

Protocol initialization

Data Reception

(interrupt handler)

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 25 of 43
May 24.24

4.11.2 Variables for the Sample Program
Table 4.7 lists the main static variables.

Table 4.7 Main Static Variables

Type Variable Name Description
bool mrcv_flg Message transfer completed flag.

(true: Transfer of messages has been completed
false: Transfer of messages is in progress)

bool prst_found Protocol reset warning detection flag.
(true: Protocol reset warning is detected
false: Protocol reset warning is not detected)

uint32_t err_info Holds the HDSLn_INT interrupt source.
uint32_t pos_rot Holds the number of rotations with the fast position.
uint32_t pos_res Holds the angle of the fast position.
bool vpos_valid Holds result of the safe position is valid or not.
uint32_t vpos_rot Holds the number of rotations with the safe positions.
uint32_t vpos_res Holds the angle of the safe position.
uint32_t vel Holds the rotational velocity of the motor.
uint8_t lmsg_recv[LMSG

_RECV_SIZE]
Holds received data in long messages.

bool safety1_valid Holds result of the vertical channel data is valid or not.
uint8_t safety1[SAFETY

_CNT_MAX]
Holds the received data including vertical channel data.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 26 of 43
May 24.24

4.11.3 Constants for the Sample Program
Table 4.8 lists the main constants for the sample program.

Table 4.8 Main Constants

Note 1. To run the sample program with an encoder other than an EDM35-2KF0A020A, change the
settings to suit the specifications of the connected encoder.

 2. Refer to the HIPERFACE DSL® Implementation Manual for the details. The manual can be
obtained by contacting SICK AG.

The figure below shows the mechanism for storing the positional and rotational information.

Figure 4.3 Mechanism for Storing the Positional and Rotational Information

Constant Name Setting Description
ENC_ID 00000153h Encoder ID of EDM35-2KF0A020A *1 *2
RES_BIT 0 Position of the least significant bit of the positional

information in the POS4~0 registers *1
RES_MASK 000FFFFFh Masking of the positional information in the POS3~0

registers *1
RES_MASK_H 00000000h Masking of the positional information in the POS4 register

*1
ROT_BIT 20 Position of the least significant bit of the rotational

information in the POS4~0 registers *1
ROT_MASK 00000FFFh Masking of the number of rotations in the POS3~0

registers *1
ROT_MASK_H 00000000h Masking of the number of rotations in the POS4 register *1
LMSG_RECV_SIZE 10 Maximum size of received data in long messages
SAFETY_CNT_MAX 8 Vertical channel data size
TIMEOUT_UNIT 1000 Setting of timeout unit (1 ms)
TIMEOUT_COUNT 1000 Setting of timeout (1 ms x 1000)
INIT_RETRY_COUNT 10 Retry times of initialization error

0 31 0 7

POS3~0 registers POS4 register

Positional information and the number of rotations

RES_BIT/ROT_BIT

RES_MASK/ROT_MASK RES_MASK_H/ROT_MASK_H

1 1 … 1 1 …

por_ret/pos_rot variables

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 27 of 43
May 24.24

4.11.4 Flowchart of Main Processing
The flowchart below shows processing by the main function.

Processing marked with * in the figure is shown separately in a subsequent flowchart.

(1) Flowchart of enc_main

Figure 4.4 Flowchart of the enc_main Function

enc_main

Get HFDSL driver version

return

Control HFDSL driver
hfdsl_cmd_control() *

Display HFDSL driver version

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 28 of 43
May 24.24

(2) Flowchart of hfdsl_cmd_control

Figure 4.5 Flowchart hfdsl_cmd_control

hfdsl_cmd_control

Is the value returned
R HFDSL SUCCESS?

Yes

No

Acquire the command input by the user from the
console

Call the function for the console command. *1

End HFDSL control
R_HFDSL_Close ()

return

HFDSL protocol initialization
hfdsl_init () *

Has the protocol been
initialized?

Yes

No

Note 1
pos: hfdsl_pos
vel: hfdsl_vel
lmsg: hfdsl_lmsg
safety: hfdsl_safety

Has a protocol reset
occurred?

Yes

No

Start HFDSL control
R_HFDSL_Open ()

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 29 of 43
May 24.24

(3) Flowchart of hfdsl_init
This function initializes the protocol.

Figure 4.6 Flowchart of the hfdsl_init

hfdsl_init

return

Wait for 500 ms

Returned value=R_HFDSL_ERR_INIT Yes

No

Returned value=R_HFDSL_ERR_INIT
Yes

No

Protocol initialization
R_HFDSL_Control(R_HFDSL_CMD_INIT)

Check encoder ID
R_HFDSL_Control(R_HFDSL_CMD_ENCID)

Protocol reset
R_HFDSL_Control

(R_HFDSL_CMD_RST)

Has the retry count
been over ?

Yes

No

Start timer (GPT channel 0)
timer_start()

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 30 of 43
May 24.24

(4) Flowchart of hfdsl_pos, hfdsl_vel, hfdsl_safety
These functions are executed in response to input of the console commands “pos”, “vel” and “safety”, and
indicate the acquired data. The functions corresponding to the respective console commands and details of
the items displayed are below.

Table 4.9 Functions Corresponding to the Console Commands “pos”, “vel”, “safety”

Console Command Corresponding Function Items Displayed
pos hfdsl_pos pos_rot, pos_res

vpos_rot, vpos_res
err_info

vel hfdsl_vel vel, err_info
safety hfdsl_safety safety1

Since the procedures for processing of the hfdsl_pos, hfdsl_vel and hfdsl_safety functions are similar, they
are shown in the same flowchart.

Figure 4.7 Flowchart of the hfdsl_pos, hfdsl_vel, hfdsl_safety

hfdsl_xxx

Indicate the acquired data

return

xxx: pos, vel or safety

Indicate error information

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 31 of 43
May 24.24

(5) Flowchart of hfdsl_lmsg
This function is executed in response to input of the console command “lmsg”.

Figure 4.8 Flowchart of the hfdsl_lmsg

hfdsl_lmsg

Indicate the received data (lmsg_recv variable)
 in long messages

return

Message transfer completed?
mrcv_flg=true

Yes or Timeout

No

mrcv_flg←false

Indicate error information

Send long messages
R_HFDSL_Control(R_HFDSL_CMD_MS

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 32 of 43
May 24.24

(6) Flowchart of hfdsl_int_nml_callback
This callback function is called in response to generation of an HDSLn_FPR interrupt.

Figure 4.9 Flowchart of the hfdsl_int_nml_callback

hfdsl_int_nml_callback

Is the interrupt source
POS_RDY?

Yes

No

return

The acquired fast position is stored in the static variables.
pos_rot ← Number of rotations with the fast position

pos_res ← Angle of the fast position

The acquired safe position is stored in the static variables.
vpos_valid ← true

vpos_rot ← Number of rotations with the sale position
vpos_res ← Angle of the safe position

Acquire the Fast position
R_HFDSL_Control(R_HFDSL_CMD_POS)

Acquire the rotational velocity of the motor
R_HFDSL_Control(R_HFDSL_CMD_VEL)

Acquire the safe position
R_HFDSL_Control(R_HFDSL_CMD_VPOS)

The safe position is

acquired successfully?

Yes

No

Store that the safety
position is invalid.

vpos_valid ← false

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 33 of 43
May 24.24

(7) Flowchart of hfdsl_int_err_callback
This callback function is called in response to generation of an HDSLn_INT interrupt.

Figure 4.10 Flowchart of the hfdsl_int_err_callback

(8) Flowchart of hfdsl_int_safety_callback
This callback function is called in response to generation of an HDSLn_SP interrupt.

Figure 4.11 Flowchart of the hfdsl_int_safety_callback

hfdsl_int_err_callback

return

The interrupt source is stored in the static variable
Err_info ←Interrupt source

PRST bit of the interrupt
source is 1?

prst_found ← true

Yes

No

hfdsl_int_safety_callback

return

The vertical channel data is stored in the static variable.
safety1 ← vertical channel data

Is psafety1 NULL?

safety1_valid ← true

Yes

No

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 34 of 43
May 24.24

(9) Flowchart of hfdsl_int_mrcv_callback
This callback function is called when the HDSLn_INT interrupt by the EVENT_L register FREL bit occurs and
data storage of the received message is completed.

Figure 4.12 Flowchart of the hfdsl_int_mrcv_callback

hfdsl_int_mrcv_callback

Store the received data in long message in the static variable
Imsg_recv ← Received data in long messages

return

mrcv_flg ← true

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 35 of 43
May 24.24

4.11.5 Operation Sequence
(1) Startup Sequence

Figure 4.13 Startup Sequence Diagram

R_HFDSL_Open()

R_HFDSL_Open() ends

Encoder IF Driver Sample Program Encoder

Set registers

R_HFDSL_Control
(R_HFDSL_CMD_INIT)

Protocol initialization

Initialize the protocol

R_HFDSL_Control
(R_HFDSL_CMD_INIT) ends

Master signal

H-frame

・
・
・
・

R_HFDSL_Control
(R_HFDSL_CMD_ENCID)

Check encoder ID

R_HFDSL_Control
(R_HFDSL_CMD_ENCID) ends

・
・
・

Master signal

H-frame

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 36 of 43
May 24.24

(2) Sequence for Acquiring the Fast Position in SYNC Mode

Figure 4.14 Sequence for Acquiring the Fast Position in SYNC Mode

hfdsl_int_nml_callback
(callback function)

Acquire the position
 (by reading the register)

Encoder IF Driver Sample Program

Encoder

HDSLn_FPR interrupt

Master signal
H-frame

Master signal
H-frame

Input of an event signal

R_HFDSL_Control
(R_HFDSL_CMD_POS)

Master signal
H-frame

Master signal
H-frame

Input of an event signal

hfdsl_int_nml_callback
(callback function)

Acquire the position
 (by reading the register)

HDSLn_FPR interrupt

R_HFDSL_Control
(R_HFDSL_CMD_POS)

Master signal
H-frame

・
・
・
・
・
・
・
・

Master signal
H-frame

・
・
・
・
・
・
・
・

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 37 of 43
May 24.24

(3) Sequence for Acquiring the Vertical Channel Data

Figure 4.15 Sequence for Acquiring the Vertical Channel Data

hfdsl_int_safety_callback
(callback function)

Acquire the safe position
 (by reading the register)

Encoder IF Driver Sample Program Encoder

HDSLn_SP interrupt

Master signal
H-frame

Master signal
H-frame

Input of an event signal

Master signal
H-frame

・
・
・
・
・
・
・
・

Master signal
H-frame

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 38 of 43
May 24.24

(4) Message Transfer Sequence

Figure 4.16 Message Transfer Sequence

Encoder IF Driver Sample Program Encoder

Master signal
(message transmission starts)

R_HFDSL_Control
(R_HFDSL_CMD_MSG)

Set message data
Trigger transmission

・
・
・

Master signal

Read the PC_BUF registers
Store the received message

HDSLn_INT interrupt
 from FREL

hfdsl_int_mrcv_callback
(callback function)

Master signal

Master signal

・
・
・

Master signal

Master signal

・
・
・

Master signal
(message transmission ends)

Master signal

H-frame

H-frame

H-frame

H-frame (message reception starts)

H-frame

H-frame (message reception ends)

H-frame

H-frame

・
・
・

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 39 of 43
May 24.24

(5) Stop Sequence

Figure 4.17 Stop Sequence

Encoder IF Driver Encoder Sample Program

R_HFDSL_Close()

R_HFDSL_Close() ends

 Stop processing

Master signal

H-frame

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 40 of 43
May 24.24

4.11.6 Console Commands
The commands available for input from the console are listed below.

Table 4.10 Console Commands

Command Description
pos Indicates the fast and safe positions
vel Indicates the rotational velocity of the motor.
lmsg Among the encoder resources, acquire the type of the encoder as a long

message.
safety Displays received data of vertical channel.

(1) run
After running it will display the command prompt following the version. Enter the command after “hfdsl>”.

HFDSL Safety sample program start

R_HFDSL_GetVersion = 1.0

hfdsl >

(2) pos command
Fast position: The result of R_HFDSL_CMD_POS in the hfdsl_int_nml_callback function is displayed.

Safe position: The result of R_HFDSL_CMD_VPOS in the hfdsl_int_nml_callback function is displayed. *

Error information: The result of the hfdsl_int_err_callback function is displayed.

hfdsl >pos

Fast position

 Rotations : 0x000002E1

 Angle : 0x0002D564

Safe position

 Rotations : 0x000002E1

 Angle : 0x0002D564

Error information

 EVENT_ERR : 0x00000000

Note: If the SPI mode is selected for safe channel 1 interface mode by the argument pinfo of the
R_HFDSL_Open function, access to the safe channel 1 interface registers is disabled. Values for the
safe position are shown as “–".

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 41 of 43
May 24.24

(3) vel command
Motor rotation speed: The result of R_HFDSL_CMD_VEL in the hfdsl_int_nml_callback function is displayed.

Error information: The result of the hfdsl_int_err_callback function is displayed.

hfdsl >vel

Motor rotation speed

 Speed : 0x00000026

Error information

 EVENT_ERR : 0x00000000

(4) lmsg command
Message address: The message address of the long message is displayed.

Motor rotation speed: The result of the hfdsl_int_mrcv_callback function is displayed.

Error information: The result of the hfdsl_int_err_callback function is displayed.

hfdsl >lmsg

Message address

 PC_ADD_H : 0x54

 PC_ADD_L : 0x80

Received data

 PCBUF[0] : 0x00

 PCBUF[1] : 0x02

Error information

 EVENT_ERR : 0x00000000

(5) safety command
SAFETY POSITION 1 data: The result of the hfdsl_int_safety_callback function is displayed. *

“data” are register data, “Rotations” and “Angle” are the values after conversion.

SAFETY POSITION 2 data: Safety position 2 is not accessible from this sample program, Values are
displayed as “—“.

hfdsl >safety

SAFETY POSITION 1 data

 Rotations : 0x000002E1

 Angle : 0x000F055D

 data : 0x05 0x00 0x2E 0x1F 0x05 0x5D 0x79 0x7F

SAFETY POSITION 2 data

 Rotations : --

 Angle : --

 data : -- -- -- -- -- -- -- --

Note: If the SPI mode is selected for safe channel 1 interface mode by the argument pinfo of the
R_HFDSL_Open function, access to the safe channel 1 interface registers is disabled. Values for the
SAFETY POSITION 1 are shown as “–", too.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 42 of 43
May 24.24

5. Sample Code
The sample code can be downloaded from the Renesas Electronics website.

RZ/T2L Group HIPERFACE DSL Safety sample program

R11AN0760EJ0200 Rev.2.00 Page 43 of 43
May 24.24

Revision History

Rev. Date
Description
Page Summary

1.00 May 31.23 - First Edition issued.
2.00 May 24.24 5

20
Update description of the board name.
Remove description about location of integer type definition.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	2. Operating Environment
	3. Peripheral Functions
	3.1 Pins

	4. Software
	4.1 HFDSL Driver Function
	4.2 File Structure
	4.3 Functions
	4.4 Specifications of API Functions
	4.4.1 R_HFDSL_Open
	4.4.2 R_HFDSL_Close
	4.4.3 R_HFDSL_GetVersion
	4.4.4 R_HFDSL_Control

	4.5 Specification of User-defined Functions
	4.5.1 hfdsl_int_nml_callback
	4.5.2 hfdsl_int_err_callback
	4.5.3 hfdsl_int_safety_callback
	4.5.4 hfdsl_int_mrcv_callback

	4.6 Interrupt Handler
	4.6.1 hfdsl_int_isr_ch0
	4.6.2 hfdsl_int_isr_ch1
	4.6.3 hfdsl_fpr_isr_ch0
	4.6.4 hfdsl_fpr_isr_ch1
	4.6.5 hfdsl_sp_isr_ch0
	4.6.6 hfdsl_sp_isr_ch1
	4.6.7 hfdsl_err_isr

	4.7 Interrupts
	4.8 Constants and Error Codes
	4.9 Fixed-Width Integers
	4.10 Structures, Unions, and Enumerations
	4.10.1 Structures
	4.10.2 Unions
	4.10.3 Enumerations

	4.11 Description of the Sample Program
	4.11.1 Outline of Operations
	4.11.2 Variables for the Sample Program
	4.11.3 Constants for the Sample Program
	4.11.4 Flowchart of Main Processing
	4.11.5 Operation Sequence
	4.11.6 Console Commands

	5. Sample Code

